Chapter 2

Basic definitions

2.1 Terms and substitutions

2.2 Term Rewriting systems

A term rewriting system \mathcal{R} is a set of pairs of terms in $T(\mathcal{F}, X)$. Its members are typically written $l \to r$

The following relations are defined on $T(\mathcal{F}, X)$.

•
$$s \xrightarrow[l \to r]{p,\sigma} t \text{ if } s|_p = l\sigma \text{ and } t = s[r\sigma]_p$$

• $s \xrightarrow[l \to r]{} t$ if there is a position $p \in \mathsf{Pos}(s)$ and a substitution σ such that $s \xrightarrow[l \to r]{} t$.

•
$$s \xrightarrow{\mathcal{R}} t$$
 if there is a rule $l \to r \in \mathcal{R}$ such that $s \xrightarrow{l \to r} t$

• $\underset{\mathcal{R}}{\longleftrightarrow} = \underset{\mathcal{R}}{\longrightarrow} \cup \underset{\mathcal{R}}{\longleftrightarrow}$

•
$$\xrightarrow{*}_{\mathcal{R}} = \bigcup_{n=0}^{+\infty} \xrightarrow{n}_{\mathcal{R}}$$
 where $\xrightarrow{0}_{\mathcal{R}}$ is the identity and $\xrightarrow{n+1}_{\mathcal{R}} = \xrightarrow{n}_{\mathcal{R}} \circ \xrightarrow{n}_{\mathcal{R}}$.

Example 1

$$\begin{array}{rcl} (r_1) & \textit{dec}(\textit{enc}(x,y),y) \rightarrow x \\ (r_2) & \pi_1(\langle x,y \rangle) \rightarrow x \\ (r_3) & \pi_2(\langle x,y \rangle) \rightarrow y \end{array}$$
$$\textit{dec}(\textit{enc}(\pi_1(\langle a,b \rangle),a),a) & \xrightarrow{\epsilon,\{x \mapsto \pi_1(\langle a,b \rangle); y \mapsto a\}}{r_1} \pi_1(\langle a,b \rangle)$$

Definition 1 A term rewriting system \mathcal{R} is terminating if there is no infinite sequence $\{s_i\}_{i\in\mathbb{N}}$ such that, for every $i, s_i \xrightarrow{\mathcal{P}} s_{i+1}$.

Note that this definition corresponds to *universall termination* and *strong normalization*; we may start from an arbitrary term and the reductions take place at any position, using any rule.

Exercice 1

Give an example of a finite TRS \mathcal{R} , which is not terminating and such that, for every term t, there is a term u such that $t \xrightarrow{*}{\mathcal{R}} u$ and u cannot be reduced by \mathcal{R} .

Exercice 2

Give an example of a finite TRS which

- 1. is not terminating
- 2. each rule alone is a terminating system
- 3. for any term t and any position p of t, at most one rule can be applied at position p in t

Theorem 1 Termination is undecidable for finite term rewriting systems.

Proof:

We reduce the Post Correspondence Problem. Let $(u_1, \ldots, u_n), (v_1, \ldots, v_n)$ be an instance of PCP, where $u_i, v_i \in \Sigma^*$.

We consider the set of symbols $\mathcal{F} = \{0(0), f(4)\} \cup \{a(1) \mid a \in \Sigma\}$. If $u \in \Sigma^*$ and $t \in T(\mathcal{F}, X)$, we write $\overline{u}(t)$ the term defined by induction on u: $\overline{\epsilon}(t) = t$, $\overline{au}(t) = a(\overline{u}(t))$. $\widetilde{u}(t)$ is defined by induction on u: $\widetilde{\epsilon}(t) = t$, $\widetilde{au}(t) = \widetilde{u}(a(t))$.

We let \mathcal{R} be the rewrite system containing the rules

$$\begin{cases} (r_1^i) & f(\widetilde{u}_i(x), \widetilde{v}_i(y), x_1, y_1) \to f(x, y, \overline{u}_i(x_1), \overline{v}_i(y_1)) & \text{For every pair } (u_i, v_i) \\ (r_2^a) & f(x, y, a(z), a(z)) \to f(a(x), a(y), z, z) & \text{For every letter } a \end{cases}$$

We claim that PCP has a solution iff \mathcal{R} is not terminating.

If PCP has a solution $u_{i_1} \cdots u_{i_k} = v_{i_1} \cdots v_{i_k} = w$, then

$$f(u_{i_1}\cdots u_{i_k}(0), v_{i_1}\cdots v_{i_k}(0), 0, 0) \xrightarrow[r_1^{i_k}]{} \cdots \xrightarrow[r_1^{i_1}]{} f(0, 0, \overline{u_{i_1}\cdots u_{i_k}}(0), \overline{v_{i_1}\cdots v_{i_k}}(0))$$

and

$$f(0,0,\overline{w}(0),\overline{w}(0)) \xrightarrow{*}_{r_2} f(\widetilde{w}(0),\widetilde{w}(0),0,0) = f(u_{i_1}\cdots u_{i_k}(0),v_{i_1}\cdots v_{i_k}(0),0,0)$$

Hence \mathcal{R} is not terminating.

If \mathcal{R} is not terminating , consider a term t from which there is an infinite reduction sequence.

$$t \xrightarrow{p_1,\sigma_1} \mathcal{R} t_1 \cdots \xrightarrow{p_n,\sigma_n} t_n \cdots$$

We first note that the number of occurrences of f in t_i (written $\#_f(t_i)$) is constant along the sequence since the requriting rules in \mathcal{R} do not erase nor duplicate variables:

$$\#_f(u[l\sigma]_p) = \#_f(u[0]_p) + \#_f(l) + \sum_{x \in Var(l)} \#_f(x\sigma)
= \#_f(u[0]_p) + \#_f(r) + \sum_{x \in Var(r)} \#_f(x\sigma)
= \#_f(u[r\sigma]_p)$$

Now, we prove, by induction on $(\#_f(t), |t|)$, (where |t| is the size of the term t) that there is an infinite reduction sequence

$$s_1 \xrightarrow{\epsilon} s_2 \cdots \xrightarrow{\epsilon} s_n \xrightarrow{\epsilon}$$

in which all reductions take place at the root position.

If $\#_f(t) = 0$, there is nothing to prove.

If t = a(t') for some $a \in \Sigma$, then $p_i = 1 \cdot p'_i$ for all i and

$$t|_1 \xrightarrow{p'_1,\sigma_1} \cdots t_n|_1 \xrightarrow{p'_n,\sigma_n} \cdots$$

and we can apply the induction hypothesis to $t|_1$, whose size is strictly smaller than the size of t.

If $t = f(\alpha, \beta, \gamma, \delta)$. Then, for every $i, t_i = f(\alpha_i, \beta_i, \gamma_i, \delta_i)$. Consider again two cases: either $\{i \in \mathbb{N} \mid p_i = \epsilon\}$ is infinite or not.

Case 1: $\{i \in \mathbb{N} \mid p_i = \epsilon\}$ is finite. Let i_0 be the maximum of this set. Then, for $i > i_0$, $p_i > \epsilon$. Therefore, one of the four sets $\{p_i \mid i > i_0\} \cap j.\mathbb{N}^*$ for j = 1, 2, 3, 4 is infinite: we can extract an infinite sequence

$$t_{m_1}|_j \xrightarrow{\mathcal{R}} \cdots t_{m_p}|_j \xrightarrow{\mathcal{R}} \cdots$$

and $\#_f(t_{m_1}|_j) < \#f(t)$; we can apply the induction hypothesis.

Case 2: $\{i \in \mathbb{N} \mid p_i = \epsilon\}$ is infinite . Consider the morphism ρ such that, $\rho(a(t)) = a(\rho(t))$ for $a \in \Sigma$ and $\rho(f(s_1, \ldots, s_4)) = 0$. Thanks to the definition of \mathcal{R} , if $s \xrightarrow{\mathcal{R}} s'$, then $\rho(s) = \rho(s')$.

We let ρ' be the mapping defined by $\rho'(a(t)) = \rho(a(t))$ and $\rho'(f(s_1, s_2, s_3, s_4)) = f(\rho(s_1), \rho(s_2), \rho(s_3), \rho(s_4))$. Let us show that, for every *i*, either $t_i \stackrel{\epsilon}{\to} t_{i+1}$, in which case $\rho'(t_i) \stackrel{\epsilon}{\to} \rho'(t_{i+1})$ or also $\rho'(t_i) = \rho'(t_i \cdot \epsilon)$

or else $\rho'(t_i) = \rho'(t_{i+1})$.

Indeed, by definition of \mathcal{R} , $\rho'(l\sigma) = l\sigma^{\rho}$ where $x\sigma^{\rho} = \rho(x\sigma)$ for every variable x. Hence, if $t_i = l\sigma_i$, then $\rho'(t_i) = l\sigma_i^{\rho} \stackrel{\epsilon}{\to} r\sigma_i^{\rho} =$

 t_{i+1} . If $t_i \xrightarrow{\neq \epsilon} t_{i+1}$, then, for j = 1, 2, 3, 4, $\rho(t_i|_j) = \rho(t_{i+1}|_j)$, hence $\rho'(t_i) = \rho'(t_{i+1})$.

Therefore, if t_{i_k} is the subsequence of terms such that $t_{i_k} \xrightarrow{\epsilon} t_{i_k+1}$, then

$$\rho'(t_{i_1}) \xrightarrow{\epsilon} \rho'(t_{i_2}) \xrightarrow{\epsilon} \cdots \xrightarrow{\epsilon} \rho'(t_{i_k}) \xrightarrow{\epsilon} \cdots$$

We are left now to consider the case where all $p_i = \epsilon$.

Consider the two interpretations: $I_1(t_i) = (|\alpha_i|, |\beta_i|, |\gamma_i|, |\delta_i|)_{lex}$ and $I_2(t_i) = (|\delta_i|, |\gamma_i|, |\beta_i|, |\alpha_i|)_{lex}$. The lexicographic ordering on \mathbb{N}^4 is well-founded and, if $s \xrightarrow{\epsilon}{r_1^i} s'$, then $I_1(s) > I_1(s')$ and, if $\xrightarrow{\epsilon}{r_2^a} s'$, then $I_2(s) > I_2(s')$. It follows that there is no infinite reduction sequence using the rules r_1^i only, nor using the rules r_2^a only. In other words, the infinite reduction sequence must switch infinitely often between the r_1 rules and the r_2 rules. Therefore, there is a subsequence

$$\begin{array}{ccc} f(u,v,a(w),a(w)) & \xrightarrow{r_2} & f(a(u),a(v),w,w) \\ & \xrightarrow{r_2} & f(u'_1,v'_1,\overline{u_{i_k}}(w),\overline{v_{i_k}}(w)) \\ & \xrightarrow{\epsilon} & f(u'_1,v'_1,\overline{u_{i_k}}(w),\overline{v_{i_1}\cdots v_{i_k}}(w)) \\ & & \cdots & \\ & \xrightarrow{\epsilon} & f(u'_k,v'_k,\overline{u_{i_1}\cdots u_{i_k}}(w),\overline{v_{i_1}\cdots v_{i_k}}(w)) \\ & \xrightarrow{\epsilon} & & \\ & \xrightarrow{r_2^{i_1}} & & \\ & \xrightarrow{\epsilon} & & \\ & & r_2^{a_2} & & \\ \end{array}$$

But applying a rule r_2^a at position ϵ to $f(u'_k, v'_k, \overline{u_{i_1} \cdots u_{i_k}}(w), \overline{v_{i_1} \cdots v_{i_k}}(w))$ requires $\overline{u_{i_1} \cdots u_{i_k}}(w) = \overline{v_{i_1} \cdots v_{i_k}}(w)$, which implies $u_{i_1} \cdots u_{i_k} = v_{i_1} \cdots v_{i_k}$: there is a solution tp PCP.