
Model-Checking One-Clock
Priced Timed Automata

Patricia Bouyer1,2 Kim G. Larsen3 Nicolas Markey1

1LSV, CNRS & ENS Cachan, France
2Oxford University, England

3Aalborg University, Denmark

1/14

Introduction

Model checking

system:

⇒

property:

G(request⇒Fgrant)

model-checking

algorithm

yes/no

2/14

Introduction

Model checking

system:

⇒

property:

G(request⇒Fgrant)

model-checking

algorithm

yes/no

2/14

Introduction

Model checking

system:

⇒

property:

G(request⇒Fgrant)model-checking

algorithm

yes/no

2/14

Introduction

Model checking

system:

⇒

property:

G(request⇒Fgrant)model-checking

algorithm

yes/no

2/14

Introduction

Motivation

Adding timing requirements

I Need for timed models:
I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Motivation

Adding timing requirements
I Need for timed models:

I the behaviour of most systems depends on time
I modelling has to take time into account

 timed automata, time(d) Petri nets, timed process algebras. . .

I Need for time in specifications:
I again, the behaviour of most systems depends on time
I untimed specifications are not enough (e.g., bounded response prop.)

 TCTL, MTL, TPTL, timed µ-calculus. . .

Time is not always sufficient! We may want to measure not only time,
but also energy consumption, price to pay. . .

I hybrid automata: timed automata augmented with variables whose
derivatives are not constant

“Hybrid automata are mostly undecidable.” [HKPV97]

I priced timed automata: similar to hybrid automata, but the
behaviour only depends on clock variables

3/14

Introduction

Timed automata

x69 x610

x620

x615

x>2

x>4

x=20, x :=0

x=15, x :=0

Problem Cheap

ExpensiveOK

OK

0
OK

5.2
Problem

5.2
Problem

6.8
Cheap

6.8
Cheap

20
OK

0

4/14

Introduction

Timed automata

x69 x610

x620

x615

x>2

x>4

x=20, x :=0

x=15, x :=0

Problem Cheap

ExpensiveOK

OK

0
OK

5.2
Problem

5.2
Problem

6.8
Cheap

6.8
Cheap

20
OK

0

4/14

Introduction

Priced (weighted) timed automata

ṗ=0

x69

ṗ=3

x610

ṗ=2

x620

ṗ=4

x615

x>2

x>4

x=20, x :=0, p+=5

x=15, x :=0

Problem Cheap

ExpensiveOK

OK

0
OK

5.2
Problem

5.2
Problem

6.8
Cheap

6.8
Cheap

20
OK

0

4/14

Introduction

Priced (weighted) timed automata

ṗ=0

x69

ṗ=3

x610

ṗ=2

x620

ṗ=4

x615

x>2

x>4

x=20, x :=0, p+=5

x=15, x :=0

Problem Cheap

ExpensiveOK

OK

0
OK

5.2
Problem

5.2
Problem

6.8
Cheap

6.8
Cheap

20
OK

0
0 0 4.8 0 26.4 5

4/14

Introduction

Related works

I Basic properties
I Optimal reachability [ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
I Mean-cost optimality [BBL04]

I Model-checking of WCTL
I Undecidability for timed automata with more than three clocks

[BBR04,BBM06]
I Decidability for timed automata with one clock [this paper]

I Control games
I Properties, and restricted decidability results

[ABM04,BCFL04,BCFL05]
I Undecidability for timed automata with more than three clocks

[BBR05,BBM06]
I Decidability for timed automata with one clock [BLMR06]

5/14

Introduction

Related works

I Basic properties
I Optimal reachability [ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
I Mean-cost optimality [BBL04]

I Model-checking of WCTL
I Undecidability for timed automata with more than three clocks

[BBR04,BBM06]
I Decidability for timed automata with one clock [this paper]

I Control games
I Properties, and restricted decidability results

[ABM04,BCFL04,BCFL05]
I Undecidability for timed automata with more than three clocks

[BBR05,BBM06]
I Decidability for timed automata with one clock [BLMR06]

5/14

Introduction

Related works

I Basic properties
I Optimal reachability [ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
I Mean-cost optimality [BBL04]

I Model-checking of WCTL
I Undecidability for timed automata with more than three clocks

[BBR04,BBM06]
I Decidability for timed automata with one clock [this paper]

I Control games
I Properties, and restricted decidability results

[ABM04,BCFL04,BCFL05]
I Undecidability for timed automata with more than three clocks

[BBR05,BBM06]
I Decidability for timed automata with one clock [BLMR06]

5/14

Introduction

The logic WCTL

CTL 3 ϕ ::= true | α | ¬ϕ | ϕ ∨ ϕ | EϕUϕ | AϕUϕ

where P is a cost variable, c ∈ N, and ∼ ∈ {<,6,=,>, >}.

Particular case: P is the time elapsed → TCTL

6/14

Introduction

The logic WCTL

WCTL 3 ϕ ::= true | α | ¬ϕ | ϕ ∨ ϕ | EϕUP∼cϕ | AϕUP∼cϕ

where P is a cost variable, c ∈ N, and ∼ ∈ {<,6,=,>, >}.

Particular case: P is the time elapsed → TCTL

6/14

Introduction

The logic WCTL

WCTL 3 ϕ ::= true | α | ¬ϕ | ϕ ∨ ϕ | EϕUP∼cϕ | AϕUP∼cϕ

where P is a cost variable, c ∈ N, and ∼ ∈ {<,6,=,>, >}.

Particular case: P is the time elapsed → TCTL

6/14

Introduction

An example

ṗ = 0
x 6 9

ṗ = 3
x 6 10

ṗ = 2
x 6 20

ṗ = 4
x 6 15

x >
2

x >
4

x = 20, x := 0, p+ = 5

x = 15, x := 0

Problem Cheap

ExpensiveOK

I A G(Problem =⇒ E Fp647OK)

2 4 6 8 10 x

10

20

30

40

50

p

Wait in Problem

Goto Cheap

Wait in Problem

Goto Expensive

I A G(Problem =⇒ A Fp656OK)

I A G(¬E (OKUt>8(Problem ∧ ¬E Fp<30OK)))

7/14

Introduction

An example

ṗ = 0
x 6 9

ṗ = 3
x 6 10

ṗ = 2
x 6 20

ṗ = 4
x 6 15

x >
2

x >
4

x = 20, x := 0, p+ = 5

x = 15, x := 0

Problem Cheap

ExpensiveOK

I A G(Problem =⇒ E Fp647OK)

2 4 6 8 10 x

10

20

30

40

50

p

Wait in Problem

Goto Cheap

Wait in Problem

Goto Expensive

I A G(Problem =⇒ A Fp656OK)

I A G(¬E (OKUt>8(Problem ∧ ¬E Fp<30OK)))

7/14

Introduction

An example

ṗ = 0
x 6 9

ṗ = 3
x 6 10

ṗ = 2
x 6 20

ṗ = 4
x 6 15

x >
2

x >
4

x = 20, x := 0, p+ = 5

x = 15, x := 0

Problem Cheap

ExpensiveOK

I A G(Problem =⇒ E Fp647OK)

2 4 6 8 10 x

10

20

30

40

50

p

Wait in Problem

Goto Cheap

Wait in Problem

Goto Expensive

I A G(Problem =⇒ A Fp656OK)

I A G(¬E (OKUt>8(Problem ∧ ¬E Fp<30OK)))

7/14

Introduction

An example

ṗ = 0
x 6 9

ṗ = 3
x 6 10

ṗ = 2
x 6 20

ṗ = 4
x 6 15

x >
2

x >
4

x = 20, x := 0, p+ = 5

x = 15, x := 0

Problem Cheap

ExpensiveOK

I A G(Problem =⇒ E Fp647OK)

2 4 6 8 10 x

10

20

30

40

50

p

Wait in Problem

Goto Cheap

Wait in Problem

Goto Expensive

I A G(Problem =⇒ A Fp656OK)

I A G(¬E (OKUt>8(Problem ∧ ¬E Fp<30OK)))

7/14

Introduction

An example

ṗ = 0
x 6 9

ṗ = 3
x 6 10

ṗ = 2
x 6 20

ṗ = 4
x 6 15

x >
2

x >
4

x = 20, x := 0, p+ = 5

x = 15, x := 0

Problem Cheap

ExpensiveOK

I A G(Problem =⇒ E Fp647OK)

2 4 6 8 10 x

10

20

30

40

50

p

Wait in Problem

Goto Cheap

Wait in Problem

Goto Expensive

I A G(Problem =⇒ A Fp656OK)

I A G(¬E (OKUt>8(Problem ∧ ¬E Fp<30OK)))

7/14

Introduction

Model-checking WCTL
First remark: Regions cannot be used for model-checking WCTL...

ṗ=2

q0

q1
x=1

E (¬E F61q1)U>1q3

0 1

1
2

1
4

x

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.

8/14

Introduction

Model-checking WCTL
First remark: Regions cannot be used for model-checking WCTL...

ṗ=2

q0

q1
x=1

E F61q1

E (¬E F61q1)U>1q3

0 11
2

1
4

x

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.

8/14

Introduction

Model-checking WCTL
First remark: Regions cannot be used for model-checking WCTL...

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E (¬E F61q1)U>1q3

0 1

1
2

1
4

x

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.

8/14

Introduction

Model-checking WCTL
First remark: Regions cannot be used for model-checking WCTL...

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E (¬E F61q1)U>1q3

0 1

1
2

1
4

x

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.

8/14

Introduction

Model-checking WCTL
First remark: Regions cannot be used for model-checking WCTL...

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E (¬E F61q1)U>1q3

0 1

1
2

1
4

x

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.

8/14

Decidability for one-clock automata

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let Φ ∈WCTL, and A be a PTA. Let C be the l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There
exist finitely many constants

0 = a0 < a1 < · · · < an < an+1 = +∞
such that

I the truth value of Φ is uniform on each region (q, (ai , ai+1));

I each ai is in N/C h(Φ), and an = M.

where h(Φ) is the maximal number of constrained modalities in Φ.

9/14

Decidability for one-clock automata

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let Φ ∈WCTL, and A be a PTA. Let C be the l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There
exist finitely many constants

0 = a0 < a1 < · · · < an < an+1 = +∞
such that

I the truth value of Φ is uniform on each region (q, (ai , ai+1));

I each ai is in N/C h(Φ), and an = M.

where h(Φ) is the maximal number of constrained modalities in Φ.

Inductive proof:

I for atomic propositions, the ai ’s are the constants that appear in the
constraints of the automaton.

9/14

Decidability for one-clock automata

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let Φ ∈WCTL, and A be a PTA. Let C be the l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There
exist finitely many constants

0 = a0 < a1 < · · · < an < an+1 = +∞
such that

I the truth value of Φ is uniform on each region (q, (ai , ai+1));

I each ai is in N/C h(Φ), and an = M.

where h(Φ) is the maximal number of constrained modalities in Φ.

I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

Lemma

The set of costs of non-resetting runs between (q, ai) and (q′, ai+1) is an
interval.

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

Lemma

The set of costs of non-resetting runs between (q, ai) and (q′, ai+1) is an
interval.

q,ai q′,ai+1

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

Lemma

The set of costs of non-resetting runs between (q, ai) and (q′, ai+1) is an
interval.

q,ai q′,ai+1

maximal cost

minimal cost

costs [cmin, cmax] · (ai+1 − ai)⊆

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

Lemma

The set of costs of non-resetting runs between (q, ai) and (q′, ai+1) is an
interval.

q,ai q′,ai+1

maximal cost

minimal cost

costs [cmin, cmax] · (ai+1 − ai)⊆

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

Lemma

The set of costs of non-resetting runs between (q, ai) and (q′, ai+1) is an
interval.

q,ai q′,ai+1

maximal cost

minimal cost

costs [cmin, cmax] · (ai+1 − ai)⊆
(cmin, c+c′

2] · (ai+1 − ai)

[c+c′

2 , cmax) · (ai+1 − ai)

⊆
⊆

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

q, ai q, ai+1
〈cmin,cmax〉·(ai+1−ai)

q, ai q, (ai , ai+1)
〈0,cmax〉·(ai+1−ai)

q, an q, (an,+∞)
[0,0] or 〈0,+∞〉

q, any q, 0
[0,0](x :=0)

q, x , (ai , ai+1) q, ai+1
〈cmin,cmax〉·(ai+1−x)

...

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

...

...

q,x,0 q,x,ai q,x,(ai ,ai+1) q,x,ai+1

q′,x,0 q′,x,ai q′,x,(ai ,ai+1) q′,x,ai+1

...

q,0 q,ai q,(ai ,ai+1) q,ai+1

q′,0 q′,ai q′,(ai ,ai+1) q′,ai+1

...

9/14

Decidability for one-clock automata

Refining regions
I If Φ = E (ϕ1U∼cϕ2), assume we have computed the ai ’s for ϕ1

and ϕ2.

From this graph, we get that:

I the set of costs between any two regions is a union of intervals of
the form 〈α− βx , α′ − β′x〉 where

I α and α′ are in N/Cmax{h(ϕ1),h(ϕ2)},
I β and β′ are costs of the automaton (in N/C).

I the set of values for x s.t. (q, x) |= Eϕ1U∼cϕ2 is a finite union of
intervals whose bounds are multiples of 1/C h(Φ) and bounded by M.

I if the formula holds, it has an exponential-sized witness.

9/14

Decidability for one-clock automata

Back to the example

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E (¬E F61q1)U>1q3

Constants for E F61q1 are 0, 1/2 and 1.

[1−x,3/2−2x]∩[1,+∞)6=∅ ⇐⇒ x61/4

(q0,x,0) (q0,x,(0,1/2))

(q3,0) (q3,(0,1/2)) (q3,1/2) (q3,(1/2,1)) (q3,1)

10/14

Decidability for one-clock automata

Back to the example

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E (¬E F61q1)U>1q3

Constants for E F61q1 are 0, 1/2 and 1.

[1−x,3/2−2x]∩[1,+∞)6=∅ ⇐⇒ x61/4

(q0,x,0) (q0,x,(0,1/2)) (q0,x,1/2) (q0,x,(1/2,1)) (q0,x,1)

(q0,x,0) (q0,x,(0,1/2))

(q0,0) (q0,(0,1/2)) (q0,1/2) (q0,(1/2,1)) (q0,1)

(q2,0) (q2,(0,1/2)) (q2,1/2) (q2,(1/2,1)) (q2,1)

(q3,0) (q3,(0,1/2)) (q3,1/2) (q3,(1/2,1)) (q3,1)

(q3,0) (q3,(0,1/2)) (q3,1/2) (q3,(1/2,1)) (q3,1)

10/14

Decidability for one-clock automata

Back to the example

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E (¬E F61q1)U>1q3

Constants for E F61q1 are 0, 1/2 and 1.

[1−x,3/2−2x]∩[1,+∞)6=∅ ⇐⇒ x61/4

(q0,x,0) (q0,x,(0,1/2))

(q0,0) (q0,(0,1/2))

(q2,0) (q2,(0,1/2)) (q2,1/2) (q2,(1/2,1)) (q2,1)

(q3,0) (q3,(0,1/2)) (q3,1/2) (q3,(1/2,1)) (q3,1)

[1/2−x,2(1/2−x)]

[1/2]

10/14

Decidability for one-clock automata

Back to the example

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E (¬E F61q1)U>1q3

Constants for E F61q1 are 0, 1/2 and 1.

[1−x,3/2−2x]∩[1,+∞)6=∅ ⇐⇒ x61/4

(q0,x,0) (q0,x,(0,1/2))

(q0,0) (q0,(0,1/2))

(q2,0) (q2,(0,1/2)) (q2,1/2) (q2,(1/2,1)) (q2,1)

(q3,0) (q3,(0,1/2)) (q3,1/2) (q3,(1/2,1)) (q3,1)

[1/2−x,2(1/2−x)]

[1/2]

10/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed...

and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Algorithms

If Φ = ϕ1U∼cϕ2, assume we have computed the ai ’s for ϕ1 and ϕ2:

An “obvious” EXPTIME algorithm

for every x = k/2C h(Φ),

I non-deterministically guess a witnessing path in the graph,

I check that this path satisfies ϕ1Uϕ2,

I check that the cost of this path satisfies “∼ c”.

 each step is in (N)PSPACE

 the whole algorithm is in EXPTIME (there may be an
exponential number of constants)

 however, we can avoid storing all constants and re-compute
them when needed... and get a PSPACE algorithm.

11/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, x , {0}
step = 0

cost = [0,0]

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, (0, 1/4)
step = 1

cost = (0,1/2)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, {1/4}
step = 2

cost = [1/2,1/2]

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, (1/4, 1/2)
step = 3

cost = (1/2,1)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, {1/2}
step = 4

cost = [1,1]

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, (1/2, 3/4)
step = 5

cost = (1,3/2)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, (1/2, 3/4)
step = 5

cost = (1,3/2)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, x , {0}
step = 0

cost = [0,0]

¬
q0, x , {0}
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, (0, 1/4)
step = 0

cost = [0,0]

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, {1/4}
step = 1

cost = (0,1/2)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, (1/4, 1/2)
step = 2

cost = (0,1)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, {1/2}
step = 3

cost = (1/2,1)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, {3/4}
step = 5

cost = (1,3/2)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q0, {3/4}
step = 5

cost = (1,3/2)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q0, (0, 1/4)
step = 1

cost = (0,1/2)

¬
q0, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q2, (0, 1/4)
step = 2

cost = (0,1/2)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q2, (0, 1/4)
step = 2

cost = (0,1/2)

¬
q2, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q2, (0, 1/4)
step = 2

cost = (0,1/2)

¬
q2, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q2, (0, 1/4)
step = 0

cost = [0,0]

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q2, (0, 1/4)
step = 2

cost = (0,1/2)

¬
q2, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q2, (1, 5/4)
step = 5

cost = (3/4,5/4)

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q2, (0, 1/4)
step = 2

cost = (0,1/2)

¬
q2, (0, 1/4)
step = 0

cost = [0,0]
q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q2, {1/4}
step = 3

cost = (1/4,1/2)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q2, {1}
step = 9

cost = [1,5/4)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q3, {1}
step = 10

cost = [1,5/4)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q3, {1}
step = 10

cost = [1,5/4)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q3, {1}
step = 10

cost = [1,5/4)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Execution of the PSPACE algorithm

Same idea as [HKV96]

ṗ=2

q0

q1

ṗ=1

q2

q3

x=1

x=1

E U>1

q3, {1}
step = 10

cost = [1,5/4)

¬ q3

q3, {1}
step = 0

cost = [0,0]

E F61

q1
Skip

12/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn

+ cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q

→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}

I p, x |= ϕ
“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Decidability for one-clock automata

Explosion of the number of ai ’s

ċ=1

ċ=4

ċ=2

ċ=2

ċ=1

ċ=1 ċ=1

x<1

x>1

x=2

x :=0

x=2

x :=0

x<2

x<2

x=0

p q r

I → value of x in state p: x0, x1x2x3 . . . xn + cost 4 between p and q
→ value of x in state q: x1, x2x3 . . . xn

I ϕ(X) = E
(

(p ∨ q)U=0(¬p ∧ E (¬qU=4(q ∧ X)))
)

I p, x |= ϕ(E F=0r) iff x ∈ {0, 1}
I p, x |= ϕ

“
ϕ(E F=0r)

”
iff x ∈ {0, 1/2, 1, 3/2}

I p, x |= ϕn(E F=0r) iff x ∈ {k/2n−1 | 0 6 k < 2n}

13/14

Conclusion

Conclusion

I Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

I Unfortunately: costs are expensive!
I mostly undecidable for three clocks or more
I rather involved algorithm for deciding WCTL for one clock

I however, only a PSPACE theoretical complexity

I WCTL? and WMTL are undecidable already for one clock

14/14

Conclusion

Conclusion

I Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

I Unfortunately: costs are expensive!

I mostly undecidable for three clocks or more
I rather involved algorithm for deciding WCTL for one clock

I however, only a PSPACE theoretical complexity

I WCTL? and WMTL are undecidable already for one clock

14/14

Conclusion

Conclusion

I Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

I Unfortunately: costs are expensive!
I mostly undecidable for three clocks or more

I rather involved algorithm for deciding WCTL for one clock
I however, only a PSPACE theoretical complexity

I WCTL? and WMTL are undecidable already for one clock

14/14

Conclusion

Conclusion

I Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

I Unfortunately: costs are expensive!
I mostly undecidable for three clocks or more
I rather involved algorithm for deciding WCTL for one clock

I however, only a PSPACE theoretical complexity

I WCTL? and WMTL are undecidable already for one clock

14/14

Conclusion

Conclusion

I Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

I Unfortunately: costs are expensive!
I mostly undecidable for three clocks or more
I rather involved algorithm for deciding WCTL for one clock

I however, only a PSPACE theoretical complexity

I WCTL? and WMTL are undecidable already for one clock

14/14

	Introduction
	Decidability for one-clock automata
	Conclusion

