
Logiques et modèles pour la vérification de systèmes infinis

Florent Bouchy

LSV, ENS Cachan, CNRS

Soutenance de thèse de doctorat

10 novembre 2009

Cachan, France

Logics and Models for Verifying Infinite-state Systems

Florent Bouchy

LSV, ENS Cachan, CNRS

PhD defense

November 10th, 2009

Cachan, France

Introduction Logics TCS DCM Conclusion

Context

3 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Context

3 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Context

3 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Model Checking

“Does a system achieve exactly what we want it to?”

4 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Model Checking

“Does a system achieve exactly what we want it to?”

4 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Modelling Systems with Automata

Capturing the behaviour of a system

Control state of the automaton = general “state” of the system
(e.g. idle, printing, moving, waiting, etc.)

Transition of the automaton = action/event of the system
(e.g. message received, data computed, acknowledgment sent, etc.)

5 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Modelling Systems with Automata

Capturing the behaviour of a system

Control state of the automaton = general “state” of the system
(e.g. idle, printing, moving, waiting, etc.)

Transition of the automaton = action/event of the system
(e.g. message received, data computed, acknowledgment sent, etc.)

Example: an automaton

q1 q2

5 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Modelling Systems with Automata

Capturing the behaviour of a system

Control state of the automaton = general “state” of the system
(e.g. idle, printing, moving, waiting, etc.)

Transition of the automaton = action/event of the system
(e.g. message received, data computed, acknowledgment sent, etc.)

Example: an automaton

q1 q2

Need for richer models, closer to reality

Extend automata with:
stacks, FIFO channels, integer or real variables, trees, etc.

5 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Modelling Systems with Automata

Capturing the behaviour of a system

Control state of the automaton = general “state” of the system
(e.g. idle, printing, moving, waiting, etc.)

Transition of the automaton = action/event of the system
(e.g. message received, data computed, acknowledgment sent, etc.)

Example: an automaton with one counter

c := 0
q1 q2

c := c+ 1

c := c+ 1

Need for richer models, closer to reality

Extend automata with:
stacks, FIFO channels, integer or real variables, trees, etc.

5 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reprensenting Sets with Arithmetical Logics

Extending automata with variables...

...generates an infinite set of configurations!� How to check all these configurations?

6 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reprensenting Sets with Arithmetical Logics

Extending automata with variables...

...generates an infinite set of configurations!� How to check all these configurations?

Capturing infinite behaviour of variables

Encode infinite set of values as solutions of arithmetical formula.

6 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reprensenting Sets with Arithmetical Logics

Extending automata with variables...

...generates an infinite set of configurations!� How to check all these configurations?

Capturing infinite behaviour of variables

Encode infinite set of values as solutions of arithmetical formula.

Example: an arithmetical formula

�(x) := (∃y . x = y + y) defines the (infinite) set of even numbers:
{x ∣ �(x) holds}.

6 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reprensenting Sets with Arithmetical Logics

Extending automata with variables...

...generates an infinite set of configurations!� How to check all these configurations?

Capturing infinite behaviour of variables

Encode infinite set of values as solutions of arithmetical formula.

Example: an arithmetical formula

�(x) := (∃y . x = y + y) defines the (infinite) set of even numbers:
{x ∣ �(x) holds}.

Definition

Two logics L, L′ (resp. formulas F ,F ′) are equivalent iff they
define the same sets. We denote it by L ≡ L′ (resp. F ≡ F ′).

6 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

7 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

8 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation
Represent vectors of real values by using the modular framework of
the Genepi tool [Leroux & Point, 06]:

9 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation
Represent vectors of real values by using the modular framework of
the Genepi tool [Leroux & Point, 06]:

� Extract the integer component from reals, to use periodicity

9 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

10 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Finite Unions of Sums “Integer+Decimal”

For any A,B ⊆ ℝ, let A+ B = {a + b ∣ a ∈ A, b ∈ B}.

Example: a real formula decomposed as “
∪

(int + dec)”...
(

{(x , y) ∣ 0 ≤ x < 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2 ∣ x = y}
)

∪
(

{(x , y) ∣ x = 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2 ∣ x ≥ y}
)

∪
(

{(x , y) ∣ x > 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2}
)

11 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Finite Unions of Sums “Integer+Decimal”

For any A,B ⊆ ℝ, let A+ B = {a + b ∣ a ∈ A, b ∈ B}.

Example: a real formula decomposed as “
∪

(int + dec)”...
(

{(x , y) ∣ 0 ≤ x < 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2 ∣ x = y}
)

∪
(

{(x , y) ∣ x = 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2 ∣ x ≥ y}
)

∪
(

{(x , y) ∣ x > 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2}
)

...representing the clock values of a timed automaton:

(y ≤ 1)

y := 0
x := 0

x ≥ 106

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 ⋅ ⋅ ⋅ 106 x

1

2

y

11 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Finite Unions of Sums “Integer+Decimal”

For any A,B ⊆ ℝ, let A+ B = {a + b ∣ a ∈ A, b ∈ B}.

Example: a real formula decomposed as “
∪

(int + dec)”...
(

{(x , y) ∣ 0 ≤ x < 106 ∧ y = 0}+
)

∪
(

{(x , y) ∣ x = 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2 ∣ x ≥ y}
)

∪
(

{(x , y) ∣ x > 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2}
)

...representing the clock values of a timed automaton:

(y ≤ 1)

y := 0
x := 0

x ≥ 106

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 ⋅ ⋅ ⋅ 106 x

1

2

y

11 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Finite Unions of Sums “Integer+Decimal”

For any A,B ⊆ ℝ, let A+ B = {a + b ∣ a ∈ A, b ∈ B}.

Example: a real formula decomposed as “
∪

(int + dec)”...
(

{(x , y) ∣ 0 ≤ x < 106 ∧ y = 0}+
)

∪
(

{(x , y) ∣ x = 106 ∧ y = 0}+
)

∪
(

{(x , y) ∣ x > 106 ∧ y = 0}+ {(x , y) ∈ [0, 1]2}
)

...representing the clock values of a timed automaton:

(y ≤ 1)

y := 0
x := 0

x ≥ 106

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 ⋅ ⋅ ⋅ 106 x

1

2

y

11 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Finite Unions of Sums “Integer+Decimal”

For any A,B ⊆ ℝ, let A+ B = {a + b ∣ a ∈ A, b ∈ B}.

Example: a real formula decomposed as “
∪

(int + dec)”...
(

{(x , y) ∣ 0 ≤ x < 106 ∧ y = 0}+
)

∪
(

{(x , y) ∣ x = 106 ∧ y = 0}+
)

∪
(

{(x , y) ∣ x > 106 ∧ y = 0}+
)

...representing the clock values of a timed automaton:

(y ≤ 1)

y := 0
x := 0

x ≥ 106

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 ⋅ ⋅ ⋅ 106 x

1

2

y

11 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation

Let ℨ ⊆ P(ℤn) and D ⊆ P(Dn), where D = [0, 1[

12 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation

Let ℨ ⊆ P(ℤn) and D ⊆ P(Dn), where D = [0, 1[

Let ℨ ⊎D be the class of every R ⊆ ℝ
n such that R =

p
∪

i=1

(Zi +Di),

where (Zi ,Di) ∈ ℨ×D and p ≥ 1

12 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation

Let ℨ ⊆ P(ℤn) and D ⊆ P(Dn), where D = [0, 1[

Let ℨ ⊎D be the class of every R ⊆ ℝ
n such that R =

p
∪

i=1

(Zi +Di),

where (Zi ,Di) ∈ ℨ×D and p ≥ 1

Note that some R are not representable !

Counter-example: R =

∞
∪

j=1

(

{j}+

{

1

j + 1

}

)

12 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation

Let ℨ ⊆ P(ℤn) and D ⊆ P(Dn), where D = [0, 1[

Let ℨ ⊎D be the class of every R ⊆ ℝ
n such that R =

p
∪

i=1

(Zi +Di),

where (Zi ,Di) ∈ ℨ×D and p ≥ 1

Note that some R are not representable !

Counter-example: R =

∞
∪

j=1

(

{j}+

{

1

j + 1

}

)Definition

A class ℜ ⊆
∪

n∈ℕ P(ℝn) is stable if it is closed under boolean
combinations, cartesian product, projection, and permutation.

12 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation

Let ℨ ⊆ P(ℤn) and D ⊆ P(Dn), where D = [0, 1[

Let ℨ ⊎D be the class of every R ⊆ ℝ
n such that R =

p
∪

i=1

(Zi +Di),

where (Zi ,Di) ∈ ℨ×D and p ≥ 1

Note that some R are not representable !

Counter-example: R =

∞
∪

j=1

(

{j}+

{

1

j + 1

}

)Definition

A class ℜ ⊆
∪

n∈ℕ P(ℝn) is stable if it is closed under boolean
combinations, cartesian product, projection, and permutation.

Definition

A class ℜ ⊆
∪

n∈ℕ P(ℝn) is effectively representable if it is stable
and if there exist algorithms computing the above operations.

12 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation (continued)

Theorem (⊎-Decidability)

The SATisfiability problem is decidable for any logic encoding
ℨ ⊎D if ℨ and D are effectively representable.

13 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation (continued)

Theorem (⊎-Decidability)

The SATisfiability problem is decidable for any logic encoding
ℨ ⊎D if ℨ and D are effectively representable.

Proof sketch

(Z1 + D1) ∩ (Z2 + D2) = (Z1 ∩ Z2) + (D1 ∩ D2)

(Z1 + D1)∖(Z2 + D2) = ((Z1∖Z2) + D1) ∪ (Z1 + (D1∖D2))

similarly, projection and permutation distribute easily over ⊎

13 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Our representation (continued)

Theorem (⊎-Decidability)

The SATisfiability problem is decidable for any logic encoding
ℨ ⊎D if ℨ and D are effectively representable.

Proof sketch

(Z1 + D1) ∩ (Z2 + D2) = (Z1 ∩ Z2) + (D1 ∩ D2)

(Z1 + D1)∖(Z2 + D2) = ((Z1∖Z2) + D1) ∪ (Z1 + (D1∖D2))

similarly, projection and permutation distribute easily over ⊎

ℝ
n can be written ℤ

n + D
n

R+ = {r ∈ ℝ
3 ∣ r1 + r2 = r3} can be written

∪

c∈{0,1}

{z ∈ ℤ
3 ∣ z1 + z2 + c = z3}+ {d ∈ D

3 ∣ d1 + d2 = d3 + c}

similarly, ∅, ≤, ℤn are easily definable

13 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

14 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

A quick reminder about logics...

Presburger logic: FO (ℤ,+,≤)

expression E ::= 0 ∣ 1 ∣ x ∣ E + E ∣ E − E

atomic formula C ::= E = E ∣ E < E

formula F ::= C ∣ ¬F ∣ F ∧ F ∣ ∃x .F

15 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

A quick reminder about logics...

Presburger logic: FO (ℤ,+,≤)

expression E ::= 0 ∣ 1 ∣ x ∣ E + E ∣ E − E

atomic formula C ::= E = E ∣ E < E

formula F ::= C ∣ ¬F ∣ F ∧ F ∣ ∃x .F

Theorem [Presburger, 29]

The SATisfiability problem is decidable for the logic FO (ℤ,+,≤).

15 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

A quick reminder about logics...

Presburger logic: FO (ℤ,+,≤)

expression E ::= 0 ∣ 1 ∣ x ∣ E + E ∣ E − E

atomic formula C ::= E = E ∣ E < E

formula F ::= C ∣ ¬F ∣ F ∧ F ∣ ∃x .F

Theorem [Presburger, 29]

The SATisfiability problem is decidable for the logic FO (ℤ,+,≤).

Example: a Presburger-definable set

�(x) := (∃y . x = y + y) defines the set of even numbers.

15 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

A quick reminder about logics...

Presburger logic: FO (ℤ,+,≤)

expression E ::= 0 ∣ 1 ∣ x ∣ E + E ∣ E − E

atomic formula C ::= E = E ∣ E < E

formula F ::= C ∣ ¬F ∣ F ∧ F ∣ ∃x .F

Theorem [Presburger, 29]

The SATisfiability problem is decidable for the logic FO (ℤ,+,≤).

Example: a Presburger-definable set

�(x) := (∃y . x = y + y) defines the set of even numbers.

Example: a non-Presburger-definable set

There is no Presburger formula defining the set {2n ∣ n ∈ ℕ}.

15 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

A quick reminder about logics... (continued)

Mixed Linear Arithmetic (MLA): FO (ℝ,ℤ,+,≤)

expression E ::= 0 ∣ 1 ∣ z ∣ r ∣ E + E ∣ E − E

atomic formula C ::= E = E ∣ E < E

formula F ::= C ∣ ¬F ∣ F ∧ F ∣ ∃z .F ∣ ∃r .F

16 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

A quick reminder about logics... (continued)

Mixed Linear Arithmetic (MLA): FO (ℝ,ℤ,+,≤)

expression E ::= 0 ∣ 1 ∣ z ∣ r ∣ E + E ∣ E − E

atomic formula C ::= E = E ∣ E < E

formula F ::= C ∣ ¬F ∣ F ∧ F ∣ ∃z .F ∣ ∃r .F

Theorem [Boigelot et al., 98; Weispfenning, 99]

The SATisfiability problem is decidable for the logic
FO (ℝ,ℤ,+,≤).

16 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Decomposing MLA and Extended MLA

Theorem [TIME’08]

FO (ℝ,ℤ,+,≤) ≡ FO (ℤ,+,≤) ⊎ FO (D,+,≤)

17 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Decomposing MLA and Extended MLA

Theorem [TIME’08]

FO (ℝ,ℤ,+,≤) ≡ FO (ℤ,+,≤) ⊎ FO (D,+,≤)

Proof idea

Application of the ⊎-Decidability theorem

17 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Decomposing MLA and Extended MLA

Theorem [TIME’08]

FO (ℝ,ℤ,+,≤) ≡ FO (ℤ,+,≤) ⊎ FO (D,+,≤)

Proof idea

Application of the ⊎-Decidability theorem

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

17 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Decomposing MLA and Extended MLA

Theorem [TIME’08]

FO (ℝ,ℤ,+,≤) ≡ FO (ℤ,+,≤) ⊎ FO (D,+,≤)

Proof idea

Application of the ⊎-Decidability theorem

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Proof idea

Application of the ⊎-Decidability theorem

Mutual encodings of Xb,Vb,Wb

17 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

“Xb(x , u, a): in x ’s b-ary writing, the digit in position u is a”

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

“Xb(x , u, a): in x ’s b-ary writing, the digit in position u is a”

“Vb(x) = u: in x ’s b-ary writing, the rightmost non-null integer
digit is at position u”

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

“Xb(x , u, a): in x ’s b-ary writing, the digit in position u is a”

“Vb(x) = u: in x ’s b-ary writing, the rightmost non-null integer
digit is at position u”

“Wb(x) = u: in x ’s b-ary writing, the leftmost non-null decimal
digit is at position u”

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Example illustrating Xb,Vb,Wb

x = (42.0625)10 = (0∗101010 ★ 00010!)2

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Example illustrating Xb,Vb,Wb

x = (42.0625)10 = (0∗101010 ★ 00010!)2

X2(x , 2
4, 0)

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Example illustrating Xb,Vb,Wb

x = (42.0625)10 = (0∗101010 ★ 00010!)2

X2(x , 2
4, 0)

X2(x , 2
1, 1)

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Example illustrating Xb,Vb,Wb

x = (42.0625)10 = (0∗101010 ★ 00010!)2

X2(x , 2
4, 0)

X2(x , 2
1, 1)

X2(x , 2
−2, 0)

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Example illustrating Xb,Vb,Wb

x = (42.0625)10 = (0∗101010 ★ 00010!)2

X2(x , 2
4, 0)

X2(x , 2
1, 1)

X2(x , 2
−2, 0)

V2(x) = 21

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Example illustrating Xb,Vb,Wb

x = (42.0625)10 = (0∗101010 ★ 00010!)2

X2(x , 2
4, 0)

X2(x , 2
1, 1)

X2(x , 2
−2, 0)

V2(x) = 21

W2(x) = 2−4

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Proof idea: mutual encodings of Xb,Vb,Wb

Xb(x , u, a) ≡ ∃w ∈ D, ∃y ∈ ℤ, ∃z ∈ ℝ,

x = w + y + z + au ∧ z < u

∧

(

(

u ≥ 1 ∧ Vb(y) ≥ bu
)

∨
(

u < 1 ∧Wb(w) ≥ bu
)

)

18 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Proof idea: mutual encodings of Xb,Vb,Wb

Xb(x , u, a) ≡ ∃w ∈ D, ∃y ∈ ℤ, ∃z ∈ ℝ,

x = w + y + z + au ∧ z < u

∧

(

(

u ≥ 1 ∧ Vb(y) ≥ bu
)

∨
(

u < 1 ∧Wb(w) ≥ bu
)

)

Vb(x) = y ≡ ∃a ∈ ℝ,

Xb(x , y , a) ∧ a ∕= 0 ∧ ∀z ∈ ℕ

(

z < y ⇒ Xb(x , z , 0)
)

18 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Extended MLA: Xb,Vb,Wb

Proposition [TIME’08]

FO (ℝ,ℤ,+,≤,Xb) ≡ FO (ℤ,+,≤,Vb) ⊎ FO (D,+,≤,Wb)

Proof idea: mutual encodings of Xb,Vb,Wb

Xb(x , u, a) ≡ ∃w ∈ D, ∃y ∈ ℤ, ∃z ∈ ℝ,

x = w + y + z + au ∧ z < u

∧

(

(

u ≥ 1 ∧ Vb(y) ≥ bu
)

∨
(

u < 1 ∧Wb(w) ≥ bu
)

)

Vb(x) = y ≡ ∃a ∈ ℝ,

Xb(x , y , a) ∧ a ∕= 0 ∧ ∀z ∈ ℕ

(

z < y ⇒ Xb(x , z , 0)
)

Wb(x) = y ≡ ∃a ∈ ℝ,

Xb(x , y , a) ∧ a ∕= 0 ∧ ∀z ∈ D

(

(bz < 1 ∧ z > y)⇒ Xb(x , z , 0)
)

18 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

19 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;
Timed Automata: widespread and efficient way to model time

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;
Timed Automata: widespread and efficient way to model time

need for a richer and more general model;

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;
Timed Automata: widespread and efficient way to model time

need for a richer and more general model;
counters: most used datatype in verification case studies

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;
Timed Automata: widespread and efficient way to model time

need for a richer and more general model;
counters: most used datatype in verification case studies

models using counters have several different definitions;

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;
Timed Automata: widespread and efficient way to model time

need for a richer and more general model;
counters: most used datatype in verification case studies

models using counters have several different definitions;
Counter Systems: can be generalized to a unifying definition

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;
Timed Automata: widespread and efficient way to model time

need for a richer and more general model;
counters: most used datatype in verification case studies

models using counters have several different definitions;
Counter Systems: can be generalized to a unifying definition

� We combine Timed Automata and Counter Systems

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Initial observation

need to model time in formal verification;
Timed Automata: widespread and efficient way to model time

need for a richer and more general model;
counters: most used datatype in verification case studies

models using counters have several different definitions;
Counter Systems: can be generalized to a unifying definition

� We combine Timed Automata and Counter Systems
and we study their reachability matters

20 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

21 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions

Example: a Timed Counter System (TCS)

q1 q2

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

x2 > 1
c := c− 1

22 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions

Example: a Timed Counter System (TCS)

q1 q2

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

x2 > 1
c := c− 1

X = a set of m real-valued variables, called clocks.
x = a valuation of the clocks, in ℝ

m
+.

RX = resets and linear guards over clocks

22 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions

Example: a Timed Counter System (TCS)

q1 q2

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

x2 > 1
c := c− 1

X = a set of m real-valued variables, called clocks.
x = a valuation of the clocks, in ℝ

m
+.

RX = resets and linear guards over clocks

C = a set of n integer-valued variables, called counters.
c = a valuation of the counters, in ℤ

n.
RC = Presburger-definable binary relations over counters

22 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions (continued)

Definition [INFINITY’08]

A Timed Counter System is a tuple ⟨Q,X ,C ,E ⟩ where:

Q is a finite set of control states

E ⊆ Q × RX × RC × Q is a finite set of transitions

23 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions (continued)

Definition [INFINITY’08]

A Timed Counter System is a tuple ⟨Q,X ,C ,E ⟩ where:

Q is a finite set of control states

E ⊆ Q × RX × RC × Q is a finite set of transitions

RX and RC are disjoint!

23 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions (continued)

Definition [INFINITY’08]

A Timed Counter System is a tuple ⟨Q,X ,C ,E ⟩ where:

Q is a finite set of control states

E ⊆ Q × RX × RC × Q is a finite set of transitions

RX and RC are disjoint!

Definition

A Timed Automaton is a TCS where C = ∅.
A Counter System is a TCS where X = ∅.

23 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Semantics of a TCS
For any TCS S, define its:

Counting Transition System JSKC

Timed Transition System JSKT

(full) Transition System JSK

24 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Semantics of a TCS
For any TCS S, define its:

Counting Transition System JSKC

Timed Transition System JSKT

(full) Transition System JSK

TCS: S

JSKT

Timed

Interpretation

JSK

Counting

Interpretation

Full

Interpretation

24 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Semantics of a TCS
For any TCS S, define its:

Counting Transition System JSKC

Timed Transition System JSKT ≃ Region Graph JSKRG

(full) Transition System JSK ≃ JJSKRG KC

TCS: S

JSKT

Timed

Interpretation

JSK

Counting

Interpretation

Full

Interpretation
JSKRG

Region
Graph

Construction

JJSKRG K
C

≃

≃

Counting

Interpretation

24 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reachability

Clocks are used for modelling temporal requirements; their exact
value does not really matter.

25 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reachability

Clocks are used for modelling temporal requirements; their exact
value does not really matter.

Counter Reachability Problem (CRP)

Inputs: A TCS S, an initial configuration (q0, x0, c0) of JSK, and a
configuration (q, c) of JSKC .
Question: Is there a clock valuation x such that (q, x, c) is
reachable from (q0, x0, c0) in JSK?

25 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reachability

Clocks are used for modelling temporal requirements; their exact
value does not really matter.

Counter Reachability Problem (CRP)

Inputs: A TCS S, an initial configuration (q0, x0, c0) of JSK, and a
configuration (q, c) of JSKC .
Question: Is there a clock valuation x such that (q, x, c) is
reachable from (q0, x0, c0) in JSK?

CRP extends reachability problem of CS, known to be undecidable
[Minsky, 61]; therefore CRP is undecidable for TCS.

25 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reachability

Clocks are used for modelling temporal requirements; their exact
value does not really matter.

Counter+region Reachability Problem (CRP)

Inputs: A TCS S, an initial configuration (q0, �0, c0) of JSK, a
region �, and a configuration (q, c) of JSKC .
Question: Is (q, �, c) reachable from (q0, �0, c0) in JJSKRG KC?

CRP extends reachability problem of CS, known to be undecidable
[Minsky, 61]; therefore CRP is undecidable for TCS.

25 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

26 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Regions

Timed Counter System S

q1 q2

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

x2 > 1
c := c− 1

27 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Regions

Timed Counter System S

q1 q2

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

x2 > 1
c := c− 1

Clock regions of S

0 1 2 3 x1

1

2

x2

28 regions in total:
6 points, 9 line segments, 5
half-lines, 4 triangular closed
areas, and 4 open areas

27 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Regions

Timed Counter System S

q1 q2

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

x2 > 1
c := c− 1

Reachable clock regions of S

0 1 2 3 x1

1

2

x2

8 reachable regions (out of 28),
considering the initial

configuration
(

q1,
(

0
0

)

, 0
)

27 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Region Graph

Region Graph JSKRG

N.B.: �i are the 8 reachable regions

q1, �1 q1, �2 q1, �3 q1, �4

q2, �5q2, �6q2, �7

q2, �8

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

28 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Region Graph

Region Graph JSKRG

N.B.: �i are the 8 reachable regions

q1, �1 q1, �2 q1, �3 q1, �4

q2, �5q2, �6q2, �7

q2, �8

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

28 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Region Graph

Region Graph JSKRG is a Counter System!

N.B.: �i are the 8 reachable regions

q1, �1 q1, �2 q1, �3 q1, �4

q2, �5q2, �6q2, �7

q2, �8

x1 ≥ 2
true

x1 < 2 ∧ x2 := 0
c := c+ 1

28 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

The Region Graph as a Counter System

Key idea of the analysis of TCS:

For a TCS S, its region graph JSKRG is also a Counter System.

29 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

The Region Graph as a Counter System

Key idea of the analysis of TCS:

For a TCS S, its region graph JSKRG is also a Counter System.

Let ℭ be a class of TCS such that there is an algorithm solving the
reachability problem for JSKRG , for any S ∈ ℭ.
(e.g. ℭ can be VASS/Petri Nets, bounded CS, etc.)

Theorem [INFINITY’08]

The Counter Reachability Problem is decidable for ℭ.

29 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

The Region Graph as a Counter System

Key idea of the analysis of TCS:

For a TCS S, its region graph JSKRG is also a Counter System.

Let ℭ be a class of TCS such that there is an algorithm solving the
reachability problem for JSKRG , for any S ∈ ℭ.
(e.g. ℭ can be VASS/Petri Nets, bounded CS, etc.)

Theorem [INFINITY’08]

The Counter Reachability Problem is decidable for ℭ.

Proof sketch time-abstract bisimulation

By definition, JJSKT KC = JJSKC KT = JSK.

JSKRG ≃ JSKT [Alur & Dill, 90].

Therefore JJSKRG KC ≃ JSK.

29 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

30 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Subclasses of TCS

Decidability results

Model Region Graph Counter Reach. Prob.

TCS CS Undecidable

TVASS VASS Decidable

Reversal-bounded TCM Reversal-bounded CM Decidable

Bounded TCS Bounded CS Decidable

31 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Subclasses of TCS

Decidability results

Model Region Graph Counter Reach. Prob.

TCS CS Undecidable

TVASS VASS Decidable

Reversal-bounded TCM Reversal-bounded CM Decidable

Bounded TCS Bounded CS Decidable

Timed Counter Machine (TCM) = TCS whose relations on counters
are translations with guards of the form c ≥ k or c = k , with k ∈ ℕ

n

Timed VASS (TVASS) = TCM with only c ≥ k guards

Bounded TCS = TCS whose counter values are bounded

Reversal-Bounded TCM = TCM whose counters do a bounded
number of alternations between increasing and decreasing modes

31 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

32 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Extend integer-valued Counter Machines to real-valued Counter
Machines

Model hybrid systems (i.e. discrete automata featuring time,
temperature, pressure, etc.)

33 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Extend integer-valued Counter Machines to real-valued Counter
Machines

Model hybrid systems (i.e. discrete automata featuring time,
temperature, pressure, etc.)

Example: a Dense-choice Counter Machine (DCM)

idle produce

consume

true

x > 0
true

true x ′ = x + �

x ′ = x − �

33 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Motivation

Extend integer-valued Counter Machines to real-valued Counter
Machines

Model hybrid systems (i.e. discrete automata featuring time,
temperature, pressure, etc.)

Example: a Dense-choice Counter Machine (DCM)

idle produce

consume

true

x > 0
true

true x ′ = x + �

x ′ = x − �

A new value � is chosen in]0, 1[at each step!

33 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

34 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions

Guards G = {(x = 0), (x > 0), true}
Actions A = {1,Δ} (i.e. increments/decrements)� 1 is “integer”, Δ is “non-deterministically-chosen decimal”

DCM

A Dense-choice Counter Machine with n > 0 counters is a tuple
ℳ = ⟨S ,T ⟩ where:

S is a finite set of control states

T ⊆ S ×Σ× S is a finite set of transitions, with Σ = (G × ℤ× A)n

35 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions

Guards G = {(x = 0), (x > 0), true}
Actions A = {1,Δ} (i.e. increments/decrements)� 1 is “integer”, Δ is “non-deterministically-chosen decimal”

DCM

A Dense-choice Counter Machine with n > 0 counters is a tuple
ℳ = ⟨S ,T ⟩ where:

S is a finite set of control states

T ⊆ S ×Σ× S is a finite set of transitions, with Σ = (G × ℤ× A)n

Example

A transition x > 0 ∧ x := x − 3� is written (x = 0,−3,Δ).

35 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions (continued)

Semantics of a DCM ℳ = ⟨S ,T ⟩

The transition system TS(ℳ) = ⟨C ,→⟩ is defined by:

C = S × ℝ
n
+ is the set of configurations

→⊆ C × Σ× C is the set of transitions, defined by:

(s, x)
g,�,a
−→ (s ′, x′) ⇐⇒ (s, (g,�, a), s ′) ∈ T ∧ ∃� ∈ ℝ such that:

0 < � < 1 ∧ x ∣= g ∧ x′ = x+ �d, with d = a[Δ← �]

36 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Definitions (continued)

Semantics of a DCM ℳ = ⟨S ,T ⟩

The transition system TS(ℳ) = ⟨C ,→⟩ is defined by:

C = S × ℝ
n
+ is the set of configurations

→⊆ C × Σ× C is the set of transitions, defined by:

(s, x)
g,�,a
−→ (s ′, x′) ⇐⇒ (s, (g,�, a), s ′) ∈ T ∧ ∃� ∈ ℝ such that:

0 < � < 1 ∧ x ∣= g ∧ x′ = x+ �d, with d = a[Δ← �]

Subclasses of DCM

purely-DCM: ai = Δ for each counter i ≤ n

(discrete) CM: ai = 1 for each counter i ≤ n (i.e. Minsky machine)

reversal-bounded DCM: ∃r ∈ ℕ s.t. on every run, each counter
switches between increments and decrements at most r times

bounded DCM: ∃b ∈ ℕ s.t. on every run, no counter exceeds b

36 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Encodings of macro-operations in DCM

s s ′
reset(x) : s s ′

x = 0

x := x − �

37 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Encodings of macro-operations in DCM

s s ′
reset(x) : s s ′

x = 0

x := x − �

s s ′
copy(x, y)

: s s ′
reset(y)

reset(z)
x = 0 z = 0

x := x − �
y := y + �

z := z + �
x := x + �
z := z − �

s s ′
x := x + y

: s s ′
y = 0

x := x + �
y := y − �

s s ′
x1 := ⌊x⌋ : s s ′

reset(x1)

copy(x , x2)

x2 = 0

x2 = 0
x2 := x2 − �

x1 := x1 + 1
x2 := x2 − 1

s s ′
x := x − y

: s s ′
y = 0

x := x − �
y := y − �

s s ′
x ≡d 0 :

s

s ′x = 0

x := x − 1

x := x − 1

”x := x − d ”

37 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Outline

1 Decomposing Mixed/Real Logics
Principle of the Decomposition
Application over MLA and Extended MLA

2 Timed Counter Systems
Definitions
Region Graph
Decidable Subclasses

3 Dense-choice Counter Machines
Definitions
Logical Characterization

38 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reversal-Bounded DCM and MLA

Theorem [Ibarra, 78]

The reachability relation of a reversal-bounded CM is definable in
Presburger logic.

39 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reversal-Bounded DCM and MLA

Theorem [Ibarra, 78]

The reachability relation of a reversal-bounded CM is definable in
Presburger logic.

Theorem [Ibarra & San Pietro et al., 03]

The reachability relation of a reversal-bounded DCM is definable in
MLA.

39 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Reversal-Bounded DCM and MLA

Theorem [Ibarra, 78]

The reachability relation of a reversal-bounded CM is definable in
Presburger logic.

Theorem [Ibarra & San Pietro et al., 03]

The reachability relation of a reversal-bounded DCM is definable in
MLA.

Theorem [INFINITY’09]

Each MLA formula defines the reachability relation of a
reversal-bounded DCM.

39 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Contributions

(De)composition of logics

Characterization of logics

Decidability proofs for SATisfiability of logics

40 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Contributions

(De)composition of logics

Characterization of logics

Decidability proofs for SATisfiability of logics

TCS

New model mixing clocks and counters

Analysis using region abstraction and subclasses identification

40 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Contributions

(De)composition of logics

Characterization of logics

Decidability proofs for SATisfiability of logics

TCS

New model mixing clocks and counters

Analysis using region abstraction and subclasses identification

DCM

Full logical characterization of reversal-bounded DCM with MLA

40 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Future Work

Theory

Study new logics through decomposition (for charac. & decidability)

Extend decidable subclasses (flat TCS)

Generalize TCS analysis technique to Timed Heterogeneous Systems

Solve open decidability problems for subclasses of DCM

Study complexity of decision procedures in DCM

41 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

Introduction Logics TCS DCM Conclusion

Future Work

Theory

Study new logics through decomposition (for charac. & decidability)

Extend decidable subclasses (flat TCS)

Generalize TCS analysis technique to Timed Heterogeneous Systems

Solve open decidability problems for subclasses of DCM

Study complexity of decision procedures in DCM

Implementation

Enhance Genepi prototype decomposing logics

Implement region construction in Fast

Design a tool for reversal-bounded DCM

41 / 41

Florent Bouchy - Logics and Models for Verifying Infinite-state Systems - 10/11/2009

	Introduction
	Decomposing Mixed/Real Logics
	Principle of the Decomposition
	Application over MLA and Extended MLA

	Timed Counter Systems
	Definitions
	Region Graph
	Decidable Subclasses

	Dense-choice Counter Machines
	Definitions
	Logical Characterization

	Conclusion

