
Chapter 2

Basic definitions

2.1 Terms and substitutions

2.2 Term Rewriting systems

A term rewriting systemR is a set of pairs of terms in T (F ,X). Its members
are typically written l→ r

The following relations are defined on T (F ,X).

• s
p,σ
−−→
l→r

t if s|p = lσ and t = s[rσ]p

• s −−→
l→r

t if there is a position p ∈ Pos(s) and a substitution σ such

that s
p,σ
−−→
l→r

t.

• s −→
R

t if there is a rule l→ r ∈ R such that s −−→
l→r

t

• ←−−→
R

= −→
R
∪ ←−

R

•
∗
−→
R

=
⋃+∞

n=0
n
−→
R

where
0
−→
R

is the identity and
n+1
−−−→
R

= −→
R
◦

n
−→
R

.

Example 1
(r1) dec(enc(x, y), y) → x

(r2) π1(〈x, y〉) → x

(r3) π2(〈x, y〉) → y

dec(enc(π1(〈a, b〉), a), a)
ε,{x $→π1(〈a,b〉);y $→a}
−−−−−−−−−−−−−→

r1
π1(〈a, b〉)
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Definition 1 A term rewriting system R is terminating if there is no infi-
nite sequence {si}i∈N such that, for every i, si −→

R
si+1.

Note that this definition corresponds to universall termination and strong
normalization; we may start from an arbitrary term and the reductions take
place at any position, using any rule.

Exercice 1
Give an example of a finite TRS R, which is not terminating and such that,

for every term t, there is a term u such that t
∗
−→
R

u and u cannot be reduced

by R.

Exercice 2
Give an example of a finite TRS which

1. is not terminating

2. each rule alone is a terminating system

3. for any term t and any position p of t, at most one rule can be applied
at position p in t

Theorem 1 Termination is undecidable for finite term rewriting systems.

Proof:
We reduce the Post Correspondance Problem. Let (u1, . . . , un), (v1, . . . , vn)
be an instance of PCP, where ui, vi ∈ Σ∗.

We consider the set of symbols F = {0(0), f(4)} ∪ {a(1) | a ∈ Σ}. If
u ∈ Σ∗ and t ∈ T (F ,X), we write u(t) the term defined by induction on
u: ε(t) = t, au(t) = a(u(t)). ũ(t) is defined by induction on u: ε̃(t) = t,
ãu(t) = ũ(a(t)).

We let R be the rewrite system containing the rules

{
(ri1) f(ũi(x), ṽi(y), x1, y1) → f(x, y, ui(x1), vi(y1)) For every pair (ui, vi)
(ra2) f(x, y, a(z), a(z)) → f(a(x), a(y), z, z) For every letter a

We claim that PCP has a solution iff R is not terminating.

If PCP has a solution ui1 · · · uik = vi1 · · · vik = w, then

f( ˜ui1 · · · uik(0), ˜vi1 · · · vik(0), 0, 0) −−→
r
ik
1

· · · −−→
r
i1
1

f(0, 0, ui1 · · · uik(0), vi1 · · · vik(0))
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and

f(0, 0, w(0), w(0))
∗
−→
r2

f(w̃(0), w̃(0), 0, 0) = f( ˜ui1 · · · uik(0), ˜vi1 · · · vik(0), 0, 0)

Hence R is not terminating.

If R is not terminating , consider a term t from which there is an infi-
nite reduction sequence.

t
p1,σ1−−−→
R

t1 · · ·
pn,σn−−−→
R

tn · · ·

We first note that the number of occurrences of f in ti (written #f (ti))
is constant along the sequence since the reqwriting rules in R do not
erase nor duplicate variables:

#f (u[lσ]p) = #f (u[0]p) + #f (l) +
∑

x∈V ar(l)#f (xσ)

= #f (u[0]p) + #f (r) +
∑

x∈V ar(r) #f (xσ)

= #f (u[rσ]p)

Now, we prove, by induction on (#f (t), |t|), (where |t| is the size of
the term t) that there is an infinite reduction sequence

s1
ε
−→ s2 · · ·

ε
−→ sn

ε
−→

in which all reductions take place at the root position.

If #f (t) = 0, there is nothing to prove.

If t = a(t′) for some a ∈ Σ, then pi = 1 · p′i for all i and

t|1
p′1,σ1

−−−→
R

· · · tn|1
p′n,σn
−−−→

R
· · ·

and we can apply the induction hypothesis to t|1, whose size is strictly
smaller than the size of t.

If t = f(α,β, γ, δ). Then, for every i, ti = f(αi,βi, γi, δi). Consider
again two cases: either {i ∈ N | pi = ε} is infinite or not.

Case 1: {i ∈ N | pi = ε} is finite . Let i0 be the maximum of this
set. Then, for i > i0, pi > ε. Therefore, one of the four sets
{pi | i > i0} ∩ j.N∗ for j = 1, 2, 3, 4 is infinite: we can extract an
infinite sequence

tm1
|j −→

R
· · · tmp |j −→

R
· · ·

and #f (tm1
|j) < #f(t); we can apply the induction hypothesis.
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Case 2: {i ∈ N | pi = ε} is infinite . Consider the morphism ρ such
that, ρ(a(t)) = a(ρ(t)) for a ∈ Σ and ρ(f(s1, . . . , s4)) = 0.
Thanks to the definition of R, if s −→

R
s′, then ρ(s) = ρ(s′).

We let ρ′ be the mapping defined by ρ′(a(t)) = ρ(a(t)) and
ρ′(f(s1, s2, s3, s4)) = f(ρ(s1), ρ(s2), ρ(s3), ρ(s4)). Let us show
that, for every i, either ti

ε
−→ ti+1, in which case ρ′(ti)

ε
−→ ρ′(ti+1)

or else ρ′(ti) = ρ′(ti+1).

Indeed, by definition of R, ρ′(lσ) = lσρ where xσρ = ρ(xσ) for
every variable x. Hence, if ti = lσi, then ρ′(ti) = lσ

ρ
i

ε
−→ rσ

ρ
i =

ti+1. If ti
)=ε
−−→
ti+1

, then, for j = 1, 2, 3, 4, ρ(ti|j) = ρ(ti+1|j), hence

ρ′(ti) = ρ′(ti+1).

Therefore, if tik is the subsequence of terms such that tik
ε
−→
R

tik+1,

then
ρ′(ti1)

ε
−→
R

ρ′(ti2)
ε
−→
R

· · ·
ε
−→
R

ρ′(tik)
ε
−→
R

· · ·

We are left now to consider the case where all pi = ε.

Consider the two interpretations: I1(ti) = (|αi|, |βi|, |γi|, |δi|)lex and
I2(ti) = (|δi|, |γi|, |βi|, |αi|)lex. The lexicographic ordering on N4 is
well-founded and, if s

ε
−→
ri1

s′, then I1(s) > I1(s′) and, if
ε
−→
ra2

s′, then

I2(s) > I2(s′). It follows that there is no infinite reduction sequence
using the rules ri1 only, nor using the rules ra2 only. In other words, the
infinite reduction sequence must swicth infinitely often between the r1
rules and the r2 rules. Therefore, there is a subsequence

f(u, v, a(w), a(w)) −→
r2

f(a(u), a(v), w,w)
ε
−−→
r
ik
1

f(u′1, v
′
1, uik(w), vik (w))

· · ·
ε
−−→
r
i1
1

f(u′k, v
′
k, ui1 · · · uik(w), vi1 · · · vik(w))

ε
−→
ra
2

· · ·

But applying a rule ra2 at position ε to f(u′k, v
′
k, ui1 · · · uik(w), vi1 · · · vik(w))

requires ui1 · · · uik(w) = vi1 · · · vik(w), which implies ui1 · · · uik = vi1 · · · vik :
there is a solution tp PCP.


