Staying Alive as Cheaply as Possible

Patricia Bouyer¹, Ed Brinksma², Kim G. Larsen³

¹ LSV - CNRS & ENS de Cachan - France
 ² Twente University - The Netherlands
 ³ Aalborg University - Denmark

[BFH+01a,BFH+01b,LBB+01,ALTP01]

HSCC'04 - March 26, 2004

 previous problem: reachability problem with an optimization criterium on the price

[BFH+01a,BFH+01b,LBB+01,ALTP01]

- previous problem: reachability problem with an optimization criterium on the price
- ✓ what if infinite paths?
 - price per unit of time?
 - price per transition?
 - ...

[BFH+01a,BFH+01b,LBB+01,ALTP01]

- previous problem: reachability problem with an optimization criterium on the price
- ✓ what if infinite paths?
 - price per unit of time?
 - price per transition?
 - ...

→ optimal stationary behaviours

[BFH+01a,BFH+01b,LBB+01,ALTP01]

A production system:

Single machine M(D,G,P,g,p)

A production system:

Single machine M(D,G,P,g,p)

Question: How to minimize

 $\lim_{n \to +\infty} \frac{\text{accumulated cost}(n)}{\text{accumulated reward}(n)}?$

Operator O(S)

(cont'd)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

(cont'd)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4). $((H, H), x_1 = x_2 = z = 0)$

(cont'd)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

 $((H,H), x_1 = x_2 = z = 0)$ $\stackrel{18,18}{\rightarrow} ((L,H), x_1 = x_2 = z = 3)$

(cont'd)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

 $((H, H), x_1 = x_2 = z = 0)$ $\stackrel{18,18}{\rightarrow} \quad ((L, H), x_1 = x_2 = z = 3)$ $\stackrel{8,5}{\rightarrow} \quad ((L, H), x_1 = x_2 = z = 4)$

(cont'd)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

 $((H, H), x_1 = x_2 = z = 0)$ $\stackrel{18,18}{\rightarrow} \quad ((L, H), x_1 = x_2 = z = 3)$ $\stackrel{8,5}{\rightarrow} \quad ((L, H), x_1 = x_2 = z = 4)$ $\rightarrow \quad ((H, H), x_1 = z = 0, x_2 = 4) \quad (*)$

(cont'd)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

$$((H, H), x_{1} = x_{2} = z = 0)$$

$$\stackrel{18,18}{\rightarrow} ((L, H), x_{1} = x_{2} = z = 3)$$

$$\stackrel{8,5}{\rightarrow} ((L, H), x_{1} = x_{2} = z = 4)$$

$$\rightarrow ((H, H), x_{1} = z = 0, x_{2} = 4) (*)$$

$$\stackrel{12,12}{\rightarrow} ((H, L), x_{1} = z = 2, x_{2} = 6)$$

$$\stackrel{8,6}{\rightarrow} ((L, L), x_{1} = z = 3, x_{2} = 7)$$

$$\stackrel{10,5}{\rightarrow} ((L, L), x_{1} = z = 4, x_{2} = 8)$$

$$\stackrel{\rightarrow}{\rightarrow} ((H, L), x_{1} = z = 3, x_{2} = 11)$$

$$\stackrel{10,5}{\rightarrow} ((L, L), x_{1} = z = 3, x_{2} = 11)$$

$$\stackrel{10,5}{\rightarrow} ((L, L), x_{1} = z = 4, x_{2} = 12)$$

$$\stackrel{\rightarrow}{\rightarrow} ((L, H), x_{1} = 4, x_{2} = z = 0)$$

$$\stackrel{32,20}{\rightarrow} ((L, H), x_{1} = 8, x_{2} = z = 4)$$

$$\stackrel{\rightarrow}{\rightarrow} ((H, H), x_{1} = z = 0, x_{2} = 4) (*)$$

(cont'd)

Two machines $M_1(D = 3, P = 3, G = 4, p = 5, g = 3)$, $M_2(D = 6, P = 3, G = 2, p = 5, g = 2)$ and an Operator O(4).

$$((H, H), x_{1} = x_{2} = z = 0)$$

$$\stackrel{18,18}{\rightarrow} ((L, H), x_{1} = x_{2} = z = 3)$$

$$\stackrel{8,5}{\rightarrow} ((L, H), x_{1} = x_{2} = z = 4)$$

$$\rightarrow ((H, H), x_{1} = z = 0, x_{2} = 4) \quad (*)$$

$$\stackrel{12,12}{\rightarrow} ((H, L), x_{1} = z = 2, x_{2} = 6)$$

$$\stackrel{8,6}{\rightarrow} ((L, L), x_{1} = z = 3, x_{2} = 7)$$

$$\stackrel{10,5}{\rightarrow} ((L, L), x_{1} = z = 4, x_{2} = 8)$$

$$\rightarrow ((H, L), x_{1} = z = 3, x_{2} = 11)$$

$$\stackrel{10,5}{\rightarrow} ((L, L), x_{1} = z = 3, x_{2} = 11)$$

$$\stackrel{10,5}{\rightarrow} ((L, L), x_{1} = z = 4, x_{2} = 12)$$

$$\rightarrow ((L, H), x_{1} = 4, x_{2} = z = 0)$$

$$\stackrel{32,20}{\rightarrow} ((L, H), x_{1} = 8, x_{2} = z = 4)$$

$$\rightarrow ((H, H), x_{1} = z = 0, x_{2} = 4) \quad (*)$$

(cont'd)

Two machines M₁(D = 3, P = 3, G = 4, p = 5, g = 3), M₂(D = 6, P = 3, G = 2, p = 5, g = 2) and an Operator O(4).

✓ Problem: minimize the function

$$\rho$$
 infinite path $\mapsto \lim_{n \to +\infty} \frac{\cos(\rho_n)}{\operatorname{reward}(\rho_n)} = \operatorname{ratio}(\rho)$

Problem: minimize the function

$$\rho$$
 infinite path $\mapsto \lim_{n \to +\infty} \frac{\operatorname{cost}(\rho_n)}{\operatorname{reward}(\rho_n)} = \operatorname{ratio}(\rho)$

✔ Questions:

- is it computable?
- what are optimal paths?

notation: μ^*

hyp: positive strongly diverging reward

✓ Problem: minimize the function

$$\rho \text{ infinite path } \mapsto \lim_{n \to +\infty} \frac{\operatorname{cost}(\rho_n)}{\operatorname{reward}(\rho_n)} = \operatorname{ratio}(\rho)$$

✔ Questions:

- is it computable?
- what are optimal paths?

notation: μ^*

The Discrete Case

Karp's and Howard's theorems/algorithms: optimal paths are cycles.

$$\mu^* = \min_{v \in V} \max_{0 \le k \le n-1} \frac{\delta_n(s, v) - \delta_k(s, v)}{n - k}$$

[Karp78,DG98,DIG99]

Idea: reduction to the discrete case

✓ region automaton: not sufficient

Idea: reduction to the discrete case

- ✓ region automaton: not sufficient
- \checkmark corner-point automaton: \mathcal{A}_{cp}

From Timed to Discrete Behaviours (1)

Finite behaviours: based on the following property

Lemma. Let Z be a bounded zone and f be a function

$$f: (t_1, ..., t_n) \mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $\inf_{Z} f$ is obtained on the border of \overline{Z} with integer coordinates.

Finite behaviours: based on the following property

Lemma. Let Z be a bounded zone and f be a function

$$f: (t_1, ..., t_n) \mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $\inf_{Z} f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightarrow for any finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} such that

 $ratio(\Pi) \leq ratio(\pi)$

[Π is a "corner-point projection" of π]

From Timed to Discrete Behaviours (1)

Finite behaviours: based on the following property

Lemma. Let Z be a bounded zone and f be a function

$$f: (t_1, ..., t_n) \mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $\inf_{Z} f$ is obtained on the border of \overline{Z} with integer coordinates.

 \rightarrow for any finite path π in \mathcal{A} , there exists a path Π in \mathcal{A}_{cp} such that

 $ratio(\Pi) \leq ratio(\pi)$

[Π is a "corner-point projection" of π] optimal finite behaviours are not prefix-closed

From Timed to Discrete Behaviours (2)

✓ Infinite behaviours: decompose each sufficiently long projection into cycles

The linear part will be negligible when the path is long enough.

From Timed to Discrete Behaviours (2)

✓ Infinite behaviours: decompose each sufficiently long projection into cycles

The linear part will be negligible when the path is long enough.

 \Rightarrow the optimal cycle of \mathcal{A}_{cp} is better than any infinite path of \mathcal{A}

Approximation of abstract paths:

For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\epsilon \ge 0,$

Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

 \rightarrow This is sufficient under the positive strongly diverging reward.

Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$

 \rightarrow This is sufficient under the positive strongly diverging reward.

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

 $\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |ratio(\Pi) - ratio(\pi_{\varepsilon})| < \eta$

HSCC'04 - March 26, 2004

Staying Alive as Cheaply as Possible - p. 11

Main Theorem

Theorem. Under the positive strongly diverging reward hypothesis, optimal infinite schedules in timed automata are computable.

→ Complexity: PSPACE-complete

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

 $reward(\pi_{d,n}) = 2 + d.n$ and $cost(\pi_{d,n}) = 3 + 11d.n$

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

 $reward(\pi_{d,n}) = 2 + d.n$ and $cost(\pi_{d,n}) = 3 + 11d.n$

For any real infinite path π_d , ratio $(\pi_d) = 11$ but ratio $(\pi_0) = \frac{3}{2}$.

 $\pi_{d,n}$: path s.t. the first transition is taken at date d and the loop is taken n times.

 $reward(\pi_{d,n}) = 2 + d.n$ and $cost(\pi_{d,n}) = 3 + 11d.n$

For any real infinite path π_d , ratio $(\pi_d) = 11$ but ratio $(\pi_0) = \frac{3}{2}$.

→ this automaton is not strongly reward diverging

Conclusion

computability of optimal infinite paths in double priced timed automata

Further work

- ✓ implementation
- control, games: what if an opponent? what if uncontrollable actions?

the computation is not modular...

untimed case: [ZP96,BSV04]