Model-Checking One-Clock Priced Timed Automata

Patricia Bouyer^{1,2} Kim G. Larsen³ Nicolas Markey¹

¹LSV, CNRS & ENS Cachan, France ²Oxford University, England ³Aalborg University, Denmark

yes/no

Adding timing requirements

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account

→ timed automata, time(d) Petri nets, timed process algebras...

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account

→ timed automata, time(d) Petri nets, timed process algebras...

Need for time in specifications:

- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.)

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account

→ timed automata, time(d) Petri nets, timed process algebras...

Need for time in specifications:

- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.)

 \rightsquigarrow TCTL, MTL, TPTL, timed μ -calculus...

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account
 - → timed automata, time(d) Petri nets, timed process algebras...
- Need for time in specifications:
 - again, the behaviour of most systems depends on time
 - untimed specifications are not enough (e.g., bounded response prop.)
 - \rightsquigarrow TCTL, MTL, TPTL, timed μ -calculus...

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account
 - → timed automata, time(d) Petri nets, timed process algebras...
- Need for time in specifications:
 - again, the behaviour of most systems depends on time
 - untimed specifications are not enough (e.g., bounded response prop.)
 - \rightsquigarrow TCTL, MTL, TPTL, timed μ -calculus...

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

hybrid automata: timed automata augmented with variables whose derivatives are not constant

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account

→ timed automata, time(d) Petri nets, timed process algebras...

Need for time in specifications:

- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.)
- \rightsquigarrow TCTL, MTL, TPTL, timed μ -calculus...

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

hybrid automata: timed automata augmented with variables whose derivatives are not constant

"Hybrid automata are mostly undecidable." [HKPV97]

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time
 - modelling has to take time into account

→ timed automata, time(d) Petri nets, timed process algebras...

Need for time in specifications:

- again, the behaviour of most systems depends on time
- untimed specifications are not enough (e.g., bounded response prop.)
- \rightsquigarrow TCTL, MTL, TPTL, timed μ -calculus...

Time is not always sufficient! We may want to measure not only time, but also energy consumption, price to pay...

hybrid automata: timed automata augmented with variables whose derivatives are not constant

"Hybrid automata are mostly undecidable."

priced timed automata: similar to hybrid automata, but the behaviour only depends on clock variables

[HKPV97]

Timed automata

Timed automata

 $\overset{OK}{\underset{0}{\longrightarrow}} \overset{OK}{\underset{5.2}{\longrightarrow}} \overset{Problem}{\underset{5.2}{\longrightarrow}} \overset{Ok}{\underset{6.8}{\longrightarrow}} \overset{Cheap}{\underset{6.8}{\longrightarrow}} \overset{Ok}{\underset{0}{\longrightarrow}} \overset{Ok}{\underset{0}{\overset{Ok}{\underset{0}{\longrightarrow}} \overset{Ok}{\underset{0}{\overset{Ok}{\underset{0}{\overset{0}{\overset{0}{\underset{0}{\overset{0}{\overset{0}{\overset{Ok}{\underset{0}{\overset{0}{\underset{0}{\overset{Ok}{\underset{0}{\overset{$

Priced (weighted) timed automata

 $\overset{OK}{0} \xrightarrow{--+} \overset{OK}{5.2} \xrightarrow{--+} \overset{Problem}{6.8} \xrightarrow{--+} \overset{Cheap}{6.8} \xrightarrow{--+} \overset{Cheap}{20} \xrightarrow{--+} \overset{OK}{0}$

Priced (weighted) timed automata

 $\begin{array}{c} \mathsf{OK} & \underbrace{\mathsf{0}} \\ 0 \end{array} \xrightarrow{\mathsf{OK}} \underbrace{\mathsf{OK}} \\ 5.2 \end{array} \xrightarrow{\mathsf{0}} \begin{array}{c} \mathsf{Problem} \\ 5.2 \end{array} \xrightarrow{\mathsf{4.8}} \begin{array}{c} \mathsf{Problem} \\ 6.8 \end{array} \xrightarrow{\mathsf{0}} \begin{array}{c} \mathsf{Cheap} \\ 6.8 \end{array} \xrightarrow{\mathsf{26.4}} \begin{array}{c} \mathsf{Cheap} \\ 20 \end{array} \xrightarrow{\mathsf{5}} \begin{array}{c} \mathsf{OK} \\ 0 \end{array}$

Related works

► Basic properties

- Optimal reachability [ATP01]
- Mean-cost optimality

[ATP01,BFH+01,BFH+01b,LBB+01,BBBR07] [BBL04]

Related works

Basic properties

- Optimal reachability [ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
- Mean-cost optimality
- [BBL04]
- Model-checking of WCTL
 - Undecidability for timed automata with more than three clocks

[BBR04,BBM06]

Decidability for timed automata with one clock

[this paper]

[BBL04]

[BBR04.BBM06]

[BBR05.BBM06]

[BLMR06]

[this paper]

Related works

Basic properties

- Optimal reachability [ATP01,BFH+01,BFH+01b,LBB+01,BBBR07]
- Mean-cost optimality
- Model-checking of WCTL
 - Undecidability for timed automata with more than three clocks
 - Decidability for timed automata with one clock

Control games

Properties, and restricted decidability results

[ABM04,BCFL04,BCFL05]

- Undecidability for timed automata with more than three clocks
- Decidability for timed automata with one clock

The logic WCTL

$\mathsf{CTL} \ni \varphi \ ::= \ \mathsf{true} \ \mid \ \alpha \ \mid \ \neg \varphi \ \mid \ \varphi \lor \varphi \ \mid \ \mathsf{E} \, \varphi \mathsf{U} \varphi \ \mid \ \mathsf{A} \, \varphi \mathsf{U} \varphi$

The logic WCTL

$$\begin{split} \mathsf{WCTL} \ni \varphi &::= \mathsf{true} \ | \ \alpha \ | \ \neg \varphi \ | \ \varphi \lor \varphi \ | \ \mathsf{E} \varphi \mathsf{U}_{P \sim c} \varphi \ | \ \mathsf{A} \varphi \mathsf{U}_{P \sim c} \varphi \\ \end{split}$$ where P is a cost variable, $c \in \mathbb{N}$, and $\sim \in \{<, \leqslant, =, \geqslant, >\}. \end{split}$

The logic WCTL

$$\begin{split} \mathsf{WCTL} \ni \varphi & ::= \mathsf{true} \ | \ \alpha \ | \ \neg \varphi \ | \ \varphi \lor \varphi \ | \ \mathsf{E} \varphi \mathsf{U}_{P \sim \mathsf{c}} \varphi \ | \ \mathsf{A} \varphi \mathsf{U}_{P \sim \mathsf{c}} \varphi \\ \end{split}$$
where P is a cost variable, $c \in \mathbb{N}$, and $\sim \in \{<, \leqslant, =, \geqslant, >\}. \end{split}$

Particular case: P is the time elapsed \rightarrow TCTL

• $A G(Problem \implies E F_{p \leq 47} OK)$

Wait in Problem

8

Goto Expensive

10 ×

First remark: Regions cannot be used for model-checking WCTL...

First remark: Regions cannot be used for model-checking WCTL...

First remark: Regions cannot be used for model-checking WCTL...

First remark: Regions cannot be used for model-checking WCTL...

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

First remark: Regions cannot be used for model-checking WCTL...

Theorem [BBR05,BBM06]

Model-checking three-clock priced timed automata is undecidable.

Our result

Model-checking one-clock priced timed automata is PSPACE-complete.

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let $\Phi \in WCTL$, and A be a PTA. Let C be the l.c.m. of the positive costs of A, and M the maximal constant of its guards and invariants. There exist finitely many constants

$$0=a_0 < a_1 < \cdots < a_n < a_{n+1}=+\infty$$

such that

- the truth value of Φ is uniform on each region $(q, (a_i, a_{i+1}))$;
- each a_i is in $\mathbb{N}/C^{h(\Phi)}$, and $a_n = M$.

where $h(\Phi)$ is the maximal number of *constrained* modalities in Φ .

Refining regions

We refine regions as suggested by the previous example:

A sufficient granularity

Let $\Phi \in WCTL$, and A be a PTA. Let C be the l.c.m. of the positive costs of A, and M the maximal constant of its guards and invariants. There exist finitely many constants

$$0=a_0 < a_1 < \cdots < a_n < a_{n+1}=+\infty$$

such that

- the truth value of Φ is uniform on each region $(q, (a_i, a_{i+1}))$;
- each a_i is in $\mathbb{N}/C^{h(\Phi)}$, and $a_n = M$.

where $h(\Phi)$ is the maximal number of *constrained* modalities in Φ .

Inductive proof:

▶ for atomic propositions, the a_i's are the constants that appear in the constraints of the automaton.
We refine regions as suggested by the previous example:

A sufficient granularity

Let $\Phi \in WCTL$, and A be a PTA. Let C be the l.c.m. of the positive costs of A, and M the maximal constant of its guards and invariants. There exist finitely many constants

$$\mathsf{0} = \mathsf{a}_0 < \mathsf{a}_1 < \cdots < \mathsf{a}_n < \mathsf{a}_{n+1} = +\infty$$

such that

- the truth value of Φ is uniform on each region $(q, (a_i, a_{i+1}))$;
- each a_i is in $\mathbb{N}/C^{h(\Phi)}$, and $a_n = M$.

where $h(\Phi)$ is the maximal number of *constrained* modalities in Φ .

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

Lemma

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

Lemma

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

Lemma

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

Lemma

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

Lemma

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

If Φ = E (φ₁U_{~c}φ₂), assume we have computed the a_i's for φ₁ and φ₂.

From this graph, we get that:

- ► the set of costs between any two regions is a union of intervals of the form ⟨α − βx, α' − β'x⟩ where
 - α and α' are in $\mathbb{N}/C^{\max\{h(\varphi_1), h(\varphi_2)\}}$,
 - β and β' are costs of the automaton (in \mathbb{N}/C).
- ► the set of values for x s.t. (q, x) ⊨ E φ₁U_{~c}φ₂ is a finite union of intervals whose bounds are multiples of 1/C^{h(Φ)} and bounded by M.
- if the formula holds, it has an exponential-sized witness.

$$\mathsf{E}(\neg \mathsf{E} \mathsf{F}_{\leqslant 1} q_1) \mathsf{U}_{\geqslant 1} q_3$$

Constants for $\mathbf{E} \mathbf{F}_{\leq 1} q_1$ are 0, 1/2 and 1.

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm for every $x = k/2C^{h(\Phi)}$,

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm

for every $x = k/2C^{h(\Phi)}$,

non-deterministically guess a witnessing path in the graph,

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_1 \mathbf{U} \varphi_2$,

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_1 \mathbf{U} \varphi_2$,
- check that the cost of this path satisfies " $\sim c$ ".

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm

for every $x = k/2C^{h(\Phi)}$,

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_1 \mathbf{U} \varphi_2$,
- check that the cost of this path satisfies " $\sim c$ ".

 \rightsquigarrow each step is in (N)PSPACE

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_1 \mathbf{U} \varphi_2$,
- check that the cost of this path satisfies " $\sim c$ ".
 - \rightsquigarrow each step is in (N)PSPACE
 - → the whole algorithm is in EXPTIME (there may be an exponential number of constants)

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_1 \mathbf{U} \varphi_2$,
- check that the cost of this path satisfies " $\sim c$ ".
 - \rightsquigarrow each step is in (N)PSPACE
 - → the whole algorithm is in EXPTIME (there may be an exponential number of constants)
 - → however, we can avoid storing all constants and re-compute them when needed...

If $\Phi = \varphi_1 \mathbf{U}_{\sim c} \varphi_2$, assume we have computed the a_i 's for φ_1 and φ_2 :

An "obvious" EXPTIME algorithm

- non-deterministically guess a witnessing path in the graph,
- check that this path satisfies $\varphi_1 \mathbf{U} \varphi_2$,
- check that the cost of this path satisfies " $\sim c$ ".
 - \rightsquigarrow each step is in (N)PSPACE
 - the whole algorithm is in EXPTIME (there may be an exponential number of constants)
 - ↔ however, we can avoid storing all constants and re-compute them when needed... and get a PSPACE algorithm.

Same idea as [HKV96]

Same idea as [HKV96]

Same idea as [HKV96]

x=1

x=1

x=1

x=1

x=1

x=1

x=1

🍽 Skip

• value of x in state p: $x_0, x_1x_2x_3...x_n$

• value of x in state p: $x_0, x_1x_2x_3 \dots x_n + \text{cost 4}$ between p and q

$$\varphi(X) = \mathsf{E}\left((p \lor q)\mathsf{U}_{=0}(\neg p \land \mathsf{E}(\neg q\mathsf{U}_{=4}(q \land X)))\right)$$

•
$$\varphi(X) = \mathbf{E}\left((p \lor q)\mathbf{U}_{=0}(\neg p \land \mathbf{E}(\neg q\mathbf{U}_{=4}(q \land X)))\right)$$

• $p, x \models \varphi(\mathbf{E}\mathbf{F}_{=0}r) \text{ iff } x \in \{0,1\}$

$$\varphi(X) = \mathbf{E}\left((p \lor q)\mathbf{U}_{=0}(\neg p \land \mathbf{E}(\neg q\mathbf{U}_{=4}(q \land X)))\right)$$

$$p, x \models \varphi(\mathbf{E}\mathbf{F}_{=0}r) \text{ iff } x \in \{0, 1\}$$

$$p, x \models \varphi(\varphi(\mathbf{E}\mathbf{F}_{=0}r)) \text{ iff } x \in \{0, 1/2, 1, 3/2\}$$

►
$$\varphi(X) = \mathbf{E}\left((p \lor q)\mathbf{U}_{=0}(\neg p \land \mathbf{E}(\neg q\mathbf{U}_{=4}(q \land X)))\right)$$

► $p, x \models \varphi(\mathbf{E}\mathbf{F}_{=0}r) \text{ iff } x \in \{0, 1\}$
► $p, x \models \varphi(\varphi(\mathbf{E}\mathbf{F}_{=0}r)) \text{ iff } x \in \{0, 1/2, 1, 3/2\}$
► $p, x \models \varphi^{n}(\mathbf{E}\mathbf{F}_{=0}r) \text{ iff } x \in \{k/2^{n-1} \mid 0 \le k < 2^{n}\}$

Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems

Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems

Unfortunately: costs are expensive!

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems
- Unfortunately: costs are expensive!
 - mostly undecidable for three clocks or more

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems
- Unfortunately: costs are expensive!
 - mostly undecidable for three clocks or more
 - rather involved algorithm for deciding WCTL for one clock
 - however, only a PSPACE theoretical complexity

- Priced (weighted) timed automata: a natural model for modelling resource consumption in timed systems
- Unfortunately: costs are expensive!
 - mostly undecidable for three clocks or more
 - rather involved algorithm for deciding WCTL for one clock
 - however, only a PSPACE theoretical complexity
 - WCTL* and WMTL are undecidable already for one clock