Coq Tutorial : Basic Tactics

David Baelde

Logic Project, ENS Paris-Saclay, 2020–2021

Figure 1 describes a few tactics as inference rules: a tactic replaces a goal of the form shown in conclusion of the rule with a number of new subgoals described by the premisses of the rule.

Goals are written as the sequents of first-order natural deduction, but are richer in that they also contain declarations for universally quantified variables, e.g. $x : \mathsf{nat}, H : x \neq 0 \vdash 0 < x$.

Negation and equivalence. Negation $\neg P$ is defined as $P \rightarrow \bot$ and, accordingly, you can use the tactics available for implication directly on $\neg P$. The same goes for $P \leftrightarrow Q$ which is defined as $(P \rightarrow Q) \land (Q \rightarrow P)$.

Complex tactic invocations. Several tactics use an hypothesis name H to refer to an item in the current goal's context. In such cases H can also be the name of a previously proved result (e.g. **apply** strong_induction) or the constructor of an inductively defined predicate (e.g. **apply** le_n).

If H corresponds to a formula it is also possible to specify how universally quantified variables and hypotheses must be instantiated: for example, with mylemma : $\forall x. \neg P$ and H : P one can directly do **elim** (mylemma t H).

Equality. There are several ways to use an hypothesis H : u = v.

• inversion H should only be used when the equal terms feature a constructor (e.g. 0 = Sx, Sx = Sy).

- **rewrite** H replaces all occurrences of *u* by *v* in the goal.
- rewrite H in H' performs the replacement in hypothesis H'.
- rewrite<- replaces v by u rather than u by v.

Other tactics. A few tactics cannot easily be described as a single inference rule.

- **unfold** f unfolds the definition of f in the current goal. One can also use the variant **unfold** ... in H. It is sometimes useful to understand a goal but never necessary (*except* before rewriting) since Coq implicitly performs the required unfolding before other tactic applications.
- **destruct** x can be used to perform a case analysis on x if it belongs to an inductive type, e.g. **nat**.
- inversion H performs a case analysis on H
 P when P is an instance of an inductively defined predicate (e.g. equality eq, le, multiple).
- **simpl** performs all possible computations to simplify the current goal.
- clear H x H' ... drops unused items. An item can only be dropped if (after having dropped the previous items) it is unused in the context.

exact H.	split.	destruct H.
$\overline{\ldots, \mathbf{H}: P \vdash P}$	$\frac{\ldots \vdash P \ldots \vdash Q}{\ldots \vdash P \land Q}$	$\frac{\dots, \text{ H}: P, \text{ H}': Q \vdash \dots}{\dots, \text{ H}: P \land Q \vdash \dots}$

left.	right.
$\dots \vdash P$	$\dots \vdash Q$
$\ldots \vdash P \lor Q$	$\overline{\ldots \vdash P \lor Q}$

destruct H.	
$\ldots, H: P \vdash \ldots \ldots, H: Q \vdash \ldots$	
$\overline{\qquad} \dots, \text{ H}: P \lor Q \vdash \dots$	

intro $\langle H \rangle$.	intro $\langle x \rangle$.	exists u.
$\dots, \operatorname{H}: P \vdash Q$	$\ldots, \mathbf{x}: t \vdash P\{y \mapsto x\}$	$\ldots \vdash P\{x \mapsto u\}$
$\dots \vdash P \to Q$	$\boxed{ \dots \vdash \forall y: t.P }$	$\dots \vdash \exists x : t.P$

apply H.	
$\dots \vdash P_1\{x_i \mapsto t_i\} \dots \dots \vdash P_n\{x_i \mapsto t_i\}$	
$ \dots, \text{ H}: \forall \vec{x_i}. \ \vec{P_j} \to Q \vdash Q\{x_i \mapsto t_i\} $	

destruct H.

 $\frac{\ldots, \mathbf{x}: t, \mathbf{H}: P \vdash \ldots}{\ldots, \mathbf{H}: \exists x: t. P \vdash \ldots}$

reflexivity. $\overline{\ldots \vdash u = u}$	rewrite H.
	$\dots, H: u = v \vdash P\{x \mapsto v\}$
	$\overline{\ldots, \mathrm{H}: u = v \vdash P\{x \mapsto u\}}$

inversion H.

 $\frac{\text{see } \S \text{ on equality}}{\dots, \text{ H}: u = v \vdash \dots}$

elim H.	assert P.
$\ldots, \vdash P$	$\ldots \vdash P \ldots, \ \mathrm{H}: P \vdash \ldots$
$\overline{\ldots, \mathbf{H} : \neg P \vdash \ldots}$	·⊢

Figure 1: Description of basic tactics as inference rules.