Rewriting Homework

A rendre au plus tard le 8 janvier 2016

In what follows \mathcal{R} is a finite term rewriting system on the function symbols $\mathcal{F} . \mathcal{F}$ is assumed to contain infinitely many constant symbols $\left\{a_{i} \mid i \in \mathbb{N}\right\}$, which we do not recall in the examples. ${ }^{1}$ We use the symbol T for an empty set of equations, or the identity substitution.

We recall that an idempotent substitution ϕ is a mapping from a finite set of variables $\operatorname{Dom}(\phi)$ (called its domain) to $T(\mathcal{F}, X \backslash \operatorname{Dom}(\phi))$. A solution (in the free algebra) of a se $s_{1} \stackrel{?}{=} \emptyset t_{1} \wedge \ldots s_{n} \stackrel{?}{=} \emptyset t_{n}$ is an idempotent substitution σ such that, for all $i, s_{i} \sigma=t_{i} \sigma$. Such a set of equations either has no solution or has an idempotent mgu (most general unifier) μ such that μ is a solution and all other solutions σ can be written $\sigma=\mu \theta$. Deciding whether there is a solution or not and, in case there is one, computing an idempotent mgu, can be completed in linear time.

An mgu $\left\{x_{1} \mapsto u_{1} ; \ldots x_{k} \mapsto u_{k}\right\}$ is identified with a solved system $x_{1} \stackrel{?}{=} \emptyset u_{1} \wedge \ldots \wedge x_{k} \stackrel{?}{=} \emptyset u_{k}$.
The goal here is to extend unification procedures to solve equations in quotients $T(\mathcal{F}) / \underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}$ where \mathcal{R} is a confluent term rewriting system.

An equation system S is a formula

$$
\exists x_{1}, \ldots, x_{m} \cdot u_{1} \stackrel{?}{=}_{\mathcal{R}} v_{1} \wedge \ldots u_{n} \stackrel{?}{=}_{\mathcal{R}} v_{n} \quad \| \quad \phi
$$

where $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in T(\mathcal{F}, X)$, and ϕ is an idempotrent substitution (the solved part of the system), whose domain is disjoint from $\left\{x_{1}, \ldots, x_{n}\right\}$.

All equations are assumed to be symmetric: we make no distinction between $u \stackrel{?}{=}_{\mathcal{R}} v$ and $v \stackrel{?}{=}_{\mathcal{R}} u\left(\right.$ resp. $u \stackrel{?}{=}_{\emptyset} v$ and $\left.v \stackrel{?}{=}_{\emptyset} u\right)$.

A solution of an equation system $\exists x_{1}, \ldots, x_{m} . u_{1} \stackrel{?}{=}_{\mathcal{R}} v_{1} \wedge \ldots u_{n} \stackrel{?}{=}_{\mathcal{R}} v_{n} \| \phi \quad$ is a substitution σ from $\operatorname{Dom}(\sigma) \subseteq \operatorname{Var}\left(u_{1}, v_{1}, \ldots, u_{n}, v_{n}, \phi\right) \backslash\left\{x_{1}, \ldots, x_{m}\right\}$ to $T(\mathcal{F})$ such that there is a substitution θ, from x_{1}, \ldots, x_{m} to $T(\mathcal{F})$, such that

1. for every $i=1, \ldots, n$,

$$
u_{i} \sigma \theta \underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}} v_{i} \sigma \theta
$$

2. there is a substitution θ^{\prime} such that, $\sigma \theta=\phi \theta^{\prime}$

An equation system is in solved form if it is of the form $\exists \vec{x}$. $\top \| \phi$.
Consider the following transformation rules, in which the variables of the rules in \mathcal{R} are renamed each time it is necessary.

[^0]A derivation is a sequence of equation systems E_{i} such that $E_{0} \rightsquigarrow \cdots \rightsquigarrow E_{i} \rightsquigarrow \cdots$ and each derivation step relies on one of the two above rules. The solved forms of an equation system S are all systems S^{\prime} in solved form that can be obtained by a derivation starting with S.

We will show below that this yields a procedure for solving equation systems for an arbitrary convergent \mathcal{R}.

Question 1

Consider the following (ground) rewrite system on $\mathcal{F}=\{f(1), g(1), a(0), b(0)\}$

$$
\mathcal{R}_{0}=\left\{\begin{array}{llll}
f(g(a)) & \rightarrow & f(b) \\
g(f(b)) & \rightarrow & g(a)
\end{array}\right.
$$

and the equation system $E_{0}=f(g(x)) \stackrel{?}{=} \mathcal{R} f(y)\|\quad\|$.
Give all possible derivations starting from E_{0} and yielding a solved form.

Question 2

Consider the following rewrite system on $\mathcal{F}=\left\{\operatorname{enc}(2), \operatorname{dec}(2), \pi_{1}(1), \pi_{2}(2),\left\langle_{-},-\right\rangle(2)\right\}$:

$$
\mathcal{R}_{1}=\left\{\begin{array}{rll}
\operatorname{dec}(\operatorname{enc}(x, y), y) & \rightarrow x \\
\pi_{1}(\langle x, y\rangle) & \rightarrow x \\
\pi_{2}(\langle x, y\rangle) & \rightarrow & y
\end{array}\right.
$$

Give all possible derivations starting from $\pi_{1}(\operatorname{dec}(x, y)) \stackrel{?}{=} \mathcal{R} y \| T$. (2 possible derivations).

Question 3

Show that, if $S \rightsquigarrow S^{\prime}$, then the solutions of S^{\prime} are contained in the solutions of S

Question 4

1. Assume that \mathcal{R} is terminating and confluent. A substitution σ is then normalized if, for every variable $x, x \sigma$ is irreducible.
Show that, if σ is a normalized solution of $E=\exists \vec{x} . S \| \phi, S \phi=S$ and $S \neq \mathrm{T}$, then there is a E^{\prime} such that $E \rightsquigarrow E^{\prime}$ and σ is a solution of E^{\prime}.
2. Show that any normalized solution of an equation system $S \| \mathrm{T}$ is a solution of one of its soved forms.
Deduce a procedure for solving equations in the quotient $T(\mathcal{F}) / \underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}}$ for convergent rewrite systems \mathcal{R}.
3. Give an example showing that this result is incorrect when \mathcal{R} is terminating but not confluent.
4. Give an example of a confluent \mathcal{R}, an equation system $E=u \stackrel{?}{=}_{\mathcal{R}} v \| \top$ and a solution σ such that for every E^{\prime} such that $E \rightsquigarrow E^{\prime}$ and for every σ^{\prime} such that, for every variable $x, x \sigma^{\prime} \underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}} x \sigma, \sigma^{\prime}$ is not a solution of E^{\prime}. (Hence termination is necessary)

Question 5

Consider the rewrite system

$$
\mathcal{R}_{2}=\left\{\begin{aligned}
0+x & \rightarrow x \\
s(x)+y & \rightarrow s(x+y)
\end{aligned}\right.
$$

1. Explain why \mathcal{R}_{2} is confluent
2. Using the automatic procedure of the previous question, give the solved forms of the equation systems
(a) $x+y \stackrel{?}{=}_{\mathcal{R}} s(s(0))$.
(b) $x+0 \stackrel{?}{=}_{\mathcal{R}} x$

Question 6

We replace here the Narrow rule with

$$
\text { (Narrow) } \begin{aligned}
\exists \vec{x} . \quad u \stackrel{?}{=} \mathcal{R} v \wedge S \| \phi \rightsquigarrow & \exists . \vec{x}, \vec{y} . \quad u[r]_{p} \stackrel{?}{=} \mathcal{R} v \wedge S \| \\
& \text { if } \vec{y}=\operatorname{Var}(l \rightarrow r), l \rightarrow r \in \mathcal{R} \\
& p \text { is a non-variable position of } u, \\
& \sigma \text { is a mg.u. of }\left.l \stackrel{?}{=} \emptyset u\right|_{p} \wedge \phi, \\
& \vec{y} \cap \operatorname{Var}(u, v, S)=\emptyset
\end{aligned}
$$

In other words, the unifier σ is not applied to the unsolved part of the equations. (This is known as the basic strategy).

1. Show that this restriction is harmless: in case \mathcal{R} is convergent, the results of the questions 3 and 4 still hold true with this strategy.
2. How does it help for the examples of question 5 ?

Question 7

Show that, if \mathcal{R} is confluent and if every right hand side of a rule is a subterm of the corresponding left-hand side, then the procedure derived from question 6 is terminating.

Would it be also the case with the procedure derived from question 4 ?

[^0]: ${ }^{1}$ Adding such constant symbols, standing for the variables in $T(\mathcal{F}, X)$ prevents from confusing the syntax of the problems and their interpretation. It is not a restriction on the problems that are considered.

