Examen partiel, Logique et calculabilité, L3

7 novembre 2011

Durée: 3h. Document autorisés: tous. Résultats que vous pouvez utiliser: ceux du cours (Si vous voulez utiliser un résultat vu en TD, il faut le redémontrer).

Les exercices sont indépendants. Les points attribués à chaque question, ainsi que la longueur des solutions sont donnés à titre indicatif.

Exercice 1

Donner une preuve, en calcul des séquents, du séquent $\vdash A \to (B \to A)$ où A, B sont des variables propositionnelles.

[2 points, 3 lignes]

Exercice 2

 $\mathcal{P} = \{P_i | i \in \mathbb{N}\}\$ est un ensemble de variables propositionnelles. L'ensemble de clauses suivant est il satisfaisable ? Justifier.

$$\begin{array}{lll} P_1 \vee \neg P_2 \vee \neg P_3 & P_1 \vee \neg P_2, & \neg P_2 \vee \neg P_3, & P_2 \vee P_3 \vee P_4 \\ P_1 \vee P_3 \vee P_4, & \neg P_1 \vee P_3, & \neg P_1 \vee P_2 \vee \neg P_3, & P_1 \vee P_2 \end{array}$$

[4 points, 8 lignes]

Exercice 3

- 1. Montrer que, si l'on retire la règle d'affaiblissement à \mathbf{NK}_0 , le système de déduction reste complet. (**Ind**: on pourra montrer, par récurrence sur la preuve π de $\Gamma \vdash \phi$, qu'il existe une preuve sans affaiblissement de $\Gamma \vdash \phi$). [3 points, 16 lignes]
- 2. Montrer que, si l'on retire les règles d'introduction de \vee à \mathbf{NK}_0 , le système de déduction n'est plus complet. (**Ind**: on pourra considérer une interprétation non standard de \vee pour laquelle les nouvelles règles sont correctes et $P \vee Q$ n'est pas conséquence logique de P)

[3 points, 6 lignes]

Exercice 4

Si C est une clause et L un littéral, on note $C \setminus L$ la clause C dans laquelle toutes les occurrences de L ont été retirées: $\bot \setminus L = \bot$ et $(L \vee C) \setminus L = C \setminus L$ et $(L' \vee C) \setminus L = L' \vee (C \setminus L)$ si $L \neq L'$. On considère la règle suivante pour le calcul propositionnel en forme clausale:

$$\frac{P \vee C \qquad \neg P \vee C'}{(C \setminus P) \vee (C' \setminus \neg P)}$$

Montrer que cette règle est, à elle seule, réfutationnellement complète pour le calcul propositionnel en forme clausale.

[5 points, 14 lignes]

Exercice 5

Deux \mathcal{F}, \mathcal{P} -structures $\mathcal{S}, \mathcal{S}'$ sont élémentairement équivalentes si, pour toute formule ϕ sur \mathcal{F}, \mathcal{P} , sans variable libre, $\mathcal{S} \models \phi$ si et seulement si $\mathcal{S}' \models \phi$.

Soit $\mathcal{P} = \{\geq\}$, $\mathcal{F} = \emptyset$. On considère les \mathcal{F}, \mathcal{P} -structures $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \geq$ étant interprété comme l'ordre habituel sur ces ensembles. Par abus de notation, les structures $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ seront ci-dessous confondues avec les ensembles (resp. algèbres) sous-jacents.

- 1. Montrer que \mathbb{Z} et \mathbb{Q} ne sont pas élémentairement équivalents. [2 points, 4 lignes]
- 2. On veut montrer que \mathbb{Q} et \mathbb{R} sont élémentairement équivalents. Soit $\mathcal{S} \in \{\mathbb{R}, \mathbb{Q}\}$. Si σ est une application d'un ensemble fini de variables D dans \mathcal{S} , on note \geq_{σ} la relation d'ordre sur D définie par $x \geq_{\sigma} y$ ssi $x\sigma \geq_{\mathcal{S}} y\sigma$.
 - (a) Montrer que, $S, \sigma \models \phi$ si et seulement si, pour toute affectation θ des variables libres de ϕ telle que \geq_{θ} est identique à \geq_{σ} , $S, \theta \models \phi$.
 - (b) En déduire le résultat souhaité.

[5 points, 21 lignes]