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Model of Priced Timed Automata

` `
′

g; C := 0

pP P′

price rate discrete price

4 previous problem: reachability problem with an optimization criterium on the
price

4 what if in�nite paths?
• price per unit of time?
• price per transition?
• : : :

Ü optimal stationary behaviours

[BFH+01a,BFH+01b,LBB+01,ALTP01]
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An Example

A production system:

Low

High
x � D
C = P
R = G

C = p
R = g

att?

x := 0

x := 0
att?x = D

Single machine M(D;G; P; g; p)

att!

z � S z := 0

Operator O(S)
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An Example

A production system:

Low

High
x � D
C = P
R = G

C = p
R = g

att?

x := 0

x := 0
att?x = D

Single machine M(D;G; P; g; p)

att!

z � S z := 0

Operator O(S)

Question: How to minimize

limn→+1
accumulated cost(n)

accumulated reward(n) ?
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).

((H;H); x1 = x2 = z = 0)
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).

((H;H); x1 = x2 = z = 0)
18;18
→ ((L;H); x1 = x2 = z = 3)
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).

((H;H); x1 = x2 = z = 0)
18;18
→ ((L;H); x1 = x2 = z = 3)
8;5
→ ((L;H); x1 = x2 = z = 4)
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).

((H;H); x1 = x2 = z = 0)
18;18
→ ((L;H); x1 = x2 = z = 3)
8;5
→ ((L;H); x1 = x2 = z = 4)
→ ((H;H); x1 = z = 0; x2 = 4) (∗)
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).

((H;H); x1 = x2 = z = 0)
18;18
→ ((L;H); x1 = x2 = z = 3)
8;5
→ ((L;H); x1 = x2 = z = 4)
→ ((H;H); x1 = z = 0; x2 = 4) (∗)

12;12
→ ((H; L); x1 = z = 2; x2 = 6)
8;6
→ ((L; L); x1 = z = 3; x2 = 7)
10;5
→ ((L; L); x1 = z = 4; x2 = 8)
→ ((H; L); x1 = z = 0; x2 = 8)

24;18
→ ((L; L); x1 = z = 3; x2 = 11)
10;5
→ ((L; L); x1 = z = 4; x2 = 12)
→ ((L;H); x1 = 4; x2 = z = 0)

32;20
→ ((L;H); x1 = 8; x2 = z = 4)
→ ((H;H); x1 = z = 0; x2 = 4) (∗)
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).

((H;H); x1 = x2 = z = 0)
18;18
→ ((L;H); x1 = x2 = z = 3)
8;5
→ ((L;H); x1 = x2 = z = 4)
→ ((H;H); x1 = z = 0; x2 = 4) (∗)

12;12
→ ((H; L); x1 = z = 2; x2 = 6)
8;6
→ ((L; L); x1 = z = 3; x2 = 7)
10;5
→ ((L; L); x1 = z = 4; x2 = 8)
→ ((H; L); x1 = z = 0; x2 = 8)

24;18
→ ((L; L); x1 = z = 3; x2 = 11)
10;5
→ ((L; L); x1 = z = 4; x2 = 12)
→ ((L;H); x1 = 4; x2 = z = 0)

32;20
→ ((L;H); x1 = 8; x2 = z = 4)
→ ((H;H); x1 = z = 0; x2 = 4) (∗)

limit cost
reward = 96

66 ' 1;455
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An Example (cont'd)

Two machines M1(D = 3; P = 3; G = 4; p = 5; g = 3), M2(D = 6; P = 3; G = 2; p = 5; g = 2)
and an Operator O(4).

Time
4 8 12 16

O

M2

M1
H

L

H

L

1 1 2 1

(a) Schedule with ratio 1,455

Time
4 8 12 16

O

M2

M1
H

L

H

L

1 1 1 1

(b) Schedule with ratio 1,478
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Our Model: Double Priced Timed Automata

` `
′

g; C := 0

c; rC; R C′; R′

price rates discrete prices
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Our Model: Double Priced Timed Automata

` `
′

g; C := 0

c; rC; R C′; R′

price rates discrete prices

4 Problem: minimize the function

� in�nite path 7→ lim
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cost(�n)
reward(�n)
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Our Model: Double Priced Timed Automata

` `
′

g; C := 0

c; rC; R C′; R′

price rates discrete prices
hyp: positive strongly

diverging reward

4 Problem: minimize the function

� in�nite path 7→ lim
n→+1

cost(�n)
reward(�n)

= ratio(�)

4 Questions:
• is it computable? notation: �∗

• what are optimal paths?
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The Discrete Case

Karp's and Howard's theorems/algorithms: optimal paths are cycles.

�∗ = min
v∈V

max
0�k�n�1

�n(s; v) � �k(s; v)
n � k

[Karp78,DG98,DIG99]

v

s
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Back to the Timed Framework

Idea: reduction to the discrete case
4 region automaton: not suf�cient
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Back to the Timed Framework

Idea: reduction to the discrete case
4 region automaton: not suf�cient
4 corner-point automaton: Acp

time elapsing

3/2 0/0 0/0
0/0

3/2

0/0

0/0 0/0

cost rate: 3 p.u.
reward rate: 2 p.u.
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Back to the Timed Framework

Idea: reduction to the discrete case
4 region automaton: not suf�cient
4 corner-point automaton: Acp

reset to 0

time elapsing

3/2 0/0 0/0
0/0

3/2

0/0

0/0 0/0

7/13

7/13

cost rate: 3 p.u.
reward rate: 2 p.u.
discrete cost: 7
discrete reward: 13

Staying Alive as Cheaply as Possible � p. 8



HSCC'04 � March 26, 2004

Back to the Timed Framework

Idea: reduction to the discrete case
4 region automaton: not suf�cient
4 corner-point automaton: Acp

reset to 0

time elapsing

3/2 0/0 0/0
0/0

3/2

0/0

0/0 0/0

7/13

7/13

cost rate: 3 p.u.
reward rate: 2 p.u.
discrete cost: 7
discrete reward: 13

Aim: prove that �∗(Acp) = �∗(A)
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From Timed to Discrete Behaviours (1)

4 Finite behaviours: based on the following property

Lemma. Let Z be a bounded zone and f be a function

f : (t1; :::; tn) 7→
�n
i=1 citi + c

�n
i=1 riti + r

well-de�ned on Z. Then infZf is obtained on the border of Z with integer coordinates.
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From Timed to Discrete Behaviours (1)

4 Finite behaviours: based on the following property

Lemma. Let Z be a bounded zone and f be a function

f : (t1; :::; tn) 7→
�n
i=1 citi + c

�n
i=1 riti + r

well-de�ned on Z. Then infZf is obtained on the border of Z with integer coordinates.

Ü for any �nite path � in A, there exists a path � in Acp such that

ratio(�) � ratio(�)

[� is a �corner-point projection� of �]

�

optimal �nite behaviours are not pre�x-closed
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From Timed to Discrete Behaviours (2)

4 In�nite behaviours: decompose each suf�ciently long projection into cycles

The linear part will be negligible when the path is long enough.
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From Timed to Discrete Behaviours (2)

4 In�nite behaviours: decompose each suf�ciently long projection into cycles

The linear part will be negligible when the path is long enough.

Ü the optimal cycle of Acp is better than any in�nite path of A
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From Discrete to Timed Behaviours

Approximation of abstract paths:

For any path � of Acp ,
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From Discrete to Timed Behaviours

Approximation of abstract paths:

"

"

For any path � of Acp , for any " > 0, there exists a path �" of A s.t.

‖� � �"‖1 < "

Ü This is suf�cient under the positive strongly diverging reward.

For every � > 0, there exists " > 0 s.t.

‖� � �"‖1 < " ⇒ jratio(�) � ratio(�")j < �
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Main Theorem

Theorem. Under the positive strongly diverging reward hypothesis, optimal
in�nite schedules in timed automata are computable.

Ü Complexity: PSPACE-complete
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Without the Hypothesis, What's Wrong?

0=0 0=0 11=1 0=0
y > 0; y := 0

3=2
x = 1; x := 0

0=0

y = 1; y := 0
0=0

x = 1; x := 0
0=0

�d;n: path s.t. the �rst transition is taken at date d and the loop is taken n times.
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0=0

�d;n: path s.t. the �rst transition is taken at date d and the loop is taken n times.

reward(�d;n) = 2 + d:n and cost(�d;n) = 3 + 11d:n
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Without the Hypothesis, What's Wrong?

0=0 0=0 11=1 0=0
y > 0; y := 0

3=2
x = 1; x := 0

0=0

y = 1; y := 0
0=0

x = 1; x := 0
0=0

�d;n: path s.t. the �rst transition is taken at date d and the loop is taken n times.

reward(�d;n) = 2 + d:n and cost(�d;n) = 3 + 11d:n

For any real in�nite path �d, ratio(�d) = 11 but ratio(�0) = 3
2 .

Ü this automaton is not strongly reward diverging
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Conclusion & Further Work

Conclusion
4 computability of optimal in�nite paths in double priced timed automata

Further work
4 implementation
4 control, games: what if an opponent? what if uncontrollable actions?

�

the computation is not modular...

untimed case: [ZP96,BSV04]
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