Model-Checking One-Clock
Priced Timed Automata

3

Patricia Bouyer!-? Kim G. Larsen Nicolas Markey!

'LSV, CNRS & ENS Cachan, France
20xford University, England
3Aalborg University, Denmark

1/14

Introduction

Model checking

system:

™

2/14

Model checking

system:

™

:

O\EAOO
N

O

Introduction

G(request=-Fgrant)

2/14

Introduction

Model checking

system:

™

:

Q
W0
O — model-checking <— G(request=-Fgrant)
ZaN
= =0

2/14

CO

Introduction

Model checking

system:

™

O.
A2
(@) —> model-checking <~ G(request=-Fgrant)
d / \O algorithm
<

2/14

Introduction

Motivation

Adding timing requirements

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

~ timed automata, time(d) Petri nets, timed process algebras. . .

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

~ timed automata, time(d) Petri nets, timed process algebras. . .
> Need for time in specifications:

> again, the behaviour of most systems depends on time
> untimed specifications are not enough (e.g., bounded response prop.)

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

~ timed automata, time(d) Petri nets, timed process algebras. . .
> Need for time in specifications:

> again, the behaviour of most systems depends on time
> untimed specifications are not enough (e.g., bounded response prop.)

~» TCTL, MTL, TPTL, timed p-calculus. ..

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

~ timed automata, time(d) Petri nets, timed process algebras. . .
> Need for time in specifications:

> again, the behaviour of most systems depends on time
> untimed specifications are not enough (e.g., bounded response prop.)

~» TCTL, MTL, TPTL, timed p-calculus. ..

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay...

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

~ timed automata, time(d) Petri nets, timed process algebras. . .
> Need for time in specifications:

> again, the behaviour of most systems depends on time
> untimed specifications are not enough (e.g., bounded response prop.)

~» TCTL, MTL, TPTL, timed p-calculus. ..

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay...

» hybrid automata: timed automata augmented with variables whose
derivatives are not constant

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

~ timed automata, time(d) Petri nets, timed process algebras. . .
> Need for time in specifications:

> again, the behaviour of most systems depends on time
> untimed specifications are not enough (e.g., bounded response prop.)

~» TCTL, MTL, TPTL, timed p-calculus. ..

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay...

» hybrid automata: timed automata augmented with variables whose
derivatives are not constant
“Hybrid automata are mostly undecidable.” [HKPVOI7]

3/14

Introduction

Motivation

Adding timing requirements
> Need for timed models:

> the behaviour of most systems depends on time
» modelling has to take time into account

~ timed automata, time(d) Petri nets, timed process algebras. . .
> Need for time in specifications:

> again, the behaviour of most systems depends on time
> untimed specifications are not enough (e.g., bounded response prop.)

~» TCTL, MTL, TPTL, timed p-calculus. ..

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay...

» hybrid automata: timed automata augmented with variables whose
derivatives are not constant
“Hybrid automata are mostly undecidable.” [HKPVOI7]

» priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Timed automata

x<20
Cheap

Expensive

x<15

4/14

Introduction

Timed automata

x<20
Cheap

Expensive

x<15

OK OK Problem Problem Cheap Cheap OK

0 “52° 52 T 68 6.8 20 0

4/14

Priced (weighted) timed automata

)
=0 PT
X;’Zo 1

2 p=2
x<20
Problem Cheap
p=3
x<10
OK Expensive
p=4

x<15

OK OK Problem Problem Cheap Cheap

0 “52° 52 T 68 6.8 20

Introduction

OK
0

4/14

Introduction

Priced (weighted) timed automata

)
=0 PT
X;'Zo 1

2 p=2
x<20
Problem Cheap
p=3
x<10
OK Expensive
p=4

x<15

OK 0o OK o Problem 48 Problem o0 Cheap 264 Cheap 5 OK

0 “52° 52 T 68 68 T 20 0

4/14

Introduction

Related works

» Basic properties

» Optimal reachability [ATPO1,BFH+01,BFH+01b,LBB+01,BBBR07]
> Mean-cost optimality [BBLO4]

5/14

Introduction

Related works

» Basic properties

» Optimal reachability [ATPO1,BFH+01,BFH+01b,LBB+01,BBBR07]
> Mean-cost optimality [BBLO4]

» Model-checking of WCTL

» Undecidability for timed automata with more than three clocks
[BBR04,BBMO6]
» Decidability for timed automata with one clock [this paper]

5/14

Introduction

Related works

» Basic properties

» Optimal reachability [ATPO1,BFH+01,BFH+01b,LBB+01,BBBR07]
» Mean-cost optimality [BBLO4]

» Model-checking of WCTL
» Undecidability for timed automata with more than three clocks
[BBR04,BBMO6]
» Decidability for timed automata with one clock [this paper]

» Control games
> Properties, and restricted decidability results
[ABMO04,BCFL04,BCFLO5]
» Undecidability for timed automata with more than three clocks
[BBRO5,BBMO6]
> Decidability for timed automata with one clock [BLMRO6]

5/14

Introduction

The logic WCTL

CTLo> ¢ == true | a | ¢ | V¢ | EpUp | ApUp

6/14

Introduction

The logic WCTL

WCTL2 ¢ == true | a | ¢ | V¢ | EpoUpoco | ApUp.cp

where P is a cost variable, c € N, and ~ € {<, <, =,>,>}.

6/14

Introduction

The logic WCTL

WCTL2 ¢ == true | a | ¢ | V¢ | EpoUpoco | ApUp.cp

where P is a cost variable, c € N, and ~ € {<, <, =,>,>}.

Particular case: P is the time elapsed — TCTL

6/14

Introduction

An example

7/14

Introduction

An example

» A G(Problem = EF,<470K)

Cheap

Expensive

7/14

Introduction

An example

» A G(Problem = EF,<470K)
p

50

Wait in Problem

40+ Goto Cheap

| Wait in Problem
Cheap 30

20

Goto Expensive

Expensive

101

7/14

Introduction

An example

» A G(Problem = EF,<470K)
p

50

Wait in Problem

40+ Goto Cheap
| Wait in Problem
Cheap 30
Expensive 20 Goto Expensive
101

» A G(Problem = AF,<560K)

7/14

Introduction

An example

» A G(Problem = EF,<470K)
p

50

Wait in Problem

40+ Goto Cheap

| Wait in Problem
Cheap 30

20

Expensive Goto Expensive

101

» A G(Problem = AF,<560K)

> A G(ﬁE (OKUtZS(ProbIem A —-E Fp<300K)))

7/14

Introduction

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

qo0

8/14

Introduction

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

=1
O —

qo0

Nl

8/14

Model-checking WCTL

Introduction

First remark: Regions cannot be used for model-checking WCTL...

E(-EF<1G1)U>103

N

8/14

Introduction

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

E(-EF<1g:1)U>193

e A

Theorem [BBR05,BBMO06]

Model-checking three-clock priced timed automata is undecidable.

8/14

Introduction

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

E(-EF<1q1)Ux143

e A

Theorem [BBR05,BBMO06]

Model-checking three-clock priced timed automata is undecidable.

Model-checking one-clock priced timed automata is PSPACE-complete. I

8/14

Decidability for one-clock automata
Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let ® € WCTL, and A be a PTA. Let C be the |l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There
exist finitely many constants

0=a<a < --<a,<app1 =+
such that
> the truth value of ® is uniform on each region (g, (a;, ai+1));
» each a; is in N/C"®) and a, = M.
where h(®) is the maximal number of constrained modalities in ®.

9/14

Decidability for one-clock automata
Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity
Let ® € WCTL, and A be a PTA. Let C be the |l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There

exist finitely many constants

0=a<a < --<a,<app1 =+
such that
> the truth value of ® is uniform on each region (g, (a;, ai+1));
» each a; is in N/C"®) and a, = M.
where h(®) is the maximal number of constrained modalities in ®.

Inductive proof:

» for atomic propositions, the a;'s are the constants that appear in the
constraints of the automaton.

9/14

Decidability for one-clock automata
Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let ® € WCTL, and A be a PTA. Let C be the |l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There
exist finitely many constants

0=a<a < --<a,<app1 =+
such that
> the truth value of ® is uniform on each region (g, (a;, ai+1));
» each a; is in N/C"®) and a, = M.
where h(®) is the maximal number of constrained modalities in ®.

> If & = E(p1U~cp2), assume we have computed the 3;'s for ¢;
and 5.

9/14

Decidability for one-clock automata
Refining regions

> If & = E(p1U~cp2), assume we have computed the a;'s for o1
and 5.

9/14

Decidability for one-clock automata
Refining regions
> If & = E(p1U~cp2), assume we have computed the 3;'s for ¢;

and 5.

Lemma

The set of costs of non-resetting runs between (g, a;) and (g’,a;+1) is an
interval.

9/14

Decidability for one-clock automata
Refining regions
> If & = E(p1U~cp2), assume we have computed the a;'s for o1

and 5.

Lemma

The set of costs of non-resetting runs between (g, a;) and (g’,a;+1) is an
interval.

9/14

Decidability for one-clock automata
Refining regions
> If & = E(p1U~cp2), assume we have computed the a;'s for o1

and 5.

Lemma

The set of costs of non-resetting runs between (g, a;) and (g’,a;+1) is an
interval.

_______ ~ O maximal cost

Rae O O minimal cost

costs g [Cminy Cmax] . (ai+1 - ai)

9/14

Decidability for one-clock automata
Refining regions

> If & = E(p1U~cp2), assume we have computed the a;'s for o1
and 5.

Lemma

The set of costs of non-resetting runs between (g, a;) and (g’,a;+1) is an

interval.
_______ < O maximal cost
h O minimal
.- minimal cost
" O\O\\\A .@
\
1
1
e M
’
\ 4

costs g [Cminy Cmax] . (ai+l - ai)

9/14

Decidability for one-clock automata

Refining regions

> If & = E(p1U~cp2), assume we have computed the a;'s for o1

and 5.
Lemma
The set of costs of non-resetting runs between (g, a;) and (g’,a;+1) is an
interval.
_______ ~. O maximal cost
.- . O minimal cost
- O\p L
{ O\ 1
\ W
1
s
e b

(Cmins 2] - (a1 — 1)

, costs C [Cminy Cmax] ' (ai+1 - ai)
[C_;C ' Cmax) . (ai+l - 3,‘)

9/14

Decidability for one-clock automata

Refining regions

> If & = E(p1U~cp2), assume we have computed the 3;'s for ¢;
and 5.

(Cmin»Cmax) - (air1—ai)

<07Cmax>'(al—l_af)
@ 1 q,(ai,ait1) '

[0,0] or (0,+00)
(a,an }

(x:=0) [0,0]
(g,any) (g,0)
<Cmin7cmax>'(ar'+1 7X)
q,x,(ai,ai1) (9, 2ai+1)

g, (an, +00)

9/14

Decidability for one-clock automata

Refining regions

> If & = E(p1U~cp2), assume we have computed the a;'s for o1
and 5.

9/14

Decidability for one-clock automata

Refining regions

> If & = E(p1U~cp2), assume we have computed the a;'s for o1
and 5.

From this graph, we get that:
> the set of costs between any two regions is a union of intervals of
the form (o — Bx,a’ — B'x) where
» a and o are in N/Cm{h(e1):h(e2)}
» 3 and (3 are costs of the automaton (in N/C).
> the set of values for x s.t. (g,x) = E@1U.cy2 is a finite union of
intervals whose bounds are multiples of 1/Ch(q’) and bounded by M.

» if the formula holds, it has an exponential-sized witness.

9/14

Decidability for one-clock automata

Back to the example

x=1
O E(-EF<i1q:1)U>1g3
Constants for EF¢1q; are 0, 1/2 and 1.
q2

10/14

Decidability for one-clock automata

Back to the example

x=1
0 E(-EF<1q1)U>1q3
Constants for EF¢1q; are 0, 1/2 and 1.
q2

(q0,x,0) (90,%,(0,1/2)) (q0,x,1/2) (qo.x,(1/2,1)) (q0,x,1)
(40,0) (a0,(0,1/2)) (q0,1/2) (a0,(1/2,1)) (q0,1)
(92,0) (92,(0,1/2)) (92,1/2) (92,(1/2,1)) (a2,1)
(a3,0) (a3,(0,1/2)) (a3,1/2) (a3,(1/2,1)) (a3,1)

10/14

Decidability for one-clock automata

Back to the example

x=1
0 E(-EF<i1q:1)U>1g3
Constants for EF¢1q; are 0, 1/2 and 1.
q2

(g0,x,0) (90,%,(0,1/2))

(40,0) [1/2—x,2(1/2—x)]

(g2,0) (92,(0,1/2)) (q2,1/2) (q2,(1/2,1)) (g2,1)
[1/2]

(93,0) (g3,(0,1/2)) (g3,1/2) (g3,(1/2,1)) (g3,1)

10/14

Decidability for one-clock automata

Back to the example

x=1
0 E(-EF<i1q:1)U>1g3

Constants for EF¢1q; are 0, 1/2 and 1.

. = [1—x,3/2=2x]N[1,400)#0 <> x<1/4
G2

(g0,x,0) (90,%,(0,1/2))

(¢0,0) [1/2—x,2(1/2—x)]

(g2,0) (92,(0,1/2)) (g2,1/2) (q2,(1/2,1)) (g2,1)
[1/2]

(93,0) (g3,(0,1/2)) (g3,1/2) (g3,(1/2,1)) (g3,1)

10/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm
for every x = k/2Ch(®),

11/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm
for every x = k/2Ch(®),
» non-deterministically guess a witnessing path in the graph,

11/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm

for every x = k/2Ch(®),
» non-deterministically guess a witnessing path in the graph,
» check that this path satisfies 1 U,

11/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm

for every x = k/2Ch(®),
» non-deterministically guess a witnessing path in the graph,
» check that this path satisfies 1 U,

‘

» check that the cost of this path satisfies “~ c".

11/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm

for every x = k/2Ch(®),
» non-deterministically guess a witnessing path in the graph,
» check that this path satisfies 1 U,

‘

» check that the cost of this path satisfies “~ c".

~+ each step is in (N)PSPACE

11/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm

for every x = k/2Ch®),
» non-deterministically guess a witnessing path in the graph,
» check that this path satisfies 1 U,

‘

» check that the cost of this path satisfies “~ c".

~+ each step is in (N)PSPACE

~~ the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

11/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm

for every x = k/2Ch®),
» non-deterministically guess a witnessing path in the graph,
» check that this path satisfies 1 U,

‘

» check that the cost of this path satisfies “~ c".

~+ each step is in (N)PSPACE

~~ the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

~> however, we can avoid storing all constants and re-compute
them when needed...

11/14

Decidability for one-clock automata

Algorithms

If ® = p1U. 2, assume we have computed the a;'s for ;1 and o:

An “obvious” EXPTIME algorithm

for every x = k/2Ch®),
» non-deterministically guess a witnessing path in the graph,
» check that this path satisfies 1 U,

‘

» check that the cost of this path satisfies “~ c".

~+ each step is in (N)PSPACE

~~ the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

~> however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

EU>;

x=1
- g3
o
q2

n

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qdo, X, {0}
step = 0 EU>;
cost = [0,0]

x=1
- g3
o
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qdo, X, {0}
step = 0 EU>;
cost = [0,0]

qo, X, {0}

x=1
e Wl :
o cost = [0,0]
q2

EFg

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qdo, X, {0}
step = 0 EU>;
cost = [0,0]
=1 quxv{O}
e step =0 - q3
‘7 cost = [0,0]

x=1
@ qo, X, {0}

step =0 EFg
cost = [0,0]

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, X, {0}
step = 0 EU>;
cost = [0,0]

quxv{O}

=1
= e step =0 - q3

‘7 cost = [0,0]

x=1
E——® wous

step =1 EFg
cost = (0,1/2)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, X, {0}
step = 0 EU>;
cost = [0,0]

quxv{O}

=1
= e step =0 - q3

‘7 cost = [0,0]

E=——(=) 40, (1/4}

step = 2 EFg
cost = [1/2,1/2]

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, X, {0}
step = 0 EU>;
cost = [0,0]

qo, X, {O}

=1
= e step =0 - q3

‘7 cost = [0,0]

x=1
@ q05(1/47 1/2)
step = 3 EFg
cost = (1/2,1)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, X, {0}
step = 0 EU>;
cost = [0,0]

quxv{O}

=1
= e step =0 - q3

‘7 cost = [0,0]

E=——(=) 00, {1/2)

step = 4 EFg
cost = [1,1]

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, X, {0}
step = 0 EU>;
cost = [0,0]

qo, X, {O}

=1
= e step =0 - q3

‘7 cost = [0,0]

x=1
@ q03(1/273/4)
step =5 EFg
cost = (1,3/2)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qdo, X, {0}
step = 0 EU>;
cost = [0,0]

qo, X, {0}

x=1
e Wl :
o cost = [0,0]

@, (1/2,3/4)

cost = (1,3/2)

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qdo, X, {0}
step = 0 EU>;
cost = [0,0]

qo, X, {0}

x=1
e NG :
o cost = [0,0]
q2

EFg

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qo, (07 1/4)
step =1 E U>1
cost = (0,1/2)

x=1
- g3
o
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qo, (07 1/4)
step =1 E U>1
cost = (0,1/2)

qo, (07 1/4)

x=1
e w2 :
o cost = [0,0]
q2

EFg

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, (07 1/4)
step =1 EU>;
cost = (0,1/2)

qo, (07 1/4)

0@ W - :
o cost = [0,0]
x=1
E——® wous
a2 E Fgl

step =0
cost = [0,0]

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, (07 1/4)
step =1 EU>;
cost = (0,1/2)

q01(071/4)

O—=@® 0 - .
o cost = [0,0]

x=1
O—® wum

step =1 EFg
cost = (0,1/2)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, (07 1/4)
step =1 EU>;
cost = (0,1/2)

q01(071/4)

O=—@ U - -
o cost = [0,0]
x=1
@ wes
2

step = 2 EFg
cost = (0,1)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, (07 1/4)
step =1 EU>;
cost = (0,1/2)

q01(071/4)

O—=@® 0 - .
o cost = [0,0]

x=1
O—® o

step = 3 EFg
cost = (1/2,1)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qo, (07 1/4)
step =1 EU>;
cost = (0,1/2)

q01(071/4)

0@ W - :
o cost = [0,0]

x=1
O—® wom

step =5 EFg
cost = (1,3/2)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qo, (07 1/4)
step =1 E U>1
cost = (0,1/2)

qo, (07 1/4)

x=1
e w2 :
o cost = [0,0]

@ q0,{3/4}

cost = (1,3/2)

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

qo, (07 1/4)
step =1 E U>1
cost = (0,1/2)

qo, (07 1/4)

x=1
e G :
o cost = [0,0]
q2

EFg

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

QQ,(O, 1/4)
step = 2 EU>1
cost = (0,1/2)

x=1
- g3
o
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

QQ,(O, 1/4)
step = 2 EU>1
cost = (0,1/2)

q2, (07 1/4)

x=1
e w2 :
o cost = [0,0]
q2

EFg

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
g2, (07 1/4)
step = 2 EU>;
cost = (0,1/2)

q2, (07 1/4)

O=@ W - :
o cost = [0,0]
x=1
E——@® o
a2 E Fgl

step =0
cost = [0,0]

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
q27(071/4)
step = 2 EU>;
cost = (0,1/2)

q21(071/4)

O=@ W - :
o cost = [0,0]

x=1
E——@® wasm

step =5
cost = (3/4,5/4)

a1

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

QQ,(O, 1/4)
step = 2 EU>1
cost = (0,1/2)

q2, (07 1/4)

x=1
e G :
o cost = [0,0]
q2

EFg

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
a2, {1/4}

step =3 EU>;
cost = (1/4,1/2)

x=1
- g3
o
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
q27{1}

step = 9 EU>;
cost = [1,5/4)

x=1
- g3
o
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qs, {1}

step = 10 EU>;
cost = [1,5/4)

x=1
- g3
o
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qs, {1}

step = 10 EU>;
cost = [1,5/4)

x=1
- K]
o

as, {1}
. step =0
cost = [0,0]
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qs, {1}

step = 10 EU>;
cost = [1,5/4)

x=1
:
o

as, {1}
. step =0
cost = [0,0]
q2

a1
[> siio J

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]
qs, {1}

cost = [1,5/4)

x=1
- g3
o
q2

n

12/14

Decidability for one-clock automata

Explosion of the number of a;'s

)(7/\ x:=0 <o

)
[D
.XZ
x:=0

13/14

Decidability for one-clock automata

Explosion of the number of a;'s

)(7/\ x:=0 +TQ

> value of x in state p: xp, x1X0X3 ... X,

13/14

Decidability for one-clock automata

Explosion of the number of a;'s

)(7/\ x:=0 +TQ

> value of x in state p: xp, x1X0x3...Xx, + cost 4 between p and g

13/14

Decidability for one-clock automata

Explosion of the number of a;'s

)(7/\ x:=0 <o
e e —
q r
*VI xX= %L'L
x:=0

> value of x in state p: xp, x1X0x3...Xx, + cost 4 between p and g
— value of x in state g: x1,x0x3...X,

p

13/14

Decidability for one-clock automata

Explosion of the number of a;'s

)(7/\ x:=0 <o
e e —
q r
*VI xX= %L'L
x:=0

> value of x in state p: xp, x1X0x3...Xx, + cost 4 between p and g
— value of x in state g: x1,x0x3...X,

p

> ¢(X) = E ((pV 9)U=o(~p A E(~qU=e(q A X))))

13/14

Decidability for one-clock automata

Explosion of the number of a;'s

)(7/\ x:=0 *<o
e e —
q r
*VI xX= %L'L
x:=0

> value of x in state p: xp, x1X0x3...Xx, + cost 4 between p and g
— value of x in state g: x1,x0x3...X,

p

> o(X)=E ((p V q)U=o(=p A E(=qU=4(g A X))))
> p,x E o(EF=or) iff x € {0,1}

13/14

Decidability for one-clock automata

Explosion of the number of a;'s

> value of x in state p: xp, x1X0x3...Xx, + cost 4 between p and g
— value of x in state g: x1,x0x3...X,

> ¢(X) = E ((pV 9)U=o(~p A E(~qU=e(q A X))))
> p,x E o(EF=or) iff x € {0,1}
> p,x = go(go(E F:or)) iff x € {0,1/2,1,3/2}

13/14

Decidability for one-clock automata

Explosion of the number of a;'s

> value of x in state p: xp, X1 X2x3...X, + cost 4 between p and g
— value of x in state g: x1,x0x3...X,

> ¢(X) = E ((pV 9)U=o(~p A E(~qU=e(q A X))))
> p,x | p(EF_or) iff x € {0,1}
> p,x = go(go(E F:or)) iff x €{0,1/2,1,3/2}
> p,x = @"(EF=or) iff x € {k/2"71 |0 < k <2}

13/14

Conclusion

Conclusion

> Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

14/14

Conclusion

Conclusion

> Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

» Unfortunately: costs are expensive!

14/14

Conclusion

Conclusion

> Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

» Unfortunately: costs are expensive!

> mostly undecidable for three clocks or more

14/14

Conclusion

Conclusion

> Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

» Unfortunately: costs are expensive!

> mostly undecidable for three clocks or more
> rather involved algorithm for deciding WCTL for one clock

> however, only a PSPACE theoretical complexity

14/14

Conclusion

Conclusion

> Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

» Unfortunately: costs are expensive!

> mostly undecidable for three clocks or more
> rather involved algorithm for deciding WCTL for one clock

> however, only a PSPACE theoretical complexity
» WCTL* and WMTL are undecidable already for one clock

14/14

	Introduction
	Decidability for one-clock automata
	Conclusion

