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Motivation

Initial observation

Lack of efficient means to verify systems with counters and clocks
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effective data structure, expressive guards and actions,

exact computation, decidable automated acceleration.
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Motivation

Initial observation

Lack of efficient means to verify systems with counters and clocks
enjoying at the same time :

effective data structure, expressive guards and actions,

exact computation, decidable automated acceleration.

Objective
@ a Tool computing reachable states
@ based on an adapted Symbolic Representation
@ for systems featuring Integer and Real variables

@ to verify models that are generally undecidable

s= This paper only deals with the
symbolic representation for integers and reals
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Example

A Timed Automaton from [BBFLO03]
y:=0

x:=0
x>1Ay=1,
y:=0

(v <1)
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Context

Example

A Timed Automaton from [BBFLO03]

y =
x:=0
\C:OXZI/\y:L
=0
(y<1) g

An infinity of associated DBM

0 X y
0 0 —i 0
x {i+1 0 i
y 1 —i 0
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Implementation

An example abstraction

A slight modification of the automaton

y:=0
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An example abstraction

A slight modification of the automaton

y:=0
x:=0 Y

0 X y 0 X y
0 0 —i 0 0/0 00 0
x{i+1 0 " x| o0 0 00
y\ 1 —i 0 1 —10° 0

0<i<106
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-
Parametric DBM

Definition (DBM)

Square matrix composed of elements (<;j,c;ij) in {<,<} X Z
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-
Parametric DBM

Definition (DBM)

Square matrix composed of elements (<;j,c;ij) in {<,<} X Z
defining constraints on two clocks x; and x; : x; — x; <ij G

Definition (CPDBM [AAB00])

DBM whose c; j are arithmetical terms defined by :
tx=0|1|v|t—t|t+t|txt, whereveV,Vel{ZR,...}

These terms are then constrained by a formula :

pu=t<t|¢|oVe|Isinteger(t)
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Extract the integer component from reals, to use periodicity
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Context Representations Decomposition Implementation Conclusion
Key idea

Extract the integer component from reals, to use periodicity

{(x,y) €[0,1]? | x =y}
{(,y) 0,117 | x > y}
W= {(x,y) €[0,1]%}
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Key idea

Extract the integer component from reals, to use periodicity

{(x,y) €[0,1]? | x =y}
{(,y) 0,117 | x > y}
W= {(x,y) €[0,1]%}

Finite Unions of Sums " Integer-+Decimal”
({o,...,lo6 — 1) x {0} +/)
U({mﬁ} x {0} +2)
U({106 +1,...,00} x {0} +l)
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® Let 3 C P(Z") and ® C P(D"), where D = [0, 1]
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® Let 3 C P(Z") and ® C P(D"), where D = [0, 1]

P
® Let 3WD be the class of every R C R" such that R = U(Z,- + D),
i=1
where (Z;,D;) €3 x®D and p>1
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Context Decomposition Implementation Conclusion
Our representation

@ Let 3 C P(Z") and ©® C P(D"), where D = [0, 1]

P
@ Let 3 WD be the class of every R C R” such that R = U(Z,- + D),
i=1
where (Z;,D;) €3 x®D and p>1

@ Note that some R are not representable !

Counter-example : R = G({J} + {J%})

j=1
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Our representation

@ Let 3 C P(Z") and ©® C P(D"), where D = [0, 1]

P
@ Let 3 WD be the class of every R C R” such that R = U(Z,- + D),
i=1
where (Z;,D;) €3 x®D and p>1

Definition

A class R C |,y P(R") is stable if it is closed under union,
intersection, difference, cartesian product,
quantification/projection, and permutation.

Proposition (Stability)
The class 3 WD is stable if 3 and © are stable.
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FO(R,Z,+,<) = FO(Z,+,<) ¥ FO(D, +,<)
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Presburger extended to reals [BRW98, Wei99]

Theorem
FOR,Z,+,<)=FO(Z,+,<)4¥ FO (D, +, <)

Proof sketch :

trivial.
just distribute sets and relations over W :
@ R” can be written Z" D"

@ R, ={reR3| rn+r=r} can be written
U zeZ |a+zn+c=z}+{deD’ |d+d=ds+c},
ce{0,1}
where ¢ stand for a carry

@ similarly, (), <, Z" are easily definable

@ then, stability (from the previous Proposition) implies C O
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Constrained Parametric DBM

Reminder : CPDBM [AABO00]
DBM whose c;; arithmetical terms defined by
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Constrained Parametric DBM

c€PBbBM CP-DBM.

DBM whose c; j arithmetical terms defined by
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Context Representations Implementation Conclusion
Real Vector Automata (RVA) [BRW98]
{(z,y) €R?| 3z —6y =4}
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FO(R,Z7+aS7Xb) = FO(Z’ +aS’ Vb) o FO(Da—i_aSa Wb)
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Context Representations Implementation Conclusion
Real Vector Automata (RVA) [BRW98]

@ Xy(x,u,a) is the predicate being true iff

@ x can be written in basis b as the word sa; ... ax x aks1 ..
o for which 3i € N such that a; = a and u = b*~’

Proposition
FO(R,Z,+,<,Xp) = FO(Z,+,<, Vp) W FO (D, +, <, W) J
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greatest integer such that b™/z € Z

@ W, : D\{0} — D is the function W,(d) = b/, where j € Z is the
least integer such that b7d ¢ D

Proposition
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Generic Presburger APl [LP06]

GENEPI : A modular framework for solvers and model-checkers

GENEPI
AP FASTer
y ALAMBIC DIJO
genepi.h

genepi-plugin.h 1 [}

PLUGIN MANAGER
/ v
- /! i R

s J ‘ ' W s Ty

Vs S N ‘
Plugin Plugin Plugin Plugin Plugin } ;’"ﬁlagfﬁ’i i
Interface Interface Interface Interface Interface| | | !nﬁgfﬁqgeli
o ]
- -

‘ LASH ‘ ‘ MONA ‘ ’PRESTA% ‘OMEGA‘ ‘ LIRA ‘ %} IDS i
T Em—" |
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P
@ We represent a set R = U(Z,- + D;) by a function :
i=1

f:3—9
Zi— D;
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Integer-Decimal Functions (IDF)

P
@ We represent a set R = U(Z,- + D;) by a function :
i=1

f:3—29®
Zi— D;

@ Its support of f is defined by : supp(f) ={Z | f(Z) # 0}

Conclusion
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@ Its support of f is defined by : supp(f) ={Z | f(Z) # 0}
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Integer-Decimal Functions (IDF)

P
@ We represent a set R = U(Z,- + D;) by a function :
i=1

f:3—2
Zi— D;

@ Its support of f is defined by : supp(f) ={Z | f(Z) # 0}
® F3_p ={f: 3 — D |supp(f) is finite}

Definition (interpretation)

vfeFo lfl= | (2+£(2)
Zesupp(f)

Conclusion
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Integer-Decimal Functions (IDF)

Definition (IDF)

An IDF is a function f € F3_,p such that Z # Z' implies
F(Z)NF(Z') =0
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Integer-Decimal Functions (IDF)

Definition (IDF)
An IDF is a function f € F3_,5 such that Z # Z' implies
F(Z)NF(Z') =0

Let IDF3_o = {f € F3_o | f is an IDF}
Let [IDF5_] = {[f] | f € IDF3_o}

Proposition (IDF = Finite Unions of Sums)
3WD = [IDFs 0] J
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Integer-Decimal Functions (IDF)

Definition (IDF)

An IDF is a function f € Fs_,5 such that Z # Z' implies
f(Z)ynf(z)=~0

Conclusion

Let IDF3_o = {f € F3_p | f is an IDF}
Let [IDFs_o] = {[f] | f € IDF5_.5}

Proposition (IDF = Finite Unions of Sums)
3WD = [IDF3_5]

Proposition (Canonicity)
For any i, € IDF5_.9, [A] = [f] implies A = £

24 )27



F.Bouchy, A.Finkel, J.Leroux - Decomposition of Decidable First-Order Logics over Integers and Reals - T|ME'08




@ Representation of subsets of R” as finite unions
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Conclusion

Contribution
@ Representation of subsets of R” as finite unions

@ Decomposition of 3 decidable logics,
each into 2 separated fragments ( integer + decimal )

Conclusion
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Conclusion

Contribution
@ Representation of subsets of R” as finite unions

@ Decomposition of 3 decidable logics,
each into 2 separated fragments ( integer + decimal )

@ Bases for an implementation, as a GENEPI plugin

Conclusion
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@ Implementation/optimisation of the GENEPI plugin
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Conclusion

Future work
@ Implementation/optimisation of the GENEPI plugin

@ Verification of infinite-state systems with counters and clocks

Conclusion
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Conclusion

Future work
@ Implementation/optimisation of the GENEPI plugin
@ Verification of infinite-state systems with counters and clocks

@ Extension to other logics decompositions

Conclusion
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