Muller Message-Passing Automata and Logics

Benedikt Bollig ${ }^{1}$ Dietrich Kuske ${ }^{2}$

${ }^{1}$ LSV, ENS Cachan, CNRS, France
${ }^{2}$ Institut für Informatik, Universität Leipzig, Germany

LATA, April 4, 2007
(1) Muller Message-Passing Automata and MSCs
(2) Monadic Second-Order Logic over MSCs
(3) Ehrenfeucht-Fraïssé Game and Hanf's Theorem for FO^{∞} logic
(4) Muller MPA vs. MSO Logic

Presentation outline

(1) Muller Message-Passing Automata and MSCs
(2) Monadic Second-Order Logic over MSCs
(3) Ehrenfeucht-Fraïssé Game and Hanf's Theorem for FO ${ }^{\infty}$ logic
(4) Muller MPA vs. MSO Logic

The architecture of a message-passing system

Definition

We fix the following parameters:

- Proc a finite set of at least two processes
- Msg a finite set of message contents

The architecture of a message-passing system

Definition

We fix the following parameters:

- Proc a finite set of at least two processes
- Msg a finite set of message contents

Definition

- $\Sigma_{p}:=\{p!q(a) \mid q \in \operatorname{Proc} \backslash\{p\}, a \in M s g\} \cup$ $\{p ? q(a) \mid q \in \operatorname{Proc} \backslash\{p\}, a \in M s g\}$
- $\Sigma:=\bigcup_{p \in \operatorname{Proc}} \Sigma_{p}$

Message-passing automata

Definition

A message-passing automaton (MPA) over Proc and Msg is a structure

$$
\mathcal{A}=\left(\left(\mathcal{A}_{p}\right)_{p \in \operatorname{Proc}}, \mathcal{D}, \imath, A c c\right)
$$

where

- \mathcal{D} is a nonempty finite set of synchronization data
- for each $p \in \operatorname{Proc}, \mathcal{A}_{p}=\left(S_{p}, \Delta_{p}\right)$ with
S_{p} is a nonempty finite set of local states
- $\Delta_{p} \subseteq S_{p} \times \Sigma_{p} \times \mathcal{D} \times S_{p}$ is a set of local transitions
- $\imath \in \prod_{p \in \operatorname{Proc}} S_{p}$ is the global initial state
- Acc is an acceptance condition ...

Message-passing automata

Example

MPA \mathcal{A} over
$\{1,2\}$ and $\{$ req, ack $\}$

- $\mathcal{D}=\{\quad, \square, \square\}$
- $S_{1}=\left\{s_{0}, s_{1}, s_{2}\right\}$
$S_{2}=\left\{t_{0}, t_{1}, t_{2}\right\}$
- $\Delta_{1}: s_{0} \xrightarrow{\frac{1!2(\mathrm{req})}{2 ? 1(\mathrm{req})}} 1 s_{0} \ldots$
$\Delta_{2}: t_{0} \xrightarrow{2+\ldots}+1$
- $\imath=\left(s_{0}, t_{0}\right)$
- $A c c=.$.

Message-passing automata

Example

Message-passing automata

Example

1!2(req) O

Message-passing automata

Example

Message sequence charts

Definition

A message sequence chart (MSC) is a structure ($\left.E, \lessdot_{\text {proc }},<_{\mathrm{msg}}, \lambda\right)$ such that:

- E is the set of events
- $\lambda: E \rightarrow \Sigma$
- proc $\subseteq E \times E$ relates successors on a process line
- $<_{\mathrm{msg}} \subseteq E \times E$ relates messages (FIFO and complete)
- $\leq=\left(\lessdot_{\text {proc }} \cup<_{\mathrm{msg}}\right)^{*}$ is a partial oder
- $\left\{e^{\prime} \in E \mid e^{\prime} \leq e\right\}$ is a finite set for any $e \in E$

Semantics of MPA in terms of MSCs

Let $\mathcal{A}=\left(\left(\mathcal{A}_{p}\right)_{p \in \operatorname{Proc}}, \mathcal{D}, r, A c c\right)$ be an MPA and $\mathcal{M}=\left(E, \lessdot_{\text {proc }},<_{\mathrm{msg}}, \lambda\right)$ an MSC.

Definition

A run of \mathcal{A} on \mathcal{M} is a mapping $\rho: E \rightarrow \bigcup_{p \in \operatorname{Proc}} S_{p}$ such that, for any $\left(e, e^{\prime}\right) \in<_{\mathrm{msg}}$, there is $m \in \mathcal{D}$ such that:

- $\left(\rho^{-}(e), \lambda(e), m, \rho(e)\right) \in \Delta_{\operatorname{Proc}(e)}$
- $\left(\rho^{-}\left(e^{\prime}\right), \lambda\left(e^{\prime}\right), m, \rho\left(e^{\prime}\right)\right) \in \Delta_{\operatorname{Proc}\left(e^{\prime}\right)}$
where:

$$
\rho^{-}(e):= \begin{cases}\imath[p] & \text { if } e \text { is the first } p \text {-event } \\ \rho(p-\operatorname{pred}(e)) & \text { otherwise }\end{cases}
$$

Acceptance conditions for MPA

Let $\mathcal{A}=\left(\left(\mathcal{A}_{p}\right)_{p \in \operatorname{Proc}}, \mathcal{D}, \imath, A c c\right)$ be an MPA and ρ be a run of \mathcal{A} on \mathcal{M}.
Definition
\mathcal{A} is called a Büchi / Muller / Staiger-Wagner MPA if Acc $\subseteq \prod_{p \in \operatorname{Proc}} 2^{S_{p}}$
Büchi: ρ is accepting if there is $\bar{s} \in A c c$ such that $\bar{s}[p] \cap \operatorname{lnf}_{p}(\rho) \neq \emptyset$
Muller: ρ is accepting if $\left(\operatorname{lnf}_{p}(\rho)\right)_{p \in \operatorname{Proc}} \in \operatorname{Acc}$ Staiger Whagner: p is accepting if $\left(\operatorname{Occ}_{p}(p)\right)_{p \in P r o c} \in \operatorname{Acc}$

Acceptance conditions for MPA

Let $\mathcal{A}=\left(\left(\mathcal{A}_{p}\right)_{p \in \operatorname{Proc}}, \mathcal{D}, \imath, A c c\right)$ be an MPA and ρ be a run of \mathcal{A} on \mathcal{M}.

Definition

\mathcal{A} is called a Büchi / Muller / Staiger-Wagner MPA if Acc $\subseteq \prod_{p \in \operatorname{Proc}} 2^{S_{p}}$
Büchi: ρ is accepting if there is $\bar{s} \in \operatorname{Acc}$ such that $\bar{s}[p] \cap \operatorname{lnf}_{p}(\rho) \neq \emptyset$
Muller: ρ is accepting if $\left(\operatorname{Inf}_{p}(\rho)\right)_{p \in P r o c} \in A c c$
Staiger-Wagner: ρ is accepting if $\left(\operatorname{Occ}_{p}(\rho)\right)_{p \in \operatorname{Proc}} \in \operatorname{Acc}$

Acceptance conditions for MPA

Let $\mathcal{A}=\left(\left(\mathcal{A}_{p}\right)_{p \in \operatorname{Proc}}, \mathcal{D}, \imath, A c c\right)$ be an MPA and ρ be a run of \mathcal{A} on \mathcal{M}.

Definition

\mathcal{A} is called a Büchi / Muller / Staiger-Wagner MPA if Acc $\subseteq \prod_{p \in \operatorname{Proc}} 2^{S_{p}}$
Büchi: ρ is accepting if there is $\bar{s} \in A c c$ such that $\bar{s}[p] \cap \operatorname{Inf}_{p}(\rho) \neq \emptyset$
Muller: ρ is accepting if $\left(\operatorname{Inf}_{p}(\rho)\right)_{p \in \operatorname{Proc}} \in \operatorname{Acc}$
Staiger-Wagner: ρ is accepting if $\left(\operatorname{Occ}_{p}(\rho)\right)_{p \in \operatorname{Proc}} \in \operatorname{Acc}$

Acceptance conditions for MPA

Let $\mathcal{A}=\left(\left(\mathcal{A}_{p}\right)_{p \in \operatorname{Proc}}, \mathcal{D}, \imath, A c c\right)$ be an MPA and ρ be a run of \mathcal{A} on \mathcal{M}.

Definition

\mathcal{A} is called a Büchi / Muller / Staiger-Wagner MPA if Acc $\subseteq \prod_{p \in \operatorname{Proc}} 2^{S_{p}}$
Büchi: ρ is accepting if there is $\bar{s} \in \operatorname{Acc}$ such that $\bar{s}[p] \cap \operatorname{lnf}_{p}(\rho) \neq \emptyset$
Muller: ρ is accepting if $\left(\operatorname{Inf}_{p}(\rho)\right)_{p \in \operatorname{Proc}} \in \operatorname{Acc}$ Staiger-Wagner: ρ is accepting if $\left(\operatorname{Occ}_{p}(\rho)\right)_{p \in \operatorname{Proc}} \in \operatorname{Acc}$

Example MPA

Example

Coin:

$$
A c c=\left\{\left(\left\{s_{0}, s_{1}\right\},\left\{t_{0}, t_{1}\right\}\right)\right.
$$

$$
\left.\left(\left\{s_{2}\right\},\left\{t_{0}\right\}\right) \quad\right\}
$$

Example MPA

Example

Player:
Coin:
$L_{\text {Muller }}(\mathcal{A})=(\text { flip tails })^{\omega}+(\text { flip tails })^{*}$ flip heads
$L_{\text {Büchi }}(\mathcal{A})=(\text { flip tails })^{\omega}+(\text { flip tails })^{*}(\varepsilon+$ flip $(\varepsilon+$ heads $))$
$L_{\text {SW }}(\mathcal{A})=(\text { flip tails })^{\omega}+(\text { flip tails })^{*}$ flip $(\varepsilon+$ tails $)$

Example MPA

Example

Coin:

$$
A c c=\left\{\left(\left\{s_{0}, s_{1}\right\},\left\{t_{0}, t_{1}\right\}\right)\right.
$$

$$
\left.\left(\left\{s_{2}\right\},\left\{t_{0}\right\}\right) \quad\right\}
$$

$L_{\text {Muller }}(\mathcal{A})=(\text { flip tails })^{\omega}+(\text { flip tails })^{*}$ flip heads
$L_{\text {Büchi }}(\mathcal{A})=(\text { flip tails })^{\omega}+(\text { flip tails })^{*}(\varepsilon+$ flip $(\varepsilon+$ heads $))$

Example MPA

Example

Coin:

$$
A c c=\left\{\left(\left\{s_{0}, s_{1}\right\},\left\{t_{0}, t_{1}\right\}\right)\right.
$$

$$
\left.\left(\left\{s_{2}\right\},\left\{t_{0}\right\}\right) \quad\right\}
$$

Termination-detecting MPA

Definition

Informally, a Büchi / Muller / Staiger-Wagner MPA

$$
\mathcal{A}=\left(\left(\mathcal{A}_{p}\right)_{p \in \operatorname{Proc}}, \mathcal{D}, \imath, A c c\right)
$$

is termination-detecting if any $\bar{s} \in A c c$ is equipped with a flag

$$
\text { flag : Proc } \rightarrow\{0,1\}
$$

to detect if a process executes finitely (0) or infinitely (1) many actions.

Büchi MPA vs. Muller MPA

Theorem

Let L be a set of MSCs. Then the following are equivalent:

- there is a termination-detecting Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a Büchi MPA \mathcal{A} such that $L=L(\mathcal{A})$

Büchi MPA vs. Muller MPA

Theorem

Let L be a set of MSCs. Then the following are equivalent:

- there is a termination-detecting Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a Büchi MPA \mathcal{A} such that $L=L(\mathcal{A})$

Lemma

Termination-detecting Staiger-Wagner MPA are strictly more expressive than Staiger-Wagner MPA.

Presentation outline

(1) Muller Message-Passing Automata and MSCs
(2) Monadic Second-Order Logic over MSCs
(3) Ehrenfeucht-Fraïssé Game and Hanf's Theorem for FO^{∞} logic
(4) Muller MPA vs. MSO Logic

Monadic second-order (MSO) logic over MSCs

Let \mathcal{R} a set of binary relation symbols.

Definition

Set $\mathrm{MSO}(\mathcal{R})$ of MSO formulas over \mathcal{R} :

$$
\begin{aligned}
\varphi::= & \lambda(x)=\sigma|x=y| R(x, y) \mid x \in X \\
& \neg \varphi\left|\varphi_{1} \vee \varphi_{2}\right| \exists x \varphi \mid \exists X \varphi
\end{aligned}
$$

where $\sigma \in \Sigma, R \in \mathcal{R}, x, y$ are first-order variables, and X is a second-order variable

- $\mathrm{FO}(\mathcal{R})$ is the first-order fragment of $\mathrm{MSO}(\mathcal{R})$
- $\operatorname{EMSO}(\mathcal{R})$ is the existential fragment of $\mathrm{MSO}(\mathcal{R})$ containing formulas $\in \operatorname{MSO}(\mathcal{R})$

Monadic second-order (MSO) logic over MSCs

Let \mathcal{R} a set of binary relation symbols.

Definition

Set $\mathrm{MSO}(\mathcal{R})$ of MSO formulas over \mathcal{R} :

$$
\begin{aligned}
\varphi::= & \lambda(x)=\sigma|x=y| R(x, y) \mid x \in X \\
& \neg \varphi\left|\varphi_{1} \vee \varphi_{2}\right| \exists x \varphi \mid \exists X \varphi
\end{aligned}
$$

where $\sigma \in \Sigma, R \in \mathcal{R}, x, y$ are first-order variables, and X is a second-order variable

- $\mathrm{FO}(\mathcal{R})$ is the first-order fragment of $\mathrm{MSO}(\mathcal{R})$
- $\operatorname{EMSO}(\mathcal{R})$ is the existential fragment of $\mathrm{MSO}(\mathcal{R})$ containing formulas $\exists X_{1} \ldots \exists X_{n} \varphi \in \operatorname{MSO}(\mathcal{R})$ such that $\varphi \in \mathrm{FO}(\mathcal{R})$.
$\mathrm{MSO}\left(\left\{\leq\right.\right.$, ¢proc,$\left.\left.<_{\mathrm{msg}}\right\}\right)$-formulas can be interpreted over MSCs.

Monadic second-order (MSO) logic over MSCs

 Let \mathcal{R} a set of binary relation symbols.
Definition

Set $\mathrm{MSO}(\mathcal{R})$ of MSO formulas over \mathcal{R} :

$$
\begin{aligned}
\varphi::= & \lambda(x)=\sigma|x=y| R(x, y) \mid x \in X \\
& \neg \varphi\left|\varphi_{1} \vee \varphi_{2}\right| \exists x \varphi \mid \exists X \varphi
\end{aligned}
$$

where $\sigma \in \Sigma, R \in \mathcal{R}, x, y$ are first-order variables, and X is a second-order variable

- $\mathrm{FO}(\mathcal{R})$ is the first-order fragment of $\mathrm{MSO}(\mathcal{R})$
- $\operatorname{EMSO}(\mathcal{R})$ is the existential fragment of $\mathrm{MSO}(\mathcal{R})$ containing formulas $\exists X_{1} \ldots \exists X_{n} \varphi \in \operatorname{MSO}(\mathcal{R})$ such that $\varphi \in \mathrm{FO}(\mathcal{R})$.
$\operatorname{MSO}\left(\left\{\leq, \lessdot_{\text {proc }},<_{\mathrm{msg}}\right\}\right)$-formulas can be interpreted over MSCs.

Muller MPA vs. MSO logic

Theorem
$\operatorname{MSO}\left(\left\{\leq, \lessdot_{\text {proc }},<_{\text {msg }}\right\}\right)$
$\varphi::=x \leq y\left|x \lessdot_{\text {proc }} y\right| x<{ }_{\text {msg }} y$

$$
\lambda(x)=\sigma \quad|x=y| x \in X|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\exists x \varphi| \exists X \varphi
$$

- any implementation has a specification for any Muller MPA \mathcal{A}, there is an MSO formula φ such that $L(\mathcal{A})=\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$
- not every specification is implementable [B. \& Leucker 2004] (even if we restrict to finite MSCs)

Muller MPA vs. MSO logic

Theorem
$\mathrm{MSO}\left(\left\{\leq\right.\right.$, «́proc, $\left.\left.\leq_{\text {mgs }}\right\}\right)$

$$
\begin{aligned}
\varphi::= & x \leq y \mid x \text { 〔́rocy } \mid x \text { <msgy } \mid \\
& \lambda(x)=\sigma|x=y| x \in X|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\exists x \varphi| \exists X \varphi
\end{aligned}
$$

- not every implementation has a specification
- not every specification is implementable
(even if we restrict to finite MSCs)

Muller MPA vs. MSO logic

Theorem
$\operatorname{MSO}\left(\left\{\leq, \lessdot_{\text {proc }},<_{\text {msg }}\right\}\right)$
$\varphi::=x \leq y \mid x<$ proc $y \mid x<\operatorname{msg} y$

$$
\lambda(x)=\sigma|x=y| x \in X|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\exists x \varphi| \exists X \varphi
$$

If we restrict to
\forall-bounded channels [Kuske 2003]
or \exists-bounded channels [Genest \& Kuske \& Muscholl 2004]:

- every implementation has a specification
- every specification is implementable

Muller MPA vs. MSO logic

Theorem
$\operatorname{EMSO}\left(\left\{\notin, \lessdot_{\text {proc }},<_{\mathrm{msg}}\right\}\right)$

$$
\begin{aligned}
\varphi::= & x \leq y|x<\operatorname{proc} y| x<_{\text {msg }} y \mid \\
& \lambda(x)=\sigma|x=y| x \in X|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\exists x \varphi| \exists X \varphi
\end{aligned}
$$

If we restrict to finite MSCs [B. \& Leucker 2004]:

- every implementation has a specification
- every specification is implementable (inherently nondeterministic and of elementary size)

Muller MPA vs. MSO logic

Theorem
$\operatorname{EMSO}\left(\left\{\mathbb{Z}, \lessdot_{\text {proc }},<_{\text {msg }}\right\}\right)$

$$
\begin{aligned}
\varphi::= & x \leq y\left|x \lessdot_{\text {proc } y}\right| x<_{\text {msg }} y \mid \\
& \lambda(x)=\sigma|x=y| x \in X|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\exists x \varphi| \exists X \varphi
\end{aligned}
$$

If we restrict to finite MSCs [B. \& Leucker 2004]:

- every implementation has a specification
- every specification is implementable (inherently nondeterministic and of elementary size)
$\leadsto ~ H a n f ' s$ Theorem:
connection between FO logic and automata

Muller MPA vs. MSO logic

Theorem
$\operatorname{EMSO}\left(\left\{\mathbb{Z}, \lessdot_{\text {proc }},<_{\text {msg }}\right\}\right)$

$$
\begin{aligned}
\varphi::= & x \leq y\left|x \lessdot_{\text {proc } y}\right| x<_{\text {msg }} y \mid \\
& \lambda(x)=\sigma|x=y| x \in X|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\exists x \varphi| \exists X \varphi
\end{aligned}
$$

In the setting of Muller MPA and finite or infinite MSCs:

- not every implementation has a specification formulas cannot express: "there are infinitely many flips"
- every specification is implementable

Muller MPA vs. MSO logic

Theorem
$\operatorname{EMSO}^{\infty}\left(\left\{\mathbb{Z}, \lessdot_{\text {proc }},<_{\mathrm{msg}}\right\}\right)=\mathrm{EMSO}+$ "there are infinitely many...$"$

$$
\begin{aligned}
\varphi::= & \exists{ }^{\infty} x \varphi \mid \\
& \underline{x \leq y}\left|x \lessdot_{\text {proc }} y\right| x<_{\text {msg }} y \mid \\
& \lambda(x)=\sigma|x=y| x \in X|\neg \varphi| \varphi_{1} \vee \varphi_{2}|\exists x \varphi| \exists X \varphi
\end{aligned}
$$

- every implementation has a specification
- every specification is implementable

Presentation outline

(1) Muller Message-Passing Automata and MSCs
(2) Monadic Second-Order Logic over MSCs
(3) Ehrenfeucht-Fraïssé Game and Hanf's Theorem for FO^{∞} logic
(4) Muller MPA vs. MSO Logic

Ehrenfeucht-Fraïssé game

The classical Ehrenfeucht-Fraïssé game characterizes FO.

- Played on structures $\mathfrak{A}=(A, \ldots)$ and $\mathfrak{B}=(B, \ldots)$ over a finite and function-free signature
- Two players: Spoiler and Duplicator
- Game position: $((\mathfrak{A}, \bar{a}),(\mathfrak{B}, \bar{b}), k)$
winning if $k=0$ and (\bar{a}, \bar{b}) is a partial isomorphism from \mathfrak{A} to \mathfrak{B}

Ehrenfeucht-Fraïssé game

The classical Ehrenfeucht-Fraïssé game characterizes FO.

- Played on structures $\mathfrak{A}=(A, \ldots)$ and $\mathfrak{B}=(B, \ldots)$ over a finite and function-free signature
- Two players: Spoiler and Duplicator
- Game position: $((\mathfrak{A}, \bar{a}),(\mathfrak{B}, \bar{b}), k)$
winning if $k=0$ and (\bar{a}, \bar{b}) is a partial isomorphism from \mathfrak{A} to \mathfrak{B}
If $k>0$:
(1) Spoiler chooses $a \in A$ or $b \in B$.
(2) Duplicator chooses an element in the other structure (i.e., $b \in B$ or $a \in A$).
(3) The game proceeds with $((\mathfrak{A}, \bar{a} a),(\mathfrak{B}, \bar{b} b), k-1)$.

Ehrenfeucht-Fraïssé game

The classical Ehrenfeucht-Fraïssé game characterizes FO.

- Played on structures $\mathfrak{A}=(A, \ldots)$ and $\mathfrak{B}=(B, \ldots)$ over a finite and function-free signature
- Two players: Spoiler and Duplicator
- Game position: $((\mathfrak{A}, \bar{a}),(\mathfrak{B}, \bar{b}), k)$
winning if $k=0$ and (\bar{a}, \bar{b}) is a partial isomorphism from \mathfrak{A} to \mathfrak{B}
If $k>0$:
(1) Spoiler chooses $a \in A$ or $b \in B$.
(2) Duplicator chooses an element in the other structure (i.e., $b \in B$ or $a \in A$).
(3) The game proceeds with $((\mathfrak{A}, \bar{a} a),(\mathfrak{B}, \bar{b} b), k-1)$.

Theorem (Ehrenfeucht-Fraïssé)

\mathfrak{A} and \mathfrak{B} agree on $\mathrm{FO}[k]$ iff Duplicator wins the game $(\mathfrak{A}, \mathfrak{B}, k)$.

Extended Ehrenfeucht-Fraïssé game

The classical Ehrenfeucht-Fraïssé game characterizes FO.
If $k>0$:
(2) Spoiler chooses $a \in A$ or $b \in B$.
(3) Duplicator chooses an element in the other structure (i.e., $b \in B$ or $a \in A$).
(4) The game proceeds with $((\mathfrak{A}, a),(\mathfrak{B}, b), k-1)$.

Extended Ehrenfeucht-Fraïssé game

The extended Ehrenfeucht-Fraïssé game characterizes FO^{∞}.
If $k>0$:
(1) Spoiler chooses to proceed with (2) or (2').
(2) Spoiler chooses $a \in A$ or $b \in B$.
(3) Duplicator chooses an element in the other structure (i.e., $b \in B$ or $a \in A$).
(4) The game proceeds with $((\mathfrak{A}, a),(\mathfrak{B}, b), k-1)$.
(2') Spoiler chooses an infinite subset Z of A or of B.
(3') Duplicator chooses an infinite subset of the set Z and an infinite subset of the other structure ($\rightsquigarrow A^{\prime}$ and B^{\prime}).
(4') Spoiler chooses elements $a \in A^{\prime}$ and $b \in B^{\prime}$.
(5') The game proceeds with $((\mathfrak{A}, a),(\mathfrak{B}, b), k-1)$.

Extended Ehrenfeucht-Fraïssé game

The extended Ehrenfeucht-Fraïssé game characterizes FO^{∞}.
If $k>0$:
(1) Spoiler chooses to proceed with (2) or (2').
(2) Spoiler chooses $a \in A$ or $b \in B$.
(3) Duplicator chooses an element in the other structure (i.e., $b \in B$ or $a \in A$).
(4) The game proceeds with $((\mathfrak{A}, a),(\mathfrak{B}, b), k-1)$.
(2') Spoiler chooses an infinite subset Z of A or of B.
(3') Duplicator chooses an infinite subset of the set Z and an infinite subset of the other structure ($\rightsquigarrow A^{\prime}$ and B^{\prime}).
(4') Spoiler chooses elements $a \in A^{\prime}$ and $b \in B^{\prime}$.
(5') The game proceeds with $((\mathfrak{A}, a),(\mathfrak{B}, b), k-1)$.

Theorem

\mathfrak{A} and \mathfrak{B} agree on $\mathrm{FO}^{\infty}[k]$ iff Duplicator wins the (new) game ($\mathfrak{A}, \mathfrak{B}, k$).

Threshold equivalence

In the context of structures of bounded degree, it is sufficient to count spheres of structures \mathfrak{A} and \mathfrak{B} up to some threshold to know if Duplicator wins.

Definition

Let $r \in \mathbb{N}$. The r-sphere of \mathfrak{A} around $a \in A$ is the substructure of \mathfrak{A} induced by $\left\{a^{\prime} \in A \mid\right.$ distance $\left.\left(a, a^{\prime}\right) \leq r\right\}$.

Threshold equivalence

In the context of structures of bounded degree, it is sufficient to count spheres of structures \mathfrak{A} and \mathfrak{B} up to some threshold to know if Duplicator wins.

Definition

Let $r \in \mathbb{N}$. The r-sphere of \mathfrak{A} around $a \in A$ is the substructure of \mathfrak{A} induced by $\left\{a^{\prime} \in A \mid\right.$ distance $\left.\left(a, a^{\prime}\right) \leq r\right\}$.

Example

Threshold equivalence

In the context of structures of bounded degree, it is sufficient to count spheres of structures \mathfrak{A} and \mathfrak{B} up to some threshold to know if Duplicator wins.

Definition

Let $r \in \mathbb{N}$. The r-sphere of \mathfrak{A} around $a \in A$ is the substructure of \mathfrak{A} induced by $\left\{a^{\prime} \in A \mid\right.$ distance $\left.\left(a, a^{\prime}\right) \leq r\right\}$.

Example

Threshold equivalence

In the context of structures of bounded degree, it is sufficient to count spheres of structures \mathfrak{A} and \mathfrak{B} up to some threshold to know if Duplicator wins.

Definition

Let $r \in \mathbb{N}$. The r-sphere of \mathfrak{A} around $a \in A$ is the substructure of \mathfrak{A} induced by $\left\{a^{\prime} \in A \mid\right.$ distance $\left.\left(a, a^{\prime}\right) \leq r\right\}$.

Example

Threshold equivalence

Definition

Let $r, t \in \mathbb{N}$. We write $\mathfrak{A} \leftrightarrows_{r, t} \mathfrak{B}$ if, for any r-sphere \mathcal{S},

$$
|\mathfrak{A}|_{\mathcal{S}}=|\mathfrak{B}|_{\mathcal{S}} \quad \text { or } \quad \text { both } t<|\mathfrak{A}|_{\mathcal{S}} \text { and } t<|\mathfrak{B}|_{\mathcal{S}} .
$$

Theorem (Hanf 1965)
For any $k, l \in \mathbb{N}$, there are $r, t \in \mathbb{N}$ such that

$$
\mathfrak{A} \leftrightarrows_{r, t} \mathfrak{B} \quad \text { implies } \quad \text { Duplicator wins }(\mathfrak{A}, \mathfrak{B}, k) \text { (classically) }
$$

for any \mathfrak{A} and \mathfrak{B} of degree at most 1 .

Threshold equivalence

Definition

Let $r, t \in \mathbb{N}$. We write $\mathfrak{A} \leftrightarrows{ }_{r, t}^{\infty} \mathfrak{B}$ if, for any r-sphere \mathcal{S},

$$
|\mathfrak{A}|_{\mathcal{S}}=|\mathfrak{B}|_{\mathcal{S}} \quad \text { or } \quad \text { both } t<|\mathfrak{A}|_{\mathcal{S}}<\infty \text { and } t<|\mathfrak{B}|_{\mathcal{S}}<\infty .
$$

Theorem
For any $k, l \in \mathbb{N}$, there are $r, t \in \mathbb{N}$ such that

$$
\mathfrak{A} \leftrightarrows{ }_{r, t}^{\infty} \mathfrak{B} \quad \text { implies } \quad \text { Duplicator wins }(\mathfrak{A}, \mathfrak{B}, k) \text { (extended) }
$$

for any \mathfrak{A} and \mathfrak{B} of degree at most l.

Presentation outline

(1) Muller Message-Passing Automata and MSCs
(2) Monadic Second-Order Logic over MSCs
(3) Ehrenfeucht-Fraïssé Game and Hanf's Theorem for FO^{∞} logic
(4) Muller MPA vs. MSO Logic

MPA vs. MSO logic

The key connection between MPA and FO logic:
"There is an MPA that computes the spheres around single events."

Proposition (B. \& Leucker 2004)

Let $r \in \mathbb{N}$. There are Muller / termination-detecting Staiger-Wagner MPA $\mathcal{A}_{r}=\left(\left(\mathcal{A}_{p}\right)_{p \in \text { Proc }}, \mathcal{D}, \imath, F\right)$ and η mapping any local state to an r-sphere such that, for any MSC \mathcal{M} :

- there exists an accepting run of \mathcal{A}_{r} on \mathcal{M}
- for any accepting run ρ of \mathcal{A}_{r} on \mathcal{M} and any event e of \mathcal{M}, $\eta(\rho(e))$ is the r-sphere of \mathcal{M} around e

Muller MPA vs. MSO logic

Let $r \in \mathbb{N}, t \in \mathbb{N} \cup\{\infty\}$, and \mathcal{S} be some r-sphere in some MSC.

Lemma

There exists a termination-detecting Muller MPA \mathcal{A} such that $L(\mathcal{A})$ is the set of MSCs \mathcal{M} satisfying

$$
|\mathcal{M}|_{S}=t \quad / \quad t<|\mathcal{M}|_{S}<\infty
$$

Let $r \in \mathbb{N}, t \in \mathbb{N}$, and S be some r-sphere in some MSC
Lamma
There exists a termination-detecting Staiger-Wagner MPA \mathcal{A} such that
$L(\mathcal{A})$ is the set of MSCs \mathcal{M} satisfying

Muller MPA vs. MSO logic

Let $r \in \mathbb{N}, t \in \mathbb{N} \cup\{\infty\}$, and \mathcal{S} be some r-sphere in some MSC.

Lemma

There exists a termination-detecting Muller MPA \mathcal{A} such that $L(\mathcal{A})$ is the set of MSCs \mathcal{M} satisfying

$$
|\mathcal{M}|_{S}=t \quad / \quad t<|\mathcal{M}|_{S}<\infty
$$

Let $r \in \mathbb{N}, t \in \mathbb{N}$, and \mathcal{S} be some r-sphere in some MSC.

Lemma

There exists a termination-detecting Staiger-Wagner MPA \mathcal{A} such that $L(\mathcal{A})$ is the set of MSCs \mathcal{M} satisfying

$$
|\mathcal{M}|_{S}=t \quad / \quad t<|\mathcal{M}|_{S}
$$

Muller MPA vs. MSO logic

Theorem
Let L be a set of MSCs. The following are equivalent:

- there is a termination-detecting Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a sentence $\varphi \in \mathrm{EMSO}^{\infty}\left(\left\{\lessdot_{\mathrm{proc}},<_{\mathrm{msg}}\right\}\right)$ such that $L=L(\varphi)$
\square
- It is sufficient to consider the case $\varphi \in \mathrm{FO}^{\infty}\left(\left\{\lessdot_{\text {proc }},<_{\mathrm{msg}}\right\}\right)$
- L is a finite union of $\leftrightarrows \infty$-equivalence classes for some $r, t \in \mathbb{N}$.
- Any such equivalence class is an intersection of languages as in the lemma above.
- Radius is bounded by 3
- t is bounded by $|\varphi| \cdot r$ or infinite
- Size of the termination-detecting Muller MPA elementary in r

Muller MPA vs. MSO logic

Theorem

Let L be a set of MSCs. The following are equivalent:

- there is a termination-detecting Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a sentence $\varphi \in \operatorname{EMSO}^{\infty}\left(\left\{\lessdot_{\mathrm{proc}},<_{\mathrm{msg}}\right\}\right)$ such that $L=L(\varphi)$

Proof (\Leftarrow).

- It is sufficient to consider the case $\varphi \in \mathrm{FO}^{\infty}\left(\left\{\lessdot_{\text {proc }},<_{\text {msg }}\right\}\right)$.
- L is a finite union of $\leftrightarrows_{r, t}^{\infty}$-equivalence classes for some $r, t \in \mathbb{N}$.
- Any such equivalence class is an intersection of languages as in the lemma above.
- Radius is bounded by $3^{|\varphi|}$.
- t is bounded by $|\varphi| \cdot r$ or infinite.
- Size of the termination-detecting Muller MPA elementary in r.

Staiger-Wagner MPA vs. MSO logic

Similarly, one can show:
Theorem
Let L be a set of MSCs. The following are equivalent:

- there is a termination-detecting Staiger-Wagner MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a sentence $\varphi \in \operatorname{EMSO}\left(\left\{\lessdot_{\mathrm{proc}},<_{\mathrm{msg}}\right\}\right)$ such that $L=L(\varphi)$

Summary

Theorem

Let L be a set of MSCs. The following are equivalent:

- there is a termination-detecting Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a Muller MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a Büchi MPA \mathcal{A} such that $L=L(\mathcal{A})$
- there is a sentence $\varphi \in \operatorname{EMSO}^{\infty}\left(\left\{\lessdot_{\text {proc }},<_{\mathrm{msg}}\right\}\right)$ such that $L=L(\varphi)$

