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Introduction

Motivation

Adding timing requirements

I Need for timed models:
I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables
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Introduction

Priced (weighted) timed automata

ṗ=0

x69
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Related works

I Basic properties
I Optimal reachability [ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
I Mean-cost optimality [BBL04]

I Model-checking of WCTL
I Undecidability for timed automata with more than three clocks

[BBR04,BBM06]
I Decidability for timed automata with one clock [this paper]

I Control games
I Properties, and restricted decidability results

[ABM04,BCFL04,BCFL05]
I Undecidability for timed automata with more than three clocks

[BBR05,BBM06]
I Decidability for timed automata with one clock [BLMR06]
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Introduction

The logic WCTL

CTL 3 ϕ ::= true | α | ¬ϕ | ϕ ∨ ϕ | EϕUϕ | AϕUϕ

where P is a cost variable, c ∈ N, and ∼ ∈ {<,6,=,>, >}.

Particular case: P is the time elapsed → TCTL
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ṗ = 0
x 6 9
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ṗ = 3
x 6 10
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Introduction

Model-checking WCTL
First remark: Regions cannot be used for model-checking WCTL...
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Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.
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ṗ=2

q0

q1
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Decidability for one-clock automata

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let Φ ∈WCTL, and A be a PTA. Let C be the l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There
exist finitely many constants

0 = a0 < a1 < · · · < an < an+1 = +∞
such that

I the truth value of Φ is uniform on each region (q, (ai , ai+1));

I each ai is in N/C h(Φ), and an = M.

where h(Φ) is the maximal number of constrained modalities in Φ.
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I each ai is in N/C h(Φ), and an = M.

where h(Φ) is the maximal number of constrained modalities in Φ.

Inductive proof:

I for atomic propositions, the ai ’s are the constants that appear in the
constraints of the automaton.
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Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

q, ai q, ai+1
〈cmin,cmax〉·(ai+1−ai )

q, ai q, (ai , ai+1)
〈0,cmax〉·(ai+1−ai )

q, an q, (an,+∞)
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q, any q, 0
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Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

From this graph, we get that:

I the set of costs between any two regions is a union of intervals of
the form 〈α− βx , α′ − β′x〉 where

I α and α′ are in N/Cmax{h(ϕ1),h(ϕ2)},
I β and β′ are costs of the automaton (in N/C).

I the set of values for x s.t. (q, x) |= Eϕ1U∼cϕ2 is a finite union of
intervals whose bounds are multiples of 1/C h(Φ) and bounded by M.

I if the formula holds, it has an exponential-sized witness.
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Decidability for one-clock automata

Back to the example
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Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.
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Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip
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ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14



Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1
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Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X ) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X )))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14



Decidability for one-clock automata

Explosion of the number of ai ’s
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ċ=2
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ċ=2
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I Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

I Unfortunately: costs are expensive!
I mostly undecidable for three clocks or more
I rather involved algorithm for deciding WCTL for one clock

I however, only a PSPACE theoretical complexity

I WCTL? and WMTL are undecidable already for one clock
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