Towards a Regular Theory of Parameterized Concurrent Systems

Benedikt Bollig

Laboratoire Spécification et Vérification
ENS Cachan & CNRS, France

Reports on joint works with Paul Gastin, Akshay Kumar, and Jana Schubert.

ACTS 2015
Chennai Mathematical Institute
The verification problem for parameterized systems:

«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.
The verification problem for parameterized systems:

«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

In this talk, we study language-theoretic questions / expressiveness:

- Complementation
- Equivalent characterization in terms of MSO logic
- Nonemptiness

We are looking for «robust» models of parameterized systems.
The verification problem for parameterized systems:

«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

In this talk, we study language-theoretic questions / expressiveness:

- Complementation
- Equivalent characterization in terms of MSO logic
- Nonemptiness

We are looking for «robust» models of parameterized systems.

There have been robust models for fixed process architectures:

Finite Automata

finite automaton

A finite automaton is a mathematical model of computation that consists of a set of states, input symbols, and transitions between states. The diagram above illustrates a finite automaton with states $s_0, s_1, s_2, s_3, s_4, s_5, s_6$, where the transitions are labeled with input symbols a and b. The automaton accepts strings based on the path through the states as per the input sequence.
Finite Automata

finite automaton

determinization
Theorem [Büchi-Elgot-Trakhtenbrot 1960s]:
Finite Automata = MSO

∀x(a(x) → ∃y(succ(x, y) ∧ b(y)))
Finite Automata

finite automaton

determinization

complementation

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]:
Finite Automata = MSO

∀x(a(x) → ∃y(succ(x, y) ∧ b(y)))

Proof:
- free variables
 → extended alphabet
Finite Automata

finite automaton

determinization

complementation

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]:
Finite Automata = MSO

∀x(a(x) → ∃y(succ(x, y) ∧ b(y)))

Proof:
- free variables ➔ extended alphabet
- existential quantification ➔ projection
Finite Automata

finite automaton

\[
\begin{align*}
&\text{determinization} \\
&\text{complementation}
\end{align*}
\]

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]:
Finite Automata = MSO

\[
\forall x (a(x) \rightarrow \exists y (\text{succ}(x, y) \land b(y)))
\]

Proof:
- free variables → extended alphabet
- existential quantification → projection
- negation → complementation
Theorem [Büchi-Elgot-Trakhtenbrot 1960s]:
Finite Automata = MSO

∀x(a(x) → ∃y(succ(x, y) ∧ b(y)))

Proof:
- free variables
- extended alphabet
- existential quantification
- projection
- negation
- complementation
Parameterized Communicating Automata (PCA)

non-fixed & unbounded
Parameterized Communicating Automata (PCA) over Rings

non-fixed & unbounded
A PCA is given by:

- finite automaton over \(\{l, r\} \times \{!, ?, \} \times \text{Msg} \) \hspace{2cm} (here: \(\text{Msg} = \{0, 1\} \))
- acceptance condition
Parameterized Communicating Automata (PCA) over Rings

A PCA is given by:

- finite automaton over \(\{l, r\} \times \{!, ?\} \times \text{Msg} \) (here: \(\text{Msg} = \{0, 1\} \))
- acceptance condition
A PCA is given by:

- finite automaton over \(\{l, r\} \times \{!, ?\} \times \text{Msg} \)
 (here: \(\text{Msg} = \{0, 1\} \))
- acceptance condition
A PCA is given by:

- finite automaton over \(\{l, r\} \times \{!, ?\} \times \text{Msg} \) (here: \(\text{Msg} = \{0, 1\} \))
- acceptance condition
Parameterized Communicating Automata (PCA) over Rings

A PCA is given by:

- finite automaton over \(\{l, r\} \times \{!, ?\} \times Msg \)
 \(\text{(here: } Msg = \{0, 1\}) \)
- acceptance condition
Parameterized Communicating Automata (PCA) over Rings

rendez-vous
Parameterized Communicating Automata (PCA) over Rings

Remark:
Behavior abstracts away message contents from $Msg = \{0, 1\}$ (like states, or stack symbols in pushdown automata).
Parameterized Communicating Automata (PCA) over Rings
Parameterized Communicating Automata (PCA) over Rings
Parameterized Communicating Automata (PCA) over Rings

- States: $s_0, s_1, s_2, s_3, s_4, s_5, s_6$
- Transitions:
 - $s_0 \xrightarrow{l} s_1$
 - $s_0 \xrightarrow{l} s_2$
 - $s_0 \xrightarrow{r} s_3$
 - $s_1 \xrightarrow{l} s_4$
 - $s_1 \xrightarrow{r} s_5$
 - $s_2 \xrightarrow{l} s_4$
 - $s_2 \xrightarrow{r} s_5$
 - $s_3 \xrightarrow{l} s_6$
 - $s_4 \xrightarrow{l} s_5$
 - $s_4 \xrightarrow{r} s_6$
 - $s_5 \xrightarrow{l} s_6$
 - $s_5 \xrightarrow{r} s_6$
 - $s_6 \xrightarrow{l} s_6$
 - $s_6 \xrightarrow{r} s_6$

Transitions marked with l are left transitions, and those marked with r are right transitions.
Parameterized Communicating Automata (PCA) over Rings

Acceptance condition:
MSO formula over rings whose nodes are labeled with states.
Signature: \(s(x) \xrightarrow{r,l} y \)

Thus, there are no constant processes (e.g., no «first» or «last» process).
Parameterized Communicating Automata (PCA) over Rings

\[\exists x (s_4(x) \land \forall y (y \neq x \rightarrow s_5(y) \lor s_6(y))) \]
Parameterized Communicating Automata (PCA) over Rings

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]
Parameterized Communicating Automata (PCA) over Rings

\[\exists x (s_4(x) \land \forall y (y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

Token-Ring Protocol
Parameterized Communicating Automata (PCA) over Rings

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]
Parameterized Communicating Automata (PCA) over Rings

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]
Parameterized Communicating Automata (PCA) over Rings

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]
Parameterized Communicating Automata (PCA) over Rings

\[
L = \{ \exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \}
\]
Parameterized Communicating Automata (PCA) over Rings

\[L = \{ \text{agraph} \} \]
Parameterized Communicating Automata (PCA) over Rings

\[L = \exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]
Parameterized Communicating Automata (PCA) over Rings

\[
L = \exists x (s_4(x) \land \forall y (y \neq x \rightarrow s_5(y) \lor s_6(y)))
\]
Complementation

\[L = \exists x (s_4(x) \land \forall y (y \neq x \rightarrow s_5(y) \lor s_6(y))) \]
Complementation

\[
L = \left\{ \exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \right\}
\]
Complementation

\[L = \{ \text{Diagram} \} \]
Complementation

\[L = \{ \text{Diagram 1}, \text{Diagram 2}, \text{Diagram 3} \} \]
Complementation

\[
L = \{ \text{\[diagram\]} } = \{ \text{\[diagram\]} } = \{ \text{\[diagram\]} } = \{ \text{\[diagram\]} }
\]
Complementation

\[
L = \{ \}
\]
Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.
Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Proof:
Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Proof:

Behaviors encode grids.
Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Proof:
- Behaviors encode grids.
- Grid automata are not closed under complementation [Matz-Schweikardt-Thomas ’02].
Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Proof:

Behaviors encode grids.
Grid automata are not closed under complementation
[Matz-Schweikardt-Thomas ’02].

Theorem [Emerson-Namjoshi 2003]:
Emptiness is undecidable for PCAs over rings
(even token-passing systems, unless $|Msg| = 1$).
Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Proof:

Behaviors encode grids.
Grid automata are not closed under complementation [Matz-Schweikardt-Thomas '02].
Context-Bounded PCAs
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts.
Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.
Context-Bounded PCAs

Idea: Every process is constrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.

3-bounded
Definition: A PCA is k-bounded if the finite automaton restricts to k contexts.
Definition: A PCA is k-bounded if the finite automaton restricts to k contexts.
Definition: A PCA is k-bounded if the finite automaton restricts to k contexts.

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
For every bounded PCA A, there is a PCA B such that $L(B) = \overline{L(A)}$.
Proof Outline

nondeterminism

\[\exists x(s_1(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

\(k \)-bounded

disambiguation

every behavior has a unique run

complementation
Proof Outline

nondeterminism

$\exists x (s_4(x) \wedge \forall y (y \neq x \rightarrow s_5(y) \lor s_6(y)))$

$\forall l \in \{0, 1\}$

$\forall r \in \{0, 1\}$

A

k-bounded

disambiguation

every behavior has a unique run

complementation
Proof Outline

nondeterminism

\[\exists x (s_4(x) \land \forall y (y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

\[s_0 \]

\[s_1 \]

\[s_2 \]

\[s_3 \]

\[s_4 \]

\[s_5 \]

\[s_6 \]

\[r!1 \]

\[l?1 \]

\[l?0 \]

\[r!0 \]

\[r!0 \]

\[k\text{-bounded} \]

disambiguation
every behavior has a unique run

\[A \]

\[\forall \phi \]

complementation

\[\neg \phi \]
Proof Outline

nondeterminism

\[
\begin{align*}
\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y)))
\end{align*}
\]

\(s_0 \xrightarrow{r!1} s_1 \xrightarrow{l?0} s_3 \xrightarrow{l?1} s_2 \xrightarrow{r!0} s_4 \xrightarrow{r!0} s_5 \xrightarrow{r!0} s_6\)

\(k\)-bounded

complementation

Powerset construction not applicable due to message contents.
Proof Outline

nondeterminism

Disambiguation through summaries:
Disambiguation of context-bounded PCAs
Every process traverses a bounded number of zones.
Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.
Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.
Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously by a PCA.
Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.
Every process traverses a bounded number of zones.

Zone numbers can be computed unambiguously by a PCA.
Disambiguation of context-bounded PCAs

Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously by a PCA.
Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously by a PCA.
Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.
Disambiguation of context-bounded PCAs

\[R_i \subseteq S^3 \times S^3 \]
Disambiguation of context-bounded PCAs

Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously.
Sending processes deterministically compute summaries for zones.
Disambiguation of context-bounded PCAs

Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously.
Sending processes deterministically compute summaries for zones.
Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously.
Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.
Every process traverses a bounded number of zones.

Zone numbers can be computed unambiguously.

Sending processes deterministically compute summaries for zones.

Acceptance condition checks if summaries correspond to accepting run.
Disambiguation of context-bounded PCAs

$m_1 \subseteq S^3 \times S^3$

$m_i \subseteq S^3 \times S^3$

$m_2 \subseteq S^3 \times S^3$

$m_3 \subseteq S^3 \times S^3$

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.
Disambiguation of context-bounded PCAs

Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously.
Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.
Disambiguation of context-bounded PCAs

Every process traverses a bounded number of zones.
Zone numbers can be computed unambiguously.
Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.
Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.
The Logic:
MSO logic over graphs, including process nodes and event nodes.
Logical Characterization of Context-Bounded PCAs

The Logic:
MSO logic over graphs, including process nodes and event nodes.
For every bounded set L of behaviors, the following are equivalent:

- L is recognized by some PCA.
- L is definable in MSO logic.

The Logic:
MSO logic over graphs, including process nodes and event nodes.

Corollary [B.-Gastin-Kumar; FSTTCS 2014]:
For every bounded set L of behaviors, the following are equivalent:

- L is recognized by some PCA.
- L is definable in MSO logic.
Topologies of Bounded Degree

Complementation and MSO characterization hold wrt. the class of all topologies over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.
Complementation and MSO characterization hold wrt. the class of all topologies over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.
Complementation and MSO characterization hold wrt. the class of all topologies over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.
Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
Context-bounded MSO model checking is decidable over rings.

Input: PCA A; $k \in \mathbb{N}$; MSO formula φ
Question: $M \models \varphi$ for all k-bounded $M \in L(A)$?
Context-Bounded Model Checking

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
Context-bounded MSO model checking is decidable over rings.

Input: PCA \mathcal{A}; $k \in \mathbb{N}$; MSO formula φ
Question: $M \models \varphi$ for all k-bounded $M \in L(\mathcal{A})$?

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete when the acceptance condition is presented as a finite automaton.

Input: PCA \mathcal{A}; $k \in \mathbb{N}$
Question: Does $L(\mathcal{A})$ contain some k-bounded behavior?
Context-Bounded Nonemptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Input: PCA A; $k \in \mathbb{N}$
Question: Does $L(A)$ contain some k-bounded behavior?
Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert; RP 2014]: Context-bounded nonemptiness checking over rings is PSPACE-complete.
Context-Bounded Nonemptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states & checks membership in summaries.

Input: PCA A; $k \in \mathbb{N}$
Question: Does $L(A)$ contain some k-bounded behavior?
Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.
Context-Bounded Nonemptiness Problem

Input: PCA A; $k \in \mathbb{N}$

Question: Does $L(A)$ contain some k-bounded behavior?

Finite automaton guesses local states & checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Context-Bounded Nonemptiness Problem

Finite automaton guesses local states & checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Context-Bounded Nonemptiness Problem

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states & checks membership in summaries.
However, summaries may match locally, but not give rise to an accepting run!
Check causal dependencies.

→ = strict precedence
= synchronization
Theorem [B.-Gastin-Schubert 2014]: Context-bounded emptiness checking over rings is PSPACE-complete.
Finite automaton guesses local states & checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

\[\rightarrow \] = strict precedence

\[\underset{\text{light blue}}{\rightarrow} \] = synchronization

Theorem [B.-Gastin-Schubert 2014]:

Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states & checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

\[\rightarrow = \text{strict precedence} \]

\[\rightarrow = \text{synchronization} \]
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]: Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

strict cycle \implies run is not accepting
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.
Theorem:
Context-bounded PCAs are complementable and expressively equivalent to MSO logic.
Summary of Results

Theorem:
Context-bounded PCAs are **complementable** and expressively equivalent to **MSO logic**.

Theorem:
Context-bounded **nonemptiness checking is decidable** over rings and trees.
Summary of Results

Theorem:
Context-bounded PCAs are complementable and expressively equivalent to MSO logic.

Theorem:
Context-bounded nonemptiness checking is decidable over rings and trees.

Corollary:
Context-bounded MSO model checking is decidable over rings and trees.
Summary of Results

Theorem:
Context-bounded PCAs are **complementable** and expressively equivalent to **MSO logic**.

Theorem:
Context-bounded **nonemptiness checking is decidable** over rings and trees.

Corollary:
Context-bounded **MSO model checking is decidable** over rings and trees.

Context-bounded PCAs form a robust automata model.
Franklin's leader-election protocol (1982)
Franklin’s leader-election protocol (1982)
Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)
Franklin’s leader-election protocol (1982)
Distributed algorithms often proceed in rounds/contexts.

Franklin's leader-election protocol (1982)
Distributed algorithms often proceed in rounds/contexts.

Franklin’s leader-election protocol (1982)
Distributed algorithms often proceed in rounds/contexts.

Franklin’s leader-election protocol (1982)
Distributed algorithms often proceed in rounds/contexts.

Franklin's leader-election protocol (1982)
Distributed algorithms often proceed in rounds/contexts.
Number of rounds is sometimes logarithmic in the number of processes.
Distributed algorithms often proceed in rounds/contexts.

Number of rounds is sometimes logarithmic in the number of processes.
Distributed algorithms often proceed in rounds/contexts.

Number of rounds is sometimes logarithmic in the number of processes.

MSO can trace back origin of unique process identifiers (pids).
Distributed algorithms often proceed in rounds/contexts.

Number of rounds is sometimes logarithmic in the number of processes.

MSO can trace back origin of unique process identifiers (pids).
Distributed algorithms often proceed in rounds/contexts.
- Number of rounds is sometimes logarithmic in the number of processes.
- MSO can trace back origin of unique process identifiers (pids).
- Underapproximate verification of distributed algorithms that send and compare pids.

Franklin’s leader-election protocol (1982)

```plaintext
rec(r); r < id
```

```plaintext
rec(r); r > id
```

leader
Beyond Context Bounds …

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

weak PCA
Beyond Context Bounds …

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

weak PCA

weak logic
Beyond Context Bounds …

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

weak PCA

weak logic
\[\exists x (s_4(x) \land \forall y (y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

weak PCA

weak logic
Beyond Context Bounds …

\[\exists x(s_4(x) \land \forall y(y \neq x \rightarrow s_5(y) \lor s_6(y))) \]

weak PCA

weak logic
Theorem [B.; CSL-LICS 2014]:
Let T be any of the following topology classes: rings, grids, binary trees.
Theorem [B.; CSL-LICS 2014]:

Let T be any of the following topology classes: rings, grids, binary trees.

For every set L of behaviors over a topology from T the following are equivalent:

- L is recognized by some weak PCA.
- L is definable in weak EMSO logic (projection of weak-FO-definable language).
Theorem [B.; CSL-LICS 2014]:

Let T be any of the following topology classes: rings, grids, binary trees.

For every set L of behaviors over a topology from T the following are equivalent:

- L is recognized by some weak PCA.
- L is definable in weak EMSO logic (projection of weak-FO-definable language).

Other Future Work

- Topologies of unbounded degree (unranked trees, stars, …)

- Temporal logics and efficient model checking

- Split-width for parameterized systems

 [Aiswarya-Gastin-Narayan Kumar 2012]
Other Future Work

- Topologies of unbounded degree (unranked trees, stars, …)

- Temporal logics and efficient model checking

- Split-width for parameterized systems
 [Aiswarya-Gastin-Narayan Kumar 2012]

Thank You!