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e A

Theorem [BBR05,BBMO06]

Model-checking three-clock priced timed automata is undecidable.

Model-checking one-clock priced timed automata is PSPACE-complete. I
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Let ® € WCTL, and A be a PTA. Let C be the |l.c.m. of the positive costs
of A, and M the maximal constant of its guards and invariants. There
exist finitely many constants

0=a<a < --<a,<app1 =+
such that
> the truth value of ® is uniform on each region (g, (a;, ai+1));
» each a; is in N/C"®) and a, = M.
where h(®) is the maximal number of constrained modalities in ®.
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Decidability for one-clock automata

Refining regions

> If & = E(p1U~cp2), assume we have computed the a;'s for o1
and 5.

From this graph, we get that:
> the set of costs between any two regions is a union of intervals of
the form (o — Bx,a’ — B'x) where
» a and o are in N/Cm{h(e1):h(e2)}
» 3 and (3 are costs of the automaton (in N/C).
> the set of values for x s.t. (g,x) = E@1U.cy2 is a finite union of
intervals whose bounds are multiples of 1/Ch(q’) and bounded by M.

» if the formula holds, it has an exponential-sized witness.
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> Priced (weighted) timed automata: a natural model for modelling
resource consumption in timed systems

» Unfortunately: costs are expensive!

> mostly undecidable for three clocks or more
> rather involved algorithm for deciding WCTL for one clock

> however, only a PSPACE theoretical complexity
» WCTL* and WMTL are undecidable already for one clock
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