TP 2

$$
01 / 12 / 2009
$$

1 Leftovers

Exercise 1 (Programming with naturals). 1. We define the terms

$$
\begin{aligned}
& c_{0}=\lambda s \cdot \lambda z \cdot z \\
& c_{1}=\lambda s \cdot \lambda z \cdot(s z) \\
& c_{2}=\lambda s \cdot \lambda z \cdot(s(s z))
\end{aligned}
$$

which will represent the natural numbers. Define the term succ such that

$$
\operatorname{succ} c_{i} \rightarrow^{*} c_{i+1}
$$

2. Define the term plus such that

$$
\text { plus } c_{i} c_{j} \rightarrow c_{i+j} .
$$

3. Define the term mult such that

$$
\text { mult } c_{i} c_{j} \rightarrow c_{i \times j} .
$$

4. Define the term iszero which returns true if its argument is c_{0} and false otherwise.
5. Define the term pred which returns c_{0} if its argument is c_{0} and c_{i-1} if its argument is c_{i} for some $i>0$.

Exercise 2 (Emulating recursive functions). 1. A lambda-term with no free variables is called a combinator. One of the most "famous" combinators is:

$$
Y=\lambda f .(\lambda x .(f(x x))(\lambda x . f(x x)))
$$

which is a fixpoint operator (see next). Prove that

$$
Y g=g(Y g)
$$

2. Define a lambda-term fact which returns the factorial of its argument.
3. Define a lambda-term isprime which returns true iff its argument is a prime number.
4. Explain why the Y-combinator cannot be used in a call-by-value setting.

2 First-Order Unification

Exercise 3.

We define an OCaml data structure for first-order terms as follows:

```
type term =
    Var of string
    Func of string * term list;;
```

Then the term $f(x, x)$ is represented as:
let $\mathrm{t}=\mathrm{Func}(\mathrm{ff} \mathrm{f},[\operatorname{Var}(" \mathrm{x} ") ; \operatorname{Var}(" \mathrm{x} ")]) ;$

1. Define an OCaml data structure for substitutions.
2. Write a function unification which takes two terms as arguments and returns either None (if the two terms do not unify) or Some σ (if the two terms unify and σ is their mgu). [you will probably need other helper functions as well]
3. Test your function and make sure it works. Ask your neighbors to provide examples that break your code. Provide examples to your neighbors that break their code. Then ask me to provide examples that break your code.
4. Create an example which proves that your code runs in exponential time. If you cannot find such an example due to the fact that no such example exists, kudos to you.
5. (Optional). Make your code run in polynomial time.
6. (Optional). Search on the Internet to find out how a (pure) Prolog interpretor works and write one.
