TP 1

17/11/2009

The object of this TP is the pure untyped lambda calculus.
Exercise 1 (Warm-up). Let \mathcal{X} be a countably infinite set of variables. We denote by x, y, \ldots members of \mathcal{X}. Then lambda terms are defined inductively as follows:

t ::=		lambda-terms:
	x	variable
	λx.t	abstraction
	$t t$	application

1. Which are the bound and which are the free variables in $((\lambda x . x) x) y$?
2. Is $((\lambda x . x) x) y={ }_{\alpha}((\lambda z . z) z) y$?
3. Is $\lambda x .(x y)={ }_{\alpha} \lambda y .(y x)$?
4. Is $\lambda x .(x y)={ }_{\alpha} \lambda y .(y y)$?

Exercise 2 (Programming with booleans). 1. Give three lambda terms denoted true, false and ifthenelse such that

$$
\text { ifthenelse true } u v \rightarrow^{*} u
$$

and such that

$$
\text { ifthenelse false } u v \rightarrow^{*} v
$$

2. Give lambda terms to performs the logical operations not, and and or on the above representation of booleans.

Exercise 3 (Programming with pairs).
Define lambda terms pair, fst and snd such that

$$
f s t(\text { pair } u v) \rightarrow^{*} u
$$

and such that

$$
\operatorname{snd}(\text { pair } u v) \rightarrow^{*} v .
$$

Define a "function" which computes the logical or of a pair of booleans using the above representations of pairs and respectively of booleans.

Exercise 4 (Programming with naturals). 1. We define the terms

$$
\begin{aligned}
& c_{0}=\lambda s \cdot \lambda z \cdot z \\
& c_{1}=\lambda s \cdot \lambda z \cdot(s z) \\
& c_{2}=\lambda s \cdot \lambda z \cdot(s(s z))
\end{aligned}
$$

which will represent the natural numbers. Define the term succ such that

$$
\operatorname{succ} c_{i} \rightarrow^{*} c_{i+1} .
$$

2. Define the term plus such that

$$
\text { plus } c_{i} c_{j} \rightarrow c_{i+j} .
$$

3. Define the term mult such that

$$
\text { mult } c_{i} c_{j} \rightarrow c_{i \times j} .
$$

4. Define the term iszero which returns true if its argument is c_{0} and false otherwise.
5. Define the term pred which returns c_{0} if its argument is c_{0} and c_{i-1} if its argument is c_{i} for some $i>0$.

Exercise 5 (Emulating recursive functions). 1. A lambda-term with no free variables is called a combinator. One of the most "famous" combinators is:

$$
Y=\lambda f \cdot(\lambda x \cdot(f(x x))(\lambda x . f(x x)))
$$

which is a fixpoint operator (see next). Prove that

$$
Y g=g(Y g)
$$

2. Define a lambda-term fact which returns the factorial of its argument.
3. Define a lambda-term isprime which returns true iff its argument is a prime number.
4. Explain why the Y-combinator cannot be used in a call-by-value setting.
