
Programmation 1.2 L3 2009 � 2010

TP 2

01/12/2009

1 Leftovers

Exercise 1 (Programming with naturals). 1. We de�ne the terms

c0 = λs.λz.z
c1 = λs.λz.(s z)
c2 = λs.λz.(s (s z))
. . .

which will represent the natural numbers. De�ne the term succ such that

succ ci →∗ ci+1.

2. De�ne the term plus such that

plus ci cj → ci+j .

3. De�ne the term mult such that

mult ci cj → ci×j .

4. De�ne the term iszero which returns true if its argument is c0 and false
otherwise.

5. De�ne the term pred which returns c0 if its argument is c0 and ci−1 if its
argument is ci for some i > 0.

Exercise 2 (Emulating recursive functions). 1. A lambda-term with no free
variables is called a combinator. One of the most �famous� combinators
is:

Y = λf.(λx.(f (x x)) (λx.f (x x)))

which is a �xpoint operator (see next). Prove that

Y g = g (Y g).

�tefan Ciobâc  1 ENS Cachan



Programmation 1.2 L3 2009 � 2010

2. De�ne a lambda-term fact which returns the factorial of its argument.

3. De�ne a lambda-term isprime which returns true i� its argument is a
prime number.

4. Explain why the Y -combinator cannot be used in a call-by-value setting.

2 First-Order Uni�cation

Exercise 3.

We de�ne an OCaml data structure for �rst-order terms as follows:

type term =

Var of string

| Func of string * term list;;

Then the term f(x, x) is represented as:

let t = Func("f", [Var("x"); Var("x")]);;

1. De�ne an OCaml data structure for substitutions.

2. Write a function uni�cation which takes two terms as arguments and re-
turns either None (if the two terms do not unify) or Some σ (if the two
terms unify and σ is their mgu). [you will probably need other helper
functions as well]

3. Test your function and make sure it works. Ask your neighbors to provide
examples that break your code. Provide examples to your neighbors that
break their code. Then ask me to provide examples that break your code.

4. Create an example which proves that your code runs in exponential time.
If you cannot �nd such an example due to the fact that no such example
exists, kudos to you.

5. (Optional). Make your code run in polynomial time.

6. (Optional). Search on the Internet to �nd out how a (pure) Prolog inter-
pretor works and write one.

�tefan Ciobâc  2 ENS Cachan


