Logique informatique 2013-2014. Examen

30 mai 2013. Durée 3h.

Tous les documents sont autorisés. Seuls les résultats du cours peuvent être utilisés sans démonstration. Le barême et la longueur des solutions sont donnés à titre indicatif.

Exercice 1

Parmi les énoncés suivants, dire ceux qui sont vrais, ceux qui sont faux et ceux sur lesquels on ne sait pas conclure. Justifier en donnant si nécéssaire des exemples

- 1. Toute théorie du premier ordre est incohérente ou incomplète
- 2. Toute théorie incohérente est décidable
- 3. Il existe des théories décidables, cohérentes et incomplètes
- 4. L'arithmétique élémentaire n'a pas de modèle fini
- 5. $\{(n,m)\in\mathbb{N}^2\mid n=<\phi(x)>, m=<\Pi(\phi(\overline{n}))>\}$ est définissable dans l'arithmétique élémentaire.
- 6. La cohérence de l'arithmétique élémentaire est définissable dans l'arithmétique élémentaire.
- 7. Si l'on ajoute à l'arithmétique de Peano PA un axiome qui énonce la cohérence de PA, on obtient une théorie incohérente ou incomplète.

Exercice 2

Donner un modèle de l'arithmétique élémentaire dans lequel la relation d'ordre est totale mais n'est pas bien fondée. (On rappelle que l'ordre (strict) est défini par $x>y\stackrel{\text{def}}{=} \exists z.z+y=x \land x\neq y$ et qu'un ordre est bien fondé s'il n'existe pas de chaine infinie strictement décroissante $x_1>\cdots>x_n>\cdots$.)

[5 points, 19 lignes]

Exercice 3

On suppose que $\mathcal{F} = \emptyset$ et $\mathcal{P} = \{R(2), = (2)\}$ et la théorie \mathcal{T} engendrée par les axiomes de l'égalité et les axiomes suivants : On suppose que $\mathcal{F} = \emptyset$ et $\mathcal{P} = \{R(2), = (2)\}$ et la théorie \mathcal{T} engendrée par les axiomes de l'égalité et les axiomes suivants :

- $(ES) \quad \forall x \exists y_1, y_2.$ $R(x, y_1) \land R(x, y_2) \land y_1 \neq y_2$
- $(EP) \quad \forall x \exists y.$ R(y,x)
- $(UP) \quad \forall x \forall y \forall z.$ $R(x,y) \land R(z,y) \rightarrow x = z$
- $(US) \quad \forall x \forall y_1 \forall y_2 \forall y_3. \qquad R(x,y_1) \land R(x,y_2) \land R(x,y_3) \rightarrow y_1 = y_2 \lor y_1 = y_3 \lor y_2 = y_3$
- (T_n) $\forall x_1 \forall x_2 \cdots \forall x_n$. $R(x_1, x_2) \wedge \ldots \wedge R(x_{n-1}, x_n) \rightarrow x_1 \neq x_n$ Pour tout $n \in \mathbb{N}, n > 0$
 - 1. Donner un modèle de \mathcal{T} . (Ind : on pourra considérer $\mathbb{Z} \times 2^{\mathbb{N}}$) [6 lignes, 2 points]
 - 2. Soir \mathcal{S} un modèle de \mathcal{T} et a,b deux éléments du domaine D de \mathcal{S}
 - (a) Montrer que, pour tout entier n, il existe une unique suite $a = a_0, \ldots a_n \in D$ telle que, pour tout $1 \le i \le n$, $(a_i, a_{i-1}) \in R^S$. On note alors $a_n = u_S(a, n)$ et $c \ge_S a$ ssi il existe un n tel que $c = u_S(a, n)$.
 - (b) Montrer que si $c \geq_{\mathcal{S}} a$, alors il existe un unique entier n (noté $d_{\mathcal{S}}(a,c)$) tel que $c = u_{\mathcal{S}}(a,n)$. Montrer que $\geq_{\mathcal{S}}$ est une relation d'ordre.
 - (c) Montrer que, s'il existe c tel que $c \geq_{\mathcal{S}} a$ et $c \geq_{\mathcal{S}} b$, alors il existe un unique d tel que $d \geq_{\mathcal{S}} a$ et $d \geq_{\mathcal{S}} b$ et $(c \geq_{\mathcal{S}} a$ et $c \geq_{\mathcal{S}} b)$ ssi $c \geq_{\mathcal{S}} d$. d est noté $\mathsf{lub}_{\mathcal{S}}(a,b)$. Si un tel majorant n'existe pas, par convention, $\mathsf{lub}_{\mathcal{S}}(a,b) = \bot$.
 - (d) Montrer que, pour tout entier n, $\{a' \in D \mid d_S(a', a) = n\}$ a pour cardinal 2^n .
 - (e) Montrer que si $a \geq_{\mathcal{S}} c$ et $b \geq_{\mathcal{S}} c$, alors $a \geq_{\mathcal{S}} b$ ou $b \geq_{\mathcal{S}} a$.

[10 lignes, 2 points]

- 3. Montrer que deux modèles quelconques de \mathcal{T} sont élémentairement équivalents. (Ind : on pourra assurer l'invariant suivant dans un jeu de EF en n rondes : pour toute suite $(a_1, b_1), \ldots, (a_k, b_k)$, pour tous i, j, on est dans l'un des cas suivants :
 - (a) $(\mathsf{lub}_{\mathcal{S}_1}(a_i, a_j) = \perp \text{ ou } (d_{\mathcal{S}_1}(a_i, \mathsf{lub}_{\mathcal{S}_1}(a_i, a_j)) > 2^{n-k} \text{ ou } d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_i, a_j)) > 2^{n-k}))$ et $(\mathsf{lub}_{\mathcal{S}_2}(b_i, b_j) = \perp \text{ ou } (d_{\mathcal{S}_2}(b_i, \mathsf{lub}_{\mathcal{S}_2}(b_i, b_j)) > 2^{n-k} \text{ ou } d_{\mathcal{S}_2}(b_j, \mathsf{lub}_{\mathcal{S}_2}(b_i, b_j)) > 2^{n-k}))$
 - $(b) \ d_{\mathcal{S}_1}(a_i, \mathsf{lub}_{\mathcal{S}_1}(a_i, a_j)) = d_{\mathcal{S}_2}(b_i, \mathsf{lub}_{\mathcal{S}_2}(b_i, b_j)) \ \mathrm{et} \ d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_i, a_j)) = d_{\mathcal{S}_2}(b_j, \mathsf{lub}_{\mathcal{S}_2}(b_i, b_j))$

Note : On prendra soin de définir précisément la stratégie du duplicateur. Il est recommandé d'utiliser des figures pour expliquer les différents cas de la preuve que cette stratégie satisfait l'invariant.

[50 lignes, 5 points]

4. Que peut-on en conclure sur la théorie? [1 ligne, 1 point]

Solution

Exercice 2

On considère un modèle dans lequel on a une copie de \mathbb{N} et une copie de \mathbb{Z} . On note les éléments de \mathbb{N} préfixés par la lettre n et les éléments de \mathbb{Z} préfixés par la lettre z. Si $n \in \mathbb{N}$, on note z_n l'élément correspondant de \mathbb{Z} . Les opérations sont définies comme suit : 0 est interprété comme $0_{\mathbb{N}}$. $S(n), n+n', n\times n'$ sont les opérations de \mathbb{N} . $S(z), z+z', z\times z'$ sont les opérations de \mathbb{Z} . n+z est défini comme z_n+z , de même pour z+n. $0_{\mathbb{N}}\times z=0_{\mathbb{N}}=z\times 0_{\mathbb{N}}$. $n\times z$ et $z\times n$ sont définies comme $z_n\times z$.

Cette structure satisfait les axiomes de l'arithmétique élémentaire :

- (A_1) : le successeur d'un élément de $\mathbb Z$ est dans $\mathbb Z$ et ne peut donc pas être $0_{\mathbb N}$
- (A_2) : résulte de cette propriété sur \mathbb{N} et \mathbb{Z} respectivement.
- $(A_3): n + 0_{\mathbb{N}} = n \text{ et } z + 0_{\mathbb{N}} = z$
- (A_4) : la propriété résulte de ces propriétés sur $\mathbb N$ et $\mathbb Z$ respectivement, sauf dans les deux cas :
 - $-z + S(n) = z + z_{n+1} = S(z + z_n) = S(z + n).$ - $n + S(z) = z_n + z + z_1 = S(z_n + z)$
- (A_5) par définition
- (A₆) la propriété est satisfaite quand les deux arguments sont dans \mathbb{N} (resp. dans \mathbb{Z}). Sinon; $-n \times s(z) = z_n \times s(z) = z_n \times z + z_n = n \times z + n$ $-z \times s(n) = z \times z_{s(n)} = z \times z_n + z = z \times n + z$
- (A_7) si $n \in \mathbb{N}$ et $n \neq 0_{\mathbb{N}}$, alors n = s(n-1). Si $z \in \mathbb{Z}$, z = s(z-1).

Montrons maintenant que > n'est pas bien fondé. Il suffit de remarquer que $z + z_1 > z$.

Exercice 3

1. On considère $\mathbb{Z} \times 2^{\mathbb{N}}$ avec l'interprétation de R suivante : $((z, E), (z', E')) \in R^{\mathcal{S}}$ ssi z' = z + 1 et $E = \{n - 1 \mid n \in E', n \neq 0\}$.

EP et UP sont satisfaits par construction.

Les axiomes ES et US sont satisfaits : $((z, E), (z', E')) \in R^S$ ssi $(E' = \{n + 1 \mid n \in E\})$ et z' = z + 1 ou bien $(E' = \{0\} \cup \{n + 1 \mid n \in E\})$ et z' = z + 1.

 T_n est satisfait car $\mathcal{S}, (z_1, E_1), \ldots, (z_n, E_n) \models R(x_1, x_2) \land \ldots \land R(x_{n-1}, x_n)$ entraine $z_n = z_1 + n$ et donc $z_n > z_1$ si n > 0.

- 2. (a) Par récurrence sur n : l'existence est une conséquence de EP, l'unicité est une conséquence de UP.
 - (b) Il suffit de montrer l'unicité. Si $c = u_{\mathcal{S}}(a,n) = u_{\mathcal{S}}(a,n')$, supposons sans perte de généralité que $n' \geq n$. Par définition, $u_{\mathcal{S}}(u_{\mathcal{S}}(a,n),n'-n) = u_{\mathcal{S}}(a,n)$. Comme $\mathcal{S} \models T_{n'_n}$ on a nécécessairement n' = n.

 $\geq_{\mathcal{S}}$ est réflexive car $a = u_{\mathcal{S}}(a,0)$

 $\geq_{\mathcal{S}}$ est transitive car $u_{\mathcal{S}}(u_{\mathcal{S}}(a,n),m)=u_{\mathcal{S}}(a,n+m)$

 $\geq_{\mathcal{S}}$ est antisymétrique par transitivité et unicité de n, comme nous l'avons vu ci-dessus.

- (c) si $c \geq_{\mathcal{S}} a$ et $c \geq_{\mathcal{S}} b$, $\{n \in \mathbb{N} | u_{\mathcal{S}}(a, n) \geq_{\mathcal{S}} b\}$ est non vide et admet donc un minimum n_0 . Si $d = u_{\mathcal{S}}(a, n_0)$, on a bien $d \geq_{\mathcal{S}} a$ et $d \geq_{\mathcal{S}} b$ par construction. De plus, si $e \geq_{\mathcal{S}} a$ et $e \geq_{\mathcal{S}} b$, alors il existe un m tel que $e = u_{\mathcal{S}}(a, m)$. Par construction, $m \geq n_0$ et donc $e \geq_{\mathcal{S}} d$. D'où l'unicité.
- (d) Soit $\mathcal{E}_n = \{a' \in D \mid d_{\mathcal{S}}(a', a) = n\}$. On montre la propriété par récurrence sur n : si n = 0, $\{a' \in D \mid d_{\mathcal{S}}(a', a) = 0\} = \{a\}$ est de cardinal $1 = 2^0$. Supposons maintenant que $|\mathcal{E}_n| = 2^n$. Si $x \in \mathcal{E}_{n+1}$, par ??, il existe un $p(x) \in \mathcal{E}_n$ tel que $(p(x), x) \in R^{\mathcal{S}}$. D'après (ES), p est surjective et d'après (US), pour tout $y \in \mathcal{E}_n$, $|p^{-1}(y)| = 2$. Il en résulte que $|\mathcal{E}_{n+1}| = 2 \times |\mathcal{E}_n| = 2^{n+1}$.
- (e) D'après ??, il existe deux entiers p, q tels que $a = u_{\mathcal{S}}(c, p)$ et $b = u_{\mathcal{S}}(c, q)$. Si $p \ge q$ (par exemple), $a = u_{\mathcal{S}}(u_{\mathcal{S}}(c, q), p q)$, donc $a = u_{\mathcal{S}}(b, p q)$ et $a \ge_{\mathcal{S}} b$.
- 3. dans un jeu en n rondes on montre que le duplicateur peut maintenir l'invariant. On note $a_{ij} = \mathsf{lub}(a_i, a_j)$, $b_{ij} = \mathsf{lub}(b_i, b_j)$. On étend $d_{\mathcal{S}}$ par $d_{\mathcal{S}}(a, a') = +\infty$ si $a = \perp$ ou $a' = \perp$ ou $a \not\geq_{\mathcal{S}} a'$.
 - S'il existe un indice i tel que $a = a_i$, on choisit $b = b_i$ et l'invariant est préservé. Ce cas est désormais écarté.
 - Si, pour tout i, $d_{\mathcal{S}_1}(a, \mathsf{lub}_{\mathcal{S}_1}(a, a_i)) > 2^{n-k-1}$ ou $d_{\mathcal{S}_1}(a_i, \mathsf{lub}_{\mathcal{S}_1}(a, a_i)) > 2^{n-k-1}$, on choisit b tel que, pour tout i, $d_{\mathcal{S}_1}(b_i, \mathsf{lub}_{\mathcal{S}_1}(b, b_i)) > 2^{n-k-1}$ (par exemple en prenant $u_{\mathcal{S}_2}(b_{i_0}, 2^{n-k-1} + 1)$, pour un b_{i_0} maximal pour $\geq_{\mathcal{S}_2}$). L'invariant reste bien satisfait.
 - Sinon, soit $a_i' = \mathsf{lub}(a_i, a)$ pour tout i. L'ensemble des a_i' tels que $d_{\mathcal{S}_1}(a, a_i') \leq 2^{n-k-1}$ et $d_{\mathcal{S}_1}(a_i, a_i') \leq 2^{n-k-1}$ est non vide et totalement ordonné pour $\geq_{\mathcal{S}_1}$ (d'après ??). Soit a_{i_0}' l'élément minimal de cet ensemble.
 - Soit $b_{i_0}^{\gamma} = u_{\mathcal{S}_2}(b_{i_0}, d_{\mathcal{S}_1}(a_{i_0}, a'_{i_0}))$. On choisit b tel que $d_{\mathcal{S}_2}(b, b'_{i_0}) = d_{\mathcal{S}_1}(a, a'_{i_0})$ et $b \notin \{b_i | 1 \leq i \leq k\}$. C'est possible puisque (d'après ??), $\{b' | d_{\mathcal{S}_2}(b', b'_{i_0}) = d_{\mathcal{S}_1}(a, a'_{i_0})\}$ a même cardinal que $\{a' | d_{\mathcal{S}_1}(a', a'_{i_0}) = d_{\mathcal{S}_1}(a, a'_{i_0})\}$ et donc, par l'invariant, $\{b' | d_{\mathcal{S}_2}(b', b'_{i_0}) = d_{\mathcal{S}_1}(a, a'_{i_0})\} \setminus \{b_i | 1 \leq i \leq k\}$ a même cardinal que $\{a' | d_{\mathcal{S}_1}(a', a'_{i_0}) = d_{\mathcal{S}_1}(a, a'_{i_0})\} \setminus \{a_i | 1 \leq i \leq k\}$. En particulier si ce dernier ensemble est non vide, le premier l'est aussi.

Montrons maintenant que l'invariant est préservé. Soit $1 \le j \le k$. Plusieurs cas se présentent :

- Si a_j et a_{i_0} (resp. b_j et b_{j_0}) sont éloignés alors a_j et a (resp. b_j et b) sont éloignés. Plus formellement, montrons que, si $d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0})) > 2^{n-k}$ ou $d_{\mathcal{S}_1}(a_{i_0}, \mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0})) > 2^{n-k}$, alors $d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_j, a)) > 2^{n-k-1}$ ou $d_{\mathcal{S}_1}(a, \mathsf{lub}_{\mathcal{S}_1}(a_j, a)) > 2^{n-k-1}$. Nous raisonnons sur la structure \mathcal{S}_1 , mais par construction de b, le même raisonnement s'applique à la structure \mathcal{S}_2 .
 - Cas 1 : $\mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0}) = \perp$. Dans ce cas $\mathsf{lub}_{\mathcal{S}_1}(a, a_j) = \perp$, d'après ?? et puisque $\mathsf{lub}(a, a_{i_0}) \neq \perp$.

Notons que, de même, si $\mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0}) \neq \perp$, alors $\mathsf{lub}_{\mathcal{S}_1}(a, a_j) \neq \perp$ et , d'après $\ref{eq:constraint}$, $\mathsf{lub}_{\mathcal{S}_1}(a, a_j)$ et $\mathsf{lub}_{\mathcal{S}_1}(a, a_{i_0})$ sont comparables. Les deux cas suivant considèrent donc les deux ordres possibles entre ces éléments.

 $\begin{aligned} \mathbf{Cas} \ \mathbf{2} : \mathbf{lub}_{\mathcal{S}_1}(a,a_j) >_{\mathcal{S}_1} \mathbf{lub}_{\mathcal{S}_1}(a,a_{i_0}) \ . \ \mathrm{Dans} \ \mathrm{ce} \ \mathrm{cas}, \ \mathrm{lub}_{\mathcal{S}_1}(a,a_j) \geq_{\mathcal{S}_1} a_{i_0}, a, \ \mathrm{donc} \\ \mathrm{lub}_{\mathcal{S}_1}(a,a_j) \geq_{\mathcal{S}_1} \mathrm{lub}_{\mathcal{S}_1}(a_{i_0},a_j). \ \mathrm{Par} \ \mathrm{ailleurs}, \ \mathrm{d'après} \ \ref{eq:constraint}, \ \mathrm{lub}_{\mathcal{S}_1}(a,a_{i_0}) \geq_{\mathcal{S}_1} \mathrm{lub}_{\mathcal{S}_1}(a_{i_0},a_j) \\ \mathrm{ou} \ \mathrm{lub}_{\mathcal{S}_1}(a_{i_0},a_j) \geq_{\mathcal{S}_1} \mathrm{lub}_{\mathcal{S}_1}(a,a_{i_0}). \ \mathrm{Le} \ \mathrm{premier} \ \mathrm{cas} \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{possible} \ \mathrm{car} \ \mathrm{on} \ \mathrm{au-rait} \ \mathrm{lub}_{\mathcal{S}_1}(a,a_{i_0}) \ \mathrm{majore} \ a,a_{i_0},a_j, \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{contredit} \ \mathrm{l'hypothèse} \ \mathrm{lub}_{\mathcal{S}_1}(a,a_j) >_{\mathcal{S}_1} \\ \mathrm{lub}_{\mathcal{S}_1}(a,a_{i_0}). \ \mathrm{Dans} \ \mathrm{le} \ \mathrm{deuxième} \ \mathrm{cas}, \ \mathrm{lub}_{\mathcal{S}_1}(a_{i_0},a_j) \ \mathrm{majore} \ a.a_{i_0},a_j, \ \mathrm{donc} \ \mathrm{lub}_{\mathcal{S}_1}(a_{i_0},a_j) = \\ \mathrm{lub}_{\mathcal{S}_1}(a_j,a). \end{aligned}$

Si $d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0})) > 2^{n-k}$, on obtient $d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_j, a)) > 2^{n-k} > 2^{n-k-1}$.

Si $d_{\mathcal{S}_1}(a_{i_0}, \mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0})) > 2^{n-k}$, alors

$$\begin{array}{lll} d_{\mathcal{S}_1}(a, \mathsf{lub}_{\mathcal{S}_1}(a_j, a)) & \geq & d_{\mathcal{S}_1}(\mathsf{lub}_{\mathcal{S}_1}(a, a_{i_0}), \mathsf{lub}_{\mathcal{S}_1}(a_j, a)) \\ & \geq & d_{\mathcal{S}_1}(a_{i_0}, \mathsf{lub}_{\mathcal{S}_1}(a_j, a)) - d_{\mathcal{S}_1}(a_{i_0}, \mathsf{lub}_{\mathcal{S}_1}(a, a_{i_0})) \\ & \geq & d_{\mathcal{S}_1}(a_{i_0}, \mathsf{lub}_{\mathcal{S}_1}(a_{i_0}, a_j)) - 2^{n-k-1} \\ & > & 2^{n-k} - 2^{n-k-1} = 2^{n-k-1} \end{array}$$

Cas 3: $\mathsf{lub}_{\mathcal{S}_1}(a, a_{i_0}) \geq_{\mathcal{S}_1} \mathsf{lub}_{\mathcal{S}_1}(a, a_j)$. Dans ce cas $\mathsf{lub}_{\mathcal{S}_1}(a_{i_0}, a) \geq_{\mathcal{S}_1} \mathsf{lub}_{\mathcal{S}_1}(a_{i_0}, a_j) \leq_{\mathcal{S}_1} \mathsf{lub}_{\mathcal{S}_1}(a_{i_0}, a_j) \leq_{\mathcal$

$$\begin{split} & \text{Si lub}_{\mathcal{S}_1}(a,a_j) \geq_{\mathcal{S}_1} \text{lub}_{\mathcal{S}_1}(a_{i_0},a_j), \\ & \text{alors } d_{\mathcal{S}_1}(a_j,\text{lub}_{\mathcal{S}_1}(a,a_j)) \geq d_{\mathcal{S}_1}(a_j,\text{lub}_{\mathcal{S}_1}(a_{i_0},a_j)) > \\ & 2^{n-k} > 2^{n-k-1}. \end{split}$$

Si $\mathsf{lub}_{\mathcal{S}_1}(a_{i_0}, a_j) \geq_{\mathcal{S}_1} \mathsf{lub}(a, a_j)$, alors

$$d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a, a_j)) \geq d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0}) - d_{\mathcal{S}_1}(a, \mathsf{lub}_{\mathcal{S}_1}(a, a_{i_0})) > 2^{n-k} - 2^{n-k-1} = 2^{n-k-1}$$

- Si a_j et a_{i_0} (et b_j et b_{j_0}) sont proches : on montre que si $d_{\mathcal{S}_1}(a_j, \mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0})) \le 2^{n-k-1}$ et $d_{\mathcal{S}_1}(a_{i_0}, \mathsf{lub}_{\mathcal{S}_1}(a_j, a_{i_0})) \le 2^{n-k-1}$, alors $d_{\mathcal{S}_2}(b_j, \mathsf{lub}_{\mathcal{S}_2}(b_j, b_{i_0})) \le 2^{n-k-1}$ et $d_{\mathcal{S}_2}(b_{i_0}, \mathsf{lub}_{\mathcal{S}_2}(b_j, b_{i_0})) \le 2^{n-k-1}$
 - Si $a'_{i_0} \geq_{\mathcal{S}_1} a_j$, par construction de a'_{i_0} (minimalité), $\mathsf{lub}_{\mathcal{S}_1}(a,a_j) = a'_{i_0}$ et $a'_{i_0} \geq_{\mathcal{S}_1} \mathsf{lub}_{\mathcal{S}_1}(a_{i_0},a_j)$ d'après $\ref{eq:construction}$. Comme par ailleurs $d_{\mathcal{S}_1}(a,a'_{i_0}) = d_{\mathcal{S}_2}(b,b'_{i_0})$ par choix de b et $d_{\mathcal{S}_1}(a_j,a_{i_0j}) = d_{\mathcal{S}_2}(b_j,b_{i_0j})$ par l'invariant (noter que $d_{\mathcal{S}_1}(a_j,a_{i_0j}) \leq d_{\mathcal{S}_1}(a_j,a'_{i_0}) = d_{\mathcal{S}_1}(a_j,a'_j) \leq 2^{n-k-1}$), on a bien la propriété voulue.
 - Sinon , $a_{i_0j} \geq_{\mathcal{S}_1} a'_{i_0}$ puisque, d'après ??, a_{i_0j} et a'_{i_0} sont comparables et que $a'_{i_0} \not\geq_{\mathcal{S}_1} a_j$. Il en résulte que $a_{i_0,j} \geq_{\mathcal{S}_1} a$ et $a_{i_0j} \geq_{\mathcal{S}_1} a_j$, donc $a_{i_0j} \geq_{\mathcal{S}_1} a'_j$. Mais on a aussi $a'_j \geq_{\mathcal{S}_1} a'_{i_0}$ (par minimalité de a'_{i_0}) et donc $a'_j \geq_{\mathcal{S}_1} a_{i_0}$ et $a'_j \geq_{$

$$d_{\mathcal{S}_1}(a,a_i') = d_{\mathcal{S}_1}(a,a_{i_0j}) = d_{\mathcal{S}_1}(a,a_{i_0}') + d_{\mathcal{S}_1}(a_{i_0}',a_{i_0j}) = d_{\mathcal{S}_2}(b,b_{i_0}') + d_{\mathcal{S}_2}(b_{i_0}',b_{i_0j}) = d_{\mathcal{S}_2}(b,b_j')$$

Par ailleurs, $d_{\mathcal{S}_1}(a_j, a_{i_0j}) = d_{\mathcal{S}_2}(b_j, b_{i_0j})$ (par l'invariant) et donc $d_{\mathcal{S}_1}(a_j, a'_j) = d_{\mathcal{S}_2}(b_j, b'_j)$, ce qui termine la preuve de l'invariant.

4. La théorie \mathcal{T} est complète d'après un résultat du cours.