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Abstract

One of the main issues in proof certification is that different theorem provers, even when designed for

the same logic, tend to use different proof formalisms and to produce outputs in different formats. The

project ProofCert promotes the usage of a common specification language and of a small and trusted

kernel in order to check proofs coming from different sources and for different logics. By relying on that

idea and by using a classical focused sequent calculus as a kernel, we propose here a general framework

for checking modal proofs. We present the implementation of the framework in a prolog-like language

and show how it is possible to specialize it in a simple and modular way in order to cover different

proof formalisms, such as labeled systems, tableaux, sequent calculi and nested sequent calculi. We

illustrate the method for the logic K by providing several examples and discuss how to further extend

the approach.

1 Introduction

One of the main issues in proof checking and proof certification is that proof evidences, even for
a single, specific logic, are produced by using several different proof formalisms and proof calculi.
This is the case both for human-generated proofs and for proofs provided by automated theorem
provers, which moreover tend to produce outputs in different formats. Facing such an issue
is one of the goals of the project ProofCert [21]. By using well-established concepts of proof
theory, ProofCert proposes foundational proof certificates (FPC) as a framework to specify proof
evidence formats. Describing a format in terms of an FPC allows software to check proofs in this
format, much like a context-free grammar allows a parser to check the syntactical correctness
of a program. The parser in this case would be a kernel: a small and trusted component that
checks a proof evidence with respect to an FPC specification.

Checkers [8] is a generic proof certifier based on the ProofCert ideas. It allows for the
certification of arbitrary proof evidences using various trusted kernels, like the focused classical
sequent calculus LKF [18]. Such kernels are enriched with additional predicates, which allow
for having more control on the construction of a proof. Dedicated FPC specifications can be
defined, over these predicates, in order to interpret the information coming from a specific proof
evidence format, so that the kernel is forced to produce a proof that mirrors, and thus certifies
in case of success, the original one.

The problem of proliferation of proof formalisms and proof systems is especially apparent
in the case of modal logics, whose proof theory is notoriously non-trivial. In fact, in the last
decades several proposals have been provided (a general account is, e.g., in [10]). Such proposals
range over a set of different proof formalisms (e.g., sequent, nested sequent, labeled sequent,
hypersequent calculi, semantic tableaux), each of them presenting its own features and drawbacks.
Several results concerning correspondences and connections between the different formalisms
are also known [11, 13, 16].

In [20], a general framework for emulating and comparing existing modal proof systems has
been presented. Such a framework is based on the setting of labeled deduction systems [12],
which consists in enriching the syntax of modal logic with elements coming from the semantics,



i.e., with elements referring explicitly to the worlds of a Kripke structure and to the accessibility
relation between such worlds. In particular, the framework is designed as a focused version
of Negri’s system G3K [24], further enriched with a few parametric devices. Playing with
such parameters produce concrete instantiations of the framework, which, by exploiting the
expressiveness of the labeled approach and the control mechanisms of focusing, can be used to
emulate the behavior of a range of existing formalisms and proof systems for modal logic with
high precision.

In this paper, we rely on the close relationship between labeled sequent systems and LKF [23]
in order to propose an implementation of such a framework that uses LKF as a kernel, and is
developed as a module of the more general Checkers implementation project. This work also
capitalizes on (and, in a sense, generalizes) the one in [19], which was limited to the case of
prefixed tableaux and some of its variants. The implementation is extremely modular and based
on the use of layers that mirror quite closely the instantiations of the framework presented in [20].
Concretely, we are able to certify, via this implementation, proofs given in the formalisms of
labeled sequents, prefixed tableaux, ordinary sequent systems and nested sequents. We cover for
the moment only the basic modal logic K, but the modularity of the approach should allow for
an easy extension to other modal logics, in particular those whose Kripke frames are defined by
geometric axioms, according to the treatment described in [20]. Extension to other formalisms
seems also possible; we discuss this in more detail in the conclusion.

To the best of our knowledge, this project is the first attempt to independently certify the
proofs generated by propositional modal proof systems.

We proceed as follows. In Section 2, we present some background on ProofCert, modal logic
and proof systems for modal logic. In Section 3, we recall the general framework of [20]. In
Section 4, we describe its implementation, by presenting the FPC specifications of the different
layers and by providing a few examples. In Section 5, we conclude and discuss some possible
future work.

2 Background

2.1 A general proof checker

There is no consensus about what shape should a formal proof evidence take. The notion of
structural proofs, which is based on derivations in some calculus, is of no help as long as the
calculus is not fixed. One of the ideas of the ProofCert project is to try to amend this problem
by defining the notion of a foundational proof certificate (FPC) as a pair of an arbitrary proof
evidence and an executable specification which denotes its semantics in terms of some well
known target calculus, such as the Sequent Calculus. These two elements of an FPC are then
given to a universal proof checker which, by the help of the FPC, is capable of deriving a proof
in the target calculus. Since the proof generated is over a well known and low-level calculus
which is easy to implement, one can obtain a high degree of trust in its correctness.

The proof certifier Checkers is a λProlog [22] implementation of this idea. Its main components
are the following:

• Kernel. The kernels are the implementations of several trusted proof calculi. Currently,
there are kernels over the classical and intuitionistic focused sequent calculus. Section 2.2
is devoted to present LKF, i.e. the classical focused sequent calculus that will be used in
the paper.

• Proof evidence. The first component of an FPC, a proof evidence is a λProlog description
of a proof output of a theorem prover. Given the high-level declarative form of λProlog,



the structure and form of the evidence are very similar to the original proof. We will see
the precise form of the different proof evidences we handle in Section 4.

• FPC specification. The basic idea of Checkers is to try and generate a proof of the
theorem of the evidence in the target kernel. In order to achieve that, the different
kernels have additional predicates which take into account the information given in the
evidence. Since the form of this information is not known to the kernel, Checkers uses FPC
specifications in order to interpret it. These logical specifications are written in λProlog
and interface with the kernel in a sound way in order to certify proofs. Writing these
specifications is the main task for supporting the different outputs of the modal theorem
provers we consider in this paper and they are, therefore, explained in detail in Section 4.

2.2 Classical Focused Sequent Calculus

Theorem provers usually employ efficient proof calculi with a lower degree of trust. At the same
time, traditional proof calculi like the sequent calculus enjoy a high degree of trust but are
very inefficient for proof search. In order to use the sequent calculus as the basis of automated
deduction, much more structure within proofs needs to be established. Focused sequent calculi,
first introduced by Andreoli [1] for linear logic, combine the higher degree of trust of sequent
calculi with a more efficient proof search. They take advantage of the fact that some of the rules
are “invertible”, i.e. can be applied without requiring backtracking, and that some other rules
can “focus” on the same formula for a batch of deduction steps. In this paper, we will make use
of the classical focused sequent calculus (LKF) system defined in [18]. Fig. 1 presents, in the
black font, the rules of LKF.

Formulas in LKF can have either positive or negative polarity and are constructed from
atomic formulas, whose polarity has to be assigned, and from logical connectives whose polarity
is pre-assigned. The connectives ∧−,∨− and ∀ are of negative polarity, while ∧+,∨+ and ∃ are
of positive polarity.

Deductions in LKF are done during invertible or focused phases. Invertible phases correspond
to the application of invertible rules to negative formulas while a focused phase corresponds to
the application of focused rules to a specific, focused, positive formula. Phases can be changed by
the application of structural rules. A polarized formula A is a bipolar formula if A is a positive
formula and no positive sub-formula occurrence of A is in the scope of a negative connective in
A. A bipole is a pair of a negative phase below a positive phase within LKF: thus, bipoles are
macro inference rules in which the conclusion and the premises are ⇑-sequents with no formulas
to the right of the up-arrow.

It might be useful sometimes to delay the application of invertible rules (focused rules) on
some negative formulas (positive formulas) A. In order to achieve that, we define the following
delaying operators ∂+(A) = true∧+ A and ∂−(A) = false∨− A. Clearly, A, ∂+(A) and ∂−(A)
are all logically equivalent but ∂+(A) is always considered as a positive formula and ∂−(A) as
negative.

In order to integrate the use of FPC into the calculus, we enrich each rule of LKF with
proof evidences and additional predicates, given in blue font in Fig. 1. We call the resulted
calculus LKF a. LKF a extends LKF in the following way. Each sequent now contains additional
information in the form of the proof evidence Ξ. At the same time, each rule is associated with
a predicate (for example initiale(Ξ, l)) which, according to the proof evidence, might prevent the
rule from being called or guide it by supplying such information as the cut formula to be used.

Note that adding the FPC definitions in Fig. 1 does not harm the soundness of the system
but only restricts the possible rules which can be applied at each step. Therefore, a proof



Invertible Rules

Ξ′ ` Θ ⇑A,Γ Ξ′′ ` Θ ⇑B,Γ andNegc(Ξ,Ξ
′,Ξ′′)

Ξ ` Θ ⇑A ∧− B,Γ

Ξ′ ` Θ ⇑A,B,Γ orNegc(Ξ,Ξ
′)

Ξ ` Θ ⇑A ∨− B,Γ
(Ξ′y) ` Θ ⇑ [y/x]B,Γ allc(Ξ,Ξ

′)

Ξ ` Θ ⇑ ∀x.B,Γ †

Focused Rules
Ξ′ ` Θ ⇓B1 Ξ′′ ` Θ ⇓B2 andPose(Ξ,Ξ

′,Ξ′′)

Ξ ` Θ ⇓B1 ∧+ B2

Ξ′ ` Θ ⇓Bi orPose(Ξ,Ξ
′, i)

Ξ ` Θ ⇓B1 ∨+ B2

Ξ′ ` Θ ⇓ [t/x]B somee(Ξ, t,Ξ
′)

Ξ ` Θ ⇓ ∃x.B

Identity rules

Ξ′ ` Θ ⇑B Ξ′′ ` Θ ⇑ ¬B cute(Ξ,Ξ
′,Ξ′′, B)

Ξ ` Θ ⇑ · cut
〈l,¬Pa〉 ∈ Θ initiale(Ξ, l)

Ξ ` Θ ⇓ Pa
init

Structural rules

Ξ′ ` Θ ⇑N releasee(Ξ,Ξ
′)

Ξ ` Θ ⇓N release
Ξ′ ` Θ, 〈l,C〉 ⇑ Γ storec(Ξ, C, l,Ξ

′)

Ξ ` Θ ⇑ C,Γ store

Ξ′ ` Θ ⇓ P 〈l,P 〉 ∈ Θ decidee(Ξ, l,Ξ
′)

Ξ ` Θ ⇑ · decide

Figure 1: The augmented LKF proof system LKF a. The proviso † requires that y is not free in
Ξ,Θ,Γ, B. The symbol Pa denotes a positive atomic formula.

obtained using LKF a is also a proof in LKF. Since the additional predicates do not compromise
the soundness of LKF a, we allow their definition to be external to the kernel and in fact these
definitions, which are supplied by the user, are what allow Checkers to check arbitrary proof
formats. Section 4 is mainly devoted to the definitions of these programs for the different proof
formats of the modal theorem provers.

2.3 Proof systems for modal logic

In this section, we review several proof systems that are among the most popular calculi for
automated theorem proving in modal logic as well as for manual proof generation. Before that,
we recall a few key notions about modal logic and its relation with first-order classical logic.

2.3.1 Modal logic

The language of (propositional) modal formulas consists of a functionally complete set of classical
propositional connectives, a modal operator � (here we will also use explicitly its dual ♦) and a
denumerable set P of propositional symbols. Along this paper, we will work with formulas in
negation normal form, i.e., such that only atoms may possibly occur negated in them. Notice
that this is not a restriction, as it is always possible to convert a propositional modal formula



into an equivalent formula in negation normal form. The grammar is specified as follows:

A ::= P | ¬P | A ∨A | A ∧A | �A | ♦A

where P ∈ P . We say that a formula is a �-formula (♦-formula) if its main connective is � (♦).
The semantics of the modal logic K is usually defined by means of Kripke frames, i.e., pairs
F = (W,R) where W is a non empty set of worlds and R is a binary relation on W . A Kripke
model is a triple M = (W,R, V ) where (W,R) is a Kripke frame and V : W → 2P is a function
that assigns to each world in W a (possibly empty) set of propositional symbols.

In the basic modal logic K, we define the truth of a modal formula at a point w in a Kripke
structure M = (W,R, V ) as the smallest relation |= satisfying:

M, w |= P iff P ∈ V (w)

M, w |= ¬P iff P 6∈ V (w)

M, w |= A ∨B iff M, w |= A or M, w |= B

M, w |= A ∧B iff M, w |= A and M, w |= B

M, w |= �A iff M, w′ |= A for all w′ s.t. wRw′

M, w |= ♦A iff there exists w′ s.t. wRw′ and M, w′ |= A.

By extension, we writeM |= A whenM, w |= A for all w ∈W and we write |= A whenM |= A
for every Kripke structure M.

2.3.2 The standard translation from modal logic into classical logic

The following standard translation (see, e.g., [4]) provides a bridge between propositional
(classical) modal logic and first-order classical logic:

STx(P ) = P (x) STx(A ∧B) = STx(A) ∧ STx(B)

STx(¬P ) = ¬P (x) STx(�A) = ∀y(R(x, y) ⊃ STy(A))

STx(A ∨B) = STx(A) ∨ STx(B) STx(♦A) = ∃y(R(x, y) ∧ STy(A))

where x is a free variable denoting the world in which the formula is being evaluated. The
first-order language into which modal formulas are translated is usually referred to as first-order
correspondence language [4] and consists of a binary predicate symbol R and a unary predicate
symbol P for each P ∈ P. When a modal operator is translated, a new fresh variable is
introduced. It is easy to show that for any modal formula A, any model M and any world w,
we have that M, w |= A if and only if M |= STx(A)[x← w].

2.3.3 Labeled sequent systems

Several different deductive formalisms have been used for modal proof theory and theorem
proving. One of the most interesting approaches has been presented in [12] with the name of
labeled deduction. The basic idea behind labeled proof systems for modal logic is to internalize
elements of the corresponding Kripke semantics (namely, the worlds of a Kripke structure and
the accessibility relation between such worlds) into the syntax. A concrete example of such a
system is the sequent calculus G3K presented in [24] (we will refer to it as LS in this paper).
LS formulas are either labeled formulas of the form x : A or relational atoms of the form xRy,
where x, y range over a set of variables and A is a modal formula. In the following, we will use
ϕ,ψ to denote LS formulas. LS sequents have the form Γ ` ∆, where Γ and ∆ are multisets
containing labeled formulas and relational atoms. In Fig. 2, we present the rules of LS, which is
proved to be sound and complete for the basic modal logic K [24].



Classical rules

x : P,Γ ` ∆, x : P
init

x : A, x : B,Γ ` ∆

x : A ∧B,Γ ` ∆
L∧

Γ ` ∆, x : A Γ ` ∆, x : B

Γ ` ∆, x : A ∧B R∧

x : A,Γ ` ∆ x : B,Γ ` ∆

x : A ∨B,Γ ` ∆
L∨

Γ ` ∆, x : A, x : B

Γ ` ∆, x : A ∨B R∨

Modal rules

y : A, x : �A, xRy,Γ ` ∆

x : �A, xRy,Γ ` ∆
L�

xRy,Γ ` ∆, y : A

Γ ` ∆, x : �A
R�

xRy, y : A,Γ ` ∆

x : ♦A,Γ ` ∆
L♦

xRy,Γ ` ∆, x : ♦A, y : A

xRy,Γ ` ∆, x : ♦A
R♦

In R� and L♦, y does not occur in the conclusion.

Figure 2: LS: a labeled sequent system for the modal logic K

Classical rules
σ : A ∧B
σ : A, σ : B

∧F
σ : A ∨B

σ : A | σ : B
∨F

Modal rules
σ : �A
σ.n : A

�F
σ : ♦A
σ.n : A

♦F

In �F , σ.n is used. In ♦F , σ.n is new.

Figure 3: PT: a prefixed tableau system for the modal logic K

2.3.4 Prefixed tableau systems

Prefixed tableaux (PT) can also be seen as a particular kind of labeled deductive system. They
were introduced in [9]. The formulation that we use here is closer to the one in [10] and it is
given in terms of unsigned formulas. A prefix is a finite sequence of positive integers (written by
using dots as separators). Intuitively, prefixes denote possible worlds and they are such that if σ
is a prefix, then σ.1 and σ.2 denote two worlds accessible from σ. A prefixed formula is σ : A,
where σ is a prefix and A is a modal formula in negation normal form. A prefixed tableau proof
of A starts with a root node containing 1 : A, informally asserting that A is false in the world
named by the prefix 1. It continues by using the branch extension rules given in Figure 3. We
say that a branch of a tableau is a closed branch if it contains σ : P and σ : ¬P for some σ
and some P . The goal is to produce a closed tableau, i.e., a tableau such that all its branches
are closed. Classical rules in Figure 3 are the prefixed version of the standard ones. For what
concerns the modal rules, the ♦ rule applied to a formula σ : A intuitively allows for generating
a new world, accessible from σ, where A holds, while the � rule applied to a formula � : A
allows for moving the formula A to an already existing world accessible from σ. We say that a
prefix is used on a branch if it already occurs in the tableau branch and it is new otherwise.

2.3.5 Ordinary sequent systems

Several “ordinary” sequent systems have been proposed in the literature for different modal
logics (a general account is, e.g., in [14, 25]). In our treatment, we will use the formalization
OS presented in Figure 4, which is adapted mainly from the presentations in [10, 26]. The base
classical system (consisting of identity, structural and classical connective rules) is extended by
a modal rule that works on one �-formula and several ♦-formulas.



Classical rules

` Γ, P,¬P init
` Γ, A ` Γ, B

` Γ, A ∧B ∧
` Γ, A,B

` Γ, A ∨B ∨

Modal rules
` Γ, A

` ♦Γ,�A,∆
�K

Figure 4: OS: an ordinary sequent system for the modal logic K.

Classical rules

N{P,¬P} init
N{A} N{B}
N{A ∧B}

∧
N{A,B}
N{A ∨B}

∨

Modal rules
N{[A]}
N{�A} �

N{♦A, [A,M]}
N{♦A, [M]} ♦

Figure 5: NS: a nested sequent system for the modal logic K.

2.3.6 Nested sequent systems

Nested sequents (first introduced by Kashima [15], and then independently rediscovered by
Poggiolesi [25], as tree-hypersequents, and by Brünnler [5]) are an extension of ordinary sequents
to a structure of tree, where each [ ]-node represents the scope of a modal �. We write a nested
sequent as a multiset of formulas and boxed sequents, according to the following grammar, where
A can be any modal formula in negative normal form: N ::= ∅ | A,N | [N ],N

In a nested sequent calculus, a rule can be applied at any depth in this tree structure, that is,
inside a certain nested sequent context. A context written as N{ } · · · { } is a nested sequent with
a number of holes occurring in place of formulas (and never inside a formula). Given a context
N{ } · · · { } with n holes, and n nested sequents M1, . . . ,Mn, we write N{M1} · · · {Mn} to
denote the nested sequent where the i-th hole in the context has been replaced by Mi, with the
understanding that if Mi = ∅ then the hole is simply removed. We are going to consider the
nested sequent system (on Figure 5) introduced by Brünnler in [5], that we call here NS.

3 A general focused framework for modal logic

3.1 A translation from the modal language into a first-order polarized
language

In [23], it has been shown how it is possible to translate a modal formula A into a polarized
first-order formula A′ in such a way that a strict correspondence between rule applications in
a LS proof of A and bipoles in an LKF proof of A′ holds. Such a correspondence has been
used in order to prove some adequacy theorem and to define a focused version of LS. Here
we will further exploit it for checking labeled sequent and prefixed tableaux derivations in the
augmented variant LKF a.

The translation is obtained from the standard translation of Section 2.3.2 by adding some
elements of polarization. First of all, when translating a modal formula into a polarized one, we



are often in a situation where we are interested in putting a delay in front of the formula only
in the case when it is negative and not a literal. For that purpose, we define A∂+

, where A is
a modal formula in negation normal form, to be A if A is a literal or a positive formula and
∂+(A) otherwise.

Given a world x, we define the translation [.]x from modal formulas in negation normal form
into polarized first-order formulas as:

[P ]x = P (x) [A ∧B]x = [A]x
∂+

∧− [B]x
∂+

[¬P ]x = ¬P (x) [A ∨B]x = [A]x
∂+

∨− [B]x
∂+

[�A]x = ∀y(¬R(x, y) ∨− [A]y
∂+

) [♦A]x = ∃y(R(x, y) ∧+ ∂−([A]y
∂+

))

In this translation, delays are used to ensure that only one connective is processed along a
given bipole, e.g., when we decide on (the translation of) a ♦-formula [♦A]x, the (translation of
the) formula A is delayed in such a way that it gets necessarily stored at the end of the bipole.
Based on that, we define the translation [.] from labeled formulas and relational atoms into
polarized first-order formulas as [x : A] = [A]x and [xRy] = R(x, y). We will sometimes use the
extension of this notion to multisets of labeled formulas, i.e., [Γ] = {[ϕ] | ϕ ∈ Γ}. Note that
predicates of the form P (x) and R(x, y) are considered as having positive polarity. Finally, we
define a translation from LS sequents into LKF sequents:

[(ϕ1, . . . , ϕn ` ψ1, . . . , ψm)] =` [¬ϕ1]
∂+

, . . . , [¬ϕn]
∂+

, [ψ1]
∂+

, . . . , [ψm]
∂+

⇑ ·

where [¬ϕ] is [(¬A)]x if ϕ = x : A and is ¬R(x, y) if ϕ = xRy.
We recall here a result from [23], where a more formal statement and a detailed proof can be

found.

Theorem 1. Let Π be a LS derivation of a sequent S from the sequents S1, . . . , Sn. Then there
exists an LKF derivation Π′ of [S] from [S1], . . . , [Sn], such that each rule application in Π
corresponds to a bipole in Π′. The viceversa, for first-order formulas that are translation of
modal formulas, also holds.

3.2 A focused labeled framework

Theorem 1 ensures that we can easily check an LS proof by using a kernel based on LKF and
the translation of Section 3.1. Given the tight correspondence between LS inference rules and
LKF bipoles, the information concerning the original proof that we need in order to reproduce it
faithfully [19] (typically going from the root to the leaves) in LKF is restricted to the following:

• at each step, the formula on which a rule is applied;

• when a ♦ rule is applied, which term is used as a witness;

• in the case of an initial rule, with respect to which pair of complementary literals it is
applied.

Theorem 1 also led, in [23], to the definition of a focused labeled sequent system (LMF) for
modal logic, which can be seen either as a focused version of Negri’s system or as the restriction
of LKF to the first-order correspondence language (where modalities are seen as synthetic
connectives).

In the context of modal logics, labeled proof systems have been shown to be quite expressive
and encodings of other approaches into this formalism have also been presented in the litera-
ture [11, 13, 16]. It seems therefore quite natural to explore the possibility of reproducing the
behavior of modal proof systems based on different formalisms inside LMF, by exploiting at



the same time the expressivity of labeling and the control mechanisms provided by focusing.
Such an analysis has been carried out in [20] and has shown that, by enriching LMF with a few
further technical devices, it is possible to get enough power to drive construction of proofs so as
to emulate the proof structure of a wide range of formalisms. We illustrate the need for such
further devices by considering the example of ordinary sequent systems, which present features
also typical of other, related approaches. Consider the following typical sequent calculus rule for
modal logic: 1

` Γ, A

` ♦Γ,�A
.

We observe that:

(i) this rule works at the same time on one �-formula and on n ♦-formulas. In order to
process such ♦-formulas, in our labeled deduction setting, it is necessary to apply the
♦-introduction rule n times. Since these applications do not interfere with each other, they
can, in fact, be applied in parallel. For this reason, we move to a multifocused [6] version
of LMF, i.e., a variant where we can focus on several positive formulas at the same time.
In this way, we can group all the ♦-introductions inside a single phase (in the following, we
will sometimes call it a ♦-phase).

(ii) intuitively, one can read this inference rule (reading from conclusion to premise) as moving
from one world to another (reachable) world in a suitable Kripke structure. Such a change
of world becomes apparent when we consider the corresponding deduction steps in a labeled
system, as, in this case, modal introduction rules will explicitly change the label of the
formulas under consideration. In order to properly mimic the behavior of the original rule,
in the labeled system we need to be able to force all the formulas involved in the rule
to move to the same new world. We therefore modify the notion of a labeled formula to
have the form xy : A. Here x indicates in which world such a formula holds, while y gets
initialized when one multifocuses on the multiset of ♦-formulas and is used to drive future
applications of ♦-rules. E.g., if x : ♦Γ is on the left of ⇑, then we can multifocus on xy : ♦Γ
for a given y reachable from x. This y will be used as a witness in the application of a
(properly modified) ♦-introduction rule, in such a way that at the end of the bipole, we
will have the multiset y : Γ on the left of ⇑.

(iii) in LMF, when constructing a proof tree (going from the root towards the leaves), formulas
we decide on are duplicated and stay in the storage (that is, on the left of ⇑ or ⇓). It
follows that all along a proof, it is possible to switch freely from one label to another in the
deduction process. On the contrary, in a sequent calculus rule like the one given above, only
formulas having a modal operator as the main connective can be “promoted” to a different
world. According to the Kripke-style interpretation presented, this amounts to considering
a single world at a time, in such a way that when moving to a new one, formulas standing
at previously encountered worlds are not accessible anymore. In order to emulate this
aspect, labelled sequents are further decorated with a set H of labels, specifying which
worlds are currently enabled, with the intended meaning that we can decide on a formula
only if its label belongs to H.

The general framework LMF∗ is presented in Figure 62.

1In Figure 4, we presented a variant of this rule where a context is also added in the conclusion. This
simplified version is enough for the illustration purposes of this paragraph.

2Please note that the framework presented here is slightly different from the one in [20], since considering
only the logic K allows for some simplification.



Asynchronous introduction rules

G `H Θ ⇑ x : t−,Ω
t−F

G `H Θ ⇑ Ω

G `H Θ ⇑ x : f−,Ω
f−F

G `H Θ ⇑ x : A,Ω G `H Θ ⇑ x : B,Ω

G `H Θ ⇑ x : A ∧− B,Ω
∧−F

G `H Θ ⇑ x : A, x : B,Ω

G `H Θ ⇑ x : A ∨− B,Ω
∨−F

G ∪ {xRy} `H Θ ⇑ y : B,Ω

G `H Θ ⇑ x : �B,Ω
�F

Synchronous introduction rules

G `H Θ ⇓ xσ : t+
t+F

G `H Θ ⇓ xσ : B1,Ω1 G `H Θ ⇓ xσ : B2,Ω2

G `H Θ ⇓ xσ : B1 ∧+ B2,Ω1,Ω2
∧+F

G `H Θ ⇓ xσ : Bi,Ω

G `H Θ ⇓ xσ : B1 ∨+B2,Ω
∨+F , i ∈ {1, 2}

G ∪ {xRy} `H Θ ⇓ y : B,Ω

G ∪ {xRy} `H Θ ⇓ xy : ♦B,Ω
♦F

Identity rules

G `H x : ¬B,Θ ⇓ x : B
initF

Structural rules

G `H Θ, x : B ⇑ Ω

G `H Θ ⇑ x : B,Ω
storeF

G `H Θ ⇑ Ω′

G `H Θ ⇓ Ω
releaseF

G `H′ Θ ⇓ Ω

G `H Θ ⇑ · decideF

In storeF , B is a positive formula or a negative literal.
In initF , B is a positive literal.
In �F , y is different from x and does not occur in G nor in Θ.
In decideF , if xy : A ∈ Ω then x : A ∈ Θ. Moreover, Ω contains only positive formulas of the
form: (i) xσ : A, where A is not a ♦-formula and x ∈ H; or (ii) xy : A where A is a ♦-formula,
xRy ∈ G, x ∈ H.
In releaseF , Ω contains no positive formulas and Ω′ = {x : A | xσ : A ∈ Ω}.

Figure 6: LMF∗: a focused labeled framework for the modal logic K.

In the rest of this paper, when talking of LMF∗ and its instantiations, a labeled formula will
have the form ϕ ≡ xσ : A, where σ is either empty or a label y. We say that x is the present of
ϕ and σ is the future of ϕ. An LMF∗ sequent has the form G `H Θ ⇑ Ω or G `H Θ ⇓ Ω, where
the relational set (of the sequent) G is a set of relational atoms, the present (of the sequent) H
is a non-empty multiset of labels, and Θ and Ω are multisets of labeled formulas.

3.3 Emulation of modal proof systems

In order to emulate proofs given in other proof calculi by means of the focused framework LMF∗,
we need to give a specialized version of the rule decideF .

In order to define a translation b·c from modal formulas in negation normal form into
polarized modal formulas, we refine the one given in Section 3.1, by considering the fact that
we have now modal operators in the target language and do not need to translate explicitly



modalities into quantifiers:

bP c = P bA ∧Bc = bAc∂
+

∧− bBc∂
+

b¬P c = ¬P bA ∨Bc = bAc∂
+

∨− bBc∂
+

b�Ac = �(bAc∂
+

) b♦Ac = ♦(∂−(bAc∂
+

))

For LS, we specialize the rule decideF as follows:

G `L Θ ⇓ xσ : A

G `L Θ ⇑ · decideLS

where:

• L denotes the set of all labels;

• if A is a ♦ formula, then σ is y for some xRy ∈ G; otherwise, σ is empty.

Given the similar nature of the approaches, in the case of the logic K, the same rule can
be used also for emulating the systems PT and NS (for convenience, in the following we will
use for the same rule also the names decidePT and decideNS). Differences will emerge when
considering logics beyond K as, e.g., the treatment of a rule for S4 in systems based on prefixed
tableaux and nested sequents tend to use a principle similar to that applied in OS and consisting
in moving a � from a world to another reachable one. We also remark that the difference of
approach between LS and PT is captured by a different translation of the original formula to be
proved (which needs to be negated in the case of tableaux) rather than by differences in the
decide rule.

For ordinary sequents, we specialize instead the rule decideF as follows:

G `{y} Θ ⇓ Ω

G `{x} Θ ⇑ · decideOS

where (in addition to the general conditions of Figure 6) we have that:

1. if x 6= y, then:

• xRy ∈ G; and

• Ω is a multiset of formulas of the form xy : ♦A;

2. if x = y, then Ω = {x : A} for some formula A that is not a ♦-formula.

Intuitively, the specialization with respect to the general framework consists in: (i) restricting
the use of multifocusing to ♦-formulas; (ii) forcing such ♦-formulas to be labeled with the same
future.

Let X range over {LS, PT,OS,NS}. We call LMFX the system obtained from LMF∗ by
replacing the rule decideF with the rule decideX . The adequacy of the implementation proposed
in next section relies on the following result, which is proved by associating to each rule in X
a corresponding sequence of bipoles in LMFX . We refer the reader to [20] for a more formal
statement of the theorem as well as for its complete proof.

Theorem 2. Let X range over {LS, PT,OS,NS}. There exists a proof Π of A in the proof

system X iff there exists a proof Π′ of ∅ `{x} x : (bAc)∂
+

⇑ ·, for some x, in LMFX . Moreover,
for each application of a rule r in Π there is a sequence of bipoles in Π′ corresponding to r.



4 Certification of modal proofs

This section describes the implementation of a general framework for the certification of modal
proofs and shows how this framework can be used in order to certify proofs from different
proof systems. We will rely here on the theoretical results of Section 3. We just notice that
in practice we do not use the labeled modal system LMF∗ as a kernel but rather implement
it on top of LKF a. This allows for keeping a simple and uniform kernel in the context of the
Checkers project, that also considers other logics and formalisms. However, given Theorem 1,
the adequacy result of Theorem 2 automatically transfers from LMFX to LKF.

4.1 A proof certification framework

Foundational proof certificates form a rich language for the certification of any proof object. This
richness has the downside that defining a new set of FPC specifications is, in general, a complex
task. This property is not unique to ProofCert. There are but a few general proof certification
tools and the effort to enable the certification of a particular proof system is non-trivial.

Our aim in this paper is to enable both generalization and ease of use. This is going to be
attempted by the development of a layered framework, where each layer is defined in terms of
the previous one. This framework is an implementation of the systems described in section 3.2,
where each layer in our implementation directly corresponds to one of the systems described
there. Moreover, we take the incremental build-up of systems in the paper one step further
and implement each framework in our system in terms of the previous one. Such a layered
framework will restrict the richness of the foundational proof certificates in a way that will
make it easier to develop FPC specifications which can be used to efficiently certify various
other systems. To preserve the generality of the system for modal logic, the top layer will be
capable of certifying arbitrary other systems. The bottom level of this framework will be the
LMF system, which is similar to the one described in [19]. This system will be extended to a
simulation of multi-focusing and will result in the system LMFm. The final system is LMF∗.

The definition of each layer is characterized by three elements:

1. A supported proof format

2. Its FPC specification

3. A monad-like state

In order to support our layered architecture, we had to use techniques such as abstraction,
encapsulation, polymorphism and modularity. Such techniques are not native to logic program-
ming languages and were simulated in our system by the combination of a careful accumulation
of files, using constants to move between layers, a set of “conversion” function and λProlog
types.

It should be noted that the state is not an integral part of the proof evidence. The fact
that we include it in the certificate is done only in order to simplify the implementation. The
state of each layer is being initialized by fixed constants and can be, therefore, omitted from the
evidence. We will describe the state in some details when speaking about the frameworks but
omit such discussion when describing the supported proof evidence.

4.1.1 The LMF system layer

In [19] we have presented a system which is capable of certifying several labeled sequent and
prefixed tableau based proof systems.



We have shown, that given the correspondence between rule applications in the original
calculus and bipoles in LKF, we can state an easy and faithful encoding of proofs, mainly based
on specifying on which formulas we decide every time we start a new bipole.

Our first layer is capable, therefore, of accepting proof evidence which contains the following
information:

1. at each step, on which formula we apply a rule;

2. in the case of a ♦-formula, with respect to which �-formula we apply the rule;

3. in the case of an initial rule, with respect to which complementary literal we apply it.

For this reason, we define the proof evidence of this layer to consist in a tree describing
the original proof. Each node is decorated by a pair containing: (i) the formula on which a
rule is applied, as explained in (1), together with (ii) a (possibly null) further index carrying
additional information, to be used in cases (2) and (3) above. Formulas in the tree will drive
the construction (bottom-up) of the LKF derivation, in the sense that, by starting from the
root, at each step, the LKF kernel will decide on the given formula and proceed, constrained by
properly defined clerks and experts, along a positive and a negative phase. The results in [19]
guarantees that at the end of a bipole, we will be in a situation which is equivalent to that of
the corresponding step in the original proof.

As described in item (2) above, if we are applying an ∃-rule in LKF, then we need further
information specifying with respect to which eigenvariable we apply the rule. This is done
by linking, using the state, the formula under consideration to the corresponding new-world-
generating �-formula. Similarly, in the case of an initial (3), the additional information in the
node will specify the index of the complementary literal. This information will be captured in a
state-monad which will capture, in this layer and in the following ones, all information which is
independent of the evidence but is required for the correct execution of the system.

In order to provide an FPC specification for a particular format, we need to define the
specific items that are used to augment LKF. In particular, the constructors for proof certificate
terms and for indices must be provided: this is done in λ-Prolog by declaring constructors of
the types cert and index.

The indexing mechanism is defined next.

% defined in lmf-singlefoc .sig
type root index.
type lind index -> index.
type rind index -> index.
type diaind index -> index -> index.
type none index.

The lind and rind indices are functions denoting the left and right sub-formulas. The root

index is a constant denoting the root formula. In order to simulate the different labels associated
with different applications of the same ♦-formula, we are using the diaind function which also
refers to the associated box. The none index just allows us to denote indices as optional data
structures.

Figure 7 gives an example of the relationship between indices and sub-formulas. As mentioned
above, since the same ♦-formula can be associated with different �-formulas, we use a specific
index, the diaind for its sub-formula.

In order to be able to transform the same proof object between different layers, we have
defined a notion of abstract tree as follows:

% defined in lmf-singlefoc .sig
kind lmf-node , lmf-tree type.
type lmf-tree lmf-node -> list lmf-tree -> lmf-tree.



root -> ((�p) ∧ (♦¬q)) ∨ (�(¬p ∨ q)) (lind root) -> (�p) ∧ (♦¬q)
(lind (lind root)) -> �p (rind (lind root)) -> ♦¬q
(diaind (rind (lind root)) (rind root)) -> ¬q

Figure 7: Possible indexing of sub-formulas of ((�p) ∧ (♦¬q)) ∨ (�(¬p ∨ q))

This definition permits the usage of different types of nodes in the same tree, which will
allow us to smoothly move between the layers.

Using these definitions, we can now give the definition of the supported proof format.

% defined in lmf-singlefoc .sig
kind lmf-singlefoc-state type.
type lmf-singlefoc-cert lmf-singlefoc-state -> lmf-tree -> cert.
type lmf-singlefoc-node index -> index -> lmf-node.

In Checkers, proof objects are elements of type cert. The different “state” elements are
used internally by the FPC specifications and are initialized to default values.

The main component of the proof evidence are the nodes. For LMF, we require information
about two indices. The first is the index of the principal formula in the inference and the second
is an optional index. This index is mandatory in the following two cases:

• If the principal formula is a ♦, then the second index must be the index of the associated
box formula.

• If the inference is an init rule, then the second index is the index of the complementary
literal.

In addition to the type declaration, the FPC definition must supply the logic program
defining the clerk predicates and the expert predicates. Writing no specification for a given
predicate defines that predicate to hold for no list of arguments.

According to this specification, which can be found in [19], each decide step is completely
determined by the proof evidence.

4.1.2 The LMFm system layer

This layer allows us to simulate a multi-focusing step in the kernel and corresponds to the
multi-focused version of LMF defined in section 3.2. Our system will simulate multi-focusing
using a non multi-focusing kernel by relating each inference with a number. This number will
force all inferences labeled the same to occur sequentially. This does not simulate multi-focusing
in the general case, since in our implementation processing one of the formulas does modify the
state in which a second formula is processed. However, the fact that we only multifocus on
♦-formulas on a given label and the fact that we restrict to the logic K ensure that the simple
mechanism defined above is enough for encoding multifocusing in our case.

In addition to the proof format from the previous layer, we require every node to contain a
multi-focus value.

% defined in lmf-multifoc .sig
type lmf-multifoc-node int -> lmf-node -> lmf-node.

4.1.3 The LMF∗ system layer

The most expressive layer is LMF∗ which directly corresponds to the LMF∗ system defined
in section 3.2. This layer extends the previous one with information about worlds which are



% defined in lmf-star.sig
type lmf-star_to_lmf-multifoc cert -> lmf-star-state -> list A -> A -> cert -> o.
type lmf-multifoc_to_lmf-star cert -> lmf-star-state -> list A -> A -> cert -> o.

% defined in lmf-star.mod
lmf-star_to_lmf-multifoc

(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1
(lmf-tree (lmf-star-node H F N) C))))

S H F
(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C))).

lmf-star_to_lmf-multifoc
(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C))))
S H F
(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C))).

lmf-multifoc_to_lmf-star
(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree (lmf-multifoc-node M N) C)))
S H F
(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1

(lmf-tree (lmf-star-node H F (lmf-multifoc-node M N)) C)))).
lmf-multifoc_to_lmf-star

(lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C)))
S _ _
(lmf-star-cert S (lmf-multifoc-cert (lmf-singlefoc-cert S1 (lmf-tree N C)))).

Figure 8: Proof evidence transformation between two layers

currently active (the present) and the possible futures. The present is intuitively used in order
to restrict the application of the decide rule only to formulas labeled by nodes contained in the
present. The future can be used to restrict the application of the ♦ rule. Please refer to section
3.2 for more information.

The supported proof format for this layer is denoted by the following types:

% defined in lmf-star.sig
kind lmf-star-state type.
type lmf-star-state list A -> A -> list (pair index A) -> lmf-star-state.
type lmf-star-node list A -> A -> lmf-node -> lmf-node.
type lmf-star-cert lmf-star-state -> cert -> cert.

The state is now extended to contain information about the current present and future, as
well as information about the actual label assigned to each index. The nodes of a proof evidence,
as defined in section 3.2, contain, in addition to the information required in the previous layer,
also information about the new present and future.

In the structure of the evidence accepted in this layer, one can see the abstraction and
polymorphism mechanism applied in Checkers. An lmf-node is an abstract type which corre-
sponds to all concrete implementations of the nodes. In order to fake polymorphism, we have
implemented a set of transformations between the different layers, as can be seen in figure 8.

Given a proof evidence in the format supported by one layer, the FPC specification will
recursively apply the specification defined for the lower layer, using transformations similar to
the ones in Figure 8. The expressiveness of the upper layer will be used in order to prune nodes
in the search space, as well as for sometimes changing the information passed to the lower level.

Figure 9 gives the FPC specifications for the LMF∗ layer. The auxiliary relations used are
the following:

• obtaine_all_star_node_vals is used to extract the values in the state and root node

• obtain_value_in_map returns the label associated to a given index

• member checks for list membership

• change_state updates the state in a certificate



The FPC specifications in Figure 9 corresponds to the definition of LMF∗ in Section 3.2.
For example, the decide_ke expert calls the lower layer only in case the world associated with
the root node is allowed by the present in the inference rule.

4.2 Certification of different proof formats

Given the different layers in the proof system defined in the previous section, we can easily write
FPC specifications for different popular proof formats.

The process is always the same. The FPC specifications for the proof format translates the
root node of the proof evidence into the format of a node in one of the layers of the framework
and make a recursive call. In case the inference of the input calculus corresponds to exactly one
inference in the framework calculus, the result of the recursive call is an inference tree whose
new root node is again a node in the input calculus. In other cases, the translations between
the layers will make sure to use the right type of nodes in order to imitate several steps within
the framework.

In the next sections we describe in more detail how the framework is used in order to support
specific proof formats.

4.2.1 Labeled sequents

The treatment of labeled systems [24] was already implemented in the previous version of
Checkers, which is described in [19]. In order to get emulation of LS, we require a very simple
use of the framework LMF∗, where at each node the present of a sequent corresponds to the
set of all the labels occurring in the proof, no use of multifocusing is required and the future
of a node is set, in the case of ♦-formulas, to the index of the corresponding �-formula. For
simplicity, since this is enough in the case of K, in our implementation we rely on the lower
layer LMF. Please refer to [19].

4.2.2 Prefixed tableaux

The popular PT proof format [9], which is used by various automated theorem provers, is,
in the case of K, very close to that of LS (we can roughly say that PT, being a refutation
method, is the dual of LS). Therefore support for it can be obtained in a very similar way. Its
implementation, which has been described in [19], also relies on LMF and mainly consists in
inverting, with respect to LS the role of boxes and diamonds in the FPC and in letting tableau
closure rules behave as sequent initial rules.

4.2.3 Ordinary Sequents

As described in Section 2.3.5, ordinary sequent systems differ in several ways from the previous
systems. First, they do not have labels and second, they treat both � and ♦-formulas inside a
single inference rule. For these reasons, the case of ordinary sequents illustrates the use of the
features of the framework LMF∗ in a more significant way already for the logic K.

In particular, the modal rule, which applies to all ♦-formulas at once, can be emulated in
our system by using multi-focusing. In addition, the relationship between the modal operators
can be used in order to restrict the futures allowed: given a modal rule, all the ♦-formulas there
occurring are assigned the same future, which corresponds to the index of the only �-formula.

Next, we specify the expected format of ordinary sequent proof evidences.



% defined in lmf-star.mod
decide_ke Cert L Cert ’ :-

obtain_all_star_node_vals Cert H F Map NH NF M I OI ,
obtain_value_in_map Map I V,
member V H,
lmf-star_to_lmf-multifoc Cert S NH NF Cert-s ,
decide_ke Cert-s L Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ (lmf-star-state NH NF Map) NH NF Cert ’.

store_kc Cert L B Cert ’ :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
store_kc Cert-s L B Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S H F Cert ’.

release_ke Cert Cert.
initial_ke Cert O :-

lmf-star_to_lmf-multifoc Cert _ _ _ Cert-s ,
initial_ke Cert-s O.

orNeg_kc Cert Form Cert ’ :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
orNeg_kc Cert-s Form Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S H F Cert ’,
obtain_all_star_node_vals Cert _ _ Map _ _ _ I _,
obtain_all_star_node_vals Cert ’ _ _ Map ’ _ _ _ I _,
obtain_value_in_map Map I V.

orNeg_kc Cert Form Cert-r :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
orNeg_kc Cert-s Form Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S H F Cert ’,
obtain_all_star_node_vals Cert _ _ Map _ _ _ I _,
obtain_value_in_map Map I V,
add_value_to_map_in_state S V (lind I) S’,
add_value_to_map_in_state S’ V (rind I) S’’,
change_state Cert ’ S’’ Cert-r.

andNeg_kc Cert Form Cert1-r Cert2-r :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
andNeg_kc Cert-s Form Cert-s1 Cert-s2 ,
lmf-multifoc_to_lmf-star Cert-s1 S H F Cert1 ,
lmf-multifoc_to_lmf-star Cert-s2 S H F Cert2 ,
obtain_all_star_node_vals Cert H F Map NH NF M I OI ,
obtain_value_in_map Map I V,
add_value_to_map_in_state S1 V (lind I) S1b ,
add_value_to_map_in_state S2 V (rind I) S2b ,
change_state Cert1 S1b Cert1-r ,
change_state Cert2 S2b Cert2-r.

andPos_k Cert Form Str Cert1 Cert2 :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
andPos_k Cert-s Form Str Cert-s1 Cert-s2 ,
lmf-multifoc_to_lmf-star Cert-s1 S H F Cert1 ,
lmf-multifoc_to_lmf-star Cert-s2 S H F Cert2.

all_kc (lmf-star-cert State Cert) Cert ’ :-
lmf-star_to_lmf-multifoc (lmf-star-cert State Cert) S _ _ Cert-s ,
all_kc Cert-s Cert-s ’,
obtain_all_star_node_vals (lmf-star-cert State Cert) H F Map NH NF M I OI,
add_value_to_map_in_state S I I S’,
lmf-multifoc_to_lmf-star_all Cert-s ’ S’ Cert ’.

some_ke Cert X Cert ’-r :-
lmf-star_to_lmf-multifoc Cert S H F Cert-s ,
some_ke Cert-s X Cert-s ’,
lmf-multifoc_to_lmf-star Cert-s ’ S’ H F Cert ’,
obtain_all_star_node_vals Cert H F Map NH F M I OI ,
add_value_to_map_in_state S (OI) (diaind I OI) S1 ,
change_state Cert ’ S1 Cert ’-r.

Figure 9: FPC specifications for the LMF∗ layer



% defined in ordinary-sequents .sig
type ordinary-sequent-node index -> list index -> lmf-node.
type ordinary-sequent-cert ordinary-sequent-state -> lmf-tree -> cert.

An ordinary sequent node contains its index as well as a list of indices. This list is empty for
all inference rules except for the modal rule, where it specifies the indices of all the ♦-formulas
that are affected, as well as for the initial rule, in which case the list contains a single index
denoting the complementary literal.

As discussed above, the state is not an integral part of the proof evidence and is therefore
omitted.

The FPC specification for ordinary sequents is easily implemented on top of the LMF∗ layer.
The only two non-trivial steps relate to the modal rule. On reaching such an inference rule, we
translate the evidence, in a similar way to the one shown in Figure 8, to the LMF∗ layer. Before
we make the recursive call, we modify the tree in the evidence by adding a multifocusing node
(emulated by a sequence of nodes decorated by the same multifocusing value) that contains all
the ♦-formulas. Another non-trivial step occurs when we reach the last ♦-formula in such a
sequence. Since there is no inference rule for these formulas in the ordinary sequent calculus, we
need to translate back from LMF∗ to ordinary sequent at the right point. This is taken care of
by the decide expert. In other words, we only return the control back to the ordinary sequent
layer when all the ♦-formulas have been processed.

The FPC specifications are given in Figure 10. The auxiliary relations used are:

• ordinary-sequent-to-lmf-star, which translates between the general framework and
the ordinary sequent layer;

• generate_diamonds, which generates the inferences corresponding to the ♦-formulas, to
be added to the tree.

4.2.4 Nested Sequents

A more challenging example of using our framework is supporting nested sequent proof evidence.
Here we will also demonstrate how simpler layers can be used in order to support proof formats.

When considering the nested sequent proof system for K, we notice that ♦-formulas are
associated to specific �-formulas. This property does not hold in general.

This association is similar to the one in LMF and allows us to use this simpler layer for the
support of the proof evidence.

Our format for nested sequents is given in figure 11. Note that we now index formulas using
two separate indices: The first one is just the location of the sub-formula while the second is
the branch of the nested sequent.

The formal definition of indices of nested sequents is given next.

Definition 2.1 (Indexing Nested Sequents). Indices of nested sequents are defined recursively
by:

• zb is an index (of the top level nested sequent).

• if ind is an index of a nested sequent and we have in it a nested sequent at the ith position,
then (chld i ind) is an index denoting this nested sequent.

Figure 12 gives an example of a nested sequent derivation and the indices of sub-formulas.
In order to certify nested sequent proofs in our framework, we will use, as mentioned above,

the LMF layer. This layer requires a correspondence between ♦-formulas and �-formulas.



% defined in ordinary-sequents .mod
decide_ke

(lmf-star-cert (lmf-star-state H F Map) (lmf-multifoc-cert (lmf-singlefoc-cert
(lmf-singlefoc-state IL Eig) (lmf-tree (ordinary-sequent-node I OI) C))))

L
Cert ’ :-
decide_ke

(ordinary-sequent-cert
(ordinary-sequent-state H F Map 0 IL Eig) (lmf-tree

(ordinary-sequent-node I OI) C))
L
Cert ’.

decide_ke Cert L Cert ’ :-
ordinary-sequent-to-lmf-star Cert IO Cert-s ,
decide_ke Cert-s L Cert-s ’,
lmf-star-to-ordinary-sequent Cert-s ’ IO Cert ’.

store_kc Cert L B Cert ’ :-
ordinary-sequent-to-lmf-star Cert OI Cert-s ,
store_kc Cert-s L B Cert-s ’,
lmf-star-to-ordinary-sequent Cert-s ’ OI Cert ’.
release_ke Cert Cert.
initial_ke Cert O :-

ordinary-sequent-to-lmf-star-with-op-index Cert Cert-s ,
initial_ke Cert-s O.

orNeg_kc Cert Form Cert-r :-
ordinary-sequent-to-lmf-star Cert IO Cert-s ,
orNeg_kc Cert-s Form Cert-s ’,
lmf-star-to-ordinary-sequent Cert-s ’ IO Cert-r.

andNeg_kc Cert Form Cert1 Cert2 :-
ordinary-sequent-to-lmf-star Cert IO Cert-s ,
andNeg_kc Cert-s Form Cert1 ’ Cert2 ’,
lmf-star-to-ordinary-sequent Cert1 ’ IO Cert1 ,
lmf-star-to-ordinary-sequent Cert2 ’ IO Cert2.

all_kc
ordinary-sequent-cert

(ordinary-sequent-state H F Map _ IL Eig)
(lmf-tree (ordinary-sequent-node I OI) C)

Cert-r :-
generate_diamonds I OI C T H F 0,
all_kc

(lmf-star-cert (lmf-star-state H F Map)
(lmf-multifoc-cert

(lmf-singlefoc-cert (lmf-singlefoc-state IL Eig)
(lmf-tree (lmf-star-node H F (lmf-multifoc-node 0

(lmf-singlefoc-node I none ))) T))))
Cert-r.

Figure 10: FPC specifications for ordinary sequents

% defined in nested-sequents .sig
type ns index -> index -> index.
type chld int -> index -> index.
type zb index.
type nested-sequent-node index -> index -> lmf-node.
type nested-sequent-cert nested-sequent-state -> lmf-tree -> cert.

Figure 11: Type definitions on nested sequents



(q)(ns (lind root) zb), ([p])(ns (rind root) (chld 1 zb))

(q)(ns (lind root) zb), (�p)(ns (rind root) zb)

(q ∨�p)(ns root zb)

Figure 12: An example of a nested sequent derivation and the corresponding indices

Since there is such a correspondence in NS, our implementation of the FPC specifications
for this system tries to exploit it. This will be done by mapping the indices of one system to the
indices of the other.

The mapping of the indices as well as some other similar data structures will be stored in
the state.

Figure 13 shows our implementation where the auxiliary functions are:

• convert-index which converts indices from nested sequents to LKF using a map.

• add_to_map adds new indices to the map.

• get_incremented_child increases the counter associated with a certain index.

As can be seen, supporting nested sequent proof evidence for K is straightforward and does
not require any knowledge of LKF. The only thing required is to be able to translate between
the indices.

One can also observe that we do have one non-trivial manipulation in the implementation.
The all_kc definition does not depend on the one in lmf-singlefoc but instead re-implement
it. The reason for that is the inability of λProlog to unify objects of functional type. We hope
to get around that in future versions.

4.3 Examples

In this section, we apply the specifications from the previous section to several examples. The
examples consist of a hand-generated proof evidence in few formats of the validity of the K
axiom: ♦(P ∧ ¬Q) ∨ ♦¬P ∨�Q.

The examples in this section and others can be found in the testing section of the Checkers

proof certifier. Checkers can be obtained online 3 and can be executed by running in a bash
terminal: 4.

$ ./prover.sh arg

where the argument is the name of the λProlog module denoting the proof evidence one wishes
to check.

In Figure 14, one can see the proof evidence corresponding to the ordinary sequent proof of
Figure 15.

Another example is given in figure 16. The proof which generates this nested sequent example
can be seen in figure 17.

Please refer to the src/test/modal folder for more examples.

3The exact version can be found on the “framework” branch in the git repository https://github.com/

proofcert/checkers.
4Checkers depends on the λProlog interpreter Teyjus (http://teyjus.cs.umn.edu/)

https://github.com/proofcert/checkers
https://github.com/proofcert/checkers
http://teyjus.cs.umn.edu/


% defined in nested-sequents .mod
decide_ke Cert I’ Cert ’ :-

Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)
(lmf-tree (nested-sequent-node I O) D)),

convert-index Map I I-s ,
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
decide_ke Cert-s I’ Cert-s ’,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map I Cert ’.

store_kc Cert Form H Cert ’ :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)),
convert-index Map I I-s ,
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
store_kc Cert-s Form H Cert-s ’,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map I Cert ’.

release_ke C C.
initial_ke (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)) O’ :-
convert-index Map O O’.

orNeg_kc Cert Val Cert ’ :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)),
convert-index Map I I-s ,
I = (ns Ind Ch),
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
orNeg_kc Cert-s Val Cert-s ’,
Cert-s ’ = (lmf-singlefoc-cert (lmf-singlefoc-state [I1,I2] _) _),
add_to_map Map (ns (lind Ind) Ch) I1 Map1 ,
add_to_map Map1 (ns (rind Ind) Ch) I2 Map2 ,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map2 _ Cert ’.

andNeg_kc Cert _ Cert1 Cert2 :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)),
convert-index Map I I-s ,
I = (ns Ind Ch),
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
andNeg_kc Cert-s _ Cert-s1 Cert-s2 ,
Cert-s1 = (lmf-singlefoc-cert (lmf-singlefoc-state [I1] _) _),
add_to_map Map (ns (lind Ind) Ch) I1 Map1 ,
lmf-singlefoc-to-nested-sequent Cert-s1 Counter Map1 _ Cert1 ,
Cert-s2 = (lmf-singlefoc-cert (lmf-singlefoc-state [I2] _) _),
add_to_map Map (ns (rind Ind) Ch) I2 Map2 ,
lmf-singlefoc-to-nested-sequent Cert-s2 Counter Map2 _ Cert2.

andPos_k Cert _ Stra Cert1 Cert2 :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)),
convert-index Map I I-s ,
I = (ns Ind Ch),
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
andPos_k Cert-s _ Stra Cert-s1 Cert-s2 ,
Cert-s1 = (lmf-singlefoc-cert (lmf-singlefoc-state [I1] _) _),
add_to_map Map (ns (lind Ind) Ch) I1 Map1 ,
lmf-singlefoc-to-nested-sequent Cert-s1 Counter Map1 _ Cert1 ,
Cert-s2 = (lmf-singlefoc-cert (lmf-singlefoc-state [I2] _) _),
add_to_map Map (ns (rind Ind) Ch) I2 Map2 ,
lmf-singlefoc-to-nested-sequent Cert-s2 Counter Map2 _ Cert2.

all_kc Cert
(Eigen\ nested-sequent-cert (nested-sequent-state NewCounter

Map ’ [lind I-s] [pr I-s Eigen|M]) D) :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map [] M)

(lmf-tree (nested-sequent-node I O) [D])),
convert-index Map I I-s ,
I = (ns Ind Ch),
get_incremented_child Counter Ch NewCh NewCounter ,
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
add_to_map Map (ns I NewCh) (lind I-s) Map ’.

some_ke Cert X Cert ’ :-
Cert = (nested-sequent-cert (nested-sequent-state Counter Map V M)

(lmf-tree (nested-sequent-node I O) D)),
convert-index Map I I-s ,
nested-sequent-to-lmf-singlefoc Cert I-s Cert-s ,
some_ke Cert-s X Cert-s ’,
Cert-s ’ = (lmf-singlefoc-cert (lmf-singlefoc-state [I’] _) _),
add_to_map Map (ns I O) I’ Map ’,
lmf-singlefoc-to-nested-sequent Cert-s ’ Counter Map ’ _ Cert ’.

Figure 13: FPC specifications for nested sequents



module ex-os1. % module declaration
accumulate ordinary-sequents. % fpc specification
accumulate lkf-kernel. % kernel in use
accumulate modal-encoding. % modal-translation
modalProblem "The K Axiom" % problem description
((( dia (-- p1)) !! (box (++ q1))) !! (dia ((++ p1) && (-- q1)))) % modal theorem
(ordinary-sequent-cert % proof evidence

(ordinary-sequent-state [root] none [pr root root] 0 [] [])
(lmf-tree (ordinary-sequent-node root [none]) [

lmf-tree (ordinary-sequent-node (rind root) [none]) [
lmf-tree (ordinary-sequent-node (rind (rind root)) [(lind (rind root)),

(lind root )]) [
lmf-tree (ordinary-sequent-node (diaind (lind root) (rind (rind root ))) [none]) [

lmf-tree (ordinary-sequent-node (diaind (lind (rind root)) (rind (rind root )))
[none]) [

lmf-tree (ordinary-sequent-node (lind (diaind (lind root) (rind (rind root ))))
[diaind (lind(rind root)) (rind (rind root ))]) []],

lmf-tree (ordinary-sequent-node (rind (diaind (lind root) (rind (rind root ))))
[none]) [

lmf-tree (ordinary-sequent-node (lind (rind (rind root ))) [(rind (diaind
(lind root) (rind(rind root ))))]) []]]]]])).

Figure 14: src/test/modal/ex-os1.mod

` Q,¬Q ` P,¬P
` P ∧ ¬Q,¬P,Q

` ♦(P ∧ ¬Q),♦¬P,�Q
` ♦(P ∧ ¬Q) ∨ ♦¬P,�Q
` ♦(P ∧ ¬Q) ∨ ♦¬P ∨�Q

Figure 15: Ordinary sequent proof of axiom K

5 Conclusion

We have presented here an implementation of a framework for certifying proofs produced in
several modal proof formalisms. The framework has been developed by following the general
principles of the project ProofCert and as a module of the concrete implementation provided by
Checkers. Such an implementation uses an augmented version of the focused classical sequent
system LKF as a kernel. The augmentation is obtained by enriching the calculus with predicates
able to reconstruct an original proof by following the information given in the evidence. In a
sense, we can see our framework as a bridge between modal proof systems and LKF. Such a
bridge is obtained by restricting the power of these further predicates to the minimal needed in
the context of modal logics.

There are several ways in which this work can be extended. The design of the parametric
devices of the framework has been driven by the ambition of being as comprehensive as possible
in terms of formalisms captured. The modularity and parameterizability of the whole approach
should make it possible, in fact, to consider other related approaches to modal proof theory,
like hypersequent calculi [2], e.g., by using a present parameter that is a multiset, representing
external structural rules as operations on such a present, and viewing modal communication
rules as a combination of relational and modal rules. The focused nature of the approach should
also allow for certifying proofs coming from focused proof systems for modal logics, like the ones
in [17, 7], possibly by using a different polarization of formulas.



module ex-nseq1.
accumulate nested-sequents.
accumulate lkf-kernel.
accumulate modal-encoding.
modalProblem "Problem: Axiom K for nested-sequents"
((dia ((++ p1) && (-- q1))) !! ((dia(-- p1)) !! (box (++ q1))))
(nested-sequent-cert
(nested-sequent-state [pr zb 0] [pr (ns root zb) root] [] [])
(lmf-tree (nested-sequent-node (ns root zb) none) [
(lmf-tree (nested-sequent-node (ns (rind root) zb) none) [
(lmf-tree (nested-sequent-node (ns (rind (rind root)) zb) none) [
(lmf-tree (nested-sequent-node (ns (lind (rind root)) zb) (chld 1 zb)) [
(lmf-tree (nested-sequent-node (ns (lind root) zb) (chld 1 zb)) [
(lmf-tree (nested-sequent-node (ns (lind root) (chld 1 zb)) none) [
(lmf-tree (nested-sequent-node (ns (rind (lind root)) (chld 1 zb)) none) [
(lmf-tree (nested-sequent-node (ns (rind (rind root)) (chld 1 zb))

(ns (rind (lind root)) (chld 1 zb))) [])]) ,
(lmf-tree (nested-sequent-node (ns (lind (rind root)) (chld 1 zb)) none ) [
(lmf-tree (nested-sequent-node (ns (lind (lind root)) (chld 1 zb))

(ns (lind (rind root)) (chld 1 zb))) [])])])])])])])])).

Figure 16: src/test/modal/ex1-nseq1.mod

♦(P ∧ ¬Q),♦¬P, [¬Q,¬P,Q] ♦(P ∧ ¬Q),♦¬P, [P,¬P,Q]

♦(P ∧ ¬Q),♦¬P, [P ∧ ¬Q,¬P,Q]

♦(P ∧ ¬Q),♦¬P, [¬P,Q]

♦(P ∧ ¬Q),♦¬P, [Q]

♦(P ∧ ¬Q),♦¬P,�Q
♦(P ∧ ¬Q),♦¬P ∨�Q

♦(P ∧ ¬Q) ∨ (♦¬P ∨�Q)

Figure 17: Nested sequent proof of axiom K

Orthogonally, we also aim at extending the approach to variants of the logic K. This can be
done, at least for the logics characterized by the so-called geometric frames, according to the
recipes provided in [20].

Finally, we remark that while this work was inspired by certification consisting in a strict
emulation of original proofs, it is sometimes the case that only partial information about the
proof to be checked is provided. We plan to complement the current implementation with
a “relaxed” version of the FPCs, such that it can also deal with incomplete proof evidences,
similarly to what has been done in [19] in order to check, e.g., free-variable tableau [3] proofs.
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