Rewriting Homework A rendre au plus tard le 8 janvier 2016

In what follows \mathcal{R} is a finite term rewriting system on the function symbols \mathcal{F} . \mathcal{F} is assumed to contain infinitely many constant symbols $\{a_i \mid i \in \mathbb{N}\}$, which we do not recall in the examples.¹ We use the symbol \top for an empty set of equations, or the identity substitution.

We recall that an *idempotent substitution* ϕ is a mapping from a finite set of variables $\text{Dom}(\phi)$ (called its *domain*) to $T(\mathcal{F}, X \setminus \text{Dom}(\phi))$. A solution (in the free algebra) of a set $s_1 \stackrel{?}{=}_{\emptyset} t_1 \wedge \ldots s_n \stackrel{?}{=}_{\emptyset} t_n$ is an idempotent substitution σ such that, for all $i, s_i \sigma = t_i \sigma$. Such a set of equations either has no solution or has an idempotent mgu (most general unifier) μ such that μ is a solution and all other solutions σ can be written $\sigma = \mu \theta$. Deciding whether there is a solution or not and, in case there is one, computing an idempotent mgu, can be completed in linear time.

An mgu $\{x_1 \mapsto u_1; \dots x_k \mapsto u_k\}$ is identified with a solved system $x_1 \stackrel{?}{=}_{\emptyset} u_1 \wedge \dots \wedge x_k \stackrel{?}{=}_{\emptyset} u_k$.

The goal here is to extend unification procedures to solve equations in quotients $T(\mathcal{F})/ \xleftarrow{*}{\mathcal{R}}$ where \mathcal{R} is a confluent term rewriting system.

An equation system S is a formula

$$\exists x_1, \dots, x_m. \ u_1 \stackrel{?}{=}_{\mathcal{R}} v_1 \wedge \dots u_n \stackrel{?}{=}_{\mathcal{R}} v_n \qquad \| \phi$$

where $u_1, \ldots, u_n, v_1, \ldots, v_n \in T(\mathcal{F}, X)$, and ϕ is an idempotent substitution (the solved part of the system), whose domain is disjoint from $\{x_1, \ldots, x_n\}$.

All equations are assumed to be symmetric: we make no distinction between $u \stackrel{?}{=}_{\mathcal{R}} v$ and $v \stackrel{?}{=}_{\mathcal{R}} u$ (resp. $u \stackrel{?}{=}_{\emptyset} v$ and $v \stackrel{?}{=}_{\emptyset} u$).

A solution of an equation system $\exists x_1, \ldots, x_m. u_1 \stackrel{?}{=}_{\mathcal{R}} v_1 \wedge \ldots u_n \stackrel{?}{=}_{\mathcal{R}} v_n \parallel \phi$ is a substitution σ from $\text{Dom}(\sigma) \subseteq \text{Var}(u_1, v_1, \ldots, u_n, v_n, \phi) \setminus \{x_1, \ldots, x_m\}$ to $T(\mathcal{F})$ such that there is a substitution θ , from x_1, \ldots, x_m to $T(\mathcal{F})$, such that

1. for every i = 1, ..., n,

$$u_i \sigma \theta \stackrel{*}{\longleftrightarrow} v_i \sigma \theta$$

2. there is a substitution θ' such that, $\sigma\theta = \phi\theta'$

An equation system is *in solved form* if it is of the form $\exists \vec{x}. \top \parallel \phi$.

Consider the following transformation rules, in which the variables of the rules in \mathcal{R} are renamed each time it is necessary.

¹Adding such constant symbols, standing for the variables in $T(\mathcal{F}, X)$ prevents from confusing the syntax of the problems and their interpretation. It is not a restriction on the problems that are considered.

A derivation is a sequence of equation systems E_i such that $E_0 \rightsquigarrow \cdots \rightsquigarrow E_i \rightsquigarrow \cdots$ and each derivation step relies on one of the two above rules. The solved forms of an equation system S are all systems S' in solved form that can be obtained by a derivation starting with S.

We will show below that this yields a procedure for solving equation systems for an arbitrary convergent \mathcal{R} .

Question 1

Consider the following (ground) rewrite system on $\mathcal{F} = \{f(1), g(1), a(0), b(0)\}$

$$\mathcal{R}_0 = \left\{ \begin{array}{cc} f(g(a)) & \to & f(b) \\ g(f(b)) & \to & g(a) \end{array} \right.$$

and the equation system $E_0 = f(g(x)) \stackrel{?}{=}_{\mathcal{R}} f(y) \parallel \top$.

Give all possible derivations starting from E_0 and yielding a solved form.

Question 2

Consider the following rewrite system on $\mathcal{F} = \{ \mathsf{enc}(2), \mathsf{dec}(2), \pi_1(1), \pi_2(2), \langle -, - \rangle (2) \}$:

$$\mathcal{R}_1 = \begin{cases} \operatorname{dec}(\operatorname{enc}(x,y),y) & \to & x \\ & \pi_1(\langle x,y \rangle) & \to & x \\ & \pi_2(\langle x,y \rangle) & \to & y \end{cases}$$

Give all possible derivations starting from $\pi_1(\operatorname{dec}(x,y)) \stackrel{?}{=}_{\mathcal{R}} y \parallel \top$. (2 possible derivations).

Question 3

Show that, if $S \rightsquigarrow S'$, then the solutions of S' are contained in the solutions of S

Question 4

1. Assume that \mathcal{R} is terminating and confluent. A substitution σ is then *normalized* if, for every variable $x, x\sigma$ is irreducible.

Show that, if σ is a normalized solution of $E = \exists \vec{x}. S \parallel \phi, S\phi = S$ and $S \neq \top$, then there is a E' such that $E \rightsquigarrow E'$ and σ is a solution of E'.

2. Show that any normalized solution of an equation system $S \parallel \top$ is a solution of one of its soved forms.

Deduce a procedure for solving equations in the quotient $T(\mathcal{F})/\underset{\mathcal{R}}{\overset{*}{\longleftrightarrow}}$ for convergent rewrite systems \mathcal{R} .

- 3. Give an example showing that this result is incorrect when \mathcal{R} is terminating but not confluent.
- 4. Give an example of a confluent \mathcal{R} , an equation system $E = u \stackrel{?}{=}_{\mathcal{R}} v \parallel \top$ and a solution σ such that for every E' such that $E \rightsquigarrow E'$ and for every σ' such that, for every variable $x, x\sigma' \xleftarrow{*}_{\mathcal{R}} x\sigma, \sigma'$ is not a solution of E'. (Hence termination is necessary)

Question 5

Consider the rewrite system

$$\mathcal{R}_2 = \begin{cases} 0+x \to x\\ s(x)+y \to s(x+y) \end{cases}$$

- 1. Explain why \mathcal{R}_2 is confluent
- 2. Using the automatic procedure of the previous question, give the solved forms of the equation systems
 - (a) $x + y \stackrel{?}{=}_{\mathcal{R}} s(s(0)).$ (b) $x + 0 \stackrel{?}{=}_{\mathcal{R}} x$

Question 6

We replace here the **Narrow** rule with

In other words, the unifier σ is not applied to the unsolved part of the equations. (This is known as the *basic strategy*).

- 1. Show that this restriction is harmless: in case \mathcal{R} is convergent, the results of the questions 3 and 4 still hold true with this strategy.
- 2. How does it help for the examples of question 5?

Question 7

Show that, if \mathcal{R} is confluent and if every right hand side of a rule is a subterm of the corresponding left-hand side, then the procedure derived from question 6 is terminating.

Would it be also the case with the procedure derived from question 4?