
Software Engineering at MPRI
Advanced tutorial on git, and its extensions

Amélie Ledein
ledein@lsv.fr

December 6, 2020

Amélie Ledein Advanced tutorial December 6, 2020 1 / 24



Remember

too easier...

... because sometimes we have some difficult problems!

Amélie Ledein Advanced tutorial December 6, 2020 2 / 24



Remember

too easier...

... because sometimes we have some difficult problems!

Amélie Ledein Advanced tutorial December 6, 2020 2 / 24



Remember

too easier...

... because sometimes we have some difficult problems!

Amélie Ledein Advanced tutorial December 6, 2020 2 / 24



Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:

I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.

Two cases:
1. I want to keep the file locally on my computer:

git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Additional tips

Delete files from a repository:
I pushed a file to the remote repository that shouldn’t have gone there.
I want to remove it from the repository.
Two cases:

1. I want to keep the file locally on my computer:
git rm --cached <file(s)>

2. I don’t want to keep it: git rm <file(s)>

Then I commit, I push.

git checkout -b <branch-name>

= git branch <branch-name> ; git checkout <branch-name>

git checkout -

Switch between your 2 only branches.

Create a tag: git tag <version-name> <commit>

I only use the terminal, and I would like to see the graph of branches
on it: git log --oneline --graph --decorate --graph

Don’t forget the manual: man git <...>

Don’t forget the bible: https://git-scm.com/book/en/v2

Amélie Ledein Advanced tutorial December 6, 2020 3 / 24

https://git-scm.com/book/en/v2


Sommaire

1 Move in the commit tree

2 Undo changes with Git

3 Storage of your files

4 Merging of two branches

5 Bring in changes from a specific commit

6 Find a bad commit in your app

Amélie Ledein Advanced tutorial December 6, 2020 4 / 24



A family story

Remember: A branch is a pointer to a commit!

HEAD is a special pointer to the branch we are currently working on.

HEAD: the current branch

HEAD^: the parent of HEAD

HEAD∼4 : the great-great grandparent of HEAD

git branch -f master HEAD∼3: move (forced) the master
three-parent branch behind HEAD.

Amélie Ledein Advanced tutorial December 6, 2020 5 / 24



A family story

Remember: A branch is a pointer to a commit!

HEAD is a special pointer to the branch we are currently working on.

HEAD: the current branch

HEAD^: the parent of HEAD

HEAD∼4 : the great-great grandparent of HEAD

git branch -f master HEAD∼3: move (forced) the master
three-parent branch behind HEAD.

Amélie Ledein Advanced tutorial December 6, 2020 5 / 24



A family story

Remember: A branch is a pointer to a commit!

HEAD is a special pointer to the branch we are currently working on.

HEAD: the current branch

HEAD^: the parent of HEAD

HEAD∼4 : the great-great grandparent of HEAD

git branch -f master HEAD∼3: move (forced) the master
three-parent branch behind HEAD.

Amélie Ledein Advanced tutorial December 6, 2020 5 / 24



A family story

Remember: A branch is a pointer to a commit!

HEAD is a special pointer to the branch we are currently working on.

HEAD: the current branch

HEAD^: the parent of HEAD

HEAD∼4 : the great-great grandparent of HEAD

git branch -f master HEAD∼3: move (forced) the master
three-parent branch behind HEAD.

Amélie Ledein Advanced tutorial December 6, 2020 5 / 24



Sommaire

1 Move in the commit tree

2 Undo changes with Git

3 Storage of your files

4 Merging of two branches

5 Bring in changes from a specific commit

6 Find a bad commit in your app

Amélie Ledein Advanced tutorial December 6, 2020 6 / 24



git reset VS git revert

Initial situation
git reset HEAD∼1

(rewriting history)
git revert HEAD

Amélie Ledein Advanced tutorial December 6, 2020 7 / 24



git reset VS git revert

$ git reset <commit>

Revert changes by moving a branch reference backwards in time to an
older commit.
In this sense you can think of it as ”rewriting history;” git reset will
move a branch backwards as if the commit had never been made in
the first place.

$ git reset --hard <commit>

Clear staging area, rewrite working tree from specified commit.
WARNING: You must be aware that everything you have coded since
the last commit or the last pull will be lost!

$ git revert <commit>

While resetting works great for local branches on your own machine,
its method of ”rewriting history” doesn’t work for remote branches
that others are using.
In order to reverse changes and share those reversed changes with
others, we need to use git revert.

Amélie Ledein Advanced tutorial December 6, 2020 8 / 24



git reset VS git revert

$ git reset <commit>

Revert changes by moving a branch reference backwards in time to an
older commit.
In this sense you can think of it as ”rewriting history;” git reset will
move a branch backwards as if the commit had never been made in
the first place.

$ git reset --hard <commit>

Clear staging area, rewrite working tree from specified commit.
WARNING: You must be aware that everything you have coded since
the last commit or the last pull will be lost!

$ git revert <commit>

While resetting works great for local branches on your own machine,
its method of ”rewriting history” doesn’t work for remote branches
that others are using.
In order to reverse changes and share those reversed changes with
others, we need to use git revert.

Amélie Ledein Advanced tutorial December 6, 2020 8 / 24



git reset VS git revert

$ git reset <commit>

Revert changes by moving a branch reference backwards in time to an
older commit.
In this sense you can think of it as ”rewriting history;” git reset will
move a branch backwards as if the commit had never been made in
the first place.

$ git reset --hard <commit>

Clear staging area, rewrite working tree from specified commit.
WARNING: You must be aware that everything you have coded since
the last commit or the last pull will be lost!

$ git revert <commit>

While resetting works great for local branches on your own machine,
its method of ”rewriting history” doesn’t work for remote branches
that others are using.
In order to reverse changes and share those reversed changes with
others, we need to use git revert.

Amélie Ledein Advanced tutorial December 6, 2020 8 / 24



git reset VS git revert

$ git reset <commit>

Revert changes by moving a branch reference backwards in time to an
older commit.
In this sense you can think of it as ”rewriting history;” git reset will
move a branch backwards as if the commit had never been made in
the first place.

$ git reset --hard <commit>

Clear staging area, rewrite working tree from specified commit.
WARNING: You must be aware that everything you have coded since
the last commit or the last pull will be lost!

$ git revert <commit>

While resetting works great for local branches on your own machine,
its method of ”rewriting history” doesn’t work for remote branches
that others are using.
In order to reverse changes and share those reversed changes with
others, we need to use git revert.

Amélie Ledein Advanced tutorial December 6, 2020 8 / 24



Sommaire

1 Move in the commit tree

2 Undo changes with Git

3 Storage of your files

4 Merging of two branches

5 Bring in changes from a specific commit

6 Find a bad commit in your app

Amélie Ledein Advanced tutorial December 6, 2020 9 / 24



Imagine a world where you can...

1. Put your changes aside.

2. Checkout another branch.

3. Apply your changes later.

→ It’s real, thanks to git stash!

Amélie Ledein Advanced tutorial December 6, 2020 10 / 24



Imagine a world where you can...

1. Put your changes aside.

2. Checkout another branch.

3. Apply your changes later.

→ It’s real, thanks to git stash!

Amélie Ledein Advanced tutorial December 6, 2020 10 / 24



Imagine a world where you can...

1. Put your changes aside.

2. Checkout another branch.

3. Apply your changes later.

→ It’s real, thanks to git stash!

Amélie Ledein Advanced tutorial December 6, 2020 10 / 24



Imagine a world where you can...

1. Put your changes aside.

2. Checkout another branch.

3. Apply your changes later.

→ It’s real, thanks to git stash!

Amélie Ledein Advanced tutorial December 6, 2020 10 / 24



Imagine a world where you can...

1. Put your changes aside.

2. Checkout another branch.

3. Apply your changes later.

→ It’s real, thanks to git stash!

Amélie Ledein Advanced tutorial December 6, 2020 10 / 24



Imagine a world where you can...

1. Put your changes aside.

2. Checkout another branch.

3. Apply your changes later.

→ It’s real, thanks to git stash!

Amélie Ledein Advanced tutorial December 6, 2020 10 / 24



The wonderful world of git stash

$ git stash [push] or
git stash push [-m "<descriptive message>"]

Save modified and staged changes.

$ git stash [push] -u

Save modified, staged and untrack changes.

$ git stash list

List stack-order of stashed file changes
(See stash@{<stash-index>}).

$ git stash show <stash-index> (Ex. git stash show 0)
Show changes.

$ git stash show -p <stash-index>

Show changes in full tree-view.

Amélie Ledein Advanced tutorial December 6, 2020 11 / 24



The wonderful world of git stash

$ git stash [push] or
git stash push [-m "<descriptive message>"]

Save modified and staged changes.

$ git stash [push] -u

Save modified, staged and untrack changes.

$ git stash list

List stack-order of stashed file changes
(See stash@{<stash-index>}).

$ git stash show <stash-index> (Ex. git stash show 0)
Show changes.

$ git stash show -p <stash-index>

Show changes in full tree-view.

Amélie Ledein Advanced tutorial December 6, 2020 11 / 24



The wonderful world of git stash

$ git stash [push] or
git stash push [-m "<descriptive message>"]

Save modified and staged changes.

$ git stash [push] -u

Save modified, staged and untrack changes.

$ git stash list

List stack-order of stashed file changes
(See stash@{<stash-index>}).

$ git stash show <stash-index> (Ex. git stash show 0)
Show changes.

$ git stash show -p <stash-index>

Show changes in full tree-view.

Amélie Ledein Advanced tutorial December 6, 2020 11 / 24



The wonderful world of git stash

$ git stash [push] or
git stash push [-m "<descriptive message>"]

Save modified and staged changes.

$ git stash [push] -u

Save modified, staged and untrack changes.

$ git stash list

List stack-order of stashed file changes
(See stash@{<stash-index>}).

$ git stash show <stash-index> (Ex. git stash show 0)
Show changes.

$ git stash show -p <stash-index>

Show changes in full tree-view.

Amélie Ledein Advanced tutorial December 6, 2020 11 / 24



The wonderful world of git stash

$ git stash branch <branch-name> <stash-index>

Create a branch from stash.

$ git stash pop [<stash-index>]

Remove a single stashed state from the stash list and apply it on top
of the current working tree state, i.e., do the inverse operation of git
stash push.

$ git stash apply [<stash-index>]

Like pop, but do not remove the state from the stash list.

$ git stash drop [<stash-index>]

Remove a single stash entry from the list of stash entries. When no
<stash-index> is given, it removes the latest one. i.e. stash@{0}.

$ git stash clear

Remove all the stash entries.

Amélie Ledein Advanced tutorial December 6, 2020 12 / 24



The wonderful world of git stash

$ git stash branch <branch-name> <stash-index>

Create a branch from stash.

$ git stash pop [<stash-index>]

Remove a single stashed state from the stash list and apply it on top
of the current working tree state, i.e., do the inverse operation of git
stash push.

$ git stash apply [<stash-index>]

Like pop, but do not remove the state from the stash list.

$ git stash drop [<stash-index>]

Remove a single stash entry from the list of stash entries. When no
<stash-index> is given, it removes the latest one. i.e. stash@{0}.

$ git stash clear

Remove all the stash entries.

Amélie Ledein Advanced tutorial December 6, 2020 12 / 24



The wonderful world of git stash

$ git stash branch <branch-name> <stash-index>

Create a branch from stash.

$ git stash pop [<stash-index>]

Remove a single stashed state from the stash list and apply it on top
of the current working tree state, i.e., do the inverse operation of git
stash push.

$ git stash apply [<stash-index>]

Like pop, but do not remove the state from the stash list.

$ git stash drop [<stash-index>]

Remove a single stash entry from the list of stash entries. When no
<stash-index> is given, it removes the latest one. i.e. stash@{0}.

$ git stash clear

Remove all the stash entries.

Amélie Ledein Advanced tutorial December 6, 2020 12 / 24



The wonderful world of git stash

$ git stash branch <branch-name> <stash-index>

Create a branch from stash.

$ git stash pop [<stash-index>]

Remove a single stashed state from the stash list and apply it on top
of the current working tree state, i.e., do the inverse operation of git
stash push.

$ git stash apply [<stash-index>]

Like pop, but do not remove the state from the stash list.

$ git stash drop [<stash-index>]

Remove a single stash entry from the list of stash entries. When no
<stash-index> is given, it removes the latest one. i.e. stash@{0}.

$ git stash clear

Remove all the stash entries.

Amélie Ledein Advanced tutorial December 6, 2020 12 / 24



The wonderful world of git stash

$ git stash branch <branch-name> <stash-index>

Create a branch from stash.

$ git stash pop [<stash-index>]

Remove a single stashed state from the stash list and apply it on top
of the current working tree state, i.e., do the inverse operation of git
stash push.

$ git stash apply [<stash-index>]

Like pop, but do not remove the state from the stash list.

$ git stash drop [<stash-index>]

Remove a single stash entry from the list of stash entries. When no
<stash-index> is given, it removes the latest one. i.e. stash@{0}.

$ git stash clear

Remove all the stash entries.

Amélie Ledein Advanced tutorial December 6, 2020 12 / 24



The wonderful world of git stash

$ git stash branch <branch-name> <stash-index>

Create a branch from stash.

$ git stash pop [<stash-index>]

Remove a single stashed state from the stash list and apply it on top
of the current working tree state, i.e., do the inverse operation of git
stash push.

$ git stash apply [<stash-index>]

Like pop, but do not remove the state from the stash list.

$ git stash drop [<stash-index>]

Remove a single stash entry from the list of stash entries. When no
<stash-index> is given, it removes the latest one. i.e. stash@{0}.

$ git stash clear

Remove all the stash entries.

Amélie Ledein Advanced tutorial December 6, 2020 12 / 24



Sommaire

1 Move in the commit tree

2 Undo changes with Git

3 Storage of your files

4 Merging of two branches

5 Bring in changes from a specific commit

6 Find a bad commit in your app

Amélie Ledein Advanced tutorial December 6, 2020 13 / 24



Git merge

Merge the modifications of a given branch into the current branch
(HEAD).

→ git merge bugFix →

Amélie Ledein Advanced tutorial December 6, 2020 14 / 24



Git merge

Merge the modifications of a given branch into the current branch
(HEAD).

→ git merge bugFix →

Amélie Ledein Advanced tutorial December 6, 2020 14 / 24



Git rebase

Rebasing essentially takes a set of commits, ”copies” them, and plops
them down somewhere else.

→ git rebase master →

While this sounds confusing, the advantage of rebasing is that it can be
used to make a nice linear sequence of commits.

Amélie Ledein Advanced tutorial December 6, 2020 15 / 24



Git rebase

Rebasing essentially takes a set of commits, ”copies” them, and plops
them down somewhere else.

→ git rebase master →

While this sounds confusing, the advantage of rebasing is that it can be
used to make a nice linear sequence of commits.

Amélie Ledein Advanced tutorial December 6, 2020 15 / 24



Git rebase

Rebasing essentially takes a set of commits, ”copies” them, and plops
them down somewhere else.

→ git rebase master →

While this sounds confusing, the advantage of rebasing is that it can be
used to make a nice linear sequence of commits.

Amélie Ledein Advanced tutorial December 6, 2020 15 / 24



Git rebase

→ git rebase bugFix →

Like git merge, no new commit because the branch master is an
ancestor of the branch bugFix.
Note: The commit C3 already exists.

Amélie Ledein Advanced tutorial December 6, 2020 16 / 24



See the difference

git pull

= git fetch; git merge origin/my-branch

Rebase from a branch: git rebase <branch-name>

In case of conflicts, do after each conflict: git rebase --continue

git pull --rebase

= git fetch; git rebase origin/my-branch

Amélie Ledein Advanced tutorial December 6, 2020 17 / 24



Bad situations after merging

You can have some conflicts:
<<<<<<<< HEAD

print(”Hello World”)
=======

print(”Saluton, Mondo”)
>>>>>>> Esperanto

If the remote repository was updated during our changes.
Two possibilities:

git pull is the solution.
You need to avoid the last commit thanks to git reset HEAD∼.
Then, do git pull and create your commit again.

git status returns files that could not be merged (listed as
”unmerged”)

To mark conflicts in a resolved <file> file, git add <file> must
be done.

Amélie Ledein Advanced tutorial December 6, 2020 18 / 24



Bad situations after merging

You can have some conflicts:
<<<<<<<< HEAD

print(”Hello World”)
=======

print(”Saluton, Mondo”)
>>>>>>> Esperanto

If the remote repository was updated during our changes.
Two possibilities:

git pull is the solution.
You need to avoid the last commit thanks to git reset HEAD∼.
Then, do git pull and create your commit again.

git status returns files that could not be merged (listed as
”unmerged”)

To mark conflicts in a resolved <file> file, git add <file> must
be done.

Amélie Ledein Advanced tutorial December 6, 2020 18 / 24



Bad situations after merging

You can have some conflicts:
<<<<<<<< HEAD

print(”Hello World”)
=======

print(”Saluton, Mondo”)
>>>>>>> Esperanto

If the remote repository was updated during our changes.
Two possibilities:

git pull is the solution.
You need to avoid the last commit thanks to git reset HEAD∼.
Then, do git pull and create your commit again.

git status returns files that could not be merged (listed as
”unmerged”)

To mark conflicts in a resolved <file> file, git add <file> must
be done.

Amélie Ledein Advanced tutorial December 6, 2020 18 / 24



Bad situations after merging

You can have some conflicts:
<<<<<<<< HEAD

print(”Hello World”)
=======

print(”Saluton, Mondo”)
>>>>>>> Esperanto

If the remote repository was updated during our changes.
Two possibilities:

git pull is the solution.

You need to avoid the last commit thanks to git reset HEAD∼.
Then, do git pull and create your commit again.

git status returns files that could not be merged (listed as
”unmerged”)

To mark conflicts in a resolved <file> file, git add <file> must
be done.

Amélie Ledein Advanced tutorial December 6, 2020 18 / 24



Bad situations after merging

You can have some conflicts:
<<<<<<<< HEAD

print(”Hello World”)
=======

print(”Saluton, Mondo”)
>>>>>>> Esperanto

If the remote repository was updated during our changes.
Two possibilities:

git pull is the solution.
You need to avoid the last commit thanks to git reset HEAD∼.
Then, do git pull and create your commit again.

git status returns files that could not be merged (listed as
”unmerged”)

To mark conflicts in a resolved <file> file, git add <file> must
be done.

Amélie Ledein Advanced tutorial December 6, 2020 18 / 24



Bad situations after merging

You can have some conflicts:
<<<<<<<< HEAD

print(”Hello World”)
=======

print(”Saluton, Mondo”)
>>>>>>> Esperanto

If the remote repository was updated during our changes.
Two possibilities:

git pull is the solution.
You need to avoid the last commit thanks to git reset HEAD∼.
Then, do git pull and create your commit again.

git status returns files that could not be merged (listed as
”unmerged”)

To mark conflicts in a resolved <file> file, git add <file> must
be done.

Amélie Ledein Advanced tutorial December 6, 2020 18 / 24



Bad situations after merging

You can have some conflicts:
<<<<<<<< HEAD

print(”Hello World”)
=======

print(”Saluton, Mondo”)
>>>>>>> Esperanto

If the remote repository was updated during our changes.
Two possibilities:

git pull is the solution.
You need to avoid the last commit thanks to git reset HEAD∼.
Then, do git pull and create your commit again.

git status returns files that could not be merged (listed as
”unmerged”)

To mark conflicts in a resolved <file> file, git add <file> must
be done.

Amélie Ledein Advanced tutorial December 6, 2020 18 / 24



Sommaire

1 Move in the commit tree

2 Undo changes with Git

3 Storage of your files

4 Merging of two branches

5 Bring in changes from a specific commit

6 Find a bad commit in your app

Amélie Ledein Advanced tutorial December 6, 2020 19 / 24



git cherry-pick

It’s a very straightforward way of saying that you would like to copy a
series of commits below your current location (HEAD).

$ git cherry-pick <SHA> or <commit-ID> or
git cherry-pick <commit 1> <commit 2> <...>

Like rebase, this create a new commit.

$ git cherry-pick <SHA> or <commit-ID> -n

Don’t create a new commit. So you need to do git commit after.

Amélie Ledein Advanced tutorial December 6, 2020 20 / 24



git cherry-pick

It’s a very straightforward way of saying that you would like to copy a
series of commits below your current location (HEAD).

$ git cherry-pick <SHA> or <commit-ID> or
git cherry-pick <commit 1> <commit 2> <...>

Like rebase, this create a new commit.

$ git cherry-pick <SHA> or <commit-ID> -n

Don’t create a new commit. So you need to do git commit after.

Amélie Ledein Advanced tutorial December 6, 2020 20 / 24



git cherry-pick

It’s a very straightforward way of saying that you would like to copy a
series of commits below your current location (HEAD).

$ git cherry-pick <SHA> or <commit-ID> or
git cherry-pick <commit 1> <commit 2> <...>

Like rebase, this create a new commit.

$ git cherry-pick <SHA> or <commit-ID> -n

Don’t create a new commit. So you need to do git commit after.

Amélie Ledein Advanced tutorial December 6, 2020 20 / 24



Git Interactive Rebase

git cherry-pick is great when you know which commits you want
and you know their corresponding hashes.

But what about the situation where you don’t know what commits
you want?

We can use interactive rebasing for this – it’s the best way to review
a series of commits you’re about to rebase.

git rebase -i <commit-destination>

Boost yourself on https://learngitbranching.js.org

Amélie Ledein Advanced tutorial December 6, 2020 21 / 24

https://learngitbranching.js.org


Git Interactive Rebase

git cherry-pick is great when you know which commits you want
and you know their corresponding hashes.

But what about the situation where you don’t know what commits
you want?

We can use interactive rebasing for this – it’s the best way to review
a series of commits you’re about to rebase.

git rebase -i <commit-destination>

Boost yourself on https://learngitbranching.js.org

Amélie Ledein Advanced tutorial December 6, 2020 21 / 24

https://learngitbranching.js.org


Git Interactive Rebase

git cherry-pick is great when you know which commits you want
and you know their corresponding hashes.

But what about the situation where you don’t know what commits
you want?

We can use interactive rebasing for this – it’s the best way to review
a series of commits you’re about to rebase.

git rebase -i <commit-destination>

Boost yourself on https://learngitbranching.js.org

Amélie Ledein Advanced tutorial December 6, 2020 21 / 24

https://learngitbranching.js.org


Git Interactive Rebase

git cherry-pick is great when you know which commits you want
and you know their corresponding hashes.

But what about the situation where you don’t know what commits
you want?

We can use interactive rebasing for this – it’s the best way to review
a series of commits you’re about to rebase.

git rebase -i <commit-destination>

Boost yourself on https://learngitbranching.js.org

Amélie Ledein Advanced tutorial December 6, 2020 21 / 24

https://learngitbranching.js.org


Git Interactive Rebase

git cherry-pick is great when you know which commits you want
and you know their corresponding hashes.

But what about the situation where you don’t know what commits
you want?

We can use interactive rebasing for this – it’s the best way to review
a series of commits you’re about to rebase.

git rebase -i <commit-destination>

Boost yourself on https://learngitbranching.js.org

Amélie Ledein Advanced tutorial December 6, 2020 21 / 24

https://learngitbranching.js.org


Git Interactive Rebase

git cherry-pick is great when you know which commits you want
and you know their corresponding hashes.

But what about the situation where you don’t know what commits
you want?

We can use interactive rebasing for this – it’s the best way to review
a series of commits you’re about to rebase.

git rebase -i <commit-destination>

Boost yourself on https://learngitbranching.js.org

Amélie Ledein Advanced tutorial December 6, 2020 21 / 24

https://learngitbranching.js.org


Sommaire

1 Move in the commit tree

2 Undo changes with Git

3 Storage of your files

4 Merging of two branches

5 Bring in changes from a specific commit

6 Find a bad commit in your app

Amélie Ledein Advanced tutorial December 6, 2020 22 / 24



Find a bad commit in your app : git bisect

$ git bisect start

Start the ”bisect” process.

$ git bisect good [<SHA> or <commit-ID>]

Say that a commit is good, i.e. without a bug.
When no option is given, the current commit is considered.

$ git bisect bad [<SHA> or <commit-ID>]

Say that a commit is bad, i.e. with a bug.
When no option is given, the current commit is considered.

$ git bisect reset

Stop the ”bisect” process.

Note : Each time you used git bisect good/bad, the current commit is
changed, thanks to a dichotomic process.

Amélie Ledein Advanced tutorial December 6, 2020 23 / 24



Find a bad commit in your app : git bisect

$ git bisect start

Start the ”bisect” process.

$ git bisect good [<SHA> or <commit-ID>]

Say that a commit is good, i.e. without a bug.
When no option is given, the current commit is considered.

$ git bisect bad [<SHA> or <commit-ID>]

Say that a commit is bad, i.e. with a bug.
When no option is given, the current commit is considered.

$ git bisect reset

Stop the ”bisect” process.

Note : Each time you used git bisect good/bad, the current commit is
changed, thanks to a dichotomic process.

Amélie Ledein Advanced tutorial December 6, 2020 23 / 24



Find a bad commit in your app : git bisect

$ git bisect start

Start the ”bisect” process.

$ git bisect good [<SHA> or <commit-ID>]

Say that a commit is good, i.e. without a bug.
When no option is given, the current commit is considered.

$ git bisect bad [<SHA> or <commit-ID>]

Say that a commit is bad, i.e. with a bug.
When no option is given, the current commit is considered.

$ git bisect reset

Stop the ”bisect” process.

Note : Each time you used git bisect good/bad, the current commit is
changed, thanks to a dichotomic process.

Amélie Ledein Advanced tutorial December 6, 2020 23 / 24



Find a bad commit in your app : git bisect

$ git bisect start

Start the ”bisect” process.

$ git bisect good [<SHA> or <commit-ID>]

Say that a commit is good, i.e. without a bug.
When no option is given, the current commit is considered.

$ git bisect bad [<SHA> or <commit-ID>]

Say that a commit is bad, i.e. with a bug.
When no option is given, the current commit is considered.

$ git bisect reset

Stop the ”bisect” process.

Note : Each time you used git bisect good/bad, the current commit is
changed, thanks to a dichotomic process.

Amélie Ledein Advanced tutorial December 6, 2020 23 / 24



Find a bad commit in your app : git bisect

$ git bisect start

Start the ”bisect” process.

$ git bisect good [<SHA> or <commit-ID>]

Say that a commit is good, i.e. without a bug.
When no option is given, the current commit is considered.

$ git bisect bad [<SHA> or <commit-ID>]

Say that a commit is bad, i.e. with a bug.
When no option is given, the current commit is considered.

$ git bisect reset

Stop the ”bisect” process.

Note : Each time you used git bisect good/bad, the current commit is
changed, thanks to a dichotomic process.

Amélie Ledein Advanced tutorial December 6, 2020 23 / 24



Find a bad commit in your app : git bisect

$ git bisect start

Start the ”bisect” process.

$ git bisect good [<SHA> or <commit-ID>]

Say that a commit is good, i.e. without a bug.
When no option is given, the current commit is considered.

$ git bisect bad [<SHA> or <commit-ID>]

Say that a commit is bad, i.e. with a bug.
When no option is given, the current commit is considered.

$ git bisect reset

Stop the ”bisect” process.

Note : Each time you used git bisect good/bad, the current commit is
changed, thanks to a dichotomic process.

Amélie Ledein Advanced tutorial December 6, 2020 23 / 24



Exercise

Find and fix the bug that is somewhere here:
https://github.com/amelieled/GL_bisect_GL_MPRI.git

Amélie Ledein Advanced tutorial December 6, 2020 24 / 24

https://github.com/amelieled/GL_bisect_GL_MPRI.git

	Move in the commit tree
	Undo changes with Git
	Storage of your files
	Merging of two branches
	Bring in changes from a specific commit
	Find a bad commit in your app

