
Ribbon tensorial logic
A functorial bridge between proofs and knots

Paul-André Melliès∗

Abstract

Tensorial logic is a primitive logic of tensor and negation which refines linear logic
by relaxing the hypothesis that tensorial negation A 7→ ¬A is involutive. The result-
ing logic of linear continuations provides a proof-theoretic account of game semantics,
where the formulas and proofs of the logic reflect univoquely dialogue games and in-
nocent strategies. In the present paper, we introduce a topologically-aware version of
tensorial logic, called ribbon tensorial logic. We associate to every proof of the logic a
ribbon tangle which tracks the flow of tensorial negations inside the proof. The trans-
lation is functorial: it is performed by exhibiting a correspondence between the notion
of dialogue category in proof theory and the notion of ribbon category in knot theory.
Our main theorem is that the translation is faithful: two tensorial proofs are equal
modulo commuting conversions if and only if the associated ribbon tangles are equal
up to topological deformation. The “proof-as-tangle” theorem may be also understood
as a coherence theorem for ribbon dialogue categories. By connecting in this functo-
rial way tensorial logic and knot theory, we hope to investigate further the unexpected
topological nature of proofs and programs, and of their dialogical interpretation in
game semantics.

1 Introduction
One insight of contemporary proof theory is that logical proofs behave in the same way
as interactive protocols exchanging information in the course of time. In this dynamic
and procedural account of logic, cut-elimination consists in plugging a proof π of a given
formula A into a counter-proof π′ or execution environment of the same formula. The
exchange of information is then performed by letting the two sides π and π′ emit and
receive atomic tokens in turn. The formula A is the arena where the interaction takes
place: it provides the atomic tokens and regulates the exchange. The main reasons for
studying these logical protocols is that (1) they are just as expressive as the underlying
logic and (2) they may be safely combined together, without ever producing a deadlock
or a livelock. This modularity property is structural: it comes from the fact that logical
systems are designed to be “consistent” in the sense that there exists no logical proof π
of the formula ⊥ = false.

Depending on the corner of literature, the atomic tokens exchanged between a proof π
and a counter-proof π′ have received different names: they are called “particles” in the
geometry of interaction, and “moves” in game semantics. This shift in terminology from
“particles” to “moves” is not entirely innocuous: one intuition conveyed by the geometry
of interaction [5, 2] and partly overshadowed by game semantics is the fact that these
∗CNRS, Laboratoire IRIF, UMR 8243, Université Paris Diderot, F-75205 Paris, France.

1

particles “circulate” inside the proof. Typically, working in linear logic but using the
traditional notation of classical logic for conjunction and disjunction, one can write as
sequents

(a) A ∧A∗ ` false (b) true ` A ∨A∗

these two fundamental principles of logic that:

(a) a formula A and its negation A∗ cannot be true at the same time,
(b) a formula A or its negation A∗ is always true.

Once transcribed in the language of category theory, the sequents define two combinators

cut : A ∧A∗ −→ false
axiom : true −→ A ∨A∗

interpreted as specific morphisms in a ∗-autonomous category. The basic idea of the
geometry of interaction is that these two combinators cut and axiom implement input-
output channels which may be drawn directly in the following way on the formulas:

A < A*

A

<

A*

cut

axiom

The orientation of the arrows on these input-output channels indicates the direction in
which the particle will cross the channel:

cut

axiom

inputoutput

input output

Now, imagine that you fall in the middle of a logical nightmare, where the conjunc-
tion ∧ = ⊗ and the disjunction ∨ = M have been identified to the same connective,
noted ⊗. In that case, the two combinators cut and axiom have the following type

cut : A⊗A∗ −→ false
axiom : true −→ A⊗A∗

and they may be thus composed into a morphism from true to false, in the following way:

true axiom // A⊗A∗ cut // false

The resulting morphism should be seen as a “proof” of the disjunctive unit ⊥ = false and
thus as a logical inconsistency produced by cut-eliminating the proof π = axiom with
the counter-proof π′ = cut on the formula A ⊗ A∗. When transcribed in the geometry
of interaction, the composite morphism induces a loop consisting of two input-output
channels:

A A*

cut

axiom

(1)

2

Depending on the inductive or coinductive nature of the interpretation of logical proto-
cols, such a loop will induce a deadlock where no particle is created inside the loop, or a
livelock where a number of particles are created inside the loop and are captured there
for ever.

A categorical account of proof-structures. The creation of such loops is a direct
threat to the nice modularity of proofs and of their associated logical protocols. One key
observation made by Girard is that no such loop is ever produced in linear logic during
the cut-elimination of a proof π : A against a proof π′ : A(B. This observation underlies
the fundamental distinction in linear logic between the two cardinal notions of

proof-structure � proof-net.

Recall from [4] that a proof-structure of multiplicative linear logic is a “proof-like” struc-
ture constructed using the connectives ⊗ and M of linear logic as well as the axiom and
cut links. A proof-net is then defined as a proof-structure generated by a derivation
tree π of linear logic. A typical instance of proof-structure which is not a proof-net (and
thus does not represent any proof of linear logic) is the following one:

A A*

axiom

(2)

The starting point of the present paper is to recast in the language of categorical se-
mantics the relationship between proof-nets and proof-structures in multiplicative linear
logic. This categorical reformulation is instructive and useful, in particular because it
leads us to a very natural definition of “proof-net” and of “proof-structure” for symmetric
as well as ribbon tensorial logic.

Following Girard, we have just defined “proof-nets” as specific “proof-structures” gen-
erated by derivation trees π of multiplicative linear logic. However, it is customary today
to replace the original definition of proof-net by the following one, of a more conceptual
flavour: a multiplicative proof-net is a morphism of the free symmetric ∗-autonomous
category

star-autonomous(C)

generated by a given small category X . A typical choice for the category X is a discrete
category (which may be seen as a set) whose objects define the atomic formulas of the
logic. In order to investigate the relationship between proof-nets and proof-structures,
we suggest to reformulate here the notion of proof-structure in a similarly conceptual
way. To that purpose, we consider the free compact closed category

compact-closed(X)

generated by a given small category X . Recall that a compact closed category is a sym-
metric monoidal category, with unit noted I, where each object A comes equipped with
an object A∗ and a pair of morphisms

cut : A∗ ⊗A −→ I
axiom : I −→ A⊗A∗

3

making the diagrams commute:

A⊗A∗ ⊗A
A⊗cut

&&
A

axiom⊗A
88

id // A

A∗

A∗⊗axiom ''

id // A∗

A∗ ⊗A⊗A∗
cut⊗A∗

77

These two triangular diagrams are depicted in the language of string diagrams in the
following way (see [17] for a nice introduction to string diagrams):

cut

axiom

=A

A*

A*

A*

A*

cut

axiom

A

A

*

A

=

A

A

These data make the object A∗ a right dual of the object A, what we write A a A∗. In a
compact closed category C , the operation A 7→ A∗ defines an equivalence of categories

(−)∗ : C op −→ C

between the original category C and its opposite category. As a matter of fact, a compact-
closed category is the same thing as a ∗-autonomous category where the tensor product⊗
and its opposite M coincide up to symmetric monoidal equivalence. The construction of
the free compact-closed category generated by X comes with a functor

X −→ compact-closed(X).

By definition of the free ∗-autonomous category, and since the category compact-closed(X)
is ∗-autonomous, this functor can be lifted to a structure-preserving functor of ∗-autonomous
categories

[−] : star-autonomous(C) −→ compact-closed(C)

unique up to isomorphism, which makes the diagram commute:

star-autonomous(X)
[−] // compact-closed(X)

X

77dd

This leads us to the following categorical definition of proof-structure:

Definition 1 (proof-structure) Given two formulas A,B of multiplicative linear logic
with objects of X as atoms, a proof-structure from A to B is defined as a morphism

Θ : [A] −→ [B]

in the free compact-closed category compact-closed(X) generated by the category X . By
extension, a proof-structure of a formula A of multiplicative linear logic is defined as a
proof-structure from the unit 1 to the formula A.

Consider for instance the case where the discrete category X contains exactly one object
noted α, and where the formula A is defined as A = α. The functor [−] applied to a
formula A of multiplicative linear logic replaces each linear conjunction ⊗ and linear

4

disjunction M of the formula A by a tensor product. Typically, the two formulas A⊗A∗ =
α⊗ α∗ and AMA∗ = αM α∗ are interpreted as the same object

[α⊗ α∗] = [αM α∗] = α⊗ α∗

According to our definition, the morphism

axiom : I → α⊗ α∗

of the category compact-closed(X) depicted as

α *

axiom

α

defines a proof-structure Θ of the formula α⊗α∗. Quite obviously, this proof-structure Θ
should be identified with the proof-structure depicted in the more traditional notation (2)
used by Girard [4]. Note that the morphism axiom also defines a proof-structure Θ′ of
the formula αMα∗. The key difference between the two proof-structures Θ and Θ′ is that
the proof-structure Θ′ is the image

Θ′ = [π] : I −→ [αM α∗]

of a proof-net π : 1 → α M α∗ living in the free ∗-autonomous category. This is not the
case for the proof-structure Θ.

A well-known limitation. One well-known limitation of the theory of proof-nets and
of proof-structures in multiplicative linear logic is that the proof-structure Θ = [π] asso-
ciated to a proof-net π does not characterize uniquely the proof-net. Now that we have
reformulated the notions of proof-net and of proof-structure in a categorical way, a sim-
ple and concise way to understand this limitation is to observe that the identity and
symmetry morphisms

id, symm : ⊥⊗⊥ −→ ⊥⊗⊥

do not coincide in general in a ∗-autonomous category. From this follows that the two
derivation trees π1 and π2 below

π1 =
` 1,⊥ axiom` 1,⊥

⊗-intro` 1, 1,⊥⊗⊥
M-intro` 1M 1,⊥⊗⊥

π2 =

` 1,⊥ axiom` 1,⊥
⊗-intro` 1, 1,⊥⊗⊥

exchange` 1, 1,⊥⊗⊥
M-intro` 1M 1,⊥⊗⊥

which only differ by the exchange rule which permutes the formulas 1 and 1 in the
derivation tree π2, define different morphisms of the free ∗-autonomous category, and
thus different proof-nets π1 and π2 of multiplicative linear logic. However, their image
[π1] and [π2] in the free compact closed category coincide. The reason is that the two
objects 1 and ⊥ are transported by the functor [−] to the tensor unit I, and that the
identity and symmetry morphisms

id, symm : I ⊗ I −→ I ⊗ I

5

coincide in any symmetric monoidal category. This means that some fundamental in-
formation about the proof-nets π1 and π2 has been lost when one translates them into
the same proof-structure Θ = [π1] = [π2]. Let us stress that this problem has nothing
to do with our categorical formulation of proof-nets and of proof-structures: it is a prob-
lem inherent to linear logic, see [20, 10, 11, 19, 8, 9] for discussion. As a matter of fact,
this problem has haunted the theory of multiplicative proof-nets since the notion was
introduced by Girard. A slightly ad hoc solution has been formulated in the literature:
the idea is to extend the original notion of proof-structure with “jumps” connecting the
disjunctive units ⊥ to other parts of the proof-structure. Unfortunately, this solution
requires to consider proof-structures modulo an equational theory on “rewirings” origi-
nally formulated by Trimble. More recently, Heijtljes and Houston [8] have established
that the problem of proof-net equivalence is PSPACE-complete, which means that un-
less P=PSPACE, it is unlikely that there exists an easy graph-theoretic solution to this
problem.

The ongoing discussion on the imperfect correspondence between proof-nets and proof-
structures may be summarized into the following purely categorical fact:
Annoying fact. The canonical functor

[−] : star-autonomous(X) → compact-closed(X)

which transports a proof-net of multiplicative linear logic to its underlying proof-structure,
is not faithful.

Ribbon categories. The canonical functor [−] from proof-nets to proof-structures trans-
ports every derivation tree π to a set of links [π] describing the flow of particles through
the axiom and cut links of the proof. Unfortunately, we have just seen that the trans-
lation [−] is not faithful: two proofs π1 and π2 of the same formula A with the same
proof-structure Θ may be very well be different. We will explain in a few paragraphs
how to correct this uncomfortable situation by shifting from linear logic to tensorial
logic. Before that, we would like to take advantage of a number of recent ideas coming
from knot theory and representation theory in order to upgrade our current account of
proof-structures. What we are aiming at eventually is to “materialise” the set of links [π]
into a topological ribbon tangle reflecting the interactive behavior of the proof π.

To that purpose, we start from the notion of ribbon category which emerged at the
interface of knot theory and of representation theory for quantum groups, see [14, 18]
for a detailed description. A ribbon category is defined as a monoidal category equipped
with combinators for braiding and U-turns, satisfying a series of expected equations, see
(Def. 7, §2.3) for a definition. The notion of ribbon category is supported by an elegant
coherence theorem, which states that the free ribbon category on a category X has

• as objects: sequences (Aε1
1 , . . . , A

εn
n) of signed objects of X where each Ai is an

object of the category X , and each εi is either + or −,

• as morphisms: oriented ribbon tangles considered modulo topological deformation,
where every open strand is colored by a morphism of X , and every closed strand is
colored by an equivalence class of morphisms of X , modulo the equality g◦f ∼ f ◦g
for every pair of morphisms of the form f : A→ B and g : B → A.

So, a typical morphism from (A+) to (B+, C−, D+) in the category free-ribbon(X) looks
like this

6

g

f

D+C−B+

A+

where f : A −→ B and g : C −→ D are morphisms in the category X . Now, consider the
full and faithful functor

X −→ free-ribbon(X)

which transports every objectA of X to the corresponding signed sequence (A+). By con-
struction, every functor from the category X to a ribbon category D lifts as a structure-
preserving functor [−] which makes the diagram below commute:

free-ribbon(X)
[−]

.. D

X

>>``

Once properly oriented and colored, every topological ribbon knot P defines a morphism
P : I −→ I from the tensorial unit I = () to itself in the category free-ribbon(X). Hence,
its image [P] defines an invariant of the ribbon knot P modulo topological deformation.
This functorial method enables for instance to establish that the Jones polynomial [P]
associated to a ribbon knot P defines a topological invariant, see [14] for details. This
kind of topological invariant is quite useful. By way of illustration, the non trivial fact
that the left trefoil KL and the right trefoil KR depicted below

KL = KR =

are not the same knot modulo deformation, is easily proved by computing their Jones
polynomials, and by observing that they are different:

[KL] = 2
x2 + 1

x4 + y2

x2 [KR] = 2x2 − x4 + x2y2

An important point is that these topological diagrams can be drawn in ribbon categories
precisely because the conjunctive tensor product ⊗ and the disjunctive tensor product M
coincide there. Seen from that operational point of view, the topological ribbon tangles
like KL and KR are nothing but a sophisticated instance of logical inconsistency, produc-
ing a deadlock or a livelock loop (1) in the protocol.

7

Ribbon dialogue categories. In order to connect proof theory and knot theory, we
find convenient to start from a braided notion of dialogue category. The notion of di-
alogue category has been already used by the author in order to reflect the dialogical
interpretations of proofs as interactive strategies. A dialogue category is defined as a
monoidal category equipped with a primitive notion of duality.

Definition 2 (Dialogue categories) A dialogue category is a monoidal category C equipped
with an object ⊥ together with two functors

x 7→ (x(⊥) : C op −→ C
x 7→ (⊥� x) : C op −→ C

and two families of isomorphisms

ϕx,y : C (x⊗ y,⊥) � C (y, x(⊥)
ψx,y : C (x⊗ y,⊥) � C (x,⊥� y)

natural in x and y.

A ribbon dialogue category is then defined as a dialogue category whose underlying mo-
noidal category C is balanced in the sense of Joyal and Street [12, 13]. This means that
the category C is equipped with a braiding and a twist, and that it satisfies a series of
coherence diagrams reflecting topological equalities of ribbon tangles. Interestingly, no
additional coherence property is required between the dialogue structure and the bal-
anced structure.

The proof-theoretic nature of ribbon dialogue categories is witnessed by the fact that
they come together with an internal logic: a braided and twisted variant of tensorial
logic which we call ribbon tensorial logic. The logic is formulated in §3 in the traditional
style of proof theory, that is, as a sequent calculus whose derivation trees are identified
modulo a notion of proof equality. Just as for linear logic and ∗-autonomous categories,
one establishes that the free ribbon dialogue category generated by a category X has

• objects: the formulas of ribbon tensorial logic (constructed with the binary tensor
product ⊗ and its unit I = 1 together with the left negation A 7→ A (⊥ and the
right negation A 7→ ⊥� A) with atoms provided by the objects of the category X ,

• morphisms from A to B: the derivation trees π of the sequent A ` B in ribbon
tensorial logic, modulo the equational theory of the logic.

The proof-as-tangle theorem. Once the proof-theoretic nature of ribbon dialogue
categories firmly established, there remains to relate them to topology. This is achieved
by a simple but fundamental observation. A pointed category (C ,⊥) is defined as a
category C equipped with an object ⊥ singled out in the category. A pointed category
may be alternatively defined as an S-algebra for the monad S : Cat → Cat which
transports every category X to the category X + 1 defined as the disjoint sum of X
with the terminal category 1. The unique object of 1 is noted ⊥ and provides the
singled-out object of the pointed category (X + 1,⊥). Every category X induces a
free ribbon category free-ribbon(X + 1) generated by the category X + 1. The cate-
gory free-ribbon(X +1) is monoidal and balanced by construction. The key observation
is that it is also a dialogue category where the left and right negation functors are defined
as

x(⊥ def= x∗ ⊗⊥ ⊥� x
def= ⊥⊗ x∗.

8

Note that the resulting ribbon dialogue category is somewhat degenerate, since the
canonical morphism

(⊥� (x(⊥))⊗ y −→ ⊥� ((x⊗ y)(⊥)

which defines the strength of the double negation monad, is an isomorphism. Now, the
unit of the monad S instantiated at the categoryX

inc : X −→ X + 1

induces a functor

X −→ X + 1 −→ free-ribbon(X + 1)

from X to the ribbon dialogue category free-ribbon(X +1). From this follows that there
exists a structure-preserving functor between ribbon dialogue categories

[−] : free-dialogue(X) −→ free-ribbon(X + 1)

which makes the diagram below commute:

free-dialogue(X)
[−] // free-ribbon(X + 1)

X

OO

inc // X + 1

OO

The functor [−] transports:

• the formulas of ribbon tensorial logic into signed sequences of ⊥ ’ s and of logical
atoms provided by the objects of the underlying category X ,

• the proofs of ribbon tensorial logic modulo proof equality into ribbon tangles modulo
topological deformation.

Definition 3 (Proof-nets) A tensorial proof-net π of ribbon tensorial logic is defined as
a morphism of the free ribbon dialogue category.

Definition 4 (Proof-structures) A tensorial proof-structure of ribbon tensorial logic
from a formula A to a formula B is a morphism Θ : [A]→ [B] of the free ribbon category.

We establish in §4 the following “proof-as-tangle” theorem:

Theorem. The functor [−] which transports tensorial proof-nets to tensorial proof-
structures, is faithful.

This theorem is important because it enables one to identify every derivation tree π
of ribbon tensorial logic modulo commuting conversions, with the underlying ribbon
tangle [π] modulo topological deformation. The ribbon tangle [π] : [A] → [B] should
be understood as a topological “materialisation” of the dialogical interpretation of the
proof π : A → B as an innocent strategy between the dialogue games A and B: each
strand of the tangle [π] describes a specific pair of Opponent and Player moves played by
the innocent strategy associated to the tensorial proof π. In this way, the proof-as-tangle
theorem provides a topological and type-theoretic foundation to game semantics. Indeed,
It should be mentioned that the theorem still holds when one removes the topology of
ribbon tangles, and replaces ribbon tensorial logic by commutative tensorial logic, and
ribbon categories by compact-closed categories.

9

Theorem. The canonical functor

[−] : free-dialogue(C) −→ compact-closed(C + 1)

which transports tensorial proof-nets to tensorial proof-structures in commutative ten-
sorial logic, is faithful.

This means that a derivation tree π of tensorial logic is entirely characterized by its
proof-structure [π] in ribbon tensorial logic as well as in commutative tensorial logic.
The proof-as-tangle theorem resolves in this way the old and annoying problem of the
theory of proof-nets of linear logic discussed earlier in the introduction. It also connects
proof theory and knot theory by providing a topological coherence theorem for ribbon (or
symmetric) dialogue categories.

Plan of the paper. We start by introducing in §2 the notion of ribbon dialogue cat-
egory. We formulate in §3 the corresponding ribbon tensorial logic, whose proofs are
designed to be interpreted in ribbon dialogue categories. The proof-as-tangle theorem
for ribbon tensorial logic is stated and established in §4. We finally illustrate in §5 how
to use proof-as-tangle theorem as a coherence theorem.

Related works. We would like to mention the early work by Arnaud Fleury [3] who
considered a sequent calculus for a braided version of linear logic which is very similar to
our sequent calculus for ribbon tensorial logic. Besides the connection already mentioned
to the theory of multiplicative proof-nets in linear logic [20, 10, 11, 19, 8, 9], our inter-
pretation of ribbon tensorial proofs as ribbon tangles induces an interpretation of these
proofs as sums of planar diagrams in Temperley-Lieb algebras. It would be interesting
to compare this interpretation of ribbon tensorial logic with the work by Abramsky [1].

2 Ribbon dialogue categories
We introduce the notion of ribbon dialogue category. To that purpose, we start by recall-
ing the definition of braided monoidal category in §2.1, of balanced monoidal category
in §2.2 and of ribbon category in §2.3. We finally formulate our notion of balanced dia-
logue category in §2.4.

2.1 Braided monoidal categories
In order to fix notations, we recall that a monoidal category C is a category equipped
with a functor ⊗ : C × C → C and an object I and three natural isomorphisms

αA,B,C : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)

λA : I ⊗A −→ A ρA : A⊗ I −→ A

making the two coherence diagrams below commute.

(A⊗B)⊗ (C ⊗D)
α

**
((A⊗B)⊗ C)⊗D

α
44

α⊗D
��

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D α // A⊗ ((B ⊗ C)⊗D)

A⊗α
OO

10

(A⊗ I)⊗B α //

ρ⊗B &&

A⊗ (I ⊗B)

A⊗λxx
A⊗B

Definition 5 (braiding) A braiding in a monoidal category C is a family of isomor-
phisms

σA,B : A⊗B −→ B ⊗A
natural in x and y such that the two diagrams

A⊗ (B ⊗ C) σ // (B ⊗ C)⊗A α

&&
(A⊗B)⊗ C

α 22

σ⊗C ,,

(a) B ⊗ (C ⊗A)

(B ⊗A)⊗ C
α
// B ⊗ (A⊗ C) B⊗σ

88

(A⊗B)⊗ C σ // C ⊗ (A⊗B) α−1

&&
A⊗ (B ⊗ C)

α−1 22

A⊗σ ,,

(b) (C ⊗A)⊗B

A⊗ (C ⊗B)
α−1
// (A⊗ C)⊗B σ⊗B

88

commute.

The braiding map σA,B is depicted in string diagrams as a positive braiding of the ribbon
strands A and B where its inverse is depicted as the negative braiding:

σA,B =

A B

AB

σ−1
A,B =

A B

AB

The two coherence diagrams (a) and (b) are then depicted as topological equalities be-
tween string diagrams:

A B C

AB C

(a)=

A B C

AB C

A B C

A BC

(b)=

A B C

A BC

2.2 Balanced categories
Definition 6 (balanced category) A balanced category C is a braided monoidal cate-
gory equipped with a family of morphisms

θA : A −→ A

natural in A, satisfying the equality

θI = idI

11

where I is the monoidal unit, and making the diagram

A⊗B
σA,B //

θA⊗B

��

B ⊗A
θB⊗θA
��

A⊗B B ⊗A
σB,A

oo
(3)

commute for all objects A and B of the category C .

The twist θA is depicted as the ribbon A twisted positively in the trigonometric direction
with an angle 2π whereas its inverse θ−1

A is depicted as the same ribbon A twisted this
time negatively with an angle −2π:

θA =

A

A

θ−1
A =

A

A

This notation enables us to give a topological motivation to the axioms of a balanced
category. The first requirement that θI is the identity means that the ribbon strand I
should be thought as ultra thin. The second requirement that the coherence diagram (3)
commutes reflects the following topological equality between string diagrams:

θA⊗B =

A B

A B

2.3 Ribbon categories
This leads us to the well-known definition of ribbon category.

Definition 7 (ribbon category) A ribbon category C is a balanced category where ev-
ery object A has a right dual A∗, what we write A a A∗.

See the introduction for a definition of right dual.

2.4 Ribbon dialogue categories
At this stage, we are ready to introduce the notion of ribbon dialogue category which
provides a functorial bridge between proof theory and knot topology.

Definition 8 (ribbon dialogue categories) A balanced dialogue category is a dialogue
category C in the sense of Def. 2, moreover equipped with a braiding and a twist defining
a balanced category.

An interesting aspect of the definition is that it does not require any coherence relation
between the dialogue structure and balanced structure of the category C .

12

Illustration. An instructive example of ribbon dialogue category D coming from algebra,
and more specifically from the representation theory of quantum groups, is the following
one: the category Mod(H) of (finite and infinite dimensional) H-modules associated to
a ribbon Hopf algebra H. Note that the full subcategory C of rigid objects A in a ribbon
dialogue category D (that is, objects with a right dual) is a ribbon category. Typically,
the category Modf (H) of finite dimensional H-modules associated to a ribbon Hopf al-
gebra H defines a ribbon category, see [14] for details.

3 Ribbon tensorial logic
We introduce below the sequent calculus of ribbon tensorial logic, and mention a number
of commuting conversions involved in the cut-elimination procedure.

3.1 The ribbon groups
Recall that the braid group Bn on n strands is presented by the generators σi for 1 ≤ i ≤
n− 1 and the equations

σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1
σi ◦ σj = σj ◦ σi when |j − i| ≥ 2. (4)

There is an obvious left action

B : Bn × [n] −→ [n] (5)

of the group Bn on the set [n] = {1, · · · , n} of strands. This action enables one to define a
wreath product of Bn on the additive group (Z,+, 0). The resulting group Gn is called the
ribbon group on n strands. The group is presented by the generators σi for 1 ≤ i ≤ n− 1
and θi for 1 ≤ i ≤ n, together with the equations (4) of the braid group Bn and the
equations below:

σi ◦ θi = θi+1 ◦ σi
σi ◦ θi+1 = θi ◦ σi
σi ◦ θj = θj ◦ σi when j < i or when j ≥ j + 2.

Each group Gn may be alternatively seen as a groupoid noted SGn, with a unique ob-
ject ∗ and SGn(∗, ∗) = Gn. A nice and conceptual definition of the ribbon groups Gn is
possible, as follows. The groupoid G defined as the disjoint sum of the groupoids SGn

coincides with the free balanced category generated by the terminal category 1. Recall
that the category 1 has a unique object ∗ and a unique map. Hence, the group Gn may
be alternatively defined as G (n, n) where n = 1⊗· · ·⊗1 is the n-fold tensor product of the
generator 1 of the category G . The fact that the free balanced category G generated by
the category 1 coincides with the disjoint sum of the groupoids SGn is just the ribbon-
theoretic counterpart to the well-known fact that the free braided monoidal category B
generated by the category 1 coincides with the disjoint sum of the groupoids SBn. From
this observation follows that there exists a family of group homomorphisms

⊗ : Gp ×Gq −→ Gp+q

which reflects the monoidal structure of the balanced category G . Moreover, the ac-
tion (5) extends to a left action

B : Gn × [n] −→ [n]

13

Axiom
f : α→ β in the category X

α ` β

Cut
Γ ` A Υ1, A,Υ2 ` B

Υ1,Γ,Υ2 ` B

Right ⊗-introduction Γ ` A ∆ ` B
Γ,∆ ` A⊗B

Left ⊗-introduction
Υ1, A,B,Υ2 ` C

Υ1, A⊗B,Υ2 ` C

Right 1-introduction ` 1

Left 1-introduction
Υ1,Υ2 ` A

Υ1, 1,Υ2 ` A

Right (⊥�)-introduction
Γ, A ` ⊥

Γ ` ⊥� A

Left (⊥�)-introduction Γ ` A
⊥� A,Γ ` ⊥

Right ((⊥)-introduction
A,Γ ` ⊥

Γ ` A(⊥

Left ((⊥)-introduction Γ ` A
Γ, A(⊥ ` ⊥

Figure 1: Sequent calculus of tensorial logic.

where each generator θi acts trivially on [n] = {1, . . . , n}, in the sense that θi B k = k for
all k ∈ [n].

3.2 The sequent calculus
The formulas of ribbon tensorial logic are finite trees generated by the grammar

A,B ::= A⊗B | 1 | A(⊥ | ⊥� A | ⊥ | α

where α is an object of a fixed small category X of atoms. The sequents are two-sided

A1, . . . , Am ` B

with a sequence of formulas A1, ..., Am on the left-hand side, and a unique formula B on
the right-hand side. The proofs of ribbon tensorial logic are defined as derivation trees
in a carefully designed sequent calculus, which we formulate now. The sequent calculus
is defined as the usual sequent calculus of tensorial logic, recalled in Figure 1, together
with a family of exchange rules

A1, . . . , An ` B[g]
AgB1, . . . , AgBn ` B

parametrized by the elements g of the ribbon group Gn.

14

3.3 The commutative conversions
Ribbon tensorial logic is inspired by the topology of knots, and one thus needs to take an
extra care in order to design the equational theory on its derivation trees. Nonetheless,
the basic recipe to identify two derivation trees π1 and π2 is the same in ribbon tenso-
rial logic as in any other sequent calculus: the equality is defined by a series of local
commuting conversions

π1 ! π2

on derivation trees. Moreover, these commuting conversions rules are essentially the
same for ribbon tensorial logic as for traditional (commutative) tensorial logic. The only
difference is that every exchange rule of ribbon tensorial logic is labelled by an ele-
ment g ∈ Gn of the ribbon group. For that reason, one needs to treat with an extreme
attention every commuting conversion π1 ! π2 involving an exchange rule. For each
such commuting conversion, the challenge is to label properly the exchange rules ap-
pearing on each side π1 and π2 of the conversion in commutative tensorial logic, in order
for the conversion π1! π2 to make sense in ribbon tensorial logic. The archetypal illus-
tration of commuting conversion in ribbon tensorial logic is provided by the conversion
which transforms the derivation tree

π1
...

A1, . . . , An ` A

π2
...

Υ1, B,A,Υ2 ` C [p⊗ σ ⊗ q]Υ1, A,B,Υ2 ` C
Cut Υ1, A1, . . . , An, B,Υ2 ` C

into the derivation tree
π1
...

A1, . . . , An ` A

π2
...

Υ1, B,A,Υ2 ` C
Cut Υ1, B,A1, . . . , An,Υ2 ` C [p⊗ σn,1 ⊗ q]Υ1, A1, . . . , An, B,Υ2 ` C

where p and q are the respective lengths of Υ1 and of Υ2 and where σm,n is defined as
the positive braid permuting m strands above n strands. Another important illustration
is the conversion which transforms the derivation tree

π1
...

A1, . . . , An ` A

π2
...

Υ1, A,Υ2 ` C [p⊗ θ ⊗ q]Υ1, A,Υ2 ` C
Cut Υ1, A1, . . . , An,Υ2 ` C

into the derivation tree
π1
...

A1, . . . , An ` A

π2
...

Υ1, A,Υ2 ` C
Cut Υ1, A1, . . . , An,Υ2 ` C [p⊗ θ〈n〉 ⊗ q]Υ1, A1, . . . , An,Υ2 ` C

where θ〈n〉 is the positive twist on n strands. These two commutative conversions should
be understood as naturality conditions on the braiding σ and on the twist θ. Yet another
important commuting conversion identifies for every pair g, h ∈ Gn the derivation tree

15

π
...

A1, . . . , An ` B[h]
AhB1, . . . , AhBn ` B[g]

AgB(hB1), . . . , AgB(hBn) ` B

with the derivation tree
π
...

A1, . . . , An ` B[g ◦ h]
Ag◦hB1, . . . , Ag◦hBn ` B

This commuting conversion comes with a similar conversion for the unit element e ∈ Gn.
Together, the two commuting conversions ensure that the action of the ribbon group Gn

on a sequent A1, . . . , An ` B with n hypothesis is algebraic in the traditional sense,
modulo conversion.

One main technical observation of the paper is that the traditional coherence dia-
grams which define a braiding (in §2.1) and a twist (in §2.2) can be “internalized” as
commuting conversions of ribbon tensorial logic. Typically, the coherence diagram (a)
for braiding (Def. 5, §2.1) is reflected in ribbon tensorial logic by the commuting conver-
sion which identifies the derivation tree

π
...

Υ1, A,B,C,Υ2 ` D
Left ⊗ Υ1, A⊗B,C,Υ2 ` D[p⊗ σ ⊗ q] Υ1, C,A⊗B,Υ2 ` D

with the derivation tree
π
...

Υ1, A,B,C,Υ2 ` D[p⊗ 1⊗ σ ⊗ q] Υ1, A, C,B,Υ2 ` D[p⊗ σ ⊗ 1⊗ q] Υ1, C,A,B,Υ2 ` D
Left ⊗ Υ1, C,A⊗B,Υ2 ` D

Similarly, the coherence diagram (3) for the twist in the definition of a balanced category
(Def. 6,§2.2) is reflected by the commuting conversion which identifies the derivation tree

π
...

Υ1, A,B,Υ2 ` C
Left ⊗ Υ1, A⊗B,Υ2 ` C[p⊗ θ ⊗ q] Υ1, A⊗B,Υ2 ` C

with the derivation tree
π
...

Υ1, A,B,Υ2 ` C[p⊗ θ ⊗ θ ⊗ q] Υ1, A,B,Υ2 ` C[p⊗ σ ⊗ q] Υ1, B,A,Υ2 ` C[p⊗ σ ⊗ q] Υ1, A,B,Υ2 ` C
Left ⊗ Υ1, A⊗B,Υ2 ` C

16

The fact that the coherence diagrams required of a balanced category can be “lifted”
in this way to ribbon tensorial logic is somewhat surprising, because it means that the
topological notions of braiding σ and of twist θ are compatible with the logical and multi-
categorical (rather than categorical) nature of sequents A1, · · · , An ` B of tensorial logic.

3.4 The cut elimination theorem
The equational theory of ribbon tensorial logic is thus obtained from the equational
theory of traditional (commutative) tensorial logic by selecting very carefully the label
g ∈ Gn associated for each conversion rule π1 ! π2 and for each exchange rule appear-
ing in the derivation trees π1 and of π2. Once these choices of labelling have been done
properly, it is not difficult to establish the following cut-elmination theorem, in just the
same way as for commutative tensorial logic:

Theorem 1 (cut-elimination) Every derivation tree of ribbon tensorial logic is equiva-
lent to a cut-free proof modulo commuting conversions.

3.5 A focalisation theorem
The commuting conversions of ribbon tensorial logic are not only useful to prove the
cut-elimination theory. They also enable us to establish a focalisation theorem for the
derivation trees of the logic. The theorem is important because it ensures that every
cut-free derivation tree π can be transformed by a series of commuting conversions to a
normal form πnf where the construction of the derivation is performed in phases. A cycle
of construction starts with a number of derivation trees

π1
...

Γ1 ` A1
· · ·

πi
...

Γi ` Ai
· · ·

πn
...

Γn ` An
where all the formulas of the context Γi are either atomic: that is, equal to an object α
of the category X , or negated: that is, of the form A (⊥ or ⊥� A. One then applies
the phases below one after the other in order to get a derivation tree π of the same form,
whose sequent Γ ` A has all the formulas of its context Γ either atomic or negated.

1. A left introduction rule of the left negation or of the right negation which produces
a sequent whose conclusion formula is ⊥,

2. A series of exchange rules which permute the formulas of the context,

3. A series of left ⊗-introduction and of left 1-introduction rules, which produces a
sequent where at most one formula in the context is not negated or atomic,

4. A right introduction of the left negation or of the right negation, or an axiom rule,
which produces a sequent where all the formulas (context and conclusion) are ei-
ther negated or atomic,

5. A series of right ⊗-introduction rules, and of right 1-introduction rules,

6. A series of exchange rules which permute the atomic or negated formulas of the
context,

As just claimed, one obtains at the end of each cycle a sequent Γ ` A where all the
formulas of the context Γ are either negated or atomic. A derivation tree π is called
focused when it has been produced by a number of such construction cycles.

17

Theorem 2 (focalisation) Every derivation tree π is equivalent to a focused derivation
tree πnf modulo the commuting conversions of ribbon tensorial logic.

The theorem is based on the ability of permuting the order of introduction rules using
commuting conversions. The proof is essentially standard, except for the special care
required by the exchange rules.

3.6 Soundness theorem
Suppose given a functor X −→ D from the category of atoms of our ribbon tensorial
logic, to a given ribbon dialogue category D . Then, one establishes that

Theorem 3 (soundness) Every derivation tree π of a sequent

A1 ⊗ · · · ⊗An ` B

in ribbon tensorial logic may be interpreted as a morphism

[π] : A1 ⊗ · · · ⊗An −→ B

of the ribbon dialogue category D . Moreover, the interpretation [π] provides an invariant
of the derivation tree π modulo commuting conversions.

The interpretation [π] of the derivation tree π is defined by structural induction on the
height of the derivation tree. The only interesting point of the construction is that the
exchange rule

A1, . . . , An ` B[g]
AgB1, . . . , AgBn ` B

is interpreted by precomposing the interpretation

[π] : A1, . . . , An −→ B

of the proof π with the morphism

AgB1, . . . , AgBn −→ A1, . . . , An

associated to the element g ∈ Gn of the ribbon group acting on the object A1 ⊗ . . . ⊗ An
in the ribbon dialogue category D .

4 The proof-as-tangle theorem
A more conceptual and sophisticated way to formulate the soundness theorem (Thm. 3,
§3.6) is to state that the free ribbon dialogue category

free-ribbon(X)

generated by the category X of atoms, coincides with a category of tensorial formulas
and of derivation trees modulo the equational theory of ribbon tensorial logic. We have
seen in the introduction how to deduce from this property a functor

[−] : free-ribbon(X) −→ free-ribbon(X + 1)

which transports every tensorial proof-net π into a topological tangle [π]. We establish
now the main result of the paper.

18

Theorem 4 (proof-as-tangle) The functor [−] is faithful.

Proof. The proof is to a large extent based on the focalisation theorem (Thm. 2). Suppose
that two cut-free derivation trees

π1
...

A ` B

π2
...

A ` B

of ribbon logic induce the same tangle [π1] = [π2] modulo topological deformation in the
free ribbon category

free-ribbon(X + 1).

We show that π1 ! π2 and conclude. We proceed by induction on the number of links
in the tangle. By the focalisation theorem, we know that the proofs π1 and π2 are equal
modulo logical equality to:

π′1...

A1, . . . , An ` B

π′2...

A1, . . . , An ` B

where each Ai is either a negation or an atom, followed by the same sequence of left
introduction of tensor and left introduction of unit. Suppose that B = ⊥. In that case,
the formula ⊥ was either introduced by:

• the left introduction of a left negation X (⊥,

• or the left introduction of a right negation ⊥� X.

We may suppose without loss of generality that this last rule introduces a left negation
X (⊥ in the context. In that case, the proof π′1 is equal to

π′′1...

X1, . . . , Xn−1 ` X
Left(

X1, . . . , Xn−1, X (⊥ ` ⊥[g]
A1, . . . , An ` ⊥

The equality of [π1] and [π2] modulo deformation implies that ⊥ is connected in [π′2] to
the same formula X (⊥. From that follows that X (⊥ is also introduced in π2 by the
left introduction of a left negation. In other words, the proof π′2 factors as

π′′2...

Y1, . . . , Yn−1 ` Y
Left(

Y1, . . . , Yn−1, X (⊥ ` ⊥[h]
A1, . . . , An ` ⊥

From this, we conclude that the derivation tree

π′′1...

X1, . . . , Xn−1 ` X
Left(

X1, . . . , Xn−1, X (⊥ ` ⊥

induces the same topological tangle as the derivation tree

19

π′′2...

Y1, . . . , Yn−1 ` Y
Left(

Y1, . . . , Yn−1, X (⊥ ` ⊥[h]
A1, . . . , An ` ⊥[g−1]

X1, . . . , Xn−1, X (⊥ ` ⊥

Since all the formulas Ai are either negated formulas or atoms, we deduce from the
topology of tangles that

g−1 ◦ h ∈ Gn

is of the form f ⊗ 1. From this follows that the proof

π′′1...

X1, . . . , Xn−1 ` X

has the same topological tangle as the proof

π′′2...

Y1, . . . , Yn−1 ` X[f]
X1, . . . , Xn−1 ` X

From this, we deduce by induction hypothesis that they are equal proofs — in the sense
that their proof-nets coincide. The proof π′1 is thus equal to the proof

π′′2...

Y1, . . . , Yn−1 ` X[f]
X1, . . . , Xn−1 ` X

Left(
X1, . . . , Xn−1, X (⊥ ` ⊥[g]

A1, . . . , An ` ⊥

which may be rewritten into

π′′2...

Y1, . . . , Yn−1 ` X
Left(

Y1, . . . , Yn−1, X (⊥ ` ⊥[f ⊗ 1]
X1, . . . , Xn−1, X (⊥ ` ⊥[g]

A1, . . . , An ` ⊥

which may be rewritten into the proof π2:

π′′2...

Y1, . . . , Yn−1 ` X
Left(

Y1, . . . , Yn−1, X (⊥ ` ⊥[h]
A1, . . . , An ` ⊥

This concludes the proof by induction when the conclusion B of the two sequents π1
and π2 is equal to B = ⊥.

20

We have seen the most difficult part of the topological argument establishing the
“proof-as-tangle” theorem. The remaining part of the argument works in essentially the
same way. For instance, suppose that the conclusion of the sequent

A1, · · · , An ` B

produced by π1 and π2 is B = B1 ⊗ B2, and that all the hypothesis A1, . . . , An are either
negated or atomic. In that case, one may suppose without loss of generality that the last
rule of π1 introduces a tensor on the right. The derivation tree π1 thus factors as

π11
...

A1, . . . , Ak ` B1

π12
...

Ak+1, . . . , An ` B2Right ⊗
A1, . . . , Ak, Ak+1, . . . , An ` B1 ⊗B2

The fact that the tangles [π1] and[π2] are equal modulo deformation implies that π2 splits
in the same way as two proofs π21 and π22 ; moreover, the tangles [π11] and [π21] are equal
modulo deformation, and similarly for [π12] and [π22]. This enables one to conclude by
induction that π11 and π21 are equal modulo commuting conversions, and similarly for
π12 and π22. This concludes our argument that π1 and π2 are equal modulo commuting
conversions.

5 Illustration
The proof-as-tangle theorem (Thm. 4, §4) is not just meaningful for proof-theory: it also
provides a useful coherence theorem for ribbon dialogue categories, such as the category
Mod(H) of finite and infinite dimensional H-modules associated to a ribbon Hopf alge-
bra H, mentioned in §2.4. By way of illustration, imagine that one wants to establish
that the diagram

⊥� (⊥� A) ⊥�turn A // ⊥� (A(⊥)

(⊥� A)(⊥

turn⊥�A

OO

A
η′Aoo ηA // ⊥� (A(⊥)

θ⊥�(A(⊥)

OO

(6)

commutes in every ribbon dialogue category D , where

ηA : A → ⊥� (A(⊥) η′A : A → (⊥� A)(⊥
turn A : ⊥� A → A(⊥

denote the units η, η′ of the two double negation monads, and the canonical isomorphism
turn A between the left and right negation of A. Commutativity of (6) in any ribbon
dialogue category is equivalent to the fact that the following derivation trees π1 and π2
of ribbon tensorial logic are equal modulo commuting conversions:

21

Axiom
A ` ALeft(

A , A(⊥ ` ⊥[torsion]
A , A(⊥ ` ⊥

Right�
A ` ⊥� (A(⊥)

Axiom
A ` ALeft� ⊥� A , A ` ⊥

Right(
A ` (⊥� A)(⊥

Axiom
A ` A Left(

A , A(⊥ ` ⊥ [σ ◦ θ1]
A(⊥ , A ` ⊥

Right�
A(⊥ ` ⊥� A Left(

A(⊥ , (⊥� A)(⊥ ` ⊥
[σ ◦ θ1]

(⊥� A)(⊥ , A(⊥ ` ⊥
Right�

(⊥� A)(⊥ ` ⊥� (A(⊥)
Cut

A ` ⊥� (A(⊥)

where the element torsion = θ〈2〉 of G2 twists the two hypothesis of the proof, or (equiv-
alently) twists the conclusion ⊥ with an angle 2π, see §3.3 for a definition of θ〈n〉. One
convenient way to construct the ribbon tangles [π1] and [π2] associated to the derivation
trees π1 and π2 is to proceed by structural induction, and to interpret every derivation
tree π of a sequent A1, . . . , An ` B as a form [π] on the object [A1]⊗ . . .⊗ [An]⊗ [B]∗ in the
category free-ribbon(X + 1). Recall that a form on an object A in a ribbon category C ,
is defined as a morphism from A to the tensorial unit I. If we use the notation ~ = ⊥ for
the tensorial pole object of free-ribbon(X +1) and h = ⊥∗ for its right dual, we can then
describe [π1] and [π2] as a sequence of local transformations performed on forms. When
we apply this recipe to [π1], we obtain the following sequence of local transformations

Axiom
A , A∗

Left(
A , A∗ ⊗ ~ , h[torsion]
A , A∗ ⊗ ~ , h

Right�
A , A∗ ⊗ ~ ⊗ h

torsion

This intermediate representation enables us to compute the associated ribbon tangle [π1]
by a step-by-step procedure, as done in the right-hand side figure above, see Chap. 7 of
[16] for details. In the ribbon tangle [π1], the black strand tracks the circulation of ~ = ⊥
inside the proof while the blue strands tracks the circulation of the formula A. The
ribbon tangle [π2] associated to the derivation tree π2 is computed by the same procedure
below. The fact that the two ribbon tangles [π1] and [π2] are equal modulo topological
deformation implies (by Thm. 4) that the two derivation trees π1 and π2 are equal modulo
commuting conversions. This establishes the non-trivial fact that the diagram (6) is
commutative in every ribbon dialogue category.

1

1

22

References
[1] Samson Abramsky. Temperley-Lieb Algebra: From Knot Theory to Logic and Compu-

tation via Quantum Mechanics. Mathematics of Quantum Computing and Technology,
G. Chen and L. Kauffman and S. Lomonaco editors, Taylor and Francis, 2007.

[2] Samson Abramsky, Radha Jagadeesan: Games and Full Completeness for Multi-
plicative Linear Logic. J. Symb. Log. 59(2): 543-574 (1994)

[3] Arnaud Fleury. Ribbon braided multiplicative linear logic. Matematica Contempo-
ranea, 01/2003; 24.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[5] Jean-Yves Girard. Towards a geometry of interaction. In Categories in Computer
Science and Logic, pages 69 – 108, Providence, 1989. American Mathematical Society.
Proceedings of Symposia in Pure Mathematics no 92.

[6] Jean-Yves Girard. Geometry of interaction I: interpretation of system F . In Ferro,
Bonotto, Valentini, and Zanardo, editors, Logic Colloquium ’88, pages 221 – 260, Am-
sterdam, 1989. North-Holland.

[7] Jean-Yves Girard. Geometry of interaction II : deadlock-free algorithms. In Martin-
Löf and Mints, editors, Proceedings of COLOG 88, volume 417 of LNCS, pages 76 –
93, Heidelberg, 1990. Springer-Verlag.

[8] Willem Heijltjes and Robin Houston. No proof nets for MLL with units: Proof equiv-
alence in MLL is PSPACE-complete. Proc. CSL-LICS 2014.

[9] Willem Heijltjes and Lutz Straßburger. Proof nets and semi-star-autonomous cate-
gories. Mathematical Structures in Computer Science, 2014.

[10] Dominic J.D. Hughes. Simple free star-autonomous categories and full coherence.
JPAA, 216(11):2386 –2410, 2012.

[11] Dominic J.D. Hughes. Simple multiplicative proof nets with units. Annals of Pure
and Applied Logic, 2012.

[12] André Joyal and Ross Street. The geometry of tensor calculus, I. Adv. Math. 88,
55–113. (1991)

[13] André Joyal and Ross Street. Braided tensor categories. Adv. Math. 102, 20–78,
1993.

[14] Christian Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer,
1994.

[15] Paul-André Mellies. Game semantics in string diagrams. Proceedings LICS 2012.

[16] Paul-André Mellies. Une étude micrologique de la négation. Habilitation à Diriger
des Recherches, 2016.

[17] Peter Selinger. A survey of graphical languages for monoidal categories. In New
Structures for Physics (ed. Bob Coecke), Springer Lecture Notes in Physics 813, 289–
355, 2011.

23

[18] M. C. Shum. Tortile tensor categories. Journal of Pure and Applied Algebra, 93:57–
110, 1994.

[19] François Lamarche, Lutz Straßburger: On Proof Nets for Multiplicative Linear
Logic with Units. CSL 2004: 145-159.

[20] Todd Trimble. Linear logic, bimodules, and full coherence for autonomous cate-
gories. PhD thesis, Rutgers University, 1994.

24

6 Appendix: the cut-elimination procedure
In this appendix, we give an exhaustive list of the commuting conversions of ribbon
tensorial logic.

6.1 The commuting conversions involving an exchange rule
For the reader’s convenience, we put together the commuting conversions involving the
exchange rule in two independent figures (see pages 12 and 13). All the commuting
conversions involving the exchange rule are described in these two figures, except for
the two commuting conversions below, which involve the exchange rule and the cut rule.

Exchange vs. cut — The derivation tree

π1...

A1, · · · , An ` BExchange[g]
AgB1, . . . , AgBn ` B

π2...

Υ1, B,Υ2 ` C
CutΥ1, AgB1, . . . , AgBn,Υ2 ` C

is transformed into

π1...

A1, · · · , An ` B

π2...

Υ1, B,Υ2 ` C CutΥ1, A1, · · · , An,Υ2 ` C Exchange[h]Υ1, AgB1, . . . , AgBn,Υ2 ` C

where h = p⊗h⊗ q is deduced from g and the size p and q of the two contexts Υ1 and Υ2.

Cut vs. exchange — The proof

π1...

Γ ` Ai

π2...

A1, . . . , An ` B Exchange[g]
AgB1, . . . , AgBn ` B

Cut
AgB1, . . . , Aj−1,Γ, Aj+1, . . . , AgBn ` B

where j = g−1Bi is the unique index such that gBj = i, is transformed into the derivation
tree

π1...

Γ ` Ai

π2...

A1, . . . , An ` B Cut
A1, . . . , Ai−1,Γ, Ai+1, An ` B Exchange[h]

AgB1, . . . , Aj−1,Γ, Aj+1, . . . , AgBn ` B

where h is deduced from g and the size of the context Γ.

25

6.2 The commuting conversions between a cut rule and a cut
rule

The two derivation trees below are considered equivalent from the point of view of cut-
elimination:

π1...

Γ ` A

π2...

Υ2, A,Υ3 ` B

π3...

Υ1, B,Υ4 ` C CutΥ1,Υ2, A,Υ3,Υ4 ` C CutΥ1,Υ2,Γ,Υ3,Υ4 ` C

π1...

Γ ` A

π2...

Υ2, A,Υ3 ` B CutΥ2,Γ,Υ3 ` B

π3...

Υ1, B,Υ4 ` C CutΥ1,Υ2,Γ,Υ3,Υ4 ` C

In particular, the cut-elimination procedure is allowed to transform the first derivation
tree into the second one, and conversely. The two derivation trees below are also equiv-
alent from the point of view of cut-elimination:

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1, A,Υ2, B,Υ3 ` C CutΥ1, A,Υ2,∆,Υ3 ` C CutΥ1,Γ,Υ2,∆,Υ3 ` C

26

π2...

∆ ` B

π1...

Γ ` A

π3...

Υ1, A,Υ2, B,Υ3 ` C CutΥ1,Γ,Υ2, B,Υ3 ` C CutΥ1,Γ,Υ2,∆,Υ3 ` C

6.3 The commuting conversions between an axiom rule and a cut
rule

Axiom vs. cut The derivation tree

Axiom
A ` A

π
...

Υ1, A,Υ2 ` B CutΥ1, A,Υ2 ` B
is transformed into the derivation tree

π
...

Υ1, A,Υ2 ` B

Cut vs. axiom The derivation tree

π
...

Γ ` A Axiom
A ` A CutΓ ` A

is transformed into the derivation tree

π
...

Γ ` A

6.4 The commuting conversions between a cut rule and a princi-
pal formula

The tensor product The derivation tree

π1...

Γ ` A

π2...

∆ ` BRight ⊗ Γ,∆ ` A⊗B

π3...

Υ1, A,B,Υ2 ` C Left ⊗Υ1, A⊗B,Υ2 ` C CutΥ1,Γ,∆,Υ2 ` C
is transformed into the derivation tree

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1, A,B,Υ2 ` C CutΥ1, A,∆,Υ2 ` C CutΥ1,Γ,∆,Υ2 ` C

27

A choice has been made here: indeed, the cut rule on the formula A ⊗ B is replaced by
a cut rule on the formula B, followed by a cut rule on the formula A. The other order
could have been followed instead, with the cut rule on A applied before the cut rule on B.
However, this choice is innocuous, because the two derivations resulting from this choice
are equivalent modulo the conversion rule.

Tensor unit The derivation tree

Right I ` I

π
...

Υ1,Υ2 ` A Left IΥ1, I,Υ2 ` A CutΥ1,Υ2 ` A

is transformed into the derivation tree

π
...

Υ1,Υ2 ` A

Left negation The derivation tree

π1...

A,∆ ` ⊥
Right(∆ ` A(⊥

π2...

Γ ` A Left(Γ, A(⊥ ` ⊥
CutΓ,∆ ` ⊥

is transformed into the derivation tree

π2...

Γ ` A

π1...

A,∆ ` ⊥
CutΓ,∆ ` ⊥

Right negation The derivation tree

π1...

Γ, A ` ⊥
Right� Γ ` ⊥� A

π2...

∆ ` A Left�⊥� A,∆ ` ⊥
CutΓ,∆ ` ⊥

is transformed into the derivation tree

π2...

∆ ` A

π1...

Γ, A ` ⊥
CutΓ,∆ ` ⊥

28

6.5 The commuting conversions implementing an eta-expansion
step

Tensor product The derivation tree

Axiom
A⊗B ` A⊗B

is transformed into the derivation tree
Axiom

A ` A Axiom
B ` B Right ⊗

A,B ` A⊗B
Left ⊗

A⊗B ` A⊗B

Left negation The derivation tree

Axiom
A(⊥ ` A(⊥

is transformed into the derivation tree
Axiom

A ` A Left(
A,A(⊥ ` ⊥

Right(
A(⊥ ` A(⊥

Right negation The derivation tree

Axiom⊥� A ` ⊥� A

is transformed into the derivation tree
Axiom

A ` A Left�⊥� A,A ` ⊥
Right�⊥� A ` ⊥� A

Tensor unit The derivation tree

Axiom
I ` I

is transformed into the derivation tree
Right I` I Left I

I ` I

6.6 The commuting conversion between a cut rule and a sec-
ondary hypothesis

Tensor product (right introduction) The derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` B

π3...

∆ ` C
Right ⊗Υ1, A,Υ2,∆ ` B ⊗ C CutΥ1,Γ,Υ2,∆ ` B ⊗ C

is transformed into the derivation tree

29

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` BCut Υ1,Γ,Υ2 ` B

π3...

∆ ` C
Right ⊗Υ1,Γ,Υ2,∆ ` B ⊗ C

Similarly, the derivation tree

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1, A,Υ2 ` C Right ⊗∆,Υ1, A,Υ2 ` B ⊗ C Cut∆,Υ1,Γ,Υ2 ` B ⊗ C
is transformed into the derivation tree

π2...

∆ ` B

π1...

Γ ` A

π3...

Υ1, A,Υ2 ` C CutΥ1,Γ,Υ2 ` C Right ⊗∆,Υ1,Γ,Υ2 ` B ⊗ C

Tensor product (left introduction) The derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2, B,C,Υ3 ` D Left ⊗Υ1, A,Υ2, B ⊗ C,Υ3 ` D CutΥ1,Γ,Υ2, B ⊗ C,Υ3 ` D
is transformed into the derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2, B,C,Υ3 ` D CutΥ1,Γ,Υ2, B,C,Υ3 ` D Left ⊗Υ1,Γ,Υ2, B ⊗ C,Υ3 ` D
Similarly, the derivation tree

π1...

Γ ` C

π2...

Υ1, A,B,Υ2, C,Υ3 ` D Left ⊗Υ1, A⊗B,Υ2, C,Υ3 ` D CutΥ1, A⊗B,Υ2,Γ,Υ3 ` D
is transformed into the derivation tree

π1...

Γ ` C

π2...

Υ1, A,B,Υ2, C,Υ3 ` D CutΥ1, A,B,Υ2,Γ,Υ3 ` D Left ⊗Υ1, A⊗B,Υ2,Γ,Υ3 ` D

30

Tensor unit (left introduction) The derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2,Υ3 ` D Left IΥ1, A,Υ2, I,Υ3 ` D CutΥ1,Γ,Υ2, I,Υ3 ` D

is transformed into the derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2,Υ3 ` D CutΥ1,Γ,Υ2,Υ3 ` D Left IΥ1,Γ,Υ2, I,Υ3 ` D

Similarly, the derivation tree

π1...

Γ ` A

π2...

Υ1,Υ2, A,Υ3 ` D Left IΥ1, I,Υ2, A,Υ3 ` D CutΥ1, I,Υ2,Γ,Υ3 ` D

is transformed into the derivation tree

π1...

Γ ` A

π2...

Υ1,Υ2, A,Υ3 ` D CutΥ1,Υ2,Γ,Υ3 ` D Left IΥ1, I,Υ2,Γ,Υ3 ` D

Left negation (left introduction) The derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` B Left(Υ1, A,Υ2, B (⊥ ` ⊥ CutΥ1,Γ,Υ2, B (⊥ ` ⊥

is transformed into the derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` B CutΥ1,Γ,Υ2 ` B Left(Υ1,Γ,Υ2, B (⊥ ` ⊥

31

Right negation (left introduction) The derivation tree

π1...

Γ ` B

π2...

Υ1, B,Υ2 ` A Left�⊥� A,Υ1, B,Υ2 ` ⊥ Cut⊥� A,Υ1,Γ,Υ2 ` ⊥

is transformed into the derivation tree

π1...

Γ ` B

π2...

Υ1, B,Υ2 ` A CutΥ1,Γ,Υ2 ` A Left�⊥� A,Υ1,Γ,Υ2 ` ⊥

Left negation (right introduction) The derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2, B ` ⊥ Right�Υ1, A,Υ2 ` ⊥� B
CutΥ1,Γ,Υ2 ` ⊥� B

is transformed into the derivation tree

π1...

Γ ` A

π2...

Υ1, A,Υ2, B ` ⊥ CutΥ1,Γ,Υ2, B ` ⊥ Right�Υ1,Γ,Υ2 ` ⊥� B

Right negation (right introduction) The derivation tree

π1...

Γ ` B

π2...

A,Υ1, B,Υ2 ` ⊥ Right(Υ1, B,Υ2 ` A(⊥ CutΥ1,Γ,Υ2 ` A(⊥

is transformed into the derivation tree

π1...

Γ ` B

π2...

A,Υ1, B,Υ2 ` ⊥ Cut
A,Υ1,Γ,Υ2 ` ⊥ Right(Υ1,Γ,Υ2 ` A(⊥

32

6.7 The commuting conversions between a cut rule and a sec-
ondary conclusion

Tensor product The derivation tree

π1...

Υ2, A,B,Υ3 ` CLeft ⊗ Υ2, A⊗B,Υ3 ` C

π2...

Υ1, C,Υ4 ` D CutΥ1,Υ2, A⊗B,Υ3,Υ4 ` D

is transformed into the derivation tree

π1...

Υ2, A,B,Υ3 ` C

π2...

Υ1, C,Υ4 ` D CutΥ1,Υ2, A,B,Υ3,Υ4 ` D Left ⊗Υ1,Υ2, A⊗B,Υ3,Υ4 ` D

Tensor unit The derivation tree

π1...

Υ2,Υ3 ` ALeft I Υ2, I,Υ3 ` A

π2...

Υ1, A,Υ4 ` B CutΥ1,Υ2, I,Υ3,Υ4 ` B

is transformed into the derivation tree

π1...

Υ2,Υ3 ` A

π2...

Υ1, A,Υ4 ` B CutΥ1,Υ2,Υ3,Υ4 ` B Left IΥ1,Υ2, I,Υ3,Υ4 ` B

6.8 The commuting conversions involving the left introduction
of the tensor product

We describe a series of commuting conversions between left introduction and right in-
troduction rules. These rules are generic in tensorial logic, and have nothing to do with
the topological nature of ribbon tensorial logic.

Right introduction of the tensor product

π1...

Υ1, A,B,Υ2 ` C

π2...

∆ ` D
Right ⊗Υ1, A,B,Υ2,∆ ` C ⊗D Left ⊗Υ1, A⊗B,Υ2,∆ ` C ⊗D

is transformed into

33

π1...

Υ1, A,B,Υ2 ` CLeft ⊗ Υ1, A⊗B,Υ2 ` C

π2...

∆ ` D
Right ⊗Υ1, A⊗B,Υ2,∆ ` C ⊗D

Similarly, the derivation tree

π1...

Γ ` C

π2...

Υ1, A,B,Υ2 ` D Right ⊗Γ,Υ1, A,B,Υ2 ` C ⊗D Left ⊗Γ,Υ1, A⊗B,Υ2 ` C ⊗D
is transformed into

π1...

Γ ` C

π2...

Υ1, A,B,Υ2 ` D Left ⊗Υ1, A⊗B,Υ2 ` D Right ⊗Γ,Υ1, A⊗B,Υ2 ` C ⊗D

Right introduction of the left negation
π
...

A,Υ1, B,C,Υ2 ` ⊥ Right(Υ1, B,C,Υ2 ` A(⊥ Left ⊗Υ1, B ⊗ C,Υ2 ` A(⊥
is transformed into

π
...

A,Υ1, B, C,Υ2 ` ⊥ Left ⊗
A,Υ1, B ⊗ C,Υ2 ` ⊥ Right(Υ1, B ⊗ C,Υ2 ` A(⊥

Right introduction of the right negation
π
...

Υ1, A,B,Υ2, C ` ⊥ Right�Υ1, A,B,Υ2 ` ⊥� C
Left ⊗Υ1, A⊗B,Υ2 ` ⊥� C

is transformed into
π
...

Υ1, A,B,Υ2, C ` ⊥ Left ⊗Υ1, A⊗B,Υ2, C ` ⊥ Right�Υ1, A⊗B,Υ2 ` ⊥� C

34

6.9 The commuting conversions involving the left introduction
of the tensorial unit

Right introduction of the unit
Right I` I Left I

I ` I
is transformed into

Axiom
I ` I

Right introduction of the tensor

π1...

Υ1,Υ2 ` A

π2...

∆ ` B
Right ⊗Υ1,Υ2,∆ ` A⊗B Left IΥ1, I,Υ2,∆ ` A⊗B

is transformed into

π1...

Υ1,Υ2 ` ALeft I Υ1, I,Υ2 ` A

π2...

∆ ` B
Right ⊗Υ1, I,Υ2,∆ ` A⊗B

Similarly, the derivation tree

π1...

Γ ` A

π2...

Υ1,Υ2 ` B Right ⊗Γ,Υ1,Υ2 ` A⊗B Left IΓ,Υ1, I,Υ2 ` A⊗B

is transformed into

π1...

Γ ` A

π2...

Υ1,Υ2 ` B Left IΥ1, I,Υ2 ` B Right ⊗Γ,Υ1, I,Υ2 ` A⊗B

Right introduction of the left negation.

π
...

A,Υ1,Υ2 ` ⊥ Right(Υ1,Υ2 ` A(⊥ Left IΥ1, I,Υ2 ` A(⊥

is transformed into

35

π
...

A,Υ1,Υ2 ` ⊥ Left I
A,Υ1, I,Υ2 ` A(⊥ Right(Υ1, I,Υ2 ` A(⊥

Right introduction of the right negation.

π
...

Υ1,Υ2, A ` ⊥ Right�Υ1,Υ2 ` ⊥� A
Left IΥ1, I,Υ2 ` ⊥� A

is transformed into

π
...

Υ1,Υ2, A ` ⊥ Left IΥ1, I,Υ2, A ` ⊥ Right(Υ1, I,Υ2 ` ⊥� A

36

	Introduction
	Ribbon dialogue categories
	Braided monoidal categories
	Balanced categories
	Ribbon categories
	Ribbon dialogue categories

	Ribbon tensorial logic
	The ribbon groups
	The sequent calculus
	The commutative conversions
	The cut elimination theorem
	A focalisation theorem
	Soundness theorem

	The proof-as-tangle theorem
	Illustration
	Appendix: the cut-elimination procedure
	The commuting conversions involving an exchange rule
	The commuting conversions between a cut rule and a cut rule
	The commuting conversions between an axiom rule and a cut rule
	The commuting conversions between a cut rule and a principal formula
	The commuting conversions implementing an eta-expansion step
	The commuting conversion between a cut rule and a secondary hypothesis
	The commuting conversions between a cut rule and a secondary conclusion
	The commuting conversions involving the left introduction of the tensor product
	The commuting conversions involving the left introduction of the tensorial unit

