Automata and Logic for Concurrent Systems

Benedikt Bollig

Laboratoire Spécification et Vérification

Workshop Automaten und Logik
Theorietag Automaten und Formale Sprachen
25.-27. September 2013, Ilmenau
What is a concurrent system?

- Collection of autonomous computing entities (processes) connected by some communication medium
What is a concurrent system?

- Collection of autonomous computing entities (processes) connected by some communication medium
- Processes access and update shared resources (e.g., variables, channels, databases, ...)

Purpose:
- Entities collaborate on a task: terminating computation with input and output
- Entities model a reactive system: focus on behavior, properties of performed action sequence (e.g., mutual exclusion)

In this talk: formal modeling of concurrent reactive systems (in terms of automata) to make them accessible to formal methods
What is a concurrent system?

- Collection of autonomous computing entities (processes) connected by some communication medium
- Processes access and update shared resources (e.g., variables, channels, databases, ...)
- Schematic view:
What is a concurrent system?

- Collection of **autonomous computing entities** (processes) connected by some **communication medium**
- Processes access and update shared resources (e.g., variables, channels, databases, ...)
- Schematic view:

```
  Communication medium

  Process 1  Process 2  ...  Process n
```

- **Purpose:**
 - entities collaborate on a task: terminating computation with input and output
 - entities model a **reactive system**: focus on behavior, properties of performed action sequence (e.g., mutual exclusion)
What is a concurrent system?

- Collection of **autonomous computing entities** (processes) connected by some **communication medium**
- Processes access and update shared resources (e.g., variables, channels, databases, ...)
- Schematic view:

 ![Diagram of concurrent system](https://via.placeholder.com/150)

 Communication medium

 ↑↓ ↑↓ ↑↓

 Process 1 Process 2 ... Process n

- Purpose:
 - entities collaborate on a task: terminating computation with input and output
 - entities model a **reactive system**: focus on behavior, properties of performed action sequence (e.g., mutual exclusion)
- In this talk: formal modeling of concurrent reactive systems (in terms of automata) to make them accessible to formal methods
2. Classification
Form of communication

single process
Form of communication

- **single process**
 - a
 - b
 - a
 - c
 - b
 - a

- **shared memory**
 - a
 - b
 - a
 - b
 - c
 - a
 - b

Classification and Objectives
Form of communication

- **single process**
- **shared memory**
- **message passing/broadcasting**
System architecture

... static & known

\begin{itemize}
\item ...
\item static & known
\end{itemize}
System architecture

Classification and Objectives
System architecture

- Static & known
- Static & unknown (parameterized)
- Dynamic
Type of single process

finite-state
Type of single process

finite-state

recursive
Type of single process

finite-state

recursive

timed
The various settings ...

<table>
<thead>
<tr>
<th>Single process</th>
<th>Shared memory</th>
<th>Message passing/ broadcasting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static & Known</th>
<th>Static & Unknown (parameterized)</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finite-state</th>
<th>Recursive</th>
<th>Timed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The various settings ...

<table>
<thead>
<tr>
<th>Single Process</th>
<th>Shared Memory</th>
<th>Message Passing/Broadcasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static & Known</td>
<td>Static & Unknown (Parameterized)</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Finite-State</td>
<td>Recursive</td>
<td>Timed</td>
</tr>
</tbody>
</table>
The various settings ...

single process | shared memory | message passing/broadcasting
static & known | static & unknown (parameterized) | dynamic
finite-state | recursive | timed
The various settings ...
The various settings ...

<table>
<thead>
<tr>
<th>Single process</th>
<th>Shared memory</th>
<th>Message passing/broadcasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static & known</td>
<td>Static & unknown (parameterized)</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Finite-state</td>
<td>Recursive</td>
<td>Timed</td>
</tr>
</tbody>
</table>
The various settings ...

- **Behavior**
 - Words

- **System model**
 - Finite automata
 - Kripke structures

<table>
<thead>
<tr>
<th>Setting</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single process</td>
<td></td>
</tr>
<tr>
<td>Shared memory</td>
<td></td>
</tr>
<tr>
<td>Message passing/broadcasting</td>
<td></td>
</tr>
<tr>
<td>Static & known</td>
<td></td>
</tr>
<tr>
<td>Static & unknown (parameterized)</td>
<td></td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
</tr>
<tr>
<td>Finite-state</td>
<td></td>
</tr>
<tr>
<td>Recursive</td>
<td></td>
</tr>
<tr>
<td>Timed</td>
<td></td>
</tr>
</tbody>
</table>
The various settings ...

[Diagram showing various settings and their corresponding models:
- Single process
- Shared memory
- Message passing/broadcasting
- Static & known
- Static & unknown (parameterized)
- Dynamic
- Finite-state
- Recursive
- Timed

Behavior
- Words

System model
- Finite automata
- Kripke structures

Specification
- Linear-time temporal logic (LTL)
- Monadic second-order logic (MSO)
- Regular expressions

Classification and Objectives
The various settings ...

<table>
<thead>
<tr>
<th>Single Process</th>
<th>Shared Memory</th>
<th>Message Passing/Broadcasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>static & known</td>
<td>static & unknown (parameterized)</td>
<td>dynamic</td>
</tr>
<tr>
<td>finite-state</td>
<td>recursive</td>
<td>timed</td>
</tr>
</tbody>
</table>
The various settings ...

Behavior

- Mazurkiewicz traces
 [Mazurkiewicz '86]
The various settings ...

Behavior
- Mazurkiewicz traces
 [Mazurkiewicz '86]

System model
- Asynchronous automata
 [Zielonka '87]
- Asynchronous cellular automata
The various settings ...
The various settings ...

<table>
<thead>
<tr>
<th>Single process</th>
<th>Shared memory</th>
<th>Message passing/broadcasting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static & known</td>
<td>Static & unknown (parameterized)</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Finite-state</td>
<td>Recursive</td>
<td>Timed</td>
</tr>
</tbody>
</table>
The various settings ...

<table>
<thead>
<tr>
<th>Single process</th>
<th>Shared memory</th>
<th>Message passing/broadcasting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Behavior**
 - Message sequence charts

<table>
<thead>
<tr>
<th>Static & known</th>
<th>Static & unknown (parameterized)</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Classification and Objectives**
 - Finite-state
 - Recursive
 - Timed
The various settings ...

- **single process**
- **shared memory**
- **message passing/broadcasting**

Behavior
- Message sequence charts

System model
- Communicating automata
 [Brand-Zafiropulo '83]
- Lossy channel systems
 [Finkel '87, Abdulla-Jonsson '96]
The various settings ...
The various settings ...

single process
shared memory
message passing/broadcasting

static & known
static & unknown (parameterized)
dynamic

finite-state
recursive
timed
The various settings ...

Behavior

- Dynamic message sequence charts
The various settings ...

<table>
<thead>
<tr>
<th>Setting</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single process</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>Shared memory</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>Message passing/broadcasting</td>
<td>![Diagram]</td>
</tr>
</tbody>
</table>

Behavior
- Dynamic message sequence charts

System model
- Dynamic communicating automata
 - [B., Cyriac, Héluët, Kara, Schwentick '13]
The various settings ...

Behavior
- Dynamic message sequence charts

System model
- Dynamic communicating automata
 [B., Cyriac, Héloüët, Kara, Schwentick '13]

Specification
- High-level expressions with registers

Classification and Objectives
The various settings …

- Single process
- Shared memory
- Message passing/broadcasting

- Static & known
- Static & unknown (parameterized)
- Dynamic

- Finite-state
- Recursive
- Timed
The various settings ...

- Single process
- Shared memory
- Message passing/broadcasting

- Static & known
- Static & unknown (parameterized)
- Dynamic

- Finite-state
- Recursive
- Timed

Behavior

▶ Words?
The various settings ...

Behavior

- Words?

System model

- Parametric ad-hoc networks
 [Delzanno-Sangnier et al. ’10–’13]

Classification and Objectives
The various settings ...

- **Behavior**
 - Words?

- **System model**
 - Parametric ad-hoc networks
 [Delzanno-Sangnier et al. '10–'13]

- **Specification**
 - Reachability questions
The various settings ...

- **single process**
- **shared memory**
- **message passing/broadcasting**

- **static & known**
- **static & unknown (parameterized)**
- **dynamic**

- **finite-state**
- **recursive**
- **timed**
The various settings ...

Behavior
- Nested traces
The various settings ...

Classifcation and Objectives

Behavior

- Nested traces

System model

- Multi-stack systems
 [La Torre et al. '07–'13], [Atig et al.]

- Nested-word automata
 [Alur et al. '04]
The various settings ...

Behavior
- Nested traces

System model
- Multi-stack systems
 [La Torre et al. ’07–’13], [Atig et al.]
- Nested-word automata
 [Alur et al. ’04]

Specification
- Temporal logic (such as LTL)
- Monadic second-order logic (MSO)
- Regular (rational) expressions
Landscape and Objectives

Words
Mazurkiewicz traces
Message Sequence Charts
Nested words

MSO logic
Temporal logic
High-level expressions

Asynchronous automata
Message-passing automata
Multi-stack automata
Landscape and Objectives

MSO logic
Temporal logic
High-level expressions

Words
Mazurkiewicz traces
Message Sequence Charts
Nested words

\(L(\varphi) \)

Asynchronous automata
Message-passing automata
Multi-stack automata

\(L(\mathcal{A}) \)
Classification and Objectives

Landscape and Objectives

- Words
- Mazurkiewicz traces
- Message Sequence Charts
- Nested words

\[L(\varphi) \quad \text{realizability} \quad L(\mathcal{A}) \]

\[\exists \mathcal{A} : L(\varphi) = L(\mathcal{A})? \]

- MSO logic
- Temporal logic
- High-level expressions

- Asynchronous automata
- Message-passing automata
- Multi-stack automata
Landscape and Objectives

Words
Mazurkiewicz traces
Message Sequence Charts
Nested words

$L(\varphi)$

realizability

$\exists A: L(\varphi) = L(A)$?

$L(\varphi) \supseteq L(A)$?

model checking

MSO logic
Temporal logic
High-level expressions

φ

Asynchronous automata
Message-passing automata
Multi-stack automata

A
Landscape and Objectives

- MSO logic
- Temporal logic
- High-level expressions
- \(\varphi \)
- Asynchronous automata
- Message-passing automata
- Multi-stack automata
- Words
- Mazurkiewicz traces
- Message Sequence Charts
- Nested words

Realizability

\[\exists A : L(\varphi) = L(A) ? \]

Model Checking

\[L(\varphi) \supseteq L(A) ? \]

Satisfiability

\[L(\varphi) \neq \emptyset ? \]

Fomulae and Objectives
Landscape and Objectives

- MSO logic
- Temporal logic
- High-level expressions

Words
Mazurkiewicz traces
Message Sequence Charts
Nested words

\(L(\varphi) \)
\(L(A) \)

realizability
\[\exists A: L(\varphi) = L(A) ? \]

model checking
\[L(\varphi) \supseteq L(A) ? \]

satisfiability
\[L(\varphi) \neq \emptyset ? \]

nonemptiness
\[L(A) \neq \emptyset ? \]
Landscape and Objectives: Linear-Time Setting

- MSO logic
- Temporal logic
- High-level expressions
- \(\varphi \)
- Asynchronous automata
- Message-passing automata
- Multi-stack automata
- Words
- Mazurkiewicz traces
- Message Sequence Charts
- Nested words

\[L(\varphi) = L(A) \]
realizability

\[L(\varphi) \supseteq L(A) \]
model checking

\[L(\varphi) \neq \emptyset \]
satisfiability

\[L(A) \neq \emptyset \]
nonemptiness
In this talk:

- Finite-State Sequential Systems
- Finite-State Shared-Memory Systems
- Recursive Shared-Memory Systems
- Message-Passing Systems
In this talk:

- Finite-State Sequential Systems
- Finite-State Shared-Memory Systems
- Recursive Shared-Memory Systems
- Message-Passing Systems

with static and known system architecture
3. Finite-State Sequential Systems
Finite-State Sequential Systems

\[\{a, b, c\}^* \]

\[L(\varphi) \]

\[L(A) \]

LTL

\[G(a \rightarrow Fb) \]

\[((b + c)^* a(a + c)^* b)^* \]

\[\forall x (a(x) \rightarrow \exists y (x \leq y \land b(y))) \]

RExp

MSO

Diagram

State: \(b, c \)

Transition: \(a \rightarrow b \)

State: \(a, c \)

Transition: \(b \rightarrow a \)

State: \(b \)

Transition: \(a \rightarrow b \)
Finite-State Sequential Systems

\[\{a, b, c\}^* \]

\(L(\varphi)\)

\(L(A)\)

realizability

\[\exists A: L(\varphi) = L(A) ? \]

LTL

RExp

MSO

\[G(a \rightarrow Fb) \]

\[((b + c)^* a(a + c)^* b)^* \]

\[\forall x (a(x) \rightarrow \exists y (x \leq y \land b(y))) \]

\[a \rightarrow Fb \]

\[((b + c)^* a(a + c)^* b)^* \]

\[\forall x (a(x) \rightarrow \exists y (x \leq y \land b(y))) \]
Finite-State Sequential Systems

Theorem (Büchi-Elgot-Trakhtenbrot ’60s)

Every MSO formula is equivalent to some (deterministic) finite automaton.
Finite-State Sequential Systems

$L(\varphi)$

$L(A)$

$L(\varphi) \supseteq L(A)$?

model checking

LTL

$RExp$

MSO

$G(a \rightarrow Fb)$

$((b + c)^* a (a + c)^* b)^*$

$\forall x (a(x) \rightarrow \exists y (x \leq y \land b(y)))$

$\{a, b, c\}^*$
Finite-State Sequential Systems

Theorem (Büchi-Elgot-Trakhtenbrot '60s; Sistla-Clarke '85)

Model checking against MSO is decidable, but nonelementary.
Model checking LTL is PSPACE-complete.
4. Finite-State Shared-Memory Systems
Finite-State Shared-Memory Systems

LTL
MSO logic
finite automata
asynchronous automata
Mazurkiewicz traces
L(ϕ) ⊇ L(A) ?
realizability
∃A: L(ϕ) = L(A) ?
model checking

L(ϕ)
L(A)
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]
Asynchronous Automata and Mazurkiewicz Traces

Proc = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\}

Asynchronous Automaton

\[(s_0) \xrightarrow{a_1} (s_1)\]
\[(s_0, t_0) \xrightarrow{c} (s_0, t_0)\]
\[(s_1, t_1) \xrightarrow{c} (s_2, t_2)\]
\[(s_0, t_1) \xrightarrow{c} (s_0, t_1)\]
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\(\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \)

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\(\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \)

Asynchronous Automaton

![Diagram of Asynchronous Automaton]

Mazurkiewicz Trace

![Diagram of Mazurkiewicz Trace]
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

$\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\}$

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

$Proc = \{1, 2\}$ \quad $\Sigma_1 = \{a_1, b_1, c\}$ \quad $\Sigma_2 = \{a_2, b_2, c\}$

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

$\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\}$

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

Mazurkiewicz Trace
Asynchronous Automata and Mazurkiewicz Traces

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \]

Asynchronous Automaton

![Asynchronous Automaton Diagram]

Mazurkiewicz Trace

![Mazurkiewicz Trace Diagram]
Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace \(t = (E, \rightarrow_1, \rightarrow_2, \lambda) \) \(\lambda : E \rightarrow \Sigma \overset{\text{def}}{=} \Sigma_1 \cup \Sigma_2 \)
Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace

\[t = (E, \to_1, \to_2, \lambda) \quad \lambda : E \to \Sigma \overset{\text{def}}{=} \Sigma_1 \cup \Sigma_2 \]

Linearizations

\[w \in \text{Lin}(t) \subseteq \Sigma^* \quad \sim \quad trace(w) = t \]
Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace

\[t = (E, \rightarrow_1, \rightarrow_2, \lambda) \]

\[\lambda : E \rightarrow \Sigma \overset{\text{def}}{=} \Sigma_1 \cup \Sigma_2 \]

Linearizations

\[w \in \text{Lin}(t) \subseteq \Sigma^* \]

\[\sim \rightarrow \text{trace}(w) = t \]
Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace

\[t = (E, \rightarrow_1, \rightarrow_2, \lambda) \]

where

\[\lambda : E \rightarrow \Sigma \overset{\text{def}}{=} \Sigma_1 \cup \Sigma_2 \]

\[a_1 \quad 1 \quad 1 \quad a_1 \quad 1 \quad 1 \quad b_1 \quad 1 \quad 1 \quad b_1 \]

\[c \quad \quad \quad \quad \quad \quad \quad \quad c \quad \quad \quad \quad \quad \quad \quad \quad b_2 \quad 2 \quad 2 \quad b_2 \]

\[a_2 \quad 2 \quad 2 \quad a_2 \quad 2 \quad 2 \quad b_2 \quad 2 \quad 2 \quad b_2 \]

Linearizations

\[w \in \text{Lin}(t) \subseteq \Sigma^* \overset{\sim}{\sim} \text{trace}(w) = t \]

\[a_1 \quad \sim \quad a_1 \quad c \quad \sim \quad a_1 \quad a_2 \quad c \quad b_1 \quad b_1 \quad b_2 \quad b_2 \]

\[a_1 \quad \sim \quad a_1 \quad c \quad \sim \quad a_1 \quad a_2 \quad c \quad b_1 \quad b_1 \quad b_2 \quad b_2 \]

\[a_1 \quad \sim \quad a_1 \quad c \quad \sim \quad a_1 \quad a_2 \quad c \quad b_1 \quad b_1 \quad b_2 \quad b_2 \]
Mazurkiewicz Traces and Their Linearizations

Mazurkiewicz Trace

\[t = (E, \rightarrow_1, \rightarrow_2, \lambda) \]

\[\lambda : E \rightarrow \Sigma \overset{\text{def}}{=} \Sigma_1 \cup \Sigma_2 \]

Linearizations

\[w \in \text{Lin}(t) \subseteq \Sigma^* \overset{\sim}{\rightsquigarrow} \text{trace}(w) = t \]
Finite-State Shared-Memory Systems

\[L(B) \]

\[L(A) \]

\[L(B) \]

\[L(A) \]
Finite-State Shared-Memory Systems

traces
Σ

realizability
∃A: L(A) = trace(L(B)) ?

L(B)
L(A)
Finite-State Shared-Memory Systems

Theorem (Sakarovitch ’92)

Realizability for regular specifications is undecidable.
Finite-State Shared-Memory Systems

Theorem (Zielonka '87)

Let $L \subseteq \Sigma^*$ be a \sim-closed regular language. There is a (deterministic) asynchronous automaton A such that $L(A) = \text{trace}(L(B))$.

Finite-State Shared-Memory Systems

Theorem (Muscholl ’94, Peled-Wilke-Wolper ’98)
It is decidable (PSPACE-complete) if the language of a finite automaton is \(\sim\)-closed (PTIME for deterministic automata).
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- $x \rightarrow_p y$
 x and y are successive events on process $p \in \text{Proc}$
Monadic Second-Order Logic

<table>
<thead>
<tr>
<th>Monadic Second-Order Logic (MSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \rightarrow^p y$</td>
</tr>
<tr>
<td>$a(x)$</td>
</tr>
</tbody>
</table>

Example

$\exists x \exists y (b_1(x) \land b_2(y) \land x \leq y)$

where $\leq = (\rightarrow_1 \cup \rightarrow_2)^*$
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- $x \rightarrow_p y$
 x and y are successive events on process $p \in \text{Proc}$

- $a(x)$
 Event x is labeled with $a \in \Sigma$

- $x = y$

Example

$$a_1 \quad c \quad a_2 \quad c \quad a_1 \quad c \quad a_2 \quad c \quad b_1 \quad c \quad b_2$$

where $\leq = (\rightarrow_1 \cup \rightarrow_2)^*$
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- $x \rightarrow_p y$: x and y are successive events on process $p \in \text{Proc}$
- $a(x)$: event x is labeled with $a \in \Sigma$
- $x = y$
- $x \in X$: event x is contained in set of events X

Example

\[
\begin{align*}
&\exists x \exists y (b_1(x) \land b_2(y) \land x \leq y) \\
&\text{where} \quad \leq = (\rightarrow_1 \cup \rightarrow_2)^*
\end{align*}
\]
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- **$x \rightarrow_p y$** - x and y are successive events on process $p \in \text{Proc}$
- **$a(x)$** - event x is labeled with $a \in \Sigma$
- **$x = y$**
- **$x \in X$** - event x is contained in set of events X
- **$\exists x \varphi$** - there is event x such that φ

Example:

\[
|x|y|
\]

where

$\leq = (\rightarrow_1 \cup \rightarrow_2)^*$
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- $x \rightarrow_p y$ \hspace{1cm} x and y are successive events on process $p \in \text{Proc}$
- $a(x)$ \hspace{1cm} event x is labeled with $a \in \Sigma$
- $x = y$ \hspace{1cm} x is equal to y
- $x \in X$ \hspace{1cm} event x is contained in set of events X
- $\exists x \varphi$ \hspace{1cm} there is event x such that φ
- $\exists X \varphi$ \hspace{1cm} there is set of event X such that φ
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \rightarrow_p y$</td>
<td>x and y are successive events on process $p \in \text{Proc}$</td>
</tr>
<tr>
<td>$a(x)$</td>
<td>Event x is labeled with $a \in \Sigma$</td>
</tr>
<tr>
<td>$x = y$</td>
<td></td>
</tr>
<tr>
<td>$x \in X$</td>
<td>Event x is contained in set of events X</td>
</tr>
<tr>
<td>$\exists x \varphi$</td>
<td>There is event x such that φ</td>
</tr>
<tr>
<td>$\exists X \varphi$</td>
<td>There is set of event X such that φ</td>
</tr>
<tr>
<td>$\neg \varphi$</td>
<td>$\varphi \lor \psi$</td>
</tr>
</tbody>
</table>
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- \(x \rightarrow_p y \): \(x \) and \(y \) are successive events on process \(p \in \text{Proc} \)
- \(a(x) \): event \(x \) is labeled with \(a \in \Sigma \)
- \(x = y \)
- \(x \in X \): event \(x \) is contained in set of events \(X \)
- \(\exists x \varphi \): there is event \(x \) such that \(\varphi \)
- \(\exists X \varphi \): there is set of event \(X \) such that \(\varphi \)
- \(\neg \varphi \) \(\varphi \lor \psi \)

Example

\[\models \exists x \exists y (b_1(x) \land b_2(y) \land x \leq y) \]

where \(\leq = (\rightarrow_1 \cup \rightarrow_2)^* \)
Theorem (Thomas ’90)
MSO logic and asynchronous automata are expressively equivalent.
Theorem (Thomas ’90)

MSO logic and asynchronous automata are expressively equivalent.

⇒ MSO model checking is decidable.
Global Temporal Logic

\[\text{LTrL} \forall \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \text{U} \forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \]
Global Temporal Logic

<table>
<thead>
<tr>
<th>LTrL∀</th>
<th>ϕ ::= tt</th>
<th>⟨a⟩ϕ</th>
<th>ϕ₁ Uₐ ϕ₂</th>
<th>¬ϕ</th>
<th>ϕ₁ ∨ ϕ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTrL∃</td>
<td>ϕ ::= U∃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a \in \Sigma \)
Global Temporal Logic

\[
\text{LTrL}_\forall \quad \phi ::= \text{tt} \mid \langle a \rangle \phi \mid \phi_1 \text{ U } \phi_2 \mid \neg \phi \mid \phi_1 \lor \phi_2 \\
\text{LTrL}_\exists \quad \phi ::= \quad U \exists \\
\quad a \in \Sigma
\]

Semantics

Finite-State Shared-Memory Systems
Global Temporal Logic

\[
\begin{align*}
\text{LTrL}_\forall & \quad \varphi ::= \top \mid \langle a \rangle \varphi \mid \varphi_1 \mathsf{U}_\forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \\
\text{LTrL}_\exists & \quad \varphi ::= \mathsf{U}_\exists
\end{align*}
\]

Semantics

\[
\models \langle a_1 \rangle \varphi
\]
Global Temporal Logic

LTrL∀ \(\varphi ::= tt \mid \langle a \rangle \varphi \mid \varphi_1 U \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \)

LTrL∃ \(\varphi ::= \quad U \exists \)

Semantics

\(\models \langle a_1 \rangle \varphi \)

\(\models \varphi U \forall \psi \)
Global Temporal Logic

\[
\text{LTrL}_\forall \quad \phi ::= \text{tt} \mid \langle a \rangle \phi \mid \phi_1 \bigoplus \phi_2 \mid \neg \phi \mid \phi_1 \bigvee \phi_2 \quad a \in \Sigma
\]

\[
\text{LTrL}_\exists \quad \phi ::= U_\exists
\]

Semantics

\[
\models \langle a_1 \rangle \phi \]

\[
\models \phi \bigoplus \psi
\]
Global Temporal Logic

Global Temporal Logic

\[\text{LTrL}_\forall \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \text{U}_\forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \]

\[\text{LTrL}_\exists \quad \varphi ::= \quad \text{U}_\exists \]

Semantics

\[\models \langle a_1 \rangle \varphi \]

\[\models \varphi \text{ U}_\forall \psi \]
Global Temporal Logic

LTrL_∀ \quad \varphi ::= \texttt{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \U \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\
\text{a} \in \Sigma

LTrL_∃ \quad \varphi ::= \U \exists

Semantics

\begin{align*}
\langle a_1 \rangle \varphi & \quad \models \langle a_1 \rangle \varphi \\
\varphi & \quad \models \varphi \U \forall \psi
\end{align*}
Global Temporal Logic

Global Temporal Logic

<table>
<thead>
<tr>
<th>LTrL_\forall</th>
<th>$\varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi _U_ \varphi_2 \mid \neg \varphi \mid \varphi _\lor_ \varphi_2$</th>
<th>$a \in \Sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTrL_\exists</td>
<td>$\varphi ::=$</td>
<td>$_U_ \exists$</td>
</tr>
</tbody>
</table>

Semantics

\[
\begin{align*}
\langle a_1 \rangle \varphi & \quad \models \quad \langle a_1 \rangle \varphi \\
\varphi & \quad \models \quad \varphi _U_ \varphi_2
\end{align*}
\]

Finite-State Shared-Memory Systems
Global Temporal Logic

\[\begin{align*}
\text{LTrL}_\forall & \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 U \forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\
\text{a} & \in \Sigma
\end{align*} \]

\[\begin{align*}
\text{LTrL}_\exists & \quad \varphi ::= U \exists
\end{align*} \]

Semantics

\[\begin{align*}
\models \langle a_1 \rangle \varphi \\
\models \varphi \lor \psi
\end{align*} \]
Global Temporal Logic

\[LTrL_\forall \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 U_\forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \]

\[LTrL_\exists \quad \varphi ::= U_\exists \]

Semantics

\[\models \langle a_1 \rangle \varphi \]
\[\models \varphi U_\forall \psi \]
Global Temporal Logic

LTrL: \(\varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 U \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \)

LTrL\(\exists\): \(\varphi ::= \exists \varphi \mid \exists \psi \)

Semantics

\[\begin{array}{c}
\langle a_1 \rangle \varphi \quad \varphi \\
\Rightarrow \quad \langle a_1 \rangle \varphi
\end{array} \]

\[\begin{array}{c}
\psi \quad \varphi \quad \varphi \\
\Rightarrow \quad \varphi U \varphi
\end{array} \]
Global Temporal Logic

LTrL∀ \(\varphi ::= tt \mid \langle a \rangle \varphi \mid \varphi_1 U∀ \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \)

LTrL∃ \(\varphi ::= \quad U∃ \)

Semantics

\(\models \langle a_1 \rangle \varphi \)

\(\models \varphi U∀ \psi \)
Global Temporal Logic

\[\text{LTrL}_\forall \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \text{ U } \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \]

\[\text{LTrL}_\exists \quad \varphi ::= \quad \text{U } \exists \]

Semantics

\[\models \langle a_1 \rangle \varphi \]

\[\models \text{tt U } \forall \langle b_1 \rangle \langle b_2 \rangle \text{tt} \]

Finite-State Shared-Memory Systems
Global Temporal Logic

\[\text{LTrL}_\forall \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \text{U} \forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \]

\[\text{LTrL}_\exists \quad \varphi ::= \exists \]

Semantics

\[\models \langle a_1 \rangle \varphi \]

\[\models \text{tt U} \forall \langle b_1 \rangle \langle b_2 \rangle \text{tt} \]

\[\models \varphi \text{U} \exists \psi \]
Global Temporal Logic

\[\text{LTrL}_\forall \]
\[\varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 U \forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \]

\[\text{LTrL}_\exists \]
\[\varphi ::= \text{U} \exists \]

Semantics

\[\models \langle a_1 \rangle \varphi \]
\[\models \text{tt U} \forall \langle b_1 \rangle \langle b_2 \rangle \text{tt} \]
\[\models \varphi \text{ U} \exists \psi \]
Global Temporal Logic

$LTrL_\forall \quad \varphi ::= tt \mid \langle a \rangle \varphi \mid \varphi_1 U \forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma$

$LTrL_\exists \quad \varphi ::= \quad U \exists$

Semantics

$\models \langle a_1 \rangle \varphi$

$\models tt U \forall \langle b_1 \rangle \langle b_2 \rangle tt$

$\models \varphi U \exists \psi$
Global Temporal Logic

\[\text{LTrL}_\forall \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \text{U}_\forall \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \quad a \in \Sigma \]

\[\text{LTrL}_\exists \quad \varphi ::= \text{U}_\exists \]

Semantics

\[\models \langle a_1 \rangle \varphi \]

\[\models \text{tt} \text{U}_\forall \langle b_1 \rangle \langle b_2 \rangle \text{tt} \]

\[\models \varphi \text{U}_\exists \psi \]
Global Temporal Logic

LTrL_∀ \quad \varphi ::= \text{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \text{U}_∀ \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2
\quad a \in \Sigma

LTrL_∃ \quad \varphi ::= \text{U}_∃

Semantics

\begin{align*}
\models & \langle a_1 \rangle \varphi \\
\models & \text{tt} \text{U}_∀ \langle b_1 \rangle \langle b_2 \rangle \text{tt} \\
\models & \varphi \text{U}_∃ \psi
\end{align*}
Finite-State Shared-Memory Systems

LTrL∀
LTrL∃
traces

$L(\varphi)$ $L(\mathcal{A})$

$L(\varphi) \supseteq L(\mathcal{A})$?
model checking

Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

LTrL∀
LTrL∃
traces

$L(\varphi)$ $L(\mathcal{A})$
Finite-State Shared-Memory Systems

Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

- LTrL_\forall model checking is nonelementary.
Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

- LTrL_\forall model checking is nonelementary.
- LTrL_\exists model checking is undecidable.
Local Temporal Logic

\[\varphi ::= a \mid \text{EX}\varphi \mid \text{EX}_p\varphi \mid \varphi_1 U \varphi_2 \mid \varphi_1 U_p \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \]

\[a \in \Sigma, \ p \in \text{Proc} \]
Local Temporal Logic

\[\varphi ::= a \mid \text{EX}\varphi \mid \text{EX}_p\varphi \mid \varphi_1 \mathbf{U} \varphi_2 \mid \varphi_1 \mathbf{U}_p \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \]

\(a \in \Sigma, \ p \in \text{Proc} \)

Semantics (wrt. trace \(t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda) \) and \(e \in E \))

- \(t, e \models \text{EX}\varphi \) if there is \(f \in E \) such that \(e \preceq f \) and \(t, f \models \varphi \)
Local Temporal Logic

\[\varphi ::= a \mid \text{EX}\varphi \mid \text{EX}_p\varphi \mid \varphi _1 \cup \varphi _2 \mid \varphi _1 \cup_p \varphi _2 \mid \neg \varphi \mid \varphi _1 \lor \varphi _2 \]

\[a \in \Sigma, p \in \text{Proc} \]

Semantics

(wrt. trace \(t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda) \) and \(e \in E \))

- \(t, e \models \text{EX}\varphi \) if there is \(f \in E \) such that \(e \prec f \) and \(t, f \models \varphi \)
Local Temporal Logic

\[\phi ::= a \mid \text{EX}\phi \mid \text{EX}_p\phi \mid \phi_1 \text{U} \phi_2 \mid \phi_1 \text{U}_p\phi_2 \mid \neg\phi \mid \phi_1 \lor \phi_2 \]

\(a \in \Sigma, p \in \text{Proc}\)

Semantics (wrt. trace \(t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda)\) and \(e \in E\))

- \(t, e \models \text{EX}\phi\) if there is \(f \in E\) such that \(e \prec f\) and \(t, f \models \phi\)

- \(t, e \models \text{EX}_p\phi\) if there is \(f \in E\) such that \(e \rightarrow_p f\) and \(t, f \models \phi\)
Local Temporal Logic

\[\varphi ::= a | \text{EX} \varphi | \text{EX}_p \varphi | \varphi_1 \cup \varphi_2 | \varphi_1 \cup_p \varphi_2 | \neg \varphi | \varphi_1 \lor \varphi_2 \]

\[a \in \Sigma, p \in \text{Proc} \]

Semantics (wrt. trace \(t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda) \) and \(e \in E \))

- \(t, e \models \text{EX} \varphi \) if there is \(f \in E \) such that \(e \prec f \) and \(t, f \models \varphi \)

- \(t, e \models \text{EX}_p \varphi \) if there is \(f \in E \) such that \(e \rightarrow_p f \) and \(t, f \models \varphi \)
Temporal Logic

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

- $t, e \models \text{EX}_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first p-event not below e wrt. \leq
Temporal Logic

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda)$ and $e \in E$)

- $t, e \models \exists_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first p-event not below e wrt. \leq
Temporal Logic

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda)$ and $e \in E$)

- $t, e \models \overline{\text{EX}_p \varphi}$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first p-event not below e wrt. \leq

- $t, e \models \varphi \text{ U } \psi$ if there is $f \in E$ such that $e \leq f$ and $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \leq e' < f$
Temporal Logic

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda)$ and $e \in E$)

- $t, e \models \mathbf{EX}_p\varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first p-event not below e wrt. \leq

- $t, e \models \varphi \mathbf{U} \psi$ if there is $f \in E$ such that $e \leq f$ and $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \leq e' < f$
Temporal Logic

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda)$ and $e \in E$)

- $t, e \models \mathbf{EX}_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first p-event not below e wrt. \leq

- $t, e \models \varphi \mathbf{U} \psi$ if there is $f \in E$ such that $e \leq f$ and $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \leq e' < f$
Temporal Logic

Observation (Gastin-Kuske ’03)
All these modalities are MSO-definable!
Temporal Logic

Observation (Gastin-Kuske ’03)
All these modalities are MSO-definable!

<table>
<thead>
<tr>
<th>Semantics</th>
<th>(wrt. trace $t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda)$ and $e \in E$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t, e \models \text{EX}\varphi$</td>
<td>if there is $f \in E$ such that $e \preceq f$ and $t, f \models \varphi$</td>
</tr>
<tr>
<td>$t, e \models \text{EX}_p\varphi$</td>
<td>if there is $f \in E$ such that $e \rightarrow_p f$ and $t, f \models \varphi$ and f is the first p-event not below e wrt. \leq</td>
</tr>
<tr>
<td>$t, e \models \varphi \text{U} \psi$</td>
<td>if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \leq e' < f$</td>
</tr>
</tbody>
</table>
Observation (Gastin-Kuske '03)
All these modalities are MSO-definable!

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda)$ and $e \in E$)

- $t, e \models \text{EX}\varphi$ if there is $f \in E$ such that $e \prec f$ and $t, f \models \varphi$
- $t, e \models \text{EX}_p\varphi$ if there is $f \in E$ such that $e \rightarrow_p f$ and $t, f \models \varphi$ and f is the first p-event not below e wrt. \unlhd
- $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \leq e' < f$

Example

- $\text{MSO}^{\text{EX}}(x, Y) = \exists y (y \in Y \land x \prec y)$
Temporal Logic

Observation (Gastin-Kuske ’03)
All these modalities are MSO-definable!

Semantics (wrt. trace \(t = (E, (\rightarrow_p)_{p \in \text{Proc}}, \lambda) \) and \(e \in E \))

- \(t, e \models \text{EX} \varphi \) if there is \(f \in E \) such that \(e \preceq f \) and \(t, f \models \varphi \)
- \(t, e \models \text{EX}_p \varphi \) if there is \(f \in E \) such that \(e \rightarrow_p f \) and \(t, f \models \varphi \)
 and \(f \) is the first \(p \)-event not below \(e \) wrt. \(\leq \)
- \(t, e \models \varphi \text{ U } \psi \) if there is \(f \in E \) such that \(t, f \models \psi \)
 and \(t, e' \models \varphi \) for all \(e' \in E \) with \(e \leq e' < f \)

Example

- \(\text{MSO}^{\text{EX}}(x, Y) = \exists y \ (y \in Y \land x \preceq y) \)
- \(\text{MSO}^{\text{U}}(x, X, Y) = \exists y \ (y \in Y \land x \leq y \land \forall x'(x \leq x' < y \rightarrow x' \in X)) \)
Theorem (Gastin-Kuske '03)

Model checking for any MSO-definable temporal logic is in PSPACE.

Proof.
Precompile MSO modalities into finite automata. Inductively build finite automaton equivalent to the input formula.
Theorem (Gastin-Kuske ’03)

Model checking for any MSO-definable temporal logic is in PSPACE.
Theorem (Gastin-Kuske ’03)

Model checking for any MSO-definable temporal logic is in PSPACE.

Proof.

Precompile MSO modalities into finite automata. Inductively build finite automaton equivalent to the input formula.

Finite-State Shared-Memory Systems
5. Recursive Shared-Memory Systems
Recursive Shared-Memory Systems

- LTL
- MSO logic
- multi-pushdown automata
- asynchronous multi-pushdown automata
- nested traces

Realizability:
\[\exists A : L(\varphi) = L(A) ? \]

Model Checking:
\[L(\varphi) \supseteq L(A) ? \]
Asynchronous Multi-Pushdown Automata

Proc = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\}
Asynchronous Multi-Pushdown Automata

\(\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \)
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\}\]

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace

Recursive Shared-Memory Systems
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

Proc = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\}

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace

Recursive Shared-Memory Systems
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace

Recursive Shared-Memory Systems
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace

Recursive Shared-Memory Systems
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

Nested Trace

Recursive Shared-Memory Systems
Asynchronous Multi-Pushdown Automata

Proc = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\}

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

$Proc = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\}$

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\(\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \)

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

Proc = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\}

Asynchronous MPA

Nested Trace
Asynchronous Multi-Pushdown Automata

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{a_1, b_1, c\} \quad \Sigma_2 = \{a_2, b_2, c\} \quad \Sigma_{\text{call}} = \{a_1, a_2\} \quad \Sigma_{\text{ret}} = \{b_1, b_2\} \]

Asynchronous MPA

\[
\begin{array}{c}
\text{Stack 1} \\
\text{Stack 2}
\end{array}
\]

Nested Trace

\[t = (E, \rightarrow_1, \rightarrow_2, \leftarrow_1, \leftarrow_2, \lambda) \]
Recursive Shared-Memory Systems

LTL
MSO logic
multi-pushdown automata
nested traces

realizability
∃A: L(\varphi) = L(A) ?

model checking
L(\varphi) \supseteq L(A) ?

nonemptiness
L(A) \neq \emptyset ?

L(\varphi)

L(A)
Theorem

Emptiness for (asynchronous) MPA is undecidable.
Theorem

Emptiness for (asynchronous) MPA is undecidable.
Theorem

Bounded nonemptiness, satisfiability, model checking, and realizability are decidable.
Nested Traces and Their Linearizations

Nested Trace \(t = (E, \rightarrow_1, \rightarrow_2, \sim_1, \sim_2, \lambda) \)
Nested Traces and Their Linearizations

Nested Trace
\[t = (E, \rightarrow_1, \rightarrow_2, \bowtie_1, \bowtie_2, \lambda) \]

Linearizations
\[w \in \text{Lin}(t) \leadsto \text{trace}(w) = t \]
Nested Traces and Their Linearizations

Nested Trace

\[t = (E, \rightarrow_1, \rightarrow_2, \bowtie_1, \bowtie_2, \lambda) \]

\[
\begin{array}{c}
\begin{array}{c}
\text{a}_1 \\
\downarrow 1 \\
\text{c} \\
\downarrow 2 \\
\text{a}_2 \\
\end{array} \\
\begin{array}{c}
\text{a}_1 \\
\downarrow 1 \\
\text{c} \\
\downarrow 2 \\
\text{a}_2 \\
\end{array} \\
\begin{array}{c}
\text{b}_1 \\
\downarrow 1 \\
\text{c} \\
\downarrow 2 \\
\text{b}_2 \\
\end{array}
\end{array}
\]

Linearizations

\[w \in Lin(t) \iff \text{trace}(w) = t \]
Bounded Nested Words

Definition

- In a **context**, only one process **modifies** its stack.
Bounded Nested Words

Definition

- In a **context**, only one process *modifies* its stack.
- In a **phase**, only one process *pops* from its stack.
Bounded Nested Words

Definition

- In a **context**, only one process **modifies** its stack.
- In a **phase**, only one process **pops** from its stack.

A nested word is

- **k-scope bounded** if each call-return lies within k contexts.
Bounded Nested Words

Definition

- In a **context**, only one process **modifies** its stack.
- In a **phase**, only one process **pops** from its stack.

A nested word is

- **k-scope bounded** if each call-return lies within *k* contexts.
- **ordered** if a **pop** is performed only on the **first nonempty stack**.
Bounded Nested Words

Definition

- In a context, only one process modifies its stack.
- In a phase, only one process pops from its stack.

A nested word is

- **k-scope bounded** if each call-return lies within \(k \) contexts.
- **ordered** if a pop is performed only on the first nonempty stack.

6-context bounded / 2-phase bounded / 5-scope bounded / ordered
Bounded Nested Traces

Definition

A nested trace if k-context bounded / k-phase bounded / k-scope bounded / ordered if at least one linearization is so.
Bounded Nested Traces

Definition

A nested trace if k-context bounded / k-phase bounded / k-scope bounded / ordered if at least one linearization is so.

Bounded Nested Traces

2-phase bounded

not 2-phase bounded
Recursive Shared-Memory Systems

LTL

MSO logic

multi-pushdown automata

nested traces

\[L(\varphi) \]

realizability

\[\exists A : L(\varphi) = L(A) \]?

model checking

\[L(\varphi) \supseteq L(A) \]?

nonemptiness

\[L(A) \neq \emptyset \]?

LTL

MSO logic

multi-pushdown automata

\[L(A) \]

\[L(\varphi) \supseteq L(A) \]?
Recursive Shared-Memory Systems

- Nested traces
 - Context bounded
 - Phase bounded
 - Scope bounded
 - Ordered

- $L(\varphi)$
- $L(A)$

- Realizability
 - $\exists A: L(\varphi) = L(A)$?
- Model checking
 - $L(\varphi) \supseteq L(A)$?

- LTL
- MSO logic
- Multi-pushdown automata

- Nonemptiness
 - $L(A) \neq \emptyset$?
Recursive Shared-Memory Systems

Theorem

Bounded nonemptiness for sequential MPA is
- context NP-complete [Qadeer-Rehof '05]
- scope PSPACE-complete [La Torre-Napoli '11]
- phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]
- ordered 2EXPTIME-complete [Atig-B.-Habermehl '08]

\[L(\varphi) \supseteq L(A) \]

model checking

\[L(A) \neq \emptyset \]

nonemptiness
Theorem

Bounded nonemptiness for sequential MPA is

- context NP-complete [Qadeer-Rehof '05]
- scope PSPACE-complete [La Torre-Napoli '11]
- phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]
- ordered 2EXPTIME-complete [Atig-B.-Habermehl '08]

Proof for phases: binary-tree encoding
Theorem

Bounded nonemptiness for sequential MPA is
- context NP-complete [Qadeer-Rehof '05]
- scope PSPACE-complete [La Torre-Napoli '11]
- phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]
- ordered 2EXPTIME-complete [Atig-B.-Habermehl '08]

Proof for phases: binary-tree encoding

nonemptiness
Theorem

Bounded nonemptiness for sequential MPA is
- context NP-complete [Qadeer-Rehof '05]
- scope PSPACE-complete [La Torre-Napoli '11]
- phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]
- ordered 2EXPTIME-complete [Atig-B.-Habermehl '08]

Proof for phases: binary-tree encoding

\[\exists A : L(\varphi) = L(A) ? \]
Recursive Shared-Memory Systems

Theorem

Bounded nonemptiness for sequential MPA is
- context NP-complete [Qadeer-Rehof '05]
- scope PSPACE-complete [La Torre-Napoli '11]
- phase 2EXPTIME-complete [La Torre-Madhusudan-Parlato '07]
- ordered 2EXPTIME-complete [Atig-B.-Habermehl '08]

Proof for phases: binary-tree encoding
Recursive Shared-Memory Systems

nested traces

L(B)

nested words

L(A)
Recursive Shared-Memory Systems

nested traces

nested words

$L(B)$

realizability

$\exists A: L(A) = \text{trace}(L(B))$?
Theorem (B.-Grindei-Habermehl ’09)

Let L be a \sim-closed language recognized by some sequential MPA. There is an asynchronous MPA A such that $L(A) = \text{trace}(L)$.
Theorem

It is undecidable if the language of a sequential MPA is ≃-closed.
Representations

Let $\theta \in \{ k\text{-context}, k\text{-scope}, k\text{-phase}, \text{ordered} \mid k \in \mathbb{N} \}$.

Definition

A set L of θ-nested words is a θ-representation if, for all θ-nested words w, w' with $w \sim_0 w'$, we have $w \in L$ iff $w' \in L$.
Representations

Let $\theta \in \{k\text{-context}, k\text{-scope}, k\text{-phase}, \text{ordered} \mid k \in \mathbb{N}\}$.

Definition

A set L of θ-nested words is a θ-representation if, for all θ-nested words w, w' with $w \sim_0 w'$, we have $w \in L$ iff $w' \in L$.

2-phase representation

![Diagram of 2-phase representation](image-url)
Representations

Let \(\theta \in \{ k\text{-context, } k\text{-scope, } k\text{-phase, ordered } | \ k \in \mathbb{N} \} \).

Definition

A set \(L \) of \(\theta \)-nested words is a \(\theta \)-representation if, for all \(\theta \)-nested words \(w, w' \) with \(w \sim_0 w' \), we have \(w \in L \) iff \(w' \in L \).

2-phase representation

A diagram illustrating the 2-phase representation is shown.

Recursive Shared-Memory Systems
Recursive Shared-Memory Systems

θ-nested traces

θ-nested words

$L_\theta(B)$

$L(A)$
Recursive Shared-Memory Systems

θ-nested traces
θ-nested words

$L_\theta(B)$

realizability

∃A: $L(A) = \text{trace}(L_\theta(B))$?
Theorem (B.-Grindei-Habermehl ’09)

Let \mathcal{B} be some sequential MPA such that $L_\theta(\mathcal{B})$ is a θ-representation. There is an asynchronous MPA \mathcal{A} such that $L(\mathcal{A}) = \text{trace}(L_\theta(\mathcal{B}))$.

Recursive Shared-Memory Systems

θ-nested traces

θ-nested words

$L_\theta(\mathcal{B})$

$L(\mathcal{A})$

realizability

$\exists \mathcal{A}: L(\mathcal{A}) = \text{trace}(L_\theta(\mathcal{B}))$?
Theorem

For a sequential MPA B it is decidable if $L_{\theta}(B)$ is a θ-representation (in elementary time).
Monadic Second-Order Logic (MSO)

- $x \rightarrow_p y$
 x and y are successive events on process $p \in \text{Proc}$

- $x \bowtie_p y$
 x and y form a call-return pair of process $p \in \text{Proc}$

- $a(x)$
 event x is labeled with $a \in \Sigma$
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- \(x \rightarrow_p y \): \(x \) and \(y \) are successive events on process \(p \in \text{Proc} \)
- \(x \rightleftharpoons_p y \): \(x \) and \(y \) form a call-return pair of process \(p \in \text{Proc} \)
- \(a(x) \): event \(x \) is labeled with \(a \in \Sigma \)

Example

\[\models \exists x \exists y \exists z \left(x \rightleftharpoons_1 y \land a_2(z) \land x \leq z \leq y \right) \]

where \(\leq = (\rightarrow_1 \cup \rightarrow_2)^* \)
Monadic Second-Order Logic (MSO)

- $x \rightarrow_p y$: x and y are successive events on process $p \in \text{Proc}$
- $x \leftrightarrow_p y$: x and y form a call-return pair of process $p \in \text{Proc}$
- $a(x)$: event x is labeled with $a \in \Sigma$

Example

\[
\models \exists x \exists y \exists z \left(x \leftrightarrow_1 y \land a_2(z) \land x \leq z \leq y \right)
\]

where $\leq = (\rightarrow_1 \cup \rightarrow_2)^*$
Recursive Shared-Memory Systems

Theorem (La Torre-Madhusudan-Parlato '07-'13)

MSO logic and asynchronous MPA are expressively equivalent wrt. \(\theta \)-nested traces.

\[\exists A : L_\theta(\varphi) = L_\theta(A) ? \]

\[L_\theta(\varphi) \Rightarrow \text{realizability} \Rightarrow L_\theta(A) \]

MSO

\[\exists x \exists y \exists z (x \rightarrow_1 y \land a_2(z) \land x_1 \leq z \leq y_1) \]
Theorem (La Torre-Madhusudan-Parlato ’07-’13)

MSO logic and asynchronous MPA are expressively equivalent wrt. \(\theta \)-nested traces.
Theorem (La Torre-Madhusudan-Parlato ’07-’13)

MSO logic and asynchronous MPA are expressively equivalent wrt. \(\theta \)-nested traces.

\[\exists \mathcal{A}: L_\theta(\varphi) = L_\theta(\mathcal{A})? \]

\[L_\theta(\varphi) \supseteq L_\theta(\mathcal{A})? \]

\[\Rightarrow \text{MSO model checking is decidable.} \]
Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces!
Local Temporal Logic

Observation
There are lots of (local) temporal logics for nested words/traces!
⇒ Look at MSO-definable ones.
Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces!
⇒ Look at MSO-definable ones.

Abstract Until \(\varphi U^a_p \psi \)

\[
\text{MSO}^{U^a_p}(x, X_1, X_2) = \\
\exists Y \exists x' \left(x' \in X_2 \land Y \subseteq X_1 \land \right. \\
\left. \forall z (z \in Y \lor z = x') \rightarrow (z = x \lor \exists y \ (y \in Y \land \varphi_p(y, z))) \right)
\]

where \(\varphi_p(y, z) = y \bowtie_p z \lor (\neg \exists z' y \bowtie_p z' \land \neg \exists y' (y' \bowtie_p z \land y \rightarrow_p z)) \).
Model Checking ($\theta = \text{"k-phase bounded"}$)
Theorem (B.-Cyriac-Gastin-Zeitoun '11)

Model checking for any MSO-definable temporal logic is in EXPTIME when \(k \) is fixed.

\[
L_\theta(\varphi) \supseteq L_\theta(A) ?
\]
Model Checking ($\theta = \text{"k-phase bounded"}$)

Theorem (B.-Cyriac-Gastin-Zeitoun ’11)

Model checking for any MSO-definable temporal logic is in EXPTIME when k is fixed.

Theorem (B.-Kuske-Mennicke ’13)

Model checking for any MSO-definable temporal logic is elementary when k is part of the input.
6. Message-Passing Systems

- Single process
- Shared memory
- Message passing/broadcasting

- Static & known
- Static & unknown (parameterized)
- Dynamic

- Finite-state
- Recursive
- Timed
Message-Passing Systems

- Message sequence charts (MSCs)
- $L(\varphi)$
- $L(A)$
- Realizability: $\exists A: L(\varphi) = L(A)$?
- Model checking: $L(\varphi) \supseteq L(A)$?

- PDL
- MSO logic
- Finite automata

- Communicating automata
Communicating Automata and MSCs

$$\text{Proc} = \{1, 2\}$$
Communicating Automata and MSCs

\(\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\}\]

Communicating Automaton

\[\begin{array}{c}
1!_a2 \quad 1!_a2 \\
\quad \quad 1?_b2 \\
\quad \quad 2!_b1 \\
\quad \quad 2?_a1
\end{array}\]
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

$\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\}$

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

Proc = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\}

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\}\]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\(\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \)

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\}\]

\[\Sigma_1 = \{1!2, 1?2\}\]

\[\Sigma_2 = \{2!1, 2?1\}\]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\(\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \)

Communicating Automaton

![Communicating Automaton Diagram]

Message Sequence Chart (MSC)

![Message Sequence Chart Diagram]
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1\#2, 1?2\} \quad \Sigma_2 = \{2\#1, 2?1\} \]

Communicating Automaton

- \(1\#a\) \(\rightarrow\) \(1\#a\)
- \(1?b\) \(\rightarrow\) \(1\#a\)
- \(2\#a\) \(\rightarrow\) \(2\#a\)
- \(2?b\) \(\rightarrow\) \(2\#a\)

Message Sequence Chart (MSC)

\[M = (E, \rightarrow_1, \rightarrow_2, \text{msg} \rightarrow, \lambda) \]
Communicating Automata and MSCs

Proc = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\}

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

Proc = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\}

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

\[\text{Proc} = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\} \]

Communicating Automaton

Message Sequence Chart (MSC)
Communicating Automata and MSCs

Proc = \{1, 2\} \quad \Sigma_1 = \{1!2, 1?2\} \quad \Sigma_2 = \{2!1, 2?1\}

Communicating Automaton

Message Sequence Chart (MSC) \quad M = (E, \rightarrow_1, \rightarrow_2, \rightarrow^{\text{msg}}, \lambda)
Message-Passing Systems

MSCs

$L(\varphi)$

realizability

$\exists A: L(\varphi) = L(A)$?

model checking

$L(\varphi) \supseteq L(A)$?

nonemptiness

$L(A) \neq \emptyset$?

PDL

MSO logic

finite automata
Theorem

Emptiness for CA is undecidable.
Theorem

Emptiness for CA is undecidable.
Theorem

Bounded nonemptiness, satisfiability, model checking, and realizability are decidable.
Channel-Bounded MSCs

MSC M

1-bounded linearization

$w \in \text{Lin}(M) \subseteq \Sigma^* \Rightarrow \text{msc}(w) = M$

Definition

Let $B \in \mathbb{N}$. An MSC is $\exists B$-bounded if some linearization is B-bounded linearization. $\forall B$-bounded if every linearization is B-bounded.
Channel-Bounded MSCs

MSC M

3-bounded linearization $w \in \text{Lin}(M) \subseteq \Sigma^* \leadsto \text{msc}(w) = M$
Channel-Bounded MSCs

MSC M

1-bounded linearization $w \in Lin(M) \subseteq \Sigma^* \leadsto msc(w) = M$
Channel-Bounded MSCs

MSC M

1-bounded linearization $w \in \text{Lin}(M) \subseteq \Sigma^* \leadsto \text{msc}(w) = M$

Definition

Let $B \in \mathbb{N}$. An MSC is

- $\exists B$-bounded if some linearization is B-bounded linearization.
- $\forall B$-bounded if every linearization is B-bounded.
Representations

Definition
A set $L \subseteq \Sigma^*$ (of well-formed words) is a
Representations

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- $\exists B$-representation if, for all MSCs M, L contains either
 - all B-bounded linearizations of M, or
 - none of its linearizations.

Example

- $\left(\begin{array}{c} 1!2 \\ 2?1 \end{array} \right)^*$ is an $\exists 1$-representation, but no \forall-representation.
- $\left(\begin{array}{c} 1!2 \\ 2?1 \\ 3!4 \\ 4?3 \end{array} \right)^*$ is not an $\exists B$-representation, for any B.
Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- **$\exists B$-representation** if, for all MSCs M, L contains either
 - all B-bounded linearizations of M, or
 - none of its linearizations.

- **\forall-representation** if, for all MSCs M, L contains either
 - all linearizations of M, or
 - none of its linearizations.
Representations

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- **∃B-representation** if, for all MSCs M, L contains either
 - all B-bounded linearizations of M, or
 - none of its linearizations.

- **∀-representation** if, for all MSCs M, L contains either
 - all linearizations of M, or
 - none of its linearizations.

Example

\[(1!2\ 2?1)^*\] is an **∃1-representation**, but no **∀-representation**.
Representations

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- **$\exists B$-representation** if, for all MSCs M, L contains either
 - all B-bounded linearizations of M, or
 - none of its linearizations.

- **\forall-representation** if, for all MSCs M, L contains either
 - all linearizations of M, or
 - none of its linearizations.

Example

$(1!2\ 2?1)^* \text{ is an } \exists 1\text{-representation, but no } \forall\text{-representation.}$

$(1!2\ 2?1\ 3!4\ 4?3)^* \text{ is not an } \exists B\text{-representation, for any } B.
Message-Passing Systems

∀B-bounded MSCs

B-bounded words

L(B)

L(A)

(1!2 2?1 2!1 1?2)^*
∀B-bounded MSCs

B-bounded words

L(\mathcal{B})

L(\mathcal{A})

∀B-bounded MSCs

B-bounded words

() ∗

1!2 2?1 2!1 1?2

1!a2 1!a2

1?b2

2?a1

2!b1

2?a1

L(\mathcal{B})

L(\mathcal{A})

realizability

∃A: L(\mathcal{A}) = msc(L(\mathcal{B})) ?
Theorem (Henriksen et al. ’00; Kuske ’03)

Let \mathcal{B} be some finite automaton such that $L(\mathcal{B})$ is a \forall-representation. There is a (deterministic) CA \mathcal{A} such that $L(\mathcal{A}) = msc(L(\mathcal{B}))$.

∀B-bounded MSCs
B-bounded words
() ∗
1!2 2?1 2!1 1?2
1!a2 1!a2
1?b2
2?a1
2!b1
2?a1
L(B)
L(A)
realizability
∃A: L(A) = msc(L(B))?

Message-Passing Systems
Theorem (Henriksen et al. ’00)

For a finite automaton B it is decidable if $L(B)$ is a \forall-representation.
Theorem (Genest-Kuske-Muscholl ’06)

Let B be some finite automaton such that $L(B)$ is a $\exists B$-representation. There is a CA A such that $L(A) = msc(L(B))$.

\[
\begin{align*}
\exists B\text{-bounded MSCs} & \quad B\text{-bounded words} \\
L(B) & \quad L(A) \\
\exists A: L(A) = msc(L(B)) & ? \quad \text{realizability}
\end{align*}
\]
Theorem

For a finite automaton B it is decidable if $L(B)$ is an $\exists B$-representation.
Monadic Second-Order Logic (MSO)

- $x \xrightarrow{p} y$: x and y are successive events on process $p \in \text{Proc}$
- $x \xrightarrow{\text{msg}} y$: x and y form a message
- $a(x)$: event x is labeled with $a \in \Sigma$
Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- $x \rightarrow_p y$: x and y are successive events on process $p \in \text{Proc}$
- $x \rightarrow^\text{msg} y$: x and y form a message
- $a(x)$: event x is labeled with $a \in \Sigma$

Example

$$\models \exists x, y, x', y' (x \rightarrow^{\text{msg}} y \land x' \rightarrow^{\text{msg}} y' \land x \rightarrow_1^* y' \land x' \rightarrow_2^* y)$$
Theorem (B.-Leucker ’04)

EMSO logic ($\exists X_1 \ldots X_n \varphi$ with φ first-order) and communicating automata are expressively equivalent. MSO logic is strictly more expressive.
Theorem (Genest-Kuske-Muscholl ’04)

Let L be a set of $\exists B$-bounded MSCs. The following are equivalent:

- There is an MSO sentence φ such that $L = L(\varphi)$.
- There is a CA A such that $L = L(A)$.
Theorem (Genest-Kuske-Muscholl ’04)

Given a CA \mathcal{A} and an MSO sentence φ, it is decidable if all $\exists B$-bounded MSCs from $L(\mathcal{A})$ satisfy φ.

Message-Passing Systems
Theorem (B., Kuske, Meinecke 2007; Mennicke 2012)

Given a CA A and a PDL formula φ, it is decidable in PSPACE if all $\exists B$-bounded MSCs from $L(A)$ satisfy φ.

Message-Passing Systems
Message-Passing Systems

PDL
MSO logic
finite automata

MSCs

$L(\varphi)$

realizability
$\exists A: L(\varphi) = L(A)$?

model checking
$L(\varphi) \supseteq L(A)$?

L(A) ≠ \emptyset ?

nonemptiness
Message-Passing Systems

- PDL
- MSO logic
- finite automata
- MSCs
- lossy MSCs

\[L(\varphi) \]

realizability

\[\exists A : L(\varphi) = L(A) ? \]

model checking

\[L(\varphi) \supseteq L(A) ? \]

nonemptiness

\[L(A) \not= \emptyset ? \]
Theorem (Finkel ’87, Abdulla-Jonsson ’96)

Emptiness for lossy CA is **decidable**.
7. Conclusion and Perspectives
Conclusion: Finite-State Shared-Memory Systems

Realizability

Model Checking

single process
shared memory
message passing/broadcasting

static & known
static & unknown
(dynamic)

finite-state
recursive
timed
Conclusion: Recursive Shared-Memory Systems

Realizability

Model Checking

Conclusion and Perspectives
Conclusion: Message-Passing Systems

- Realizability
- Model Checking

Diagram showing different system types:
- Single process
- Shared memory
- Message passing/broadcasting
- Static & known
- Static & unknown (parameterized)
- Dynamic
- Finite-state
- Recursive
- Timed
Realizability
Model Checking
Perspectives: Parameterized Systems

Realizability
Model Checking
Reachability

Conclusion and Perspectives