Chapter 3

Termination

3.1 Wqos

A quasi-ordering is a transitive and reflexive relation. The equivalence relation \simeq associated with a quasi-ordering \geq is defined as $x \simeq y$ iff $x \geq y$ and $y \geq x$. The strict ordering associated with a quasi-ordering \geq is the relation $\geq \backslash \simeq$.

Definition 4 A quasi-ordering \geq is well-founded if there is no infinite sequence $\{s_i\}_{i\in\mathbb{N}}$ sur that, for every $i, s_i > s_{i+1}$.

Definition 5 A well quasi ordering (wqo in short) is a quasi ordering \geq such that, for every infinite sequence $\{s_i\}_{i\in\mathbb{N}}$, there are two indices i < j such that $s_j \geq s_i$.

Proposition 1 If \geq is a wqo on the set D, then every infinite subset of D contains finitely many minimal elements, up to \simeq .

Proof:

By contradiction: if there was infinitely many minimal elements, we could construct an infinite sequence of pairwise incomparable elements. \Box

Proposition 2 Any wqo is well-founded.

Proposition 3 Any quasi-ordering that contains a wqo is well-founded.

Proof:

Any infinite decreasing sequence does not contain two elements i < j such

that $s_j \geq s_i$.

Lemma 1 If \geq is well-founded, then for every d there is a d' such that $d \geq d'$ and, for every d'', $d' \geq d''$ (d' is minimal).

Proof:

let us construct a strictly decreasing sequence as follows: $d_0 = d$ and, if d_n is not minimal, then $d_n > d_{n+1}$. By well-foundedness this sequence is finite, hence there is a n such that d_n is minimal. Furthermore, $d_0 \ge d_n$ by transitivity.

Proposition 4 A quasi-ordering \geq is a wqo iff

- 1. It is well-founded
- 2. Every infinite sequence contains two comparable elements

Proof:

The only if direction is a consequence of the two previous propositions.

Consider now a well founded quasi-ordering such that any infinite sequence contains two comparable elements. Let $\{s_i\}_{i\in\mathbb{N}}$ be an infinite sequence. If there are two indices i, j such that $s_i \simeq s_j$, then the proof is completed. Assume now it is not the case.

Let $M = \{s_i | i \in \mathbb{N}, \forall j.s_i \neq s_j\}$ (minimal elements). By well-foundedness and lemma 1,

$$\{s_i \mid i \in \mathbb{N}\} = \bigcup_{m \in M} \{s_j \mid j \in \mathbb{N}, s_j \ge m\}$$

Since every infinite sequence contains two comparable elements, M is finite, hence there is a $s_{i_0} = m \in M$ such that $\{s_j | j \in \mathbb{N}, s_j \geq m\}$ is infinite. In particular it contains a s_{j_0} with $j_0 > i_0$. This shows that there are two indices $i_0 < j_0$ such that $s_{i_0} \leq s_{j_0}$. \geq is therefore a wqo. \Box

Proposition 5 If \geq is a wqo, then from every infinite sequence $\{s_i\}_{i\in\mathbb{N}}$ it is possible to extract a subsequence $\{s_{i_j}\}_{j\in\mathbb{N}}$ such that, for every j, $s_{i_{j+1}} \geq s_{i_j}$.

Proof:

We construct by induction on j an increasing subsequence s_{i_j} such that the sets $E_j = \{s_k \mid k \ge i_j, s_k \ge s_{i_j}\}$ is infinite. $E_0 = \mathbb{N}$ and, for every j, we let

3.2. CONSTRUCTION OF ORDERINGS

 M_j be the set of minimal elements of E_j , up to $\simeq: \forall e \in E_j, (\forall e' \in E_j.e \neq e') \Rightarrow (\exists e'' \in M_j.e \simeq e'')$ and two elements in M_j are incomparable.

By proposition 3 and lemma 1,

$$E_j = \bigcup_{m \in M_i} \{ s_k \in E_j \mid s_k \ge m \}$$

Since E_j is infinite, there is a $m = s_{i_{j+1}} \in M$ such that $E_{j+1} = \{s_k \in E_j \mid s_k \geq m\}$ is infinite.

By construction, $s_{i_{j+1}} \ge s_{i_j}$ for every j.

3.2 Construction of orderings

Definition 6 If $(D_1, \geq_1), \ldots, (D_n, \geq_n)$ are quasi-ordered sets, then the product quasi-ordering $\geq_{\times} = (\geq_1, \ldots, \geq_n)$ is defined on $D_1 \times \cdots \times D_n$ by

 $(d_1,\ldots,d_n) \ge_{\times} (d'_1,\ldots,d'_n) \quad iff \quad \forall i. \ d_i \ge_i d'_i$

Proposition 6 A product quasi-ordering is a wqo (resp. is well-founded) iff each of its components is a wqo (resp. well-founded).

Example: the product ordering on \mathbb{N}^k is a wqo.

Definition 7 If $(D_1, \geq_1), \ldots, (D_n, \geq_n)$ are quasi-ordered sets, then the lexicographic composition $\geq = (\geq_1, \ldots, \geq_n)_{lex}$ is defined on $D_1 \times \cdots \times D_n$ by

$$(d_1, \dots, d_n) >_{lex} (d'_1, \dots, d'_n) \quad iff \quad \exists j. \ (\forall i < j. \ d_i \simeq_i d'_i) \land \ d_j >_j d'_j$$
$$(d_1, \dots, d_n) >_{lex} (d'_1, \dots, d'_n) \quad iff \quad \forall i. \ d_i \simeq_i d'_i$$

Proposition 7 The lexicographic composition of quasi-orderings is a wqo (resp. is well-founded) iff each of its components is a wqo (resp. well-founded).

A (finite) multiset on D is a mapping from D to \mathbb{N} , which is 0, except on a finite subset of D. M + N is defined by (M + N)(k) = M(k) + N(k). \emptyset is the multiset mapping every element to 0. $\{\{x_1, \ldots, x_n\}\}$ is the multiset mapping x_i to $|\{j \in \{1, \ldots, n\} \mid x_j = x_i\}|$ and 0 otherwise.

Definition 8 The multiset extension of a quasi-ordering \geq on D is the least quasi-ordering \geq_{mul} on the multisets such that:

- 1. $M \geq_{mul} \emptyset$
- 2. for every M, M, N,

$$M \ge_{mul} M' \quad \Rightarrow \quad M+N \ge_{mul} M'+N$$

3. for every $n \in \mathbb{N}$, for every M, x, x_1, \ldots, x_n ,

$$(\forall i. x >_D x_i) \Rightarrow M + \{\{x\}\} \geq_{mul} M + \{\{x_1, \dots, x_n\}\}$$

Proposition 8 The multiset extension of a quasi-ordering \geq is well-founded (res. is a wqo) iff \geq is well-founded (resp. is a wqo).

3.3 Embedding

Definition 9 Let (D, \leq) be a quasi-ordered set. The embedding extension \leq_{\leq}^{w} of \leq on D^{*} is the least relation on D^{*} such that

- 1. $\epsilon \trianglelefteq^w_{<} \epsilon$
- 2. for every $u, v \in D^*$, for every $a \in D$, $u \trianglelefteq_{<}^w v \Rightarrow u \trianglelefteq_{<}^w a \cdot v$
- 3. for every $a, b \in D$ and every $u, v \in D^*$,

 $u \trianglelefteq_{\leq}^{w} v \wedge a \leq b \quad \Rightarrow \quad au \trianglelefteq_{\leq}^{w} bv$

Lemma 2 $\trianglelefteq_{\leq}^{w}$ is a well-founded quasi-ordering if \leq is a well-founded quasi-ordering.

Lemma 3 (Higman) $\leq^w_{<}$ is a wqo iff \leq is a wqo.

Proof:

By contradiction: assume there is an infinite sequence $\{w_i\}_{i\in\mathbb{N}}$ such thar, for every i < j, $w_i \not \lhd w_j$. Then the set $\mathcal{E} = \{(w_i)_{i\in\mathbb{N}} \mid \forall i < j.w_i \not \lhd w_j\}$ is not empty. We construct by induction a minimal counter-example $(v_i)_{i\in\mathbb{N}}$ and non-empty sets of counter-examples \mathcal{E}_i as follows: $\mathcal{E}_0 = \mathcal{E}$. Let $(w_i)_{i\in\mathbb{N}} \in \mathcal{E}_j$ be such that $w_0 = v_0, \ldots w_{j-1} = v_{j-1}$ and $|w_j|$ is minimal. We let then $v_j = w_j$ and $E_{j+1} = \{(w_i)_{i\in\mathbb{N}} \in E_j \mid w_0 = v_0, \ldots, w_j = v_j\}$. E_{j+1} is non empty by construction.

Consider then the sequence a_i of the first letters of v_i . Since \leq is a wqo, thanks to proposition 5 there is an infinite increasing subsequence $\{a_{i_j}\}_{i \in \mathbb{N}}$.

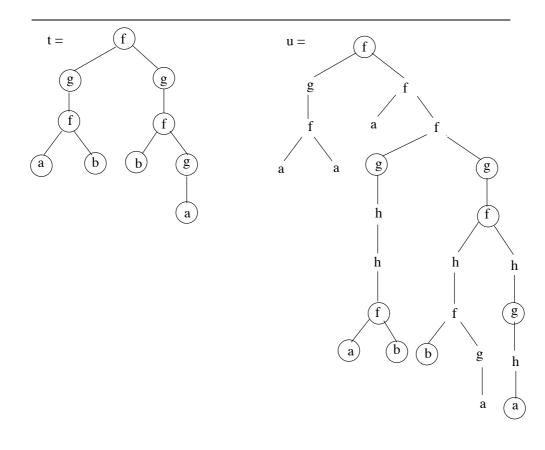


Figure 3.1: Example of embedding: $t \leq u$

Consider then the sequence $\{x_i\}_{i\in\mathbb{N}}: v_1, \ldots, v_{i_0-1}, v'_{i_0}, v'_{i_1}, \ldots, v'_{i_n}, \ldots$ where v'_{i_j} is obtained from v_{i_j} by removing the first letter a_{i_j} . By minimality assumption on the counter example, there are two indices j < k such that $x_j \leq \leq x_k$. By construction of the sequence $v_i, j \geq i_0$ (otherwise v_i is not a counter-example sequence): there are two indices m < n such that $v'_{i_m} \leq \leq v'_{i_n}$. But, since $a_{i_m} \leq a_{i_n}$, thanks to the last point of the definiton, $v_{i_m} = a_{i_m} \cdot v'_{i_m} \leq \leq a_{i_n} \cdot a$ contradiction.

Definition 10 Assuming a quasi-ordering on \mathcal{F} , embedding \leq is the least relation on $T(\mathcal{F})$ such that

- 1. for every $u \in T(|calF), u \leq u$
- 2. for every $f \in \mathcal{F}$, $i \in [1..a(f)]$, $u_1, \ldots, u_{a(f)}, v \in T(\mathcal{F})$, $v \leq u_i \Rightarrow v \leq f(u_1, \ldots, u_{a(f)})$
- 3. for every $f, g \in \mathcal{F}$ such that a(f) = m and $a(g) = n \ge m$, for every increasing index sequence $j_1 < \ldots < j_m$, if, for every $k, v_k \le u_{j_k}$, then $f(v_1, \ldots, v_k) \le g(u_1, \ldots, u_n)$.

An example of embedding is displayed in the figure 3.1, when $\geq_{\mathcal{F}}$ is the equality.

Proposition 9 The tree embedding \leq is well-founded iff $\geq_{\mathcal{F}}$ is well-founded.

Proposition 10 Assume that \mathcal{F} is finite and $\geq_{\mathcal{F}}$ is the equality. Then the tree embedding is simply the rewrite relation on $T(\mathcal{F})$, associated with the rewriting system

$$f(x_1,\ldots,x_n) \to x_i \qquad f \in \mathcal{F}, i \in [1..n]$$