Model-Checking One-Clock Priced Timed Automata

Patricia Bouyer ${ }^{1,2}$ Kim G. Larsen ${ }^{3} \quad$ Nicolas Markey ${ }^{1}$

${ }^{1}$ LSV, CNRS \& ENS Cachan, France
${ }^{2}$ Oxford University, England
${ }^{3}$ Aalborg University, Denmark

Model checking

property:

Model checking

Model checking

Model checking

Motivation

Adding timing requirements

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account
\rightsquigarrow timed automata, time(d) Petri nets, timed process algebras. . .

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account
\rightsquigarrow timed automata, time(d) Petri nets, timed process algebras...
- Need for time in specifications:
- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.)

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account
\rightsquigarrow timed automata, time(d) Petri nets, timed process algebras...
- Need for time in specifications:
- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.)
\rightsquigarrow TCTL, MTL, TPTL, timed μ-calculus. .

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account
\rightsquigarrow timed automata, time(d) Petri nets, timed process algebras...
- Need for time in specifications:
- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.) \rightsquigarrow TCTL, MTL, TPTL, timed μ-calculus. .

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account
\rightsquigarrow timed automata, time(d) Petri nets, timed process algebras...
- Need for time in specifications:
- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.) \rightsquigarrow TCTL, MTL, TPTL, timed μ-calculus. .

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

- hybrid automata: timed automata augmented with variables whose derivatives are not constant

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account
\rightsquigarrow timed automata, time(d) Petri nets, timed process algebras...
- Need for time in specifications:
- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.) \rightsquigarrow TCTL, MTL, TPTL, timed μ-calculus. .

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

- hybrid automata: timed automata augmented with variables whose derivatives are not constant
"Hybrid automata are mostly undecidable."

Motivation

Adding timing requirements

- Need for timed models:
- the behaviour of most systems depends on time
- modelling has to take time into account
\rightsquigarrow timed automata, time (d) Petri nets, timed process algebras...
- Need for time in specifications:
- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.) \rightsquigarrow TCTL, MTL, TPTL, timed μ-calculus...

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

- hybrid automata: timed automata augmented with variables whose derivatives are not constant
"Hybrid automata are mostly undecidable."
- priced timed automata: similar to hybrid automata, but the behaviour only depends on clock variables

Timed automata

Timed automata

Priced (weighted) timed automata

Priced (weighted) timed automata

Related works

- Basic properties
- Optimal reachability
[ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
- Mean-cost optimality [BBL04]

Related works

- Basic properties
- Optimal reachability
[ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
- Mean-cost optimality [BBL04]
- Model-checking of WCTL
- Undecidability for timed automata with more than three clocks
- Decidability for timed automata with one clock
[this paper]

Related works

- Basic properties
- Optimal reachability
[ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
- Mean-cost optimality [BBL04]
- Model-checking of WCTL
- Undecidability for timed automata with more than three clocks
- Decidability for timed automata with one clock
- Control games
- Properties, and restricted decidability results
[ABM04,BCFL04,BCFL05]
- Undecidability for timed automata with more than three clocks
- Decidability for timed automata with one clock

The logic WCTL

CTL $\ni \varphi::=$ true $|\alpha| \neg \varphi|\varphi \vee \varphi| \mathbf{E} \varphi \mathbf{U} \varphi \mid \mathbf{A} \varphi \mathbf{U} \varphi$

The logic WCTL

$$
\text { WCTL } \ni \varphi::=\text { true }|\alpha| \neg \varphi|\varphi \vee \varphi| \mathbf{E} \varphi \mathbf{U}_{P \sim c} \varphi \mid \mathbf{A} \varphi \mathbf{U}_{P \sim c} \varphi
$$ where P is a cost variable, $c \in \mathbb{N}$, and $\sim \in\{<, \leqslant,=, \geqslant,>\}$.

The logic WCTL

$$
\begin{gathered}
\text { WCTL } \ni \varphi::=\text { true }|\alpha| \neg \varphi|\varphi \vee \varphi| \mathbf{E} \varphi \mathbf{U}_{P \sim c} \varphi \mid \mathbf{A} \varphi \mathbf{U}_{P \sim c} \varphi \\
\text { where } P \text { is a cost variable, } c \in \mathbb{N} \text {, and } \sim \in\{<, \leqslant,=, \geqslant,>\} .
\end{gathered}
$$

Particular case: P is the time elapsed \rightarrow TCTL

An example

An example

- AG(Problem $\Longrightarrow \mathbf{E F} \mathbf{F}_{p \leqslant 47} \mathrm{OK}$)

An example

- $\mathbf{A G}$ (Problem $\Longrightarrow \mathbf{E F}_{p \leqslant 47} \mathrm{OK}$)

An example

- $\mathbf{A G}$ (Problem $\Longrightarrow \mathbf{E F}_{p \leqslant 47} \mathrm{OK}$)

- $\mathbf{A G}$ (Problem $\Longrightarrow \mathbf{A} \mathbf{F}_{p \leqslant 56} \mathrm{OK}$)

An example

- $\mathbf{A G}$ (Problem $\Longrightarrow \mathbf{E F}_{p \leqslant 47} \mathrm{OK}$)

- $\mathbf{A G}$ (Problem $\left.\Longrightarrow \mathbf{A F}_{p \leqslant 56} \mathrm{OK}\right)$
- $\mathbf{A} \mathbf{G}\left(\neg \mathbf{E}\left(\mathrm{OK} \mathbf{U}_{t \geqslant 8}\left(\right.\right.\right.$ Problem $\left.\left.\left.\wedge \neg \mathbf{E} \mathbf{F}_{p<30} \mathrm{OK}\right)\right)\right)$

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

$\mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}$

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Model-checking WCTL

First remark: Regions cannot be used for model-checking WCTL...

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let $\Phi \in \mathrm{WCTL}$, and \mathcal{A} be a PTA. Let C be the I.c.m. of the positive costs of \mathcal{A}, and M the maximal constant of its guards and invariants. There exist finitely many constants

$$
0=a_{0}<a_{1}<\cdots<a_{n}<a_{n+1}=+\infty
$$

such that

- the truth value of Φ is uniform on each region $\left(q,\left(a_{i}, a_{i+1}\right)\right)$;
- each a_{i} is in $\mathbb{N} / C^{h(\Phi)}$, and $a_{n}=M$.
where $h(\Phi)$ is the maximal number of constrained modalities in Φ.

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let $\Phi \in \mathrm{WCTL}$, and \mathcal{A} be a PTA. Let C be the I.c.m. of the positive costs of \mathcal{A}, and M the maximal constant of its guards and invariants. There exist finitely many constants

$$
0=a_{0}<a_{1}<\cdots<a_{n}<a_{n+1}=+\infty
$$

such that

- the truth value of Φ is uniform on each region $\left(q,\left(a_{i}, a_{i+1}\right)\right)$;
- each a_{i} is in $\mathbb{N} / C^{h(\Phi)}$, and $a_{n}=M$.
where $h(\Phi)$ is the maximal number of constrained modalities in Φ.
Inductive proof:
- for atomic propositions, the a_{i} 's are the constants that appear in the constraints of the automaton.

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let $\Phi \in \mathrm{WCTL}$, and \mathcal{A} be a PTA. Let C be the I.c.m. of the positive costs of \mathcal{A}, and M the maximal constant of its guards and invariants. There exist finitely many constants

$$
0=a_{0}<a_{1}<\cdots<a_{n}<a_{n+1}=+\infty
$$

such that

- the truth value of Φ is uniform on each region $\left(q,\left(a_{i}, a_{i+1}\right)\right)$;
- each a_{i} is in $\mathbb{N} / C^{h(\Phi)}$, and $a_{n}=M$.
where $h(\Phi)$ is the maximal number of constrained modalities in Φ.
- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Lemma

The set of costs of non-resetting runs between $\left(q, a_{i}\right)$ and $\left(q^{\prime}, a_{i+1}\right)$ is an interval.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Lemma

The set of costs of non-resetting runs between $\left(q, a_{i}\right)$ and $\left(q^{\prime}, a_{i+1}\right)$ is an interval.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Lemma

The set of costs of non-resetting runs between $\left(q, a_{i}\right)$ and $\left(q^{\prime}, a_{i+1}\right)$ is an interval.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Lemma

The set of costs of non-resetting runs between $\left(q, a_{i}\right)$ and $\left(q^{\prime}, a_{i+1}\right)$ is an interval.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Lemma

The set of costs of non-resetting runs between $\left(q, a_{i}\right)$ and $\left(q^{\prime}, a_{i+1}\right)$ is an interval.

$\left(c_{\text {min }}, \frac{c+c^{\prime}}{2}\right] \cdot\left(a_{i+1}-a_{i}\right) \subseteq$ costs $\subseteq\left[c_{\text {min }}, c_{\max }\right] \cdot\left(a_{i+1}-a_{i}\right)$
$\left[\frac{c+c^{\prime}}{2}, c_{\max }\right) \cdot\left(a_{i+1}-a_{i}\right) \subseteq$--..

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

Refining regions

- If $\Phi=\mathbf{E}\left(\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}\right)$, assume we have computed the a_{i} 's for φ_{1} and φ_{2}.

From this graph, we get that:

- the set of costs between any two regions is a union of intervals of the form $\left\langle\alpha-\beta x, \alpha^{\prime}-\beta^{\prime} x\right\rangle$ where
- α and α^{\prime} are in $\mathbb{N} / C^{\max \left\{h\left(\varphi_{1}\right), h\left(\varphi_{2}\right)\right\}}$,
- β and β^{\prime} are costs of the automaton (in \mathbb{N} / C).
- the set of values for x s.t. $(q, x) \models \mathbf{E} \varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$ is a finite union of intervals whose bounds are multiples of $1 / C^{h(\Phi)}$ and bounded by M.
- if the formula holds, it has an exponential-sized witness.

Back to the example

$\mathbf{E}\left(\neg \mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}\right) \mathbf{U}_{\geqslant 1} q_{3}$

Constants for $\mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}$ are $0,1 / 2$ and 1 .

Back to the example

$\mathbf{E}\left(\neg \mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}\right) \mathbf{U}_{\geqslant 1} q_{3}$

Constants for $\mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}$ are $0,1 / 2$ and 1.

Back to the example

$$
\mathbf{E}\left(\neg \mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}\right) \mathbf{U}_{\geqslant 1} q_{3}
$$

Constants for $\mathbf{E F} \leqslant 1 q_{1}$ are $0,1 / 2$ and 1 .

Back to the example

$\mathbf{E}\left(\neg \mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}\right) \mathbf{U}_{\geqslant 1} q_{3}$

Constants for $\mathbf{E} \mathbf{F}_{\leqslant 1} q_{1}$ are $0,1 / 2$ and 1.

$$
[1-x, 3 / 2-2 x] \cap[1,+\infty) \neq \emptyset \Longleftrightarrow x \leqslant 1 / 4
$$

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm
 for every $x=k / 2 C^{h(\Phi)}$,

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm

for every $x=k / 2 C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm
for every $x=k / 2 C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_{1} \mathbf{U} \varphi_{2}$,

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm
for every $x=k / 2 C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_{1} \mathbf{U} \varphi_{2}$,
- check that the cost of this path satisfies " $\sim c$ ".

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm
for every $x=k / 2 C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_{1} \mathbf{U} \varphi_{2}$,
- check that the cost of this path satisfies " $\sim c$ ".
\rightsquigarrow each step is in (N)PSPACE

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm

for every $x=k / 2 C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_{1} \mathbf{U} \varphi_{2}$,
- check that the cost of this path satisfies " $\sim c$ ".
\rightsquigarrow each step is in (N)PSPACE
\rightsquigarrow the whole algorithm is in EXPTIME (there may be an exponential number of constants)

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm

for every $x=k / 2 C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_{1} \mathbf{U} \varphi_{2}$,
- check that the cost of this path satisfies " $\sim c$ ".
\rightsquigarrow each step is in (N)PSPACE
\rightsquigarrow the whole algorithm is in EXPTIME (there may be an exponential number of constants)
\rightsquigarrow however, we can avoid storing all constants and re-compute them when needed...

Algorithms

If $\Phi=\varphi_{1} \mathbf{U}_{\sim c} \varphi_{2}$, assume we have computed the a_{i} 's for φ_{1} and φ_{2} :

An "obvious" EXPTIME algorithm

for every $x=k / 2 C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_{1} \mathbf{U} \varphi_{2}$,
- check that the cost of this path satisfies " $\sim c$ ".
\rightsquigarrow each step is in (N)PSPACE
\rightsquigarrow the whole algorithm is in EXPTIME (there may be an exponential number of constants)
\rightsquigarrow however, we can avoid storing all constants and re-compute them when needed... and get a PSPACE algorithm.

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Execution of the PSPACE algorithm

Same idea as [HKV96]

Explosion of the number of a_{i} 's

Explosion of the number of a_{i} 's

- value of x in state $p: x_{0}, x_{1} x_{2} x_{3} \ldots x_{n}$

Explosion of the number of a_{i} 's

- value of x in state $p: x_{0}, x_{1} x_{2} x_{3} \ldots x_{n}+$ cost 4 between p and q

Explosion of the number of a_{i} 's

- value of x in state $p: x_{0}, x_{1} x_{2} x_{3} \ldots x_{n}+$ cost 4 between p and q \rightarrow value of x in state $q: x_{1}, x_{2} x_{3} \ldots x_{n}$

Explosion of the number of a_{i} 's

- value of x in state $p: x_{0}, x_{1} x_{2} x_{3} \ldots x_{n}+$ cost 4 between p and q \rightarrow value of x in state $q: x_{1}, x_{2} x_{3} \ldots x_{n}$
- $\varphi(X)=\mathbf{E}\left((p \vee q) \mathbf{U}_{=0}\left(\neg p \wedge \mathbf{E}\left(\neg q \mathbf{U}_{=4}(q \wedge X)\right)\right)\right)$

Explosion of the number of a_{i} 's

- value of x in state $p: x_{0}, x_{1} x_{2} x_{3} \ldots x_{n}+$ cost 4 between p and q \rightarrow value of x in state $q: x_{1}, x_{2} x_{3} \ldots x_{n}$
- $\varphi(X)=\mathbf{E}\left((p \vee q) \mathbf{U}_{=0}\left(\neg p \wedge \mathbf{E}\left(\neg q \mathbf{U}_{=4}(q \wedge X)\right)\right)\right)$
- $p, x \models \varphi\left(\mathbf{E} \mathbf{F}_{=0} r\right)$ iff $x \in\{0,1\}$

Explosion of the number of a_{i} 's

- value of x in state $p: x_{0}, x_{1} x_{2} x_{3} \ldots x_{n}+$ cost 4 between p and q \rightarrow value of x in state $q: x_{1}, x_{2} x_{3} \ldots x_{n}$
- $\varphi(X)=\mathbf{E}\left((p \vee q) \mathbf{U}_{=0}\left(\neg p \wedge \mathbf{E}\left(\neg q \mathbf{U}_{=4}(q \wedge X)\right)\right)\right)$
- $p, x \models \varphi\left(\mathbf{E} \mathbf{F}_{=0} r\right)$ iff $x \in\{0,1\}$
- $p, x \models \varphi\left(\varphi\left(\mathbf{E F}_{=0} r\right)\right)$ iff $x \in\{0,1 / 2,1,3 / 2\}$

Explosion of the number of a_{i} 's

- value of x in state $p: x_{0}, x_{1} x_{2} x_{3} \ldots x_{n}+$ cost 4 between p and q \rightarrow value of x in state $q: x_{1}, x_{2} x_{3} \ldots x_{n}$
- $\varphi(X)=\mathbf{E}\left((p \vee q) \mathbf{U}_{=0}\left(\neg p \wedge \mathbf{E}\left(\neg q \mathbf{U}_{=4}(q \wedge X)\right)\right)\right)$
- $p, x \models \varphi\left(\mathbf{E} \mathbf{F}_{=0} r\right)$ iff $x \in\{0,1\}$
- $p, x \models \varphi\left(\varphi\left(\mathbf{E F}_{=0} r\right)\right)$ iff $x \in\{0,1 / 2,1,3 / 2\}$
- $p, x \models \varphi^{n}\left(\mathbf{E} \mathbf{F}_{=0} r\right)$ iff $x \in\left\{k / 2^{n-1} \mid 0 \leqslant k<2^{n}\right\}$

Conclusion

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems

Conclusion

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems
- Unfortunately: costs are expensive!

Conclusion

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems
- Unfortunately: costs are expensive!
- mostly undecidable for three clocks or more

Conclusion

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems
- Unfortunately: costs are expensive!
- mostly undecidable for three clocks or more
- rather involved algorithm for deciding WCTL for one clock
- however, only a PSPACE theoretical complexity

Conclusion

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems
- Unfortunately: costs are expensive!
- mostly undecidable for three clocks or more
- rather involved algorithm for deciding WCTL for one clock
- however, only a PSPACE theoretical complexity
- WCTL* and WMTL are undecidable already for one clock

