
Coq Tutorial : Basic Tactics

David Baelde

Logic Project, ENS Paris-Saclay, 2020–2021

Figure 1 describes a few tactics as inference
rules: a tactic replaces a goal of the form shown
in conclusion of the rule with a number of new
subgoals described by the premisses of the rule.

Goals are written as the sequents of first-order
natural deduction, but are richer in that they
also contain declarations for universally quanti-
fied variables, e.g. x : nat,H : x 6= 0 ` 0 < x.

Negation and equivalence. Negation ¬P is
defined as P → ⊥ and, accordingly, you can use
the tactics available for implication directly on
¬P . The same goes for P ↔ Q which is defined
as (P → Q) ∧ (Q→ P).

Complex tactic invocations. Several tactics
use an hypothesis name H to refer to an item in
the current goal’s context. In such cases H can
also be the name of a previously proved result
(e.g. apply strong induction) or the constructor
of an inductively defined predicate (e.g. apply
le n).

If H corresponds to a formula it is also pos-
sible to specify how universally quantified vari-
ables and hypotheses must be instantiated: for
example, with mylemma : ∀x. ¬P and H : P
one can directly do elim (mylemma t H).

Equality. There are several ways to use an hy-
pothesis H : u = v.

� inversion H should only be used when the
equal terms feature a constructor (e.g. 0 =
Sx, Sx = Sy).

� rewrite H replaces all occurrences of u by
v in the goal.

� rewrite H in H′ performs the replacement
in hypothesis H′.

� rewrite<− replaces v by u rather than u
by v.

Other tactics. A few tactics cannot easily be
described as a single inference rule.

� unfold f unfolds the definition of f in the
current goal. One can also use the vari-
ant unfold . . . in H. It is sometimes useful
to understand a goal but never necessary
(except before rewriting) since Coq implic-
itly performs the required unfolding before
other tactic applications.

� destruct x can be used to perform a case
analysis on x if it belongs to an inductive
type, e.g. nat.

� inversion H performs a case analysis on H
: P when P is an instance of an induc-
tively defined predicate (e.g. equality eq,
le, multiple).

� simpl performs all possible computations to
simplify the current goal.

� clear H x H′ . . . drops unused items. An
item can only be dropped if (after having
dropped the previous items) it is unused in
the context.

1

exact H.

. . . , H : P ` P

split.

. . . ` P . . . ` Q

. . . ` P ∧Q

destruct H.

. . . , H : P, H′ : Q ` ...

. . . , H : P ∧Q ` ...

left.

. . . ` P
. . . ` P ∨Q

right.

. . . ` Q

. . . ` P ∨Q

destruct H.

. . . , H : P ` , H : Q ` ...

. . . , H : P ∨Q ` ...

intro 〈H〉.
. . . , H : P ` Q

. . . ` P → Q

intro 〈x〉.
. . . , x : t ` P{y 7→ x}

. . . ` ∀y : t.P

exists u.

. . . ` P{x 7→ u}
. . . ` ∃x : t.P

apply H.

. . . ` P1{xi 7→ ti} ` Pn{xi 7→ ti}
. . . , H : ∀~xi. ~Pj → Q ` Q{xi 7→ ti}

destruct H.

. . . , x : t, H : P ` ...

. . . , H : ∃x : t.P ` ...

reflexivity.

. . . ` u = u

rewrite H.

. . . , H : u = v ` P{x 7→ v}

. . . , H : u = v ` P{x 7→ u}

inversion H.

see § on equality

. . . , H : u = v ` ...

elim H.

. . . , ` P

. . . , H : ¬P ` ...

assert P.

. . . ` P . . . , H : P ` ...

. . . ` ...

Figure 1: Description of basic tactics as inference rules.

2

