Decomposition of Decidable First-Order Logics over Integers and Reals

Florent Bouchy¹, Alain Finkel¹, Jérôme Leroux²

¹LSV, CNRS, ENS Cachan ²LaBRI, CNRS, Université de Bordeaux

TIME 2008 Montréal, QC, Canada Representations Decomposition Implementation Conclusion

Motivation

Initial observation

Lack of efficient means to verify systems with counters and clocks enjoying at the same time: effective data structure, expressive guards and actions,

exact computation, decidable automated acceleration.

Motivation

Initial observation

Lack of efficient means to verify systems with counters and clocks enjoying at the same time :

effective data structure, expressive guards and actions, exact computation, decidable automated acceleration.

Objective

a Tool computing reachable states

Initial observation

Lack of efficient means to verify systems with counters and clocks enjoying at the same time:

Motivation

effective data structure, expressive guards and actions, exact computation, decidable automated acceleration.

Objective

- a Tool computing reachable states
- based on an adapted Symbolic Representation

Motivation

Initial observation

Lack of efficient means to verify systems with counters and clocks enjoying at the same time :

effective data structure, expressive guards and actions, exact computation, decidable automated acceleration.

Objective

- a Tool computing reachable states
- based on an adapted Symbolic Representation
- for systems featuring Integer and Real variables

Motivation

Initial observation

Lack of efficient means to verify systems with counters and clocks enjoying at the same time :

effective data structure, expressive guards and actions, exact computation, decidable automated acceleration.

Objective

- a Tool computing reachable states
- based on an adapted Symbolic Representation
- for systems featuring Integer and Real variables
- to verify models that are generally undecidable

Representations Decomposition Implementation Conclusion

Motivation

Initial observation

effective data structure, expressive guards and actions, exact computation, decidable automated acceleration.

Objective

- a Tool computing reachable states
- based on an adapted Symbolic Representation
- for systems featuring Integer and Real variables
- to verify models that are generally undecidable

■ This paper only deals with the symbolic representation for integers and reals

- **1** Symbolic Representations for \mathbb{R}^n
 - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- Decomposition of Decidable Logics
 - ullet Presburger extended to reals : $\mathsf{FO}(\mathbb{R},\mathbb{Z},+,\leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- Implementation
 - Genepi
 - Integer-Decimal Functions (IDF)

- **1** Symbolic Representations for \mathbb{R}^n
 - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- 2 Decomposition of Decidable Logics
 - ullet Presburger extended to reals : $\mathsf{FO}(\mathbb{R},\mathbb{Z},+,\leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- Implementation
 - Genepi
 - Integer-Decimal Functions (IDF)

A Timed Automaton from [BBFL03]

$$y := 0$$

$$x := 0$$

$$x \ge 1 \land y = 1,$$

$$(y \le 1)$$

$$y := 0$$

Representations

Example

A Timed Automaton from [BBFL03]

An infinity of associated DBM

$$\left\{
\begin{array}{cccc}
 0 & x & y \\
 0 & 0 & -i & 0 \\
 x & i + 1 & 0 & i \\
 y & 1 & -i & 0
\end{array} \right\}_{i \ge 0}$$

- **1** Symbolic Representations for \mathbb{R}^n
 - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- - Presburger extended to reals : $FO(\mathbb{R}, \mathbb{Z}, +, \leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- - Generi
 - Integer-Decimal Functions (IDF)

An example abstraction

A slight modification of the automaton

Representations

An example abstraction

A slight modification of the automaton

$$y := 0$$

$$x := 0$$

$$(y \le 1)$$

$$x \ge 1 \land y = 1,$$

$$y := 0$$

$$x \ge 10^{6}$$

Representations

The associated DBM (still too many)

$$\left\{ \begin{cases}
0 & x & y \\
0 & 0 & -i & 0 \\
x & i+1 & 0 & i \\
y & 1 & -i & 0
\end{cases} \right\}_{0 \le i \le 10^6}
\begin{array}{c}
0 & x & y \\
0 & \infty & 0 \\
\infty & 0 & \infty \\
1 & -10^6 & 0
\end{array} \right\}$$

F.Bouchy, A.Finkel, J.Leroux - Decomposition of Decidable First-Order Logics over Integers and Reals -

- **1** Symbolic Representations for \mathbb{R}^n
 - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- 2 Decomposition of Decidable Logics
 - ullet Presburger extended to reals : $\mathsf{FO}(\mathbb{R},\mathbb{Z},+,\leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- 3 Implementation
 - Genepi
 - Integer-Decimal Functions (IDF)

Parametric DBM

Definition (DBM)

Square matrix composed of elements $(\prec_{i,j}, c_{i,j})$ in $\{\leq, <\} \times \mathbb{Z}$ defining constraints on two clocks x_i and $x_j : x_i - x_j \prec_{i,j} c_{i,j}$

Parametric DBM

Definition (DBM)

Square matrix composed of elements $(\prec_{i,i}, c_{i,i})$ in $\{\leq, <\} \times \mathbb{Z}$ defining constraints on two clocks x_i and x_i : $x_i - x_i \prec_{i,j} c_{i,j}$

Definition (CPDBM [AAB00])

DBM whose $c_{i,i}$ are arithmetical terms defined by :

$$t ::= 0 | 1 | v | t - t | t + t | t * t$$
, where $v \in V$, $V \in \{\mathbb{Z}, \mathbb{R}, \dots\}$

These terms are then constrained by a formula :

$$\phi ::= t \le t \mid \neg \phi \mid \phi \lor \phi \mid \text{Is_integer}(t)$$

- **1** Symbolic Representations for \mathbb{R}^n
 - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- - Presburger extended to reals : $FO(\mathbb{R}, \mathbb{Z}, +, \leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- - Generi
 - Integer-Decimal Functions (IDF)

Key idea

Extract the integer component from reals, to use periodicity

Key idea

Extract the integer component from reals, to use periodicity

Representations

Extract the integer component from reals, to use periodicity

Representations

$$Z = \{(x, y) \in [0, 1]^2 \mid x = y\}$$

$$Z = \{(x, y) \in [0, 1]^2 \mid x \ge y\}$$

$$= \{(x, y) \in [0, 1]^2\}$$

Finite Unions of Sums "Integer+Decimal"

$$igg(\{0,\dots,10^6-1\} imes\{0\}+1)igg)$$
 $igg(\{10^6\} imes\{0\}+1)igg)$ $igg(\{10^6+1,\dots,\infty\} imes\{0\}+1)igg)$

• Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0,1[$

- Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0,1[$
- Let $\mathfrak{Z} \uplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and $p \geq 1$

- Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0,1[$
- Let $\mathfrak{Z} \uplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and $p \geq 1$
- Note that some R are not representable!

Representations

Counter-example :
$$R = \bigcup_{j=1}^{\infty} \left(\{j\} + \left\{ \frac{1}{j+1} \right\} \right)$$

- Let $\mathfrak{Z}\subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D}\subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D}=[0,1[$
- Let $\mathfrak{Z} \uplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup_{i=1}^p (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and $p \ge 1$

Definition

A class $\mathfrak{R} \subseteq \bigcup_{n \in \mathbb{N}} P(\mathbb{R}^n)$ is stable if it is closed under union, intersection, difference, cartesian product, quantification/projection, and permutation.

- Let $\mathfrak{Z} \subseteq \mathsf{P}(\mathbb{Z}^n)$ and $\mathfrak{D} \subseteq \mathsf{P}(\mathbb{D}^n)$, where $\mathbb{D} = [0,1]$
- Let $\mathfrak{Z} \uplus \mathfrak{D}$ be the class of every $R \subseteq \mathbb{R}^n$ such that $R = \bigcup (Z_i + D_i)$, where $(Z_i, D_i) \in \mathfrak{Z} \times \mathfrak{D}$ and p > 1

Definition

A class $\mathfrak{R} \subseteq \bigcup_{n \in \mathbb{N}} P(\mathbb{R}^n)$ is stable if it is closed under union, intersection, difference, cartesian product, quantification/projection, and permutation.

Proposition (Stability)

Representations

The class $\mathfrak{Z} \oplus \mathfrak{D}$ is stable if \mathfrak{Z} and \mathfrak{D} are stable.

- - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- Decomposition of Decidable Logics
 - Presburger extended to reals : $\mathsf{FO}(\mathbb{R},\mathbb{Z},+,\leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- Implementation
 - Genepi
 - Integer-Decimal Functions (IDF)

Presburger extended to reals [BRW98, Wei99]

Theorem

$$FO(\mathbb{R}, \mathbb{Z}, +, \leq) = FO(\mathbb{Z}, +, \leq) \uplus FO(\mathbb{D}, +, \leq)$$

Presburger extended to reals [BRW98, Wei99]

Theorem

$$FO(\mathbb{R}, \mathbb{Z}, +, \leq) = FO(\mathbb{Z}, +, \leq) \uplus FO(\mathbb{D}, +, \leq)$$

Proof sketch:

- ⊇: trivial.
- \subseteq : just distribute sets and relations over \uplus :
 - \mathbb{R}^n can be written $\mathbb{Z}^n + \mathbb{D}^n$
 - $R_+ = \{ \mathbf{r} \in \mathbb{R}^3 \mid r_1 + r_2 = r_3 \}$ can be written $\bigcup_{c \in \{0,1\}} \{ \mathbf{z} \in \mathbb{Z}^3 \mid z_1 + z_2 + c = z_3 \} + \{ \mathbf{d} \in \mathbb{D}^3 \mid d_1 + d_2 = d_3 + c \},$ where c stand for a carry
 - similarly, \emptyset , \leq , \mathbb{Z}^n are easily definable
 - then, stability (from the previous Proposition) implies ⊆

- Difference Bound Matrices (DBM)
- Abstractions for DBM
- Parametric DBM
- Finite Unions of Sums
- Decomposition of Decidable Logics
 - Presburger extended to reals : $FO(\mathbb{R}, \mathbb{Z}, +, \leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- **3** Implementation
 - Genepi
 - Integer-Decimal Functions (IDF)

Constrained Parametric DBM

Reminder: CPDBM [AAB00]

DBM whose $c_{i,j}$ arithmetical terms defined by

$$t ::= 0 \mid 1 \mid v \mid t - t \mid t + t \mid t * t$$
, where $v \in V$, $V \in \{\mathbb{Z}, \mathbb{R}, \dots\}$

These terms are then constrained by a formula

$$\phi ::= t \le t \mid \neg \phi \mid \phi \lor \phi \mid \text{Is_integer}(t)$$

Constrained Parametric DBM

Reminder: CPDBM [AAB00]

DBM whose $c_{i,j}$ arithmetical terms defined by

$$t ::= 0 \mid 1 \mid v \mid t - t \mid t + t \mid t * t$$
, where $v \in V$, $V \in \{\mathbb{Z}, \mathbb{R}, \dots\}$

These terms are then constrained by a formula

$$\phi ::= t \le t \mid \neg \phi \mid \phi \lor \phi \mid \text{Is_integer}(t)$$

ullet | JDBM $_{\mathbb D}$: finite unions of DBM included in $\mathbb D^n$

CPDBM CP-DBM₊

DBM whose $c_{i,j}$ arithmetical terms defined by

$$t::=0\mid 1\mid v\mid t-t\mid t+t\mid t/v$$
, where $v\in V$, $V\in\{\mathbb{Z},\mathbb{R},\dots\}$

These terms are then constrained by a formula

$$\phi := t \le t \mid \neg \phi \mid \phi \lor \phi \mid \text{Is_integer}(t) \mid \exists v.\phi$$

- $\mathsf{IJDBM}_{\mathbb{D}}$: finite unions of DBM included in \mathbb{D}^n
- CP-DBM₊ = CPDBM with quantifiers but without multiplication

Constrained Parametric DBM

Decomposition

CPDBM CP-DBM₊

DBM whose $c_{i,j}$ arithmetical terms defined by

$$t::=0\mid 1\mid v\mid t-t\mid t+t\mid t/t$$
, where $v\in V$, $V\in\{\mathbb{Z},\mathbb{R},\dots\}$

These terms are then constrained by a formula

$$\phi := t \le t \mid \neg \phi \mid \phi \lor \phi \mid \text{Is_integer}(t) \mid \exists v.\phi$$

- $\mathsf{IJDBM}_{\mathbb{D}}$: finite unions of DBM included in \mathbb{D}^n
- CP-DBM₊ = CPDBM with quantifiers but without multiplication

Proposition

$$\bigcup CP\text{-}DBM_{+} = FO(\mathbb{Z}, +, \leq) \uplus \bigcup DBM_{\mathbb{D}}$$

- **1** Symbolic Representations for \mathbb{R}^n
 - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- Decomposition of Decidable Logics
 - Presburger extended to reals : $FO(\mathbb{R}, \mathbb{Z}, +, \leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- Implementation
 - Genepi
 - Integer-Decimal Functions (IDF)

$$\{(x,y) \in \mathbb{R}^2 \mid 3x - 6y = 4\}$$

$$\{(x,y) \in \mathbb{R}^2 \mid 3x - 6y = 4\}$$

F.Bouchy, A.Finkel, J.Leroux - Decomposition of Decidable First-Order Logics over Integers and Reals -

Proposition

$$FO(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) = FO(\mathbb{Z}, +, \leq, V_b) \uplus FO(\mathbb{D}, +, \leq, W_b)$$

Decomposition

- $X_h(x, u, a)$ is the predicate being true iff
 - x can be written in basis b as the word $sa_1 \dots a_k \star a_{k+1} \dots$
 - for which $\exists i \in \mathbb{N}$ such that $a_i = a$ and $u = b^{k-i}$

Proposition

$$FO(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) = FO(\mathbb{Z}, +, \leq, V_b) \uplus FO(\mathbb{D}, +, \leq, W_b)$$

- $X_b(x, u, a)$ is the predicate being true iff
 - x can be written in basis b as the word $sa_1 \dots a_k \star a_{k+1} \dots$
 - for which $\exists i \in \mathbb{N}$ such that $a_i = a$ and $u = b^{k-i}$
- $V_b: \mathbb{Z} \setminus \{0\} \to \mathbb{Z}$ is the function $V_b(z) = b^j$, where $j \in \mathbb{Z}$ is the greatest integer such that $b^{-j}z \in \mathbb{Z}$

Proposition

$$FO(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) = FO(\mathbb{Z}, +, \leq, V_b) \uplus FO(\mathbb{D}, +, \leq, W_b)$$

F.Bouchy, A.Finkel, J.Leroux - Decomposition of Decidable First-Order Logics over Integers and

- $X_b(x, u, a)$ is the predicate being true iff
 - x can be written in basis b as the word $sa_1 \ldots a_k \star a_{k+1} \ldots$
 - for which $\exists i \in \mathbb{N}$ such that $a_i = a$ and $u = b^{k-i}$
- $V_b: \mathbb{Z} \setminus \{0\} \to \mathbb{Z}$ is the function $V_b(z) = b^j$, where $j \in \mathbb{Z}$ is the greatest integer such that $b^{-j}z \in \mathbb{Z}$
- $W_b: \mathbb{D}\backslash\{0\} \to \mathbb{D}$ is the function $W_b(d) = b^j$, where $j \in \mathbb{Z}$ is the least integer such that $b^{-j}d \notin \mathbb{D}$

Proposition

$$FO(\mathbb{R}, \mathbb{Z}, +, \leq, X_b) = FO(\mathbb{Z}, +, \leq, V_b) \uplus FO(\mathbb{D}, +, \leq, W_b)$$

Outline

- Difference Bound Matrices (DBM)
- Abstractions for DBM
- Parametric DBM
- Finite Unions of Sums

2 Decomposition of Decidable Logics

- ullet Presburger extended to reals : $\mathsf{FO}(\mathbb{R},\mathbb{Z},+,\leq)$
- Constrained Parametric DBM (CPDBM)
- Real Vector Automata (RVA)

3 Implementation

- Genepi
- Integer-Decimal Functions (IDF)

Generic Presburger API [LP06]

 GENEPI : A modular framework for solvers and model-checkers

Outline

- **1** Symbolic Representations for \mathbb{R}^n
 - Difference Bound Matrices (DBM)
 - Abstractions for DBM
 - Parametric DBM
 - Finite Unions of Sums
- Decomposition of Decidable Logics
 - ullet Presburger extended to reals : $\mathsf{FO}(\mathbb{R},\mathbb{Z},+,\leq)$
 - Constrained Parametric DBM (CPDBM)
 - Real Vector Automata (RVA)
- 3 Implementation
 - Genepi
 - Integer-Decimal Functions (IDF)

ontext Representations Decomposition (Implementation) Conclusion

Integer-Decimal Functions (IDF)

• We represent a set $R = \dot{\bigcup} (Z_i + D_i)$ by a function :

$$f: \mathfrak{Z} \longrightarrow \mathfrak{D}$$

$$Z_i \longmapsto D_i$$

• We represent a set $R = \bigcup (Z_i + D_i)$ by a function :

$$f: \mathfrak{Z} \longrightarrow \mathfrak{D}$$

$$Z_i \longmapsto D_i$$

• Its support of f is defined by : $supp(f) = \{Z \mid f(Z) \neq \emptyset\}$

• We represent a set $R = \bigcup_{i=1}^{r} (Z_i + D_i)$ by a function :

$$f: \mathfrak{Z} \longrightarrow \mathfrak{D}$$
$$Z_i \longmapsto D_i$$

- Its support of f is defined by : $supp(f) = \{Z \mid f(Z) \neq \emptyset\}$
- $\mathcal{F}_{\mathfrak{Z} \to \mathfrak{D}} = \{ f : \mathfrak{Z} \longrightarrow \mathfrak{D} \mid \mathsf{supp}(f) \text{ is finite} \}$

• We represent a set $R = \bigcup (Z_i + D_i)$ by a function :

$$f: \mathfrak{Z} \longrightarrow \mathfrak{D}$$
$$Z_i \longmapsto D_i$$

- Its support of f is defined by : $supp(f) = \{Z \mid f(Z) \neq \emptyset\}$
- $\mathcal{F}_{3\to \mathfrak{D}} = \{f : \mathfrak{Z} \longrightarrow \mathfrak{D} \mid \text{supp}(f) \text{ is finite}\}$

Definition (interpretation)

$$\forall f \in \mathcal{F}_{\mathfrak{Z} \to \mathfrak{D}}, \ \llbracket f \rrbracket = \bigcup_{Z \in \mathit{supp}(f)} \Big(Z + f(Z) \Big)$$

Definition (IDF)

An IDF is a function $f \in \mathcal{F}_{3\to \mathfrak{D}}$ such that $Z \neq Z'$ implies $f(Z) \cap f(Z') = \emptyset$

Definition (IDF)

An IDF is a function $f \in \mathcal{F}_{\mathfrak{Z} \to \mathfrak{D}}$ such that $Z \neq Z'$ implies $f(Z) \cap f(Z') = \emptyset$

Let
$$IDF_{3\to \mathfrak{D}} = \{f \in \mathcal{F}_{3\to \mathfrak{D}} \mid f \text{ is an IDF}\}$$

Let $[IDF_{3\to \mathfrak{D}}] = \{[f] \mid f \in IDF_{3\to \mathfrak{D}}\}$

Proposition (IDF ≡ **Finite Unions of Sums)**

$$\mathfrak{Z} \uplus \mathfrak{D} = \llbracket \mathit{IDF}_{\mathfrak{Z} \to \mathfrak{D}} \rrbracket$$

Definition (IDF)

An IDF is a function $f \in \mathcal{F}_{\mathfrak{Z} \to \mathfrak{D}}$ such that $Z \neq Z'$ implies $f(Z) \cap f(Z') = \emptyset$

Let $IDF_{3\to \mathfrak{D}} = \{f \in \mathcal{F}_{3\to \mathfrak{D}} \mid f \text{ is an IDF}\}$ Let $\llbracket IDF_{3\to \mathfrak{D}} \rrbracket = \{\llbracket f \rrbracket \mid f \in IDF_{3\to \mathfrak{D}}\}$

Proposition (IDF ≡ **Finite Unions of Sums)**

 $\mathfrak{Z} \uplus \mathfrak{D} = \llbracket \mathit{IDF}_{\mathfrak{Z} \to \mathfrak{D}} \rrbracket$

Proposition (Canonicity)

For any $f_1, f_2 \in IDF_{3 \to \mathfrak{D}}$, $\llbracket f_1 \rrbracket = \llbracket f_2 \rrbracket$ implies $f_1 = f_2$

Representations Decomposition Implementation Conclusion

Conclusion

Contribution

Representations Implementation

Conclusion

Contribution

• Representation of subsets of \mathbb{R}^n as finite unions

text Representations Decomposition Implementation Conclusion

Conclusion

Contribution

- Representation of subsets of \mathbb{R}^n as finite unions
- Decomposition of 3 decidable logics,
 each into 2 separated fragments (integer + decimal)

ext Representations Decomposition Implementation Conclusion

Conclusion

Contribution

- Representation of subsets of \mathbb{R}^n as finite unions
- Decomposition of 3 decidable logics,
 each into 2 separated fragments (integer + decimal)
- Bases for an implementation, as a GENEPI plugin

ntext Representations Decomposition Implementation Conclusion

Conclusion

Future work

Representations Implementation

Conclusion

Future work

• Implementation/optimisation of the GENEPI plugin

Representations Conclusion

Conclusion

Future work

- Implementation/optimisation of the GENEPI plugin
- Verification of infinite-state systems with counters and clocks

Representations Conclusion

Conclusion

Future work

- Implementation/optimisation of the GENEPI plugin
- Verification of infinite-state systems with counters and clocks
- Extension to other logics decompositions

Representations Decomposition Implementation Conclusion

References

