Logiques et modèles pour la vérification de systèmes infinis

Florent Bouchy

LSV, ENS Cachan, CNRS

Soutenance de thèse de doctorat 10 novembre 2009 Cachan, France

Logics and Models for Verifying Infinite-state Systems

Florent Bouchy

LSV, ENS Cachan, CNRS

PhD defense November 10th, 2009 Cachan, France

Context

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Context

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Florent Bouchy

Logics and Models for Verifying Infinite-state Systems

10/11/2009

Conclusion

3 / 41

TCS

Model Checking

"Does a system achieve exactly what we want it to?"

TCS

DCM

Model Checking

"Does a system achieve exactly what we want it to?"

Capturing the behaviour of a system

- Control state of the automaton = general "state" of the system (e.g. idle, printing, moving, waiting, etc.)
- Transition of the automaton = action/event of the system (e.g. message received, data computed, acknowledgment sent, etc.)

Florent Bouchy

Capturing the behaviour of a system

- Control state of the automaton = general "state" of the system (e.g. idle, printing, moving, waiting, etc.)
- Transition of the automaton = action/event of the system (e.g. message received, data computed, acknowledgment sent, etc.)

Example: an automaton

Florent Bouchy

Logics and Models for Verifying Infinite-state Systems

Capturing the behaviour of a system

- Control state of the automaton = general "state" of the system (e.g. idle, printing, moving, waiting, etc.)
- Transition of the automaton = action/event of the system (e.g. message received, data computed, acknowledgment sent, etc.)

Example: an automaton

Need for richer models, closer to reality

Extend automata with:

stacks, FIFO channels, integer or real variables, trees, etc.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Capturing the behaviour of a system

- Control state of the automaton = general "state" of the system (e.g. idle, printing, moving, waiting, etc.)
- Transition of the automaton = action/event of the system (e.g. message received, data computed, acknowledgment sent, etc.)

Example: an automaton with one counter

$$\mathbf{c} := \mathbf{0} \qquad \mathbf{c} := \mathbf{c} + 1 \qquad \mathbf{q}_2$$

Need for richer models, closer to reality

Extend automata with:

stacks, FIFO channels, integer or real variables, trees, etc.

Florent Bouchy

Introd	uction	Logics	TCS	DCM	Conclusion
	Reprer	nsenting S	Sets with	Arithmetical	Logics
	Extending automata with variables				
	generates an infinite set of configurations! ☞ How to check all these configurations?				

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Reprensenting Sets with Arithmetical Logics

Extending automata with variables...

...generates an infinite set of configurations! We How to check all these configurations?

Capturing infinite behaviour of variables

Encode infinite set of values as solutions of arithmetical formula.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Capturing infinite behaviour of variables

Encode infinite set of values as solutions of arithmetical formula.

Example: an arithmetical formula

 $\phi(x) := (\exists y. x = y + y)$ defines the (infinite) set of even numbers: $\{x \mid \phi(x) \text{ holds}\}.$

6 / 41

Capturing infinite behaviour of variables

Encode infinite set of values as solutions of arithmetical formula.

Example: an arithmetical formula

 $\phi(x) := (\exists y. x = y + y)$ defines the (infinite) set of even numbers: $\{x \mid \phi(x) \text{ holds}\}.$

Definition

Two logics L, L' (resp. formulas F, F') are equivalent iff they define the same sets. We denote it by $L \equiv L'$ (resp. $F \equiv F'$).

Florent Bouchy

TCS

Conclusion

Outline

1 Decomposing Mixed/Real Logics

- Principle of the Decomposition
- Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

Logics and Models for Verifying Infinite-state Systems

Introduction

Outline

1 Decomposing Mixed/Real Logics

- Principle of the Decomposition
- Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

DCM

Motivation

Represent vectors of real values by using the modular framework of the GENEPI tool [Leroux & Point, 06]:

Florent Bouchy

DCN

Motivation

Represent vectors of real values by using the modular framework of the GENEPI tool [Leroux & Point, 06]:

Extract the integer component from reals, to use periodicity

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/200

9 / 41

Introduction

TCS

Conclusion

Outline

Decomposing Mixed/Real Logics Principle of the Decomposition

• Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

For any $A, B \subseteq \mathbb{R}$, let $A + B = \{a + b \mid a \in A, b \in B\}$.

Logics

Example: a real formula decomposed as " \bigcup (*int* + *dec*)"... $(\{(x, y) \mid 0 \le x < 10^6 \land y = 0\} + \{(x, y) \in [0, 1]^2 \mid x = y\})$ $\cup (\{(x, y) \mid x = 10^6 \land y = 0\} + \{(x, y) \in [0, 1]^2 \mid x \ge y\})$ $\cup (\{(x, y) \mid x > 10^6 \land y = 0\} + \{(x, y) \in [0, 1]^2\})$

For any $A, B \subseteq \mathbb{R}$, let $A + B = \{a + b \mid a \in A, b \in B\}$.

Logics

Example: a real formula decomposed as " $\bigcup(int + dec)$ "... $\left(\{(x, y) \mid 0 \le x < 10^6 \land y = 0\} + \{(x, y) \in [0, 1]^2 \mid x = y\}\right)$ $\cup \left(\{(x, y) \mid x = 10^6 \land y = 0\} + \{(x, y) \in [0, 1]^2 \mid x \ge y\}\right)$ $\cup \left(\{(x, y) \mid x > 10^6 \land y = 0\} + \{(x, y) \in [0, 1]^2\}\right)$

...representing the clock values of a timed automaton:

Florent Bouchy

Logics and Models for Verifying Infinite-state Systems

11 / 41

For any $A, B \subseteq \mathbb{R}$, let $A + B = \{a + b \mid a \in A, b \in B\}$.

(Logics

Example: a real formula decomposed as " $\bigcup(int + dec)$ "... $\left(\{(x, y) \mid 0 \le x < 10^6 \land y = 0\} + Z\right)$ $\cup \left(\{(x, y) \mid x = 10^6 \land y = 0\} + \{(x, y) \in [0, 1]^2 \mid x \ge y\}\right)$

$$\cup \Big(\{ (x,y) \mid x > 10^6 \land y = 0 \} + \{ (x,y) \in [0,1]^2 \} \Big)$$

...representing the clock values of a timed automaton:

For any $A, B \subseteq \mathbb{R}$, let $A + B = \{a + b \mid a \in A, b \in B\}$.

(Logics

Example: a real formula decomposed as " \bigcup (*int* + *dec*)"...

$$egin{aligned} & \left\{ \{(x,y) \mid 0 \leq x < 10^6 \land y = 0\} + Z \
ight\} \ & \cup \left(\{(x,y) \mid x = 10^6 \land y = 0\} + Z \
ight) \ & \cup \left(\{(x,y) \mid x > 10^6 \land y = 0\} + \{(x,y) \in [0,1]^2\}
ight) \end{aligned}$$

...representing the clock values of a timed automaton:

11 / 41

For any $A, B \subseteq \mathbb{R}$, let $A + B = \{a + b \mid a \in A, b \in B\}$.

Logics

Example: a real formula decomposed as " \bigcup (*int* + *dec*)"...

$$egin{aligned} &\left(\{(x,y)\mid 0\leq x<10^6\wedge y=0\}+ec{x}
ight)\ &\cup\left(\{(x,y)\mid x=10^6\wedge y=0\}+ec{x}
ight)\ &\cup\left(\{(x,y)\mid x>10^6\wedge y=0\}+\blacksquare
ight)\end{aligned}$$

...representing the clock values of a timed automaton:

Logics and Models for Verifying Infinite-state Systems

TCS

Our representation

• Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0, 1[$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/200

12 / 41

• Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0,1[$

Logics

• Let $\mathfrak{Z} \oplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup_{i=1}^{n} (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and $p \ge 1$

• Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0, 1[$

- Let $\mathfrak{Z} \oplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup_{i=1}^{n} (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and $p \ge 1$
- Note that some *R* are not representable !

Logics

Counter-example:
$$R = \bigcup_{j=1}^{\infty} \left(\{j\} + \left\{ \frac{1}{j+1} \right\} \right)$$

Florent Bouchy

12 / 41

• Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0,1[$

• Let $\mathfrak{Z} \oplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup_{i=1}^{n} (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and $p \ge 1$

• Note that some *R* are not representable !

Logics

Definition

A class $\mathfrak{R} \subseteq \bigcup_{n \in \mathbb{N}} P(\mathbb{R}^n)$ is stable if it is closed under boolean combinations, cartesian product, projection, and permutation.

• Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0,1[$

• Let $\mathfrak{Z} \oplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup_{i=1}^{n} (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and $p \ge 1$

• Note that some *R* are not representable !

(Logics

Definition

A class $\mathfrak{R} \subseteq \bigcup_{n \in \mathbb{N}} P(\mathbb{R}^n)$ is stable if it is closed under boolean combinations, cartesian product, projection, and permutation.

Definition

A class $\mathfrak{R} \subseteq \bigcup_{n \in \mathbb{N}} P(\mathbb{R}^n)$ is effectively representable if it is stable and if there exist algorithms computing the above operations.

Florent Bouchy

Logics and Models for Verifying Infinite-state Systems -

Our representation (continued)

Theorem (*H*-Decidability)

Logics

The SATisfiability problem is decidable for any logic encoding $\mathfrak{Z} \oplus \mathfrak{D}$ if \mathfrak{Z} and \mathfrak{D} are effectively representable.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Our representation (continued)

Theorem (H-Decidability)

Logics

The SATisfiability problem is decidable for any logic encoding $\mathfrak{Z} \oplus \mathfrak{D}$ if \mathfrak{Z} and \mathfrak{D} are effectively representable.

Proof sketch

- $(Z_1 + D_1) \cap (Z_2 + D_2) = (Z_1 \cap Z_2) + (D_1 \cap D_2)$
- $(Z_1 + D_1) \setminus (Z_2 + D_2) = ((Z_1 \setminus Z_2) + D_1) \cup (Z_1 + (D_1 \setminus D_2))$
- $\bullet\,$ similarly, projection and permutation distribute easily over $\uplus\,$

Our representation (continued)

Theorem (H-Decidability)

Logics

The SATisfiability problem is decidable for any logic encoding $\mathfrak{Z} \oplus \mathfrak{D}$ if \mathfrak{Z} and \mathfrak{D} are effectively representable.

Proof sketch

- $(Z_1 + D_1) \cap (Z_2 + D_2) = (Z_1 \cap Z_2) + (D_1 \cap D_2)$
- $(Z_1 + D_1) \setminus (Z_2 + D_2) = ((Z_1 \setminus Z_2) + D_1) \cup (Z_1 + (D_1 \setminus D_2))$
- $\bullet\,$ similarly, projection and permutation distribute easily over $\uplus\,$
- \mathbb{R}^n can be written $\mathbb{Z}^n + \mathbb{D}^n$

•
$$R_+ = \{\mathbf{r} \in \mathbb{R}^3 \mid r_1 + r_2 = r_3\}$$
 can be written
 $\bigcup_{c \in \{0,1\}} \{\mathbf{z} \in \mathbb{Z}^3 \mid z_1 + z_2 + c = z_3\} + \{\mathbf{d} \in \mathbb{D}^3 \mid d_1 + d_2 = d_3 + c\}$

• similarly, \emptyset , \leq , \mathbb{Z}^n are easily definable

Florent Bouchy

Introduction

TCS

DCN

Conclusion

Outline

- Principle of the Decomposition
- Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

A quick reminder about logics...

Presburger logic: $FO(\mathbb{Z}, +, \leq)$

Logics

expression E ::= 0 | 1 | x | E + E | E - Eatomic formula C ::= E = E | E < Eformula $F ::= C | \neg F | F \land F | \exists x.F$

Florent Bouchy

A quick reminder about logics...

Presburger logic: $FO(\mathbb{Z}, +, \leq)$

Logics

expression E ::= 0 | 1 | x | E + E | E - Eatomic formula C ::= E = E | E < Eformula $F ::= C | \neg F | F \land F | \exists x.F$

Theorem [Presburger, 29]

The SATisfiability problem is decidable for the logic $FO(\mathbb{Z}, +, \leq)$.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -
A quick reminder about logics...

Presburger logic: $\mathbf{FO}(\mathbb{Z}, +, \leq)$

Logics

expression E ::= 0 | 1 | x | E + E | E - Eatomic formula C ::= E = E | E < Eformula $F ::= C | \neg F | F \land F | \exists x.F$

Theorem [Presburger, 29]

The SATisfiability problem is decidable for the logic $FO(\mathbb{Z}, +, \leq)$.

Example: a Presburger-definable set

 $\phi(x) := (\exists y. x = y + y)$ defines the set of even numbers.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

A quick reminder about logics...

Presburger logic: $\mathbf{FO}(\mathbb{Z}, +, \leq)$

(Logics

expression E ::= 0 | 1 | x | E + E | E - Eatomic formula C ::= E = E | E < Eformula $F ::= C | \neg F | F \land F | \exists x.F$

Theorem [Presburger, 29]

The SATisfiability problem is decidable for the logic $FO(\mathbb{Z}, +, \leq)$.

Example: a Presburger-definable set

 $\phi(x) := (\exists y. x = y + y)$ defines the set of even numbers.

Example: a non-Presburger-definable set

There is no Presburger formula defining the set $\{2^n \mid n \in \mathbb{N}\}$.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

A quick reminder about logics... (continued)

Mixed Linear Arithmetic (MLA): FO $(\mathbb{R}, \mathbb{Z}, +, \leq)$ expression E ::= 0 | 1 | z | r | E + E | E - Eatomic formula C ::= E = E | E < Eformula $F ::= C | \neg F | F \land F | \exists z.F | \exists r.F$

Logics

Florent Bouchy

Mixed Linear Arithmetic (MLA): FO $(\mathbb{R}, \mathbb{Z}, +, \leq)$

Logics

expression
$$E ::= 0 | 1 | z | r | E + E | E - E$$

atomic formula $C ::= E = E | E < E$
formula $F ::= C | \neg F | F \land F | \exists z.F | \exists r.F$

Theorem [Boigelot et al., 98; Weispfenning, 99]

The SATisfiability problem is decidable for the logic FO ($\mathbb{R}, \mathbb{Z}, +, \leq$).

Florent Bouchy

Decomposing MLA and Extended MLA

Theorem [TIME'08]

 $\mathrm{FO}\left(\mathbb{R},\mathbb{Z},+,\leq\right)\equiv\mathrm{FO}\left(\mathbb{Z},+,\leq\right)\uplus\mathrm{FO}\left(\mathbb{D},+,\leq\right)$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Decomposing MLA and Extended MLA

Theorem [TIME'08]

 $\mathrm{FO}\left(\mathbb{R},\mathbb{Z},+,\leq\right)\equiv\mathrm{FO}\left(\mathbb{Z},+,\leq\right)\uplus\mathrm{FO}\left(\mathbb{D},+,\leq\right)$

Proof idea

Application of the U-Decidability theorem

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Decomposing MLA and Extended MLA

Theorem [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq) \equiv$ FO $(\mathbb{Z}, +, \leq) \uplus$ FO $(\mathbb{D}, +, \leq)$

Proof idea

Application of the U-Decidability theorem

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

Decomposing MLA and Extended MLA

Theorem [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq) \equiv$ FO $(\mathbb{Z}, +, \leq) \uplus$ FO $(\mathbb{D}, +, \leq)$

Proof idea

Application of the U-Decidability theorem

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Proof idea

- Application of the ⊎-Decidability theorem
- Mutual encodings of X_b, V_b, W_b

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Introduction

TCS

DCM

Conclusion

Extended MLA: X_b , V_b , W_b

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Introduction

TCS

(Logics)

Extended MLA: X_b , V_b , W_b

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

• " $X_b(x, u, a)$: in x's b-ary writing, the digit in position u is a"

Extended MLA: X_b , V_b , W_b

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Logics

- " $X_b(x, u, a)$: in x's b-ary writing, the digit in position u is a"
- "V_b(x) = u: in x's b-ary writing, the rightmost non-null integer digit is at position u"

CS

Extended MLA: X_b , V_b , W_b

Proposition [TIME'08]

Logics

 $\mathrm{FO}\left(\mathbb{R},\mathbb{Z},+,\leq,X_{b}\right)\equiv\mathrm{FO}\left(\mathbb{Z},+,\leq,V_{b}\right)\uplus\mathrm{FO}\left(\mathbb{D},+,\leq,W_{b}\right)$

- " $X_b(x, u, a)$: in x's b-ary writing, the digit in position u is a"
- "V_b(x) = u: in x's b-ary writing, the rightmost non-null integer digit is at position u"
- "W_b(x) = u: in x's b-ary writing, the leftmost non-null decimal digit is at position u"

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Example illustrating X_b, V_b, W_b

(Logics)

 $x = (42.0625)_{10} = (0^*101010 \star 00010^{\omega})_2$

TCS

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Example illustrating X_b, V_b, W_b

$$X_{2}(x, 2^{4}, 0)$$

$$x = (42.0625)_{10} = (0^{*}101010 * 00010^{\omega})_{2}$$

TCS

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Example illustrating X_b, V_b, W_b

$$X_{2}(x, 2^{1}, 1)$$

$$X_{2}(x, 2^{4}, 0)$$

$$x = (42.0625)_{10} = (0^{*}101010 \star 00010^{\omega})_{2}$$

TCS

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Example illustrating X_b, V_b, W_b

$$X_{2}(x, 2^{1}, 1)$$

$$X_{2}(x, 2^{4}, 0) | X_{2}(x, 2^{-2}, 0)$$

$$X = (42.0625)_{10} = (0^{*}101010 \star 00010^{\omega})_{2}$$

TCS

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Example illustrating X_b, V_b, W_b

$$X_{2}(x, 2^{1}, 1)$$

$$X_{2}(x, 2^{4}, 0) \qquad X_{2}(x, 2^{-2}, 0)$$

$$x = (42.0625)_{10} = (0^{*}101010 \star 00010^{\omega})_{2}$$

$$V_{2}(x) = 2^{1}$$

TCS

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Example illustrating X_b, V_b, W_b

$$X_{2}(x, 2^{1}, 1)$$

$$X_{2}(x, 2^{4}, 0) | X_{2}(x, 2^{-2}, 0)$$

$$x = (42.0625)_{10} = (0^{*}101010 * 00010^{\omega})_{2}$$

$$V_{2}(x) = 2^{1}$$

$$W_{2}(x) = 2^{-4}$$

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Logics

Proof idea: mutual encodings of X_b, V_b, W_b $X_b(x, u, a) \equiv \exists w \in \mathbb{D}, \exists y \in \mathbb{Z}, \exists z \in \mathbb{R},$ $x = w + y + z + au \land z < u$ $\land \left(\left(u \ge 1 \land V_b(y) \ge bu \right) \lor \left(u < 1 \land W_b(w) \ge bu \right) \right)$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Logics

Proof idea: mutual encodings of X_b, V_b, W_b $X_b(x, u, a) \equiv \exists w \in \mathbb{D}, \exists y \in \mathbb{Z}, \exists z \in \mathbb{R},$ $x = w + y + z + au \land z < u$ $\land \left(\left(u \ge 1 \land V_b(y) \ge bu \right) \lor \left(u < 1 \land W_b(w) \ge bu \right) \right)$

$$\begin{split} V_b(x) &= y \equiv \exists a \in \mathbb{R}, \\ X_b(x, y, a) \land a \neq 0 \land \forall z \in \mathbb{N} \Big(z < y \Rightarrow X_b(x, z, 0) \Big) \end{split}$$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

Proposition [TIME'08] FO $(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) \equiv$ FO $(\mathbb{Z}, +, \leq, V_b) \uplus$ FO $(\mathbb{D}, +, \leq, W_b)$

Logics

Proof idea: mutual encodings of X_b, V_b, W_b $X_b(x, u, a) \equiv \exists w \in \mathbb{D}, \exists y \in \mathbb{Z}, \exists z \in \mathbb{R},$ $x = w + y + z + au \land z < u$ $\land \left(\left(u \ge 1 \land V_b(y) \ge bu \right) \lor \left(u < 1 \land W_b(w) \ge bu \right) \right)$ $V_b(x) = y \equiv \exists a \in \mathbb{R},$

 $X_b(x, y, a) \land a \neq 0 \land \forall z \in \mathbb{N} \Big(z < y \Rightarrow X_b(x, z, 0) \Big)$

$$\begin{split} & \mathcal{W}_b(x) = y \equiv \exists a \in \mathbb{R}, \\ & X_b(x, y, a) \land a \neq 0 \land \forall z \in \mathbb{D}\Big((bz < 1 \land z > y) \Rightarrow X_b(x, z, 0)\Big) \end{split}$$

Florent Bouchy

Introduction Logics (TCS) DCM Conclusion Outline Decomposing Mixed/Real Logics

- Principle of the Decomposition
- Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

DCM

Conclusion

Motivation

Initial observation

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

• need to model time in formal verification;

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

need to model time in formal verification;
 Timed Automata: widespread and efficient way to model time

Florent Bouchy

- need to model time in formal verification;
 Timed Automata: widespread and efficient way to model time
- need for a richer and more general model;

- need to model time in formal verification;
 Timed Automata: widespread and efficient way to model time
- need for a richer and more general model; counters: most used datatype in verification case studies

- need to model time in formal verification;
 Timed Automata: widespread and efficient way to model time
- need for a richer and more general model; counters: most used datatype in verification case studies
- models using counters have several different definitions;

- need to model time in formal verification;
 Timed Automata: widespread and efficient way to model time
- need for a richer and more general model; counters: most used datatype in verification case studies
- models using counters have several different definitions;
 Counter Systems: can be generalized to a unifying definition

- need to model time in formal verification;
 Timed Automata: widespread and efficient way to model time
- need for a richer and more general model; counters: most used datatype in verification case studies
- models using counters have several different definitions;
 Counter Systems: can be generalized to a unifying definition

Image: We combine Timed Automata and Counter Systems

Florent Bouchy

- need to model time in formal verification;
 Timed Automata: widespread and efficient way to model time
- need for a richer and more general model; counters: most used datatype in verification case studies
- models using counters have several different definitions;
 Counter Systems: can be generalized to a unifying definition

We combine Timed Automata and Counter Systems and we study their reachability matters

• Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

X = a set of *m* real-valued variables, called clocks. **x** = a valuation of the clocks, in \mathbb{R}^m_+ . R_X = resets and linear guards over clocks

Florent Bouchy

X = a set of *m* real-valued variables, called clocks. **x** = a valuation of the clocks, in \mathbb{R}^m_+ .

 R_X = resets and linear guards over clocks

C = a set of *n* integer-valued variables, called counters. c = a valuation of the counters, in \mathbb{Z}^n . R_C = Presburger-definable binary relations over counters

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

(TCS

Definitions (continued)

Definition [INFINITY'08]

A Timed Counter System is a tuple $\langle Q, X, C, E \rangle$ where:

- Q is a finite set of control states
- $E \subseteq Q \times R_X \times R_C \times Q$ is a finite set of transitions

Florent Bouchy
(TCS

Definitions (continued)

Definition [INFINITY'08]

A Timed Counter System is a tuple $\langle Q, X, C, E \rangle$ where:

- Q is a finite set of control states
- $E \subseteq Q \times R_X \times R_C \times Q$ is a finite set of transitions

R_X and R_C are disjoint!

Florent Bouchy

(TCS

Definitions (continued)

Definition [INFINITY'08]

A Timed Counter System is a tuple $\langle Q, X, C, E \rangle$ where:

- Q is a finite set of control states
- $E \subseteq Q \times R_X \times R_C \times Q$ is a finite set of transitions

R_X and R_C are disjoint!

Definition

A Timed Automaton is a TCS where $C = \emptyset$. A Counter System is a TCS where $X = \emptyset$.

Florent Bouchy

Introduction

TCS

Conclusion

Semantics of a TCS

For any TCS \mathcal{S} , define its:

- Counting Transition System $[\![S]\!]_C$
- Timed Transition System $[\![\mathcal{S}]\!]_{\mathcal{T}}$
- (full) Transition System $[\![\mathcal{S}]\!]$

Florent Bouchy

Introduction

(TCS)

Semantics of a TCS

For any TCS \mathcal{S} , define its:

- Counting Transition System $[\![\mathcal{S}]\!]_{\mathcal{C}}$
- Timed Transition System $[\![\mathcal{S}]\!]_{\mathcal{T}}$
- (full) Transition System $[\![\mathcal{S}]\!]$

Semantics of a TCS

TCS

For any TCS S, define its:

- Counting Transition System $[\![\mathcal{S}]\!]_{\mathcal{C}}$
- Timed Transition System $[S]_T$
- (full) Transition System $\llbracket S \rrbracket$

 $\simeq \operatorname{Region} \operatorname{Graph} [\![\mathcal{S}]\!]_{RG}$ $\simeq [\![[\mathcal{S}]\!]_{RG}]\!]_{C}$

Conclusion

Reachability

Clocks are used for modelling temporal requirements; their *exact* value does not really matter.

Florent Bouchy

DCM

Reachability

Clocks are used for modelling temporal requirements; their *exact* value does not really matter.

Counter Reachability Problem (CRP)

Inputs: A TCS S, an initial configuration $(q_0, \mathbf{x}_0, \mathbf{c}_0)$ of [S], and a configuration (q, \mathbf{c}) of $[S]_C$. **Question:** Is there a clock valuation \mathbf{x} such that $(q, \mathbf{x}, \mathbf{c})$ is reachable from $(q_0, \mathbf{x}_0, \mathbf{c}_0)$ in [S]?

Florent Bouchy

Reachability

Clocks are used for modelling temporal requirements; their *exact* value does not really matter.

Counter Reachability Problem (CRP)

Inputs: A TCS S, an initial configuration $(q_0, \mathbf{x}_0, \mathbf{c}_0)$ of [S], and a configuration (q, \mathbf{c}) of $[S]_C$. **Question:** Is there a clock valuation \mathbf{x} such that $(q, \mathbf{x}, \mathbf{c})$ is reachable from $(q_0, \mathbf{x}_0, \mathbf{c}_0)$ in [S]?

CRP extends reachability problem of CS, known to be undecidable [*Minsky*, *61*]; therefore CRP is undecidable for TCS.

Florent Bouchy

DCM

Reachability

Clocks are used for modelling temporal requirements; their *exact* value does not really matter.

Counter+**region Reachability Problem (CRP)** Inputs: A TCS S, an initial configuration $(q_0, \rho_0, \mathbf{c}_0)$ of [S], a region ρ , and a configuration (q, \mathbf{c}) of $[S]_C$. **Question:** Is (q, ρ, \mathbf{c}) reachable from $(q_0, \rho_0, \mathbf{c}_0)$ in $[[S]_{RG}]_C$?

CRP extends reachability problem of CS, known to be undecidable [*Minsky*, 61]; therefore CRP is undecidable for TCS.

Florent Bouchy

• Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

Regions

Florent Bouchy

DCN

Regions

Florent Bouchy

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

Logics

(TCS)

DCN

Conclusion

Region Graph

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

N.B.: ρ_i are the 8 reachable regions

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

The Region Graph as a Counter System

Key idea of the analysis of TCS:

For a TCS S, its region graph $[S]_{RG}$ is also a Counter System.

Florent Bouchy

The Region Graph as a Counter System

Key idea of the analysis of TCS:

For a TCS S, its region graph $[S]_{RG}$ is also a Counter System.

Let \mathfrak{C} be a class of TCS such that there is an algorithm solving the reachability problem for $[\![S]\!]_{RG}$, for any $S \in \mathfrak{C}$. (e.g. \mathfrak{C} can be VASS/Petri Nets, bounded CS, etc.)

Theorem [INFINITY'08]

The Counter Reachability Problem is decidable for C.

Florent Bouchy

The Region Graph as a Counter System

Key idea of the analysis of TCS:

For a TCS S, its region graph $[S]_{RG}$ is also a Counter System.

Let \mathfrak{C} be a class of TCS such that there is an algorithm solving the reachability problem for $[\![S]\!]_{RG}$, for any $S \in \mathfrak{C}$. (e.g. \mathfrak{C} can be VASS/Petri Nets, bounded CS, etc.)

Theorem [INFINITY'08]

The Counter Reachability Problem is decidable for C.

Proof sketch • time-abstract bisimulation

- By definition, $\llbracket \llbracket S \rrbracket_T \rrbracket_C = \llbracket \llbracket S \rrbracket_C \rrbracket_T = \llbracket S \rrbracket$.
- $\llbracket S \rrbracket_{RG} \simeq \llbracket S \rrbracket_T$ [Alur & Dill, 90].
- Therefore $\llbracket [S]_{RG} \rrbracket_C \simeq \llbracket S \rrbracket$.

Florent Bouchy

• Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

(TCS)

Subclasses of TCS

Decidability results

Model	Region Graph	Counter Reach. Prob. Undecidable Decidable			
TCS	CS				
TVASS	VASS				
Reversal-bounded TCM	Reversal-bounded CM	Decidable			
Bounded TCS	Bounded CS	Decidable			

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Subclasses of TCS

Dee	cidability results					
	Model	Region Graph	Counter Reach. Prob.			
	TCS	CS	Undecidable			
	TVASS	VASS	Decidable			
	Reversal-bounded TCM	Reversal-bounded CM	Decidable			
	Bounded TCS	Bounded CS	Decidable			

- Timed Counter Machine (TCM) = TCS whose relations on counters are translations with guards of the form $\mathbf{c} \ge k$ or $\mathbf{c} = k$, with $k \in \mathbb{N}^n$
- Timed VASS (TVASS) = TCM with only $\mathbf{c} \ge k$ guards
- Bounded TCS = TCS whose counter values are bounded
- Reversal-Bounded TCM = TCM whose counters do a bounded number of alternations between increasing and decreasing modes

Florent Bouchy

Introduction Logics TCS DCM Outline Decomposing Mixed/Real Logics • Principle of the Decomposition • Application over MLA and Extended MLA

2 Timed Counter Systems

- Definitions
- Region Graph
- Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

10/11/200

Introduction							
							•

Motivation

- Extend integer-valued Counter Machines to real-valued Counter Machines
- Model hybrid systems (i.e. discrete automata featuring time, temperature, pressure, etc.)

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Motivation

- Extend integer-valued Counter Machines to real-valued Counter Machines
- Model hybrid systems (i.e. discrete automata featuring time, temperature, pressure, etc.)

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

Motivation

- Extend integer-valued Counter Machines to real-valued Counter Machines
- Model hybrid systems (i.e. discrete automata featuring time, temperature, pressure, etc.)

A new value δ is chosen in]0,1[at each step!

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Introduction Logics TCS DCM Outline Decomposing Mixed/Real Logics • Principle of the Decomposition • Application over MLA and Extended MLA

- 2 Timed Counter Systems
 - Definitions
 - Region Graph
 - Decidable Subclasses

Dense-choice Counter Machines
 Definitions
 Logical Characterization

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

Definitions

Guards $G = \{(x = 0), (x > 0), true\}$ Actions $A = \{1, \Delta\}$ (i.e. increments/decrements) \square 1 is "integer", Δ is "non-deterministically-chosen decimal"

DCM

A Dense-choice Counter Machine with n > 0 counters is a tuple $\mathcal{M} = \langle S, T \rangle$ where:

- S is a finite set of control states
- $T \subseteq S \times \Sigma \times S$ is a finite set of transitions, with $\Sigma = (G \times \mathbb{Z} \times A)^n$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems

Definitions

Guards
$$G = \{(x = 0), (x > 0), true\}$$

Actions $A = \{1, \Delta\}$ (i.e. increments/decrements)
 $\textcircled{1}$ is "integer", Δ is "non-deterministically-chosen decimal"

DCM

A Dense-choice Counter Machine with n > 0 counters is a tuple $\mathcal{M} = \langle S, T \rangle$ where:

- S is a finite set of control states
- $T \subseteq S \times \Sigma \times S$ is a finite set of transitions, with $\Sigma = (G \times \mathbb{Z} \times A)^n$

Example

A transition $x > 0 \land x := x - 3\delta$ is written $(x = 0, -3, \Delta)$.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

DCM

Definitions (continued)

Semantics of a DCM $\mathcal{M} = \langle S, T \rangle$

The transition system $TS(\mathcal{M}) = \langle C, \rightarrow \rangle$ is defined by:

• $C = S \times \mathbb{R}^n_+$ is the set of configurations

• $\rightarrow \subseteq C \times \Sigma \times C$ is the set of transitions, defined by: $(s, \mathbf{x}) \xrightarrow{\mathbf{g}, \lambda, \mathbf{a}} (s', \mathbf{x}') \iff (s, (\mathbf{g}, \lambda, \mathbf{a}), s') \in T \land \exists \delta \in \mathbb{R}$ such that: $0 < \delta < 1 \land \mathbf{x} \models \mathbf{g} \land \mathbf{x}' = \mathbf{x} + \lambda \mathbf{d}$, with $\mathbf{d} = \mathbf{a}[\Delta \leftarrow \delta]$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

DCM

Definitions (continued)

Semantics of a DCM $\mathcal{M} = \langle S, T \rangle$

The transition system $TS(\mathcal{M}) = \langle C, \rightarrow \rangle$ is defined by:

• $C = S \times \mathbb{R}^n_+$ is the set of configurations

• $\rightarrow \subseteq C \times \Sigma \times C$ is the set of transitions, defined by: $(s, \mathbf{x}) \xrightarrow{\mathbf{g}, \lambda, \mathbf{a}} (s', \mathbf{x}') \iff (s, (\mathbf{g}, \lambda, \mathbf{a}), s') \in T \land \exists \delta \in \mathbb{R}$ such that: $0 < \delta < 1 \land \mathbf{x} \models \mathbf{g} \land \mathbf{x}' = \mathbf{x} + \lambda \mathbf{d}$, with $\mathbf{d} = \mathbf{a}[\Delta \leftarrow \delta]$

Subclasses of DCM

- purely-DCM: $a_i = \Delta$ for each counter $i \leq n$
- (discrete) CM: $a_i = 1$ for each counter $i \le n$ (i.e. Minsky machine)
- reversal-bounded DCM: ∃r ∈ N s.t. on every run, each counter switches between increments and decrements at most r times
- bounded DCM: $\exists b \in \mathbb{N}$ s.t. on every run, no counter exceeds b

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Encodings of macro-operations in DCM

$$x := x - \delta$$

$$(s) \xrightarrow{\text{reset}(x)} (s) : (s) \xrightarrow{x = 0} (s')$$

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

Encodings of macro-operations in DCM

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

(DCM) Outline **Decomposing Mixed/Real Logics** Principle of the Decomposition Application over MLA and Extended MLA Definitions Region Graph

Decidable Subclasses

3 Dense-choice Counter Machines

- Definitions
- Logical Characterization

Reversal-Bounded DCM and MLA

Theorem [lbarra, 78]

The reachability relation of a reversal-bounded CM is definable in Presburger logic.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

Reversal-Bounded DCM and MLA

Theorem [lbarra, 78]

The reachability relation of a reversal-bounded CM is definable in Presburger logic.

Theorem [Ibarra & San Pietro et al., 03]

The reachability relation of a reversal-bounded DCM is definable in MLA.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

Reversal-Bounded DCM and MLA

Theorem [lbarra, 78]

The reachability relation of a reversal-bounded CM is definable in Presburger logic.

Theorem [Ibarra & San Pietro et al., 03]

The reachability relation of a reversal-bounded DCM is definable in MLA.

Theorem [INFINITY'09]

Each MLA formula defines the reachability relation of a reversal-bounded DCM.

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

DCN

Conclusion

Contributions

(De)composition of logics

- Characterization of logics
- Decidability proofs for SATisfiability of logics

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

DCN

Conclusion

Contributions

(De)composition of logics

- Characterization of logics
- Decidability proofs for SATisfiability of logics

TCS

- New model mixing clocks and counters
- Analysis using region abstraction and subclasses identification

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009

DCN

Conclusion

Contributions

(De)composition of logics

- Characterization of logics
- Decidability proofs for SATisfiability of logics

TCS

- New model mixing clocks and counters
- Analysis using region abstraction and subclasses identification

DCM

• Full logical characterization of reversal-bounded DCM with MLA

- Logics and Models for Verifying Infinite-state Systems

10/11/2009

Future Work

Theory

- Study new logics through decomposition (for charac. & decidability)
- Extend decidable subclasses (flat TCS)
- Generalize TCS analysis technique to Timed Heterogeneous Systems
- Solve open decidability problems for subclasses of DCM
- Study complexity of decision procedures in DCM

Future Work

Theory

- Study new logics through decomposition (for charac. & decidability)
- Extend decidable subclasses (flat TCS)
- Generalize TCS analysis technique to Timed Heterogeneous Systems
- Solve open decidability problems for subclasses of DCM
- Study complexity of decision procedures in DCM

Implementation

- Enhance GENEPI prototype decomposing logics
- Implement region construction in FAST
- Design a tool for reversal-bounded DCM

Florent Bouchy

- Logics and Models for Verifying Infinite-state Systems -

10/11/2009