Chapter 2

Basic definitions

2.1 Terms and substitutions

2.2 Term Rewriting systems

A term rewriting system R is a set of pairs of terms in T'(F, X). Its members
are typically written [ — r
The following relations are defined on T'(F, X).

o s 2% tif s|, = lo and t = s[rol,
l—=r

s l—> t if there is a position p € Pos(s) and a substitution o such
—r

that s =25 ¢.
l—r

® s ? t if there is a rule | — r € R such that s ﬁt
—Tr

e — = — U <

R R R
o 5 =2 = where Y isthe identity and ia kNN N
R R R R R R
Example 1
(r1) dec(enc(x,y),y) — =z
(r2) m((z,y) — =
(r3) m((z,y)) —
dec(enc(m((a,b)),a),a) “AZ2TLUGIY2 g by
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Definition 1 A term rewriting system R is terminating if there is no infi-
nite sequence {s;}ien such that, for every i, s; ? Sit1-

Note that this definition corresponds to universall termination and strong
normalization; we may start from an arbitrary term and the reductions take
place at any position, using any rule.

Exercice 1
Give an example of a finite TRS R, which is not terminating and such that,

for every term ¢, there is a term u such that ¢ %) u and u cannot be reduced
by R.

Exercice 2
Give an example of a finite TRS which

1. is not terminating
2. each rule alone is a terminating system

3. for any term t and any position p of ¢, at most one rule can be applied
at position p in ¢

Theorem 1 Termination is undecidable for finite term rewriting systems.

Proof:
We reduce the Post Correspondance Problem. Let (uq,...,u,), (v1,...,v,)
be an instance of PCP, where u;,v; € ¥*.

We consider the set of symbols F = {0(0), f(4)} U{a(l) |a € X}. If
u € X and t € T(F,X), we write u(t) the term defined by induction on
w: €(t) = t, au(t) = a(u(t)). u(t) is defined by induction on u: €(t) = t,
au(t) = u(a(t)).

We let R be the rewrite system containing the rules

(rg) flx,y,a(2),a(z)) — fla(x),aly),z,2) For every letter a

We claim that PCP has a solution iff R is not terminating.

{(Ti) fui(z),vi(y), z1,91) = f(2,y,%i(21),0i(y1))  For every pair (us, vi)
2

If PCP has a solution wu;, ---u;, = v;, ---v;, = w, then

——~—

Fluiy i, (0), 057 - 03,,(0),0,0) — -+ — £(0,0,u5, g, (0), 05, - 03, (0))
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and

f(07 0, @(0), @(0)) r—*; f(ﬂj(O), {5(0)7 0, O) - f(uzﬁlk (0)7 Uu/x/vlk (0)7 0, O)

Hence R is not terminating.

If R is not terminating , consider a term ¢ from which there is an infi-
nite reduction sequence.
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We first note that the number of occurrences of f in ¢; (written # ¢(t;))
is constant along the sequence since the reqwriting rules in R do not
erase nor duplicate variables:

#(ullolp) = #5l0p) + #5 () + Xrevarq) #7(x0)
#f(u[O]p) + #f(?“) + ZmGVar(r) #f(.%'O’)
= #s(ulrolp)

Now, we prove, by induction on (#¢(t),[t|), (where |t| is the size of
the term ¢) that there is an infinite reduction sequence
€

€ €
S1 — S2+:+ — Sp —

in which all reductions take place at the root position.
If #¢(t) = 0, there is nothing to prove.
If t = a(t') for some a € ¥, then p; = 1 p] for all i and

/
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th
and we can apply the induction hypothesis to ¢|;, whose size is strictly
smaller than the size of t.
If t = f(o,B,7,0). Then, for every i, t; = f(ay,Bi,7i,0;). Consider
again two cases: either {i € N|p; = €} is infinite or not.

Case 1: {i € N|p;, = ¢} is finite . Let iy be the maximum of this
set. Then, for ¢ > iy, p; > €. Therefore, one of the four sets
{pi|i >ip} Nj.N* for j = 1,2,3,4 is infinite: we can extract an
infinite sequence

and #¢(tm,|j) < #f(t); we can apply the induction hypothesis.
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Case 2: {i € N|p; = ¢} is infinite . Consider the morphism p such
that, p(a(t)) = a(p(t)) for a € ¥ and p(f(s1,...,54)) = 0.
Thanks to the definition of R, if s = ', then p(s) = p(s').

We let p/ be the mapping defined by p'(a(t)) = p(a(t)) and
p'(f(s1,82,83,51)) = f(p(s1),p(s2),p(s3),p(s4)). Let us show
that, for every i, either t; — t;11, in which case p/(t;) = p'(tiz1)
or else p'(t;) = p/(tiy1).

Indeed, by definition of R, p/(lo) = lo? where xo? = p(xo) for

every variable x. Hence, if t; = lo;, then p/(t;) = laf N raf =
tiv1. If ¢ :ﬁ—€> , then, for j =1,2,3,4, p(t;|;) = p(tit1];), hence
i+1

p'(ti) = p/(tis1).
Therefore, if ¢;, is the subsequence of terms such that ¢;, —;—> ip+1,
then
€ € € €
Pltn) = pt) - o At) — -

We are left now to consider the case where all p; = e.

Consider the two interpretations: I1(t;) = (Jeul, |Bil, [vils |0i])iec and
Ly(t;) = (16,7, 18l |i])iez- The lexicographic ordering on N* is
well-founded and, if s — ', then I;(s) > I;(s) and, if — &', then
ri Ty

Ir(s) > Iy(s'). It follows that there is no infinite reduction sequence
using the rules 7¢ only, nor using the rules r$ only. In other words, the
infinite reduction sequence must swicth infinitely often between the ry
rules and the r9 rules. Therefore, there is a subsequence

flu,v,a(w),a(w)) — — fla(u), a(v), w, w)
— (00, T (), T (w)

_—j;) f(u%’vllc’uil "'uik(w)’vil vlk(w))
T
€

a
T2

But applying a rule 7§ at position € to f(u}, vy, Wi, - Ui, (W), Uiy -~ Vg (W)
requires u;, - - - ;, (W) = 0;, - - - 0;, (w), which implies u;, - - - u;
there is a solution tp PCP.
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