An optimal construction of Hanf sentences *

Benedikt Bollig1
Dietrich Kuske2

1Laboratoire Spécification et Vérification
2Technische Universität Ilmenau

First-order logic can only express local properties. Every first-order sentence is equivalent to ...

- [Gaifman '82] a boolean combination of formulas of the form
 “there are at least k elements x of pairwise distance $>2d$
 whose d-sphere satisfies $\varphi(x)$”
 where $\varphi(x)$ is d-local around x.

- [Schwentick & Barthelmann '99] a formula of the form
 $\exists x_1 \ldots \exists x_k \forall x \varphi(x_1, \ldots, x_k, x)$
 where $\varphi(x_1, \ldots, x_k, x)$ is d-local around x.

- [Hanf '65] a boolean combination of formulas of the form
 “there are at least k elements x whose d-sphere has
 isomorphism type τ”
 (over structures of bounded degree).
Hanf normal form

Applications of Hanf normal forms

The construction

Optimality
Hanf normal form

Applications of Hanf normal forms

The construction

Optimality
Terminology

- \(L \) is a finite relational signature
 \(L_n \) is its extension with \(n \) constants

- a \textit{d-sphere} (with \(n \) centers) is an \(L_n \)-structure where every element has distance \(\leq d \) to some constant

- distance in Gaifman graph of \(L_n \)-structure \(\mathcal{A} \):
 \(\{a, b\} \in \text{Edges} \) if (\(\ldots, a, \ldots, b, \ldots \)) \(\in R^\mathcal{A} \) for some \(R \in L \)

- the \textit{degree} of \(\mathcal{A} \) is the degree of the Gaifman graph of \(\mathcal{A} \)
Theorem [Hanf ’65]

∀ \mathcal{A}, \mathcal{B} \text{ locally finite } L\text{-structures}

\mathcal{A} \equiv \mathcal{B} \text{ whenever }

any one-centered sphere is realized in \mathcal{A} and in \mathcal{B} the same number of times or infinitely often. (*)

\hline
\mathcal{A} \equiv \mathcal{B}: \text{ FO sentences cannot distinguish } \mathcal{A} \text{ and } \mathcal{B}.
\mathcal{A} \equiv_r \mathcal{B}: \text{ FO sentences of quantifier rank } r \text{ cannot distinguish } \mathcal{A} \text{ and } \mathcal{B}.
\hline
Theorem [Fagin, Stockmeyer, Vardi ’95]
\[\forall r, f \in \mathbb{N} \exists d, m \in \mathbb{N} \forall A, B \ L\text{-structures of degree } \leq f: \]
\[A \equiv_r B \text{ whenever} \]
any one-centered \textit{d-sphere} is realized in \(A \) and in \(B \)
the same number of times or \(\geq m \) times. (*)

\textbf{Proof:} (*) implies winning strategy for duplicator

Theorem implies existence of Hanf normal form:
a boolean combination of formulas “\textit{d-sphere} \(\tau \) is realized at least \(k \) times”

\[A \equiv B: \text{ FO sentences cannot distinguish } A \text{ and } B. \]
\[A \equiv_r B: \text{ FO sentences of quantifier rank } r \text{ cannot distinguish } A \text{ and } B. \]
Terminology

- τ_1, \ldots, τ_n all one-centered d-spheres of degree $\leq f$
- $t_i^A = \text{minimum of } m \text{ and number of realisations of } \tau_i \text{ in } A$
- $t^A = (t_1^A, t_2^A, \ldots, t_n^A) \in \{0, 1, \ldots, m\}^n$
- $T_\varphi = \{t^A \mid A \text{ of degree } \leq f \text{ with } A \models \varphi\}$

Corollary

For every sentence φ of quantifier rank $\leq r$ and every L-structure A of degree $\leq f$,

$$A \models \varphi \text{ if and only if } t^A \in T_\varphi.$$

Note: The set T_φ from proof is empty iff φ is contradictory. Hence above T_φ cannot be computed from φ, also if we restrict to finite structures [Willard ’94].
Definition

• Let $S^A_d(\bar{x})$ denote the d-sphere around \bar{x} in A.

• For a d-sphere τ with n centers, the formula $\text{sph}_d(\bar{x}) \cong \tau$ expresses “the d-sphere around \bar{x} is isomorphic to τ”.

• A formula $\psi(\bar{x})$ is in Hanf normal form if it is a Boolean combination of formulas $\exists \geq k x : \text{sph}_d(\bar{x}, x) \cong \tau$.

• Two formulas are f-equivalent if they are equivalent on all structures of degree $\leq f$.

Corollary

For every formula φ and every $f \in \mathbb{N}$, there exists an f-equivalent formula in Hanf normal form.
Corollary [Seese ’96]

From a formula φ and $f \in \mathbb{N}$, one can compute an f-equivalent formula in Hanf normal form.

Proof: Let β express “the structure has degree $\leq f$”. Enumerate all tautologies until you find one of the form

$$\beta \rightarrow (\varphi \leftrightarrow \psi)$$

where ψ is in Hanf normal form.

Output ψ.
Remark

- this construction is not primitive recursive
- [Durand & Grandjean '07] and [Lindell '08]: primitive recursive constructions by elimination of quantifiers and change of signature (superfluous analysis: non-elementary)
- [Clochard '12]: construction by Durand & Grandjean is 4-fold exponential
Hanf normal form

Applications of Hanf normal forms

The construction

Optimality
Automata theory

- logical characterization of automata that can “compute spheres”:
 - graph acceptors [Thomas '90]
 - finite automata, tree automata, ...
 - communicating finite-state machines [B. & Leucker '04]
- automata are expressively equivalent to EMSO logic
 \[\exists X_1 \ldots \exists X_n : \varphi(X_1, \ldots, X_n) \] with \(\varphi \) a first-order formula

Model checking

- \(\mathcal{A} \models \varphi \) is decidable in linear time (for fixed \(\varphi, f \)) [Seese '96]
- algorithm computes \(t^A \) in linear time and checks \(t^A \in T_\varphi \)
Hanf normal form

Applications of Hanf normal forms

The construction

Optimality
Let

\[(\neg)\exists x_k \ldots (\neg)\exists x_1 : \varphi(\overline{x}, x_1, \ldots, x_k)\]

be a formula in prenex normal form. We want to construct, “fast”, an f-equivalent formula $\psi(\overline{x})$ in Hanf normal form. We proceed by induction.

Base step: Let T be the set of all 0-spheres τ of degree $\leq f$ with $|\overline{x}| + k + 1$ centers $\overline{c}, c_1, \ldots, c_k, d$ such that

\[\forall n \quad \tau \models \varphi(\overline{c}, c_1, \ldots, c_k) .\]

Then, φ and

\[\bigvee_{\tau \in T} \exists \geq 1 y : \text{sph}_0(\overline{x}, x_1, \ldots, x_k, y) \equiv \tau\]

are f-equivalent.

Induction step: negation is trivial
Inductive step:

\[\Phi = \exists x \varphi(\overline{x}, x) \quad \text{HNF} \]

\[\Rightarrow \quad \psi(\overline{x}) = \bigvee_{\tau} (\varphi' \land \exists \geq 1 x : \text{sph}_e(\overline{x}, x) \cong \tau) \quad \text{HNF} \]

\[\exists^m y \text{sph}_{d'}(\overline{x}, x, y) \cong \sigma \quad f\text{-equivalent to } \Phi \]

\[\sigma \text{ has } n + 2 \text{ centers; } d' \leq d \]

\[\tau \text{ ranging over all } e = (3d + 1)\text{-spheres of degree } \leq f \text{ with } n + 1 \text{ centers} \]

We obtain \(\varphi' \) from \(\varphi \) by replacing

\[\alpha = \exists^m y \text{sph}_{d'}(\overline{x}, x, y) \cong \sigma \text{ by } \alpha' : \]

**Case 1: dist}_\sigma(x, y) \leq 2d' + 1 \]

\[\alpha' = \begin{cases} \text{true} & \text{if } p \geq m \\ \text{false} & \text{else} \end{cases} \]

where \(p = |\{y \in S_{2d'+1}(x) \mid S_{d'}(\overline{x}, x, y) \cong \sigma\}| \)
Inductive step:

\[\Phi = \exists x \varphi(\overline{x}, x) \quad \Rightarrow \quad \psi(\overline{x}) = \bigvee_\tau (\varphi' \land \exists \geq 1 x : \text{sph}_e(\overline{x}, x) \cong \tau) \]

- HNF
- HNF

\[\exists \geq m y \text{sph}_{d'}(\overline{x}, x, y) \cong \sigma \]
- \(\sigma \) has \(n + 2 \) centers; \(d' \leq d \)
- \(\tau \) ranging over all \(e = (3d + 1) \)-spheres of degree \(\leq f \) with \(n + 1 \) centers

We obtain \(\varphi' \) from \(\varphi \) by replacing \(\alpha = \exists \geq m y \text{sph}_{d'}(\overline{x}, x, y) \cong \sigma \) by \(\alpha' \):

Case 2: \(\text{dist}_\sigma(x, y) = \infty \)

\[\alpha' = \begin{cases}
\text{false} & \text{if } \not\subseteq S^\sigma_{d'}(\overline{x}, x) \\
\exists \geq m + p y \text{sph}_{d'}(\overline{x}, y) \cong S^\sigma_{d'}(\overline{x}, y) & \text{else}
\end{cases} \]

where \(p = |\{ y \in S^\tau_{2d' + 1}(x) | \cong S^\sigma_{d'}(\overline{x}, y) \}| \)
Size and computation time:

$$\psi(\overline{x}) = \bigvee_{\tau \leq 2^{n^{O(1)} \cdot f^{O(d)}}} \left(\varphi' \leq |\varphi| \cdot f^{O(d)} \wedge \exists \geq 1 \ x \ \text{sph}_{3d+1}(\overline{x}, x) \approx \tau \right)$$

$$|\psi(\overline{x})| \leq |\varphi| \cdot 2^{n^{O(1)} \cdot f^{O(d)}}$$

Radius d is exponential in the size of the original formula.
Theorem
From a formula φ and $f > 1$, one can construct an f-equivalent formula ψ in Hanf normal form of triply exponential size. This construction can be carried out in time

$$2^{f^{2^O(|\varphi|)}}.$$
Hanf normal form

Applications of Hanf normal forms

The construction

Optimality
Theorem
There is a family of sentences \((\varphi_n)_{n \in \mathbb{N}}\) with \(|\varphi_n| \in O(n)\) such that every 3-equivalent formula \(\psi_n\) in HNF has \(\geq 2^{2^{2^n+1} - 1}\) subformulas of the form \(\exists \geq m x : \text{spH}_d(x) \approx \sigma\), so \(|\psi_n| \geq 2^{2^{2^n+1} - 1}\).

Proof:
Uses forests \(\mathcal{A}\) consisting of binary ordered trees with a unary predicate.

[Frick & Grohe ’04]: there are sentences \(\varphi_n\) of size \(O(n)\) such that \(\mathcal{A} \models \varphi_n\) if and only if

no two complete binary trees of height \(2^n\) in \(\mathcal{A}\) are isomorphic.
Let ψ_n be in HNF, 3-equivalent to φ_n, and $|\psi_n| < 2^{2^{2^n}+1} - 1$.

There is one complete binary tree B with root r and of height 2^n such that (B, r) does not occur in ψ_n.

Let $M \in \mathbb{N}$ be maximal such that $\exists^{\geq M}$ appears in ψ_n.

$$A_0 = \left(\bigcup_{1 \leq d \leq 2^n} S_d^B(u) \uplus \ldots \uplus S_d^B(u) \right) \setminus \{B\}$$

Then, A_0 does not contain any complete binary tree of height 2^n, so $A_0 \models \psi_n$.

Let $A_2 = A_0 \uplus B \uplus B$. Then, A_2 realises the same spheres mentioned in ψ_n as A_0, the same number of times (up to M). Thus, $A_2 \models \psi_n$. But $A_2 \not\models \varphi_n$, a contradiction. \qed
Summary

Theorem
From a formula φ and $f > 1$, one can construct an f-equivalent formula ψ in Hanf normal form of triply exponential size in triply exponential time – and this is optimal.