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Rare Event

Critical systems
Plane, rocket (failure of the fuel control system)
Nuclear power plant (failure of all the redundant security systems)
Security device like an airbag (delayed deployment)
Telecommunication (overflow)
Banking system (ruin of an insurance)
Biology
etc.

In common
Consequences of failure are dramatic.
The probability of failure is very small.

Estimation of this probability is critical.
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Model checking

M ϕ

C ⊗A

M |= ϕ M 6|= ϕ

Process algebra
Petri net
...

LTL
CTL
...

Transition system Buchi automaton
Alternating automaton
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Model checking for stochastic system

M ϕ

C ⊗A

p = Pr(M |= ϕ)

Stochastic Process algebra
Stochastic Petri net
...

PCTL
HASL
...

Markov chain Hybrid automaton
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Numerical and Statistical Approaches

Numerical Approach
I Branching logic (based on CTL)
I Exact value (but subject to numerical error)
I Efficiently implemented in many tools

(PRISM, MRMC, GreatSPN)
I Strong probabilistic hypotheses
I Memory space

proportional to the size of the stochastic process

Statistical Approach
I Linear Logic (based on LTL)
I Confidence interval: probabilistic framing
I Very small memory space
I Easy to parallelize
I Weak probabilistic hypothesis (only an operational semantic)
I Unsuitable for rare events’probability

Objective: Develop a dedicated method for rare events.

B.Barbot, S.Haddad, C.Picaronny (LSV) Rare Event Barbizon 2012 5 / 31



Numerical and Statistical Approaches

Numerical Approach
I Branching logic (based on CTL)
I Exact value (but subject to numerical error)
I Efficiently implemented in many tools

(PRISM, MRMC, GreatSPN)
I Strong probabilistic hypotheses
I Memory space

proportional to the size of the stochastic process
Statistical Approach

I Linear Logic (based on LTL)
I Confidence interval: probabilistic framing
I Very small memory space
I Easy to parallelize
I Weak probabilistic hypothesis (only an operational semantic)
I Unsuitable for rare events’probability

Objective: Develop a dedicated method for rare events.

B.Barbot, S.Haddad, C.Picaronny (LSV) Rare Event Barbizon 2012 5 / 31



Rare Event Problem
Illustration

Objective: Estimation of the probability p of an event e with a
confidence level of 0.99
Hypotheses:
1. Computation of 109 trajectories
2. p ≤ 10−15

Possible outcomes
With probability ≈ 1− 10−6, e does not occur in any trajectory
We obtain as confidence interval: [0, 7 10−9]
⇒ Confidence interval too large
With probability smaller than 10−6, e occurs in one trajectory
We obtain as confidence interval: [7 10−10, 2 10−9]
⇒ Value outside the confidence interval
With a tiny probability, e occurs in more than one trajectory
⇒ Value outside the confidence interval
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Rare Event as a Reachability Problem

s+

s−

C

s0 s
P(s, s′)

s ′

A Discrete Time Markov chain C
Two absorbing states s−, s+
reached with probability 1

Let σ = s → s1 → s2 → · · · → s±
be a random trajectory in C

Vs =

{
1 if σ ends in state s+
0 if σ ends in state s−

Objective:
Estimate Pr(σ ends in state s+) = E(Vs0)
when E(Vs0)� 1

Difficulty:
V(Vs0) too big to have an accurate estimation
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Importance Sampling
Principle: Substitute Ws to Vs with same expectation but reduced variance.

1 Substitute P′ to P such that P(s, s ′) > 0⇒ P′(s, s ′) > 0 ∨ s = s−
2 For each trajectory σ = s → s1 → s2 · · · sk → s±

We define

Ws =

{
P(s,s1)
P′(s,s1) ·

P(s1,s2)
P′(s1,s2) · ... ·

P(sk ,s+)
P′(sk ,s+)

if σ ends in state s+
0 if σ ends in state s−

3 Statistically estimate E(Ws0)

Expectation is unchanged

∀s ∈ S , E(Ws) = E(Vs)

Objective: reduction of the variance

V(Ws0)� V(Vs0)
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Optimal Importance Sampling

A non effective result
There exists an importance sampling with variance equal to zero.

Let µ(s) = E(Vs)

Let P′(s, t) = µ(t)
µ(s) · P(s, t)

Ws =
P(s, s1)

P′(s, s1)
· P(s1, s2)

P′(s1, s2)
· · · P(sk , s+)

P′(sk , s+)
=

µ(s)

µ(s1)
· µ(s1)

µ(s2)
· · · µ(sk)

1
= µ(s)

Problem: Need to know µ which is what one wants to compute.

An help to design good importance sampling.
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State of the art
Asymptotically optimal importance sampling
(P.Dupuis, A.D. Sezer, H. Wang 2007)

Reduced to an optimization problem (Cross Entropy Method)
(E. Clarke, P. Zuliani 2011)
(C. Jegourel, A. Legay, S. Sedwards 2012)

Use of heuristic
(P.E Heegaard, W. Sandmann 2007)

Case by case analysis
(Rubino, Tuffin 2009)

Problems
None of these methods is fully automatic.
None of these methods produces a true confidence interval.
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1 Introduction

2 Theoretical framework
General Method
Guaranteed variance reduction
Method for Guaranteed Variance Reduction
Bounded Reacheability Discrete Case
Bounded Reacheability Continuous Case

3 Experimentation

4 Conclusion and Perspectives
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Principle of efficient importance sampling
Design a reduced modelM• ofM and an abstraction function f : S → S•.

Numerically compute µ•.

Substitute µ• to µ in the optimal importance sampling.

s+

s−

M(C)
s0

s•+

s•−

M•(C•)
f(s0)

f
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Exemple

Rare event: The are at least N clients between two idle periods.

From a tandem queues to a bounded capacity tandem queues (R � N).

n1 n2
λ ρ1 ρ2

M

n1

R

n2
λ ρ1 ρ2

M•

The clients in excess are moved back to the first queue.

f (n1, n2) =

{
(n1, n2) if n2 ≤ R
(n1 + n2 − R,R) else
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How to guarantee variance reduction?
Goal: a modified Benoulli law for Ws0

Vs0 ∼ Bernoulli({0, 1}, µ(s0))

Ws0 ∼ Bernoulli({0, µ•(f (s0))}, µ(s0)
µ•(f (s0))

)

Theorem (necessary and sufficient condition)

∀s ∈ S , µ•(f (s)) ≥
∑
s′∈S

P(s, s ′) · µ•(f (s ′))

Is a necessary and sufficient condition for Ws0 to follow a Bernoulli law.

Intuition: ∀s ∈ S , µ(s) =
∑

s′∈S P(s, s ′) · µ(s)

Results
Variance reduction is at least µ•(f (s0)).
A true confidence interval can be computed.
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How to check the property in a structural way?

Theorem
Assume there exists a family of functions (gs)s∈S ,
gs : {t | P(s, t) > 0} → S• such that:

1 ∀s ∈ S , ∀t• ∈ S•, P•(f (s), t•) =
∑

s′|g(s′)=t• P(s, s ′)

2 ∀s, t ∈ S such that P(s, t) > 0, µ•(f (t)) ≤ µ•(gs(t))

Then C• is a reduction of C with guaranteed variance.

Interest

Condition 1 checked by examination ofM andM•.
Condition 2 only involves comparison of items of µ•.
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Illustration of the local conditions

1 ∀s ∈ S , ∀t• ∈ S•, P•(f (s), t•) =
∑

s′|g(s′)=t• P(s, s ′)

s
t1α

t2
β

t3
γ

f (s)
t•1α

t•2

β

γ

2 ∀s, t ∈ S such that P(s, t) > 0, µ•(f (t)) ≤ µ•(gs(t))

µ•(t•1 ) ≤ µ•(f (t1))

µ•(t•2 ) ≤ µ•(f (t2))

µ•(t•2 ) ≤ µ•(f (t3))

A coupling theorem
Let S⊗ be a coupling relation of C• whith itself by respect to s•− and s•+,
Then for all (s, s ′) ∈ S⊗, we have µ•(s) ≥ µ•(s ′).
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Methodology with guaranteed variance reduction

1 Specify a reduced modelM• with associated Markov chain C• and a
function f .

2 Establish using analysis of C and C• and using a coupling C•
that the reduction guarantees the variance reduction.

3 Compute numerically µ•.

4 Compute statistically µ(s0)
using the importance sampling induced by µ•.
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Handling Time Bounded Reachability

Time bounded reachability is strongly related to reactivity.

Difficulties

Observation 1
The rarity of an event can be triggered by the time bound.

a

q

ap

q

ap

q

ap

q

b
p

Observation 2
For finite horizon discrete and continuous time Markov chains behave
differently.
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From bounded reachability to unbounded reachability

Su = Sab × [1, u] ∪ {s−, s+}
s+

s−

· · · · · ·

ρ2

µ

µ
ρ1
ρ2

ρ2

µ

(n1, n2)

(0, 1)

(n1, H−n1−1)
µ
ρ1
ρ2

(n1 + 1, n2)

(n1 − 1, n2 + 1)

(n1, n2 − 1)

ρ2

µ

µ
ρ1
ρ2

Requires a stronger coupling theorem.
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Principle of the method

Apply guaranteed importance sampling to Cu

Let µ•v be the time bounded reachability probability with horizon v .

µ•v can be computed using equalities


µ•v = P• · µ•v−1
µ•0(s+) = 1
µ•0(s) = 0 ∀s 6= s+

Problem

µ•v is computed by increasing values of v .

During the simulation µ•v are used by decreasing values of v .
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Space consumption problem

u 01

µ•
u

‖
(P •)uµ•

0

µ•
0µ•

1

‖
P •µ•

0
•• •

computation order

simulation order

Store all vectors

Notations:
m is the number of states of C•.
d is the maximal number of outgoing transitions of a state of C•.

Complexity
Time complexity: Θ(mdu)

Space complexity: Θ(mu)
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Comparison
Three algorithms

The naive method

Static and dynamic storage for µ•v

Fully dynamic storagefor µ•v

Complexity Algo 1 Algo 2 Algo 3
Space Θ(mu) Θ(m

√
u) Θ(m log u)

Time
for the Θ(mdu) Θ(mdu) Θ(mdu)
precomputation
Additional time
for the 0 Θ(mdu) Θ(mdu log(u))
simulation
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Bounded reachability in CTMC

Uniformization

Every CTMC is equivalent to a uniform CTMC,
i.e. where all sojourn time is state are equal.

Transient behavior of a uniform CTMC can be efficiently computed
from the transient behavior of the associated DTMC.

Application to rare event handling

Estimation of the time bounded reachability probabilities in the
DTMC.

Computation of the time bounded reachability probabilities in the
CTMC via the uniformization formula..

Elaborated tuning for the confidence interval.
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1 Introduction

2 Theoretical framework

3 Experimentation
Implementation
Examples

4 Conclusion and Perspectives
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Adaptation of COSMOS

Modifications related to rare event

Implementation of the importance sampling.

Numerical computation of the transient behaviors.

Implementation of the three algorithms.

Implementation of the uniformization method.

General purpose improvements

Parallelization of the simulation.

Integration of COSMOS into the platform CosyVerif
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An example

n1 n2
λ ρ1 ρ2

M

n1

R

n2
λ ρ1 ρ2

M•

Parameters: λ = 0.1, ρ1 = ρ2 = 0.45,

Formula: They are at least N clients between two idle periods.

Generation of 20000 trajectories

Numerical result: µ(s0) = 3.80122 · 10−31
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Example of the tandem (N = 50)

We perform experimentation with different values of R .

R size of size of µ•(s0) µ(s0) Confidence T (s)
C C• estimated interval simulation

2 2500 100 1.24904E-28 3.96541E-31 2.25E-31 21.47
3 2500 150 2.28771E-30 3.78565E-31 2.76E-32 39.48
4 2500 200 6.55440E-31 3.80168E-31 9.63E-33 57.32
5 2500 250 5.10457E-31 3.79642E-31 4.18E-33 64.81
6 2500 300 3.97544E-31 3.80229E-31 1.86E-33 67.18
7 2500 350 3.97544E-31 3.79973E-31 8.90E-34 68.56

C• is much smaller than C.
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The estimated value is always close to the true value of µ(s0).
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The confidence interval is tight even for small R .
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Example of the tandem with large values of N

0.1
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100 1000 10000
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N

Numerical PRISM

COSMOS
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Other examples

Tandem (the second queue is full before the system is empty)
I Infinite system (the first queue is unbounded)
I Finite reduced system

Tandem (the second queue is full before the first one)
I Theoretical guarantee
I Experimentally the acceleration is sufficient.

Parallel ruin
I Concurrent system
I The reduced system is build by removing synchronization between

process

Dining philosopher problem
I Extension of the method but no theoretical guarantee.
I The distribution of Ws0 is heavy tailed.
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Conclusion and Perspectives

Contributions

I Design of an importance sampling method
with variance reduction and true confidence interval

I Integration in a tool

I Several conclusive case studies

Perspectives

I Handling more general infinite systems

I Search of Petri net classes
with automatic computation of the reduced model.

I Automated or assisted proofs of coupling
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