
A Semantics for Nabla

Jean Goubault-Larrecq1

LSV, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
goubault@lsv.fr

Abstract

We give a semantics for a classical variant of Dale Miller and Alwen Tiu’s logic FOλ∇. No such

semantics seems to have existed for the nabla operator, except for one given by U. Schöpp. Our

semantics validates the rule that nabla x implies exists x, but is otherwise faithful to the authors’

original intentions. The semantics is based on category of so-called nabla-sets, which we define as

presheaves over the poset of natural numbers, with additional generic elements at each level. The

semantics is sound, complete for Henkin structures, and complete for standard structures in the case

of Π1 formulae.

1 Prolog(ue)

I started my research career in automated deduction, and came to learn about Dale when I
touched the subject of proofs in higher-order logic. His work on expansion proofs was impressive,
and daunting. I kept on hearing of Dale, as he developed λ-Prolog, as he discovered higher-
order patterns, as he realized the value of uniform proofs, of intuitionism, of hereditary Harrop
formulae, as he studied extensions of logic with definitions, as he delved into focusing and linear
logic, and so on and so forth.

We finally got in touch on the 14th of February, 2002. I had sent him a rather vague
question on his paper [5] by email that day. My interest was to encode fresh names (“nonces”)
in cryptographic protocols, and I had seen that Dale had pursued the idea of using the quantifiers
of linear logic to this very end. The paper’s title ended with the enigmatic phrase “preliminary
results”, and I wanted to know whether he had done any more recent research in this vein. He
answered me the same day, despite the fact that he was busy at a Logic and Interaction meeting
in Marseilles-Luminy, and that we had never met before. Dale has to be commended for giving
me a lucid and candid answer. Who do you know would tell the following to a perfect stranger?

If you map processes to logical formulas directly, you have a lot of exciting things that
can happen. My original efforts (an experiment, really) failed, however, for at least
two reasons (referring to the paper ”The pi-calculus as a theory in linear logic”).

I am not including any more of his email to me. One of the two reasons he mentions is that, if try
to encode νx.P (x) (“create a fresh name x, then do P (x)”) as ∀x.P (x) in linear logic, then you
cannot make much of a difference between νx.νy.P (x, y) and νz.P (z, z), because ∀x.∀y.P (x, y)
linearly implies ∀z.P (z, z)—so much for y being fresh.

Dale later found a proper logical way of talking about freshness, or genericity, with Alwen
Tiu [6]: the nabla quantifier∇. It was only natural for me to pay homage to Dale by contributing
to the theory of nabla.

2 Introduction

With Alwen Tiu, Dale Miller introduced a logic for so-called generic judgments [6]. The dis-
tinctive characteristic of that logic is the nabla quantifier: ∇x : τ.F (x) means that F (x) holds
for x generic of type τ .

Generic stands for “with no remarkable property”, and is close to the notion of being fresh,
but different. Pitts and Gabbay gave nice, deep definitions of the notion of freshness [3], based
on the category of nominal sets. Dale Miller’s solution came later, and is an elegant proof-
theoretic construction. One can define what it means to be fresh, using the nabla quantifier. I
have repeatedly nagged Dale, notably during INRIA project committees, asking him what the
relation was between his ∇ operator and Pitts and Gabbay’s |/| (“new”) operator.

Dale and Alwen themselves had answered the question [6, Section 8]. First, in ∇x : τ.F (x),
one may request a generic object x of any arbitrary type τ . The only fresh thing one can create
in Pitts and Gabbay’s approach is a name. Second, ∀x.P (x) implies |/|x.P (x), which implies
∃x.P (x), while no such implication holds with ∇ instead of |/|. Also, while |/|x.|/|y.P (x, y) and
|/|y.|/|x.P (x, y) are equivalent, ∇x.∇y.P (x, y) and ∇y.∇x.P (x, y) are not.

One may hope to understand∇ better by giving it a semantics, and it is precisely the purpose
of this paper. The only other attempt I know of a semantics for ∇ is due to Ulrich Schöpp [8].
This is an elaborate construction, based on categories with binding structure, of which nominal
sets provide an example. I feel my proposal is more elementary. More importantly, Schöpp’s
∇ operator is restricted to create fresh objects of type ι only, where ι ranges over a dedicated
family of base types he calls the lambda-tree types. While this makes a comparison with the |/|
quantifier easier, this, I feel, ignores one distinctive feature of Dale and Alwen’s proposal: the
possibility of considering fresh objects of any type. Our semantics will address this.

We shall not be completely faithful to [6]. First and foremost, our semantics—and our proof
rules—will validate the implication of ∃x.P (x) by ∇x.P (x). That rule is also valid in Abella
[4]. It will also validate the rule that ∇x.F and ∇y.F are equivalent when x, y are not free in
F . However, and conforming to [6], it will not validate the Abella equivalences between ∇x.F
and F when x is not free in F , or between ∇x.∇y.P (x, y) and ∇y.∇x.P (x, y). Second, our
logic will be classical, not intuitionistic, as in [8]: semantics is easier in a classical setting.

Outline. We introduce the category ∇∇∇ of nabla-sets in Section 3. This is the basis of our
semantics for nabla, of which the most general form is a kind of Henkin semantics (Section 4),
including both standard semantics and a term-based semantics. We show that classical FOλ∇

is sound for all Henkin structures with enough maps in Section 5, and complete in Section 6.
Completeness is obtained for term structures, assuming exactly one base type ι, by using a
construction of Hintikka sets. This also shows that the cut rule can be eliminated. We examine
the question of completeness for standard structures in the rest of the paper. We notice that
the logic is in fact incomplete for standard structures in Section 7, by showing that the axiom
of choice is true but unprovable; then we show that the logic is complete, even without the cut
rule again, if we restrict ourselves to so-called Π1 formulae—and that includes the first-order
fragment as a special case. We do this by building a specific retraction of the standard universe
onto the term universe, which interacts nicely with a natural Kripke logical relation. We list a
few open questions in Section 9, and conclude in Section 10.

3 Nabla-Sets

We write Im f for the image of a map f . Our main object of study is the following.

Definition 3.1. A nabla-set D is the following data:

• a family of non-empty sets (Dn)n∈N indexed by natural numbers,

• a family of injective maps oldDn : Dn → Dn+1, n ∈ N,

• a family of elements newD
n+1 ∈ Dn, n ∈ N, such that newD

n+1 6∈ Im oldDn , n ∈ N.

We shall write oldn for oldDn when no confusion may arise. We shall also write oldDn→m, or
oldn→m, for the composition oldm−1 ◦ · · · ◦ oldn+1 ◦ oldn : Dn → Dm, n ≤ m.

Dn is meant to be the set of values of some type D, in a context where at most n generic
values have been created. To convert a value d ∈ Dn to an element of Dn+1, we produce
oldDn (d). The generic object newD

n+1 ∈ Dn+1 is required to be fresh, that is, different from all

old objects oldDn (d), d ∈ Dn.

Definition 3.2. A nabla-map f from a nabla-set D to a nabla-set E is a family of maps
fn : Dn → En, n ∈ N, such that oldn ◦ fn = fn+1 ◦ oldn.

We do not require that fn+1(newD
n+1) = newE

n+1. The elements newD
n+1 are generic, and

should have no specific property, including the latter.
Nabla-sets and nabla-maps form a category ∇∇∇. An isomorphism between D and E in ∇∇∇

is a collection of bijections fn : Dn → En such that oldn ◦ fn = fn+1 ◦ oldn. The bijections
will usually fail to map newD

n+1 to newE
n+1. Hence the following defines isomorphic nabla-sets,

obtained by moving the generic elements newD
n+1 around:

Definition 3.3 (Variant). A variant of a nabla-set D is a nabla-set D′ such that D′n = Dn

and oldD
′

n = oldDn for every n ∈ N.

∇∇∇ is very close to a familiar presheaf category. Let N be the set of natural numbers, with
the usual ordering. Any poset can be considered as a category, whose objects are the elements
of the poset, and where there is one morphism from m to n if m ≤ n, no morphism otherwise.
One can then form the category SetN of all functors from N to the category Set of sets, with
natural transformations as morphisms. One can check that SetN is equivalently defined much
like ∇∇∇: objects of SetN are given by a family of sets (Dn)n∈N (possibly empty), together with

maps oldDn : Dn → Dn+1 (not necessarily injective), n ∈ N, and morphisms f from D to E are
families of maps fn : Dn → En, n ∈ N, such that oldn ◦ fn = fn+1 ◦ oldn.

SetN is Cartesian-closed and complete. Almost the same thing can be said for ∇∇∇, except
for one important point: ∇∇∇ does not have a terminal object (i.e., a 0-ary product; I will leave
that as an exercise to the reader).

Nonetheless, most of the structure of SetN is preserved. Notably, ∇∇∇ has products of all
non-empty families (D[i])i∈I . The canonical product D =

∏
i∈I D[i] is defined pointwise: Dn =∏

i∈I D[i]n, oldDn maps (di)i∈I to (oldD[i]
n (di))i∈I , and we may define newD

n+1 as (new
D[i]
n+1)

i∈I .
All other products are, as usual, obtained as isomorphic copies.

We shall use the following notations:

• for a product D =
∏
i∈I Di, πi : D → Di is ith projection, defined by (πi)n(dj)j∈I = di;

• D1 ×D2 stands for
∏
i=1,2Di;

• for f1 : D1 → E1, f2 : D2 → E2, f1 × f2 : D1 × D2 → E1 × E2 is defined by (f1 ×
f2)(n)(d1, d2) = ((f1)n(d1), (f2)n(d2));

• for f1 : D → E1, f2 : D → E2, 〈f1, f2〉 : D → E1 × E2 is defined by 〈f1, f2〉n(d) =
((f1)n(d), (f2)n(d)).

A Cartesian-closed category is one with all finite products (i.e., terminal objects and binary
products), and where every object D is exponentiable. The latter means, abstractly, that the
functor ×D has a right adjoint [D →] (usually written D). Explicitly, D is exponentiable
if and only if, for every object E, there is an object [D → E], a so-called application (a.k.a.,

evaluation) map App : [D → E]×D → E, and for every morphism f : C ×D → E, a currified
map Λ(f) : C → [D → E] satisfying the following equations [1]:

• (β-rule) App ◦ (Λf × idD) = f for every f : C ×D → E;

• (η-rule) Λ(App) = id[D→E];

• (substitution rule) Λf ◦ g = Λ(f ◦ (g × idD)), for all f : C ×D → E and g : B → C.

Proposition 3.4. In ∇∇∇, every object is exponentiable.

Proof. Given two nabla-sets D and E, we define [D → E] as in SetN. Let [D → E]n be the set
of all families of maps (fm)m≥n such that oldEm ◦ fm = fm+1 ◦ oldDm for every m ≥ n. We let

old[D→E]
n map (fm)m≥n ∈ [D → E]n to (fm)m≥n+1 ∈ [D → E]n+1.

We claim that [D → E]n is non-empty for every n ∈ N. Pick e ∈ E0, define fm as the
constant map with value oldE0→m(e), and check that (fm)m≥n is an element of [D → E]n.

Next, the maps old[D→E]
n are injective. Indeed, given (fm)m≥n+1 ∈ [D → E]n+1, there is at

most one map fn such that oldEn ◦ fn = fn+1 ◦ oldDn , because oldEn is injective.

The generic element new
[D→E]
n+1 must be a collection of maps (new

[D→E]
(n+1)m)

m≥n+1
, which we

define by induction on m. For m = n+ 1, we let new
[D→E]
(n+1)(n+1) be the constant map with value

newE
n+1. For m > n, we define new

[D→E]
(n+1)m(d), for every d ∈ Dm, as follows. If d ∈ Im oldDm−1,

then there is a unique d′ ∈ Dm−1 such that oldDm−1(d′) = d, since oldDm−1 is injective, and we

define new
[D→E]
(n+1)m(d) as oldEm−1(new

[D→E]
(n+1)(m−1)(d

′)), using the induction hypothesis. This part

of the construction ensures that new
[D→E]
n+1 is an element of [D → E]n+1.

It remains to define new
[D→E]
(n+1)m(d) when d 6∈ Im oldDm−1, and we set it to newE

m. That

ensures that new
[D→E]
n+1 is not in the image of old[D→E]

n , for n ∈ N, as we now show. Otherwise,

there would be an element f = (fm)m≥n of [D → E]n such that fm = new
[D→E]
(n+1)m for every

m ≥ n+ 1. Recall that fn+1 ◦ oldDn = oldEn ◦ fn. Since fn+1 = new
[D→E]
(n+1)(n+1), this would imply

that newE
n+1 = (oldEn ◦fn)(d) for every d ∈ Dn; since Dn is non-empty, we reach a contradiction.

That [D → E] is an exponential object either follows from a tedious verification, or as a
consequence of the corresponding statement that SetN is Cartesian-closed.

Explicitly, App : [D → E] × D → E is defined by Appn((fm)m≥n, d) = fn(d). For every
morphism f = (fn)n∈N from C × D to E, the currified morphism Λf from C to [D → E] is

defined by (Λf)n(c) = (fm(oldDn→m(c),))m≥n for every c ∈ Cn. (We write fm(a,) for the map
that sends d to fm(a, d).) We leave it as an exercise to the reader to check that the β, η and
substitution rules are satisfied.

Unlike most other presheaf categories, SetN satisfies the so-called external axiom of choice,
and similarly for ∇∇∇: every epi splits. We prefer the following formulation, which is closer to
what we think the axiom of choice should state, and also slightly more general.

Proposition 3.5 (Choice). A nabla-subset (An)n∈N of a nabla-set (Dn)n∈N is a collection of

subsets An of Dn, n ∈ N, such that for every n ∈ N, for every a ∈ An, oldDn (a) is in An+1.

A binary nabla-relation R between D and E is a nabla-subset of D × E.

If, for all n ∈ N and d ∈ Dn, there is an e ∈ En such that (d, e) ∈ Rn, then there is a
nabla-map f = (fn)n∈N from D to E such that, for all n ∈ N and d ∈ Dn, (d, fn(d)) is in Rn.

Proof. We build fn by induction on n. The function f0 is simply obtained by applying the
set-theoretic axiom of choice to select an e ∈ E0 such that (d, e) ∈ R0, for each d ∈ D0, and
defining f0(d) as e.

At level n+ 1, we make cases depending on whether d is in the image of oldDn or not.
If d = oldDn (d′) for some (unique) d′ ∈ Dn, then we define fn+1(d) as oldEn (fn(d′)). Note

that, since (d′, fn(d′)) ∈ Rn, oldD×En (d′, fn(d′)) = (d, fn+1(d)) is in Rn+1.
If d 6∈ Im oldDn , then we let fn+1(d) be some e ∈ En+1 such that (d, e) ∈ Rn+1. It is clear

that f = (fn)n∈N is a nabla-map, and that (d, fn(d)) ∈ Rn for all n ∈ N, d ∈ Dn.

That implies the following, which will be our bane in Section 7.

Corollary 3.6 (Weak Choice). Let D, E be two nabla-sets. Fix n ∈ N, and let R ⊆ Dn×En. If
for every d ∈ Dn, there is an e ∈ En such that (d, e) ∈ R, then there is an element f = (fm)m≥n
of [D → E]n such that for every d ∈ Dn, (d, fn(d)) is in R.

Proof. Let D′ = (Dm)m≥n, E′ = (Em)m≥n, with the obvious nabla-set structure. For every

k ∈ N, let R′k be the set of pairs (d′, e′) ∈ D′k×E′k = Dn+k×En+k such that d′ = oldDn→k(d) and

e′ = oldEn→k(e) for some d ∈ Dn and e ∈ En such that (d, e) ∈ R, or such that d′ 6∈ Im oldDn→k
and e′ is arbitrary. Then (R′k)k∈N is a nabla-subset ofD′×E′, and one satisfying the assumptions
of Proposition 3.5. Hence there is a nabla-map f ′ = (f ′k)k∈N from D′ to E′ such that, for every
k ∈ N, for every d′ ∈ D′k, (d′, f ′k(d′k)) ∈ R′k. The claim follows by looking at the case k = 0,
and by letting fm = f ′m−n for every m ≥ n.

Seemingly related is the following result, which will however be a boon to us: it will be used
to show that our semantics of ∇ is sound. This is exactly the place where we need newD

n+1 to

be fresh, that is, outside Im oldDn (Definition 3.1, third item).

Lemma 3.7. Let D, E be two nabla-sets, n ∈ N, and e ∈ En+1. There is a nabla-map
f = (fm)m∈N : D → E such that fn+1(newD

n+1) = e.

Proof. Let g = new
[D→E]
0 . This is a collection of maps (gm)m≥0 such that oldEm ◦ gm =

gm+1 ◦ oldDm for every m ≥ 0. In other words, it is a nabla-map from D to E. We build a
nabla-map f = (fm)m∈N from D to E by patching g.

For every m ≤ n, we let fm = gm. For m = n + 1, we let fn+1 map newD
n+1 to e,

and every element d 6= newD
n+1 to gn+1(d). The relation oldEn ◦ fn = fn+1 ◦ oldDn is satisfied

vacuously, because oldDn (d) 6= newD
n+1 for every d ∈ Dn. We then proceed to define fm for

every m > n + 1 by induction on m: it maps oldDn+1→m(newD
n+1) to oldEn+1→m(e), and every

element d 6= oldDn+1→m(newD
n+1) to gm(d).

4 Standard and Henkin Semantics for λ-Terms

Let use consider simply-typed λ-terms M in Church style, that is, all variables have a pre-
assigned type. We agree that given a variable xτ , its type is τ . There are countably infinitely
many variables of each type τ . We shall sometimes omit the subscript τ when it is clear. There
are base types including the type ι of individuals, and other types are formed using the arrow
type former →. Later, and for the purposes of completeness, we shall require that there be
exactly one type ι of individuals.

Proposition 3.4 allows us to define a standard semantics for λ-terms: we fix nabla-sets SJτK
for every base type, define SJϕ→ τK as the exponential object [SJϕK → SJτK] or one of its

variants, inductively; finally, we define the value of applications through App and the value of
λ-abstractions through Λ.

There is a more general construction, which we call a Henkin semantics for nabla, and which
we shall need to establish completeness. This is simply a listing of our basic requirements.

Definition 4.1 (Henkin Universe). A Henkin universe S for nabla is the following data:

• for each type τ , a nabla-set SJτK;
We write Env for the product

∏
xτ
SJτK, where xτ ranges over all variables: Envn is the set

of environments ρ at level n, namely functions mapping each variable xτ to an element
ρ(xτ) ∈ SJτKn;

• for each type τ , a set S(τ) of nabla-maps from Env to τ , containing all the projections
πxτ—where (πxτ)n(ρ) = ρ(xτ) for every environment ρ at level n;

• for each pair of types ϕ, τ , a nabla-map App : SJϕ→ τK×SJϕK→ SJτK, with the property
that for every f ∈ S(ϕ→ τ) and for every g ∈ S(ϕ), App ◦ 〈f, g〉 is in S(τ);

• for every variable xϕ and each type τ , a function Λxϕ : S(τ)→ S(ϕ→ τ);

such that, defining:

SJxτ K = πxτ

SJMNK = App ◦ 〈SJMK, SJNK〉
SJλxϕ.MK = Λxϕ(SJMK)

then:

1. for all βη-convertible λ-terms M,N : τ , SJMK = SJNK;

2. for every λ-term M : τ , for every n ∈ N, SJMKnρ does not depend on ρ(y) if y is not free
in M , namely: if ρ(z) = ρ′(z) for every z 6= y, then SJMKnρ = SJMKnρ′;

3. for all λ-terms N : τ and M : ϕ, for every n ∈ N, for every environment ρ at level n,
SJN [M/xϕ]Knρ = SJNKn(ρ[xϕ 7→ SJMKnρ]);

Adapting Lemma 3.7 in view of our upcoming proof of soundness, we also define:

Definition 4.2 (Enough Maps). A Henkin universe S for nabla has enough maps if and only
if, for all types ϕ and τ , for every n ∈ N, for every d ∈ SJτKn+1, there is an f ∈ SJϕ→ τKn
such that Appn+1(oldn(f),new

SJϕK
n+1) = d.

4.1 The Standard Universe

Lemma 4.3 (The Standard Universe). Given nabla-sets Dτ , one for each base type τ , there is
a Henkin universe S such that:

• SJϕ→ τK is a variant of [SJϕK→ SJτK] for all types ϕ, τ (see Definition 3.3);

• S(τ) is the set of all nabla-maps from Env to τ , for each type τ ;

• App is the application morphism in ∇∇∇;

• for every f : Env → SJτK, Λxϕ(f) = Λ(f ◦ bindxϕ), where Λ is currification in ∇∇∇ and
bindxϕ : Env×SJϕK→ Env is defined by (bindxϕ)n(ρ, d) = ρ[xϕ 7→ d], the environment that
maps xϕ to d and every variable y 6= x to ρ(y).

This Henkin universe S has enough maps.
We call S a standard universe on the nabla-sets Dτ .

Proof. 1. The fact that for all βη-convertible λ-terms M,N : τ , SJMK = SJNK, owes to the
properties of exponentiable objects (see Proposition 3.4), and is immediate.

2. If ρ(z) = ρ′(z) for every z 6= y, then SJMKnρ = SJMKnρ′: this is an easy structural
induction on M .

3. We show that for all λ-terms N : τ and M : ϕ, for every n ∈ N, for every environment ρ
at level n, SJN [M/xϕ]Knρ = SJNKn(ρ[xϕ 7→ SJMKnρ]).

We first notice that: (a) for every m ≥ n, oldSJτK
n→m(SJMKnρ) = SJMKm(oldEnv

n→m(ρ)). This
is merely the expression that SJMK is a nabla-map, by definition.

We now show that SJN [M/xϕ]Knρ = SJNKn(ρ[xϕ 7→ SJMKnρ]), by structural induction on
N . The only interesting case is when N is a λ-abstraction λyϕ.P . Then, assuming that yϕ 6= xτ
and that yϕ is not free in M , by α-renaming:

SJN [M/xτ]Knρ = (λd ∈ SJϕKm.SJP [M/xτ]Km(oldEnv
n→m(ρ)[yϕ 7→ d]))m≥n

= (λd ∈ SJϕKm. (by induction hypothesis)

SJP Km(oldEnv
n→m(ρ)[yϕ 7→ d, xτ 7→ SJMKm(oldEnv

n→m(ρ)[yϕ 7→ d])]))m≥n

= (λd ∈ SJϕKm. (by 2.)

SJP Km(oldEnv
n→m(ρ)[yϕ 7→ d, xτ 7→ SJMKm(oldEnv

n→m(ρ))]))m≥n

= (λd ∈ SJϕKm. (by (a))

SJP Km(oldEnv
n→m(ρ)[yϕ 7→ d, xτ 7→ oldSJϕK

n→m(SJMKnρ)]))

= (λd ∈ SJϕKm. (by definition of oldEnv)

SJP Km(oldEnv
n→m(ρ[xτ 7→ SJMKnρ])[yϕ 7→ d]))

= SJNKn(ρ[xτ 7→ SJMKnρ]).

We now claim that S has enough maps. Fix d ∈ SJτKn+1. By Lemma 3.7, there is a

nabla-map (fm)m∈N : SJϕK → SJτK such that fn+1(new
SJϕK
n+1) = d. Let f = (fm)m≥n. Then

oldn(f) = (fm)m≥n+1, and Appn+1(oldn(f),new
SJϕK
n+1) = fn+1(new

SJϕK
n+1) = d.

Remark 4.4. A standard universe S is uniquely determined by choosing nabla-sets SJτK for

each base type τ , and by choosing generic elements new
SJϕ→τK
n , n ∈ N, for each arrow type

ϕ→ τ .

4.2 The Term Universe

We now exhibit another Henkin universe T , built from syntax. This will be useful to show
completeness. Here we require that there be exactly one base type ι.

The universe T is built from an extension of the λ-calculus we have considered until now,
obtained by adding a countably infinite supply of new constants ai, i ≥ 1, all of type ι, and
called names. We assume that those names are pairwise distinct; ai is the name at level i.

We build nominal (simply-typed) λ-terms inductively by: every variable xτ is a nominal
λ-term, of type τ ; every name ai is a nominal λ-term, of type ι; if M is a nominal λ-term of
type ϕ → τ and N is a nominal λ-term of type ϕ, then MN is a nominal λ-term of type τ ; if
M is a nominal λ-term of type τ , and xϕ is a variable, then λxϕ.M is a nominal λ-term of type
ϕ→ τ .

In other words, nominal λ-terms are ordinary λ-terms on an enlarged set of variables, con-
sisting of variables and names, and restricted so that names cannot occur bound. We will not
take this view, and we will enforce a strict separation between variables and names.

We consider nominal λ-terms modulo βη-conversion, and by this we mean a nominal λ-term
is shorthand for its βη-normal form. This convention allows us to make sense of the notions of
free variables, and of free names, of a nominal λ-term.

Definition 4.5. For each type τ , for every n ∈ N, T JτKn is the set of all nominal λ-terms of
type τ (up to βη-conversion) in which the only free names are of the form ai with 1 ≤ i ≤ n.

The maps oldT JτK
n map M to M , and, writing τ in a unique way as τ1 → τ2 → · · · → τm → ι,

new
T JτK
n = λx1 τ1 .λx2 τ2 . · · · .λxm τm .an, where x1 τ1 , x2 τ2 , . . .xm τm are distinct fresh variables.

Remark 4.6. For every type τ , T JτK0 is just the set of ordinary, not nominal, λ-terms of type
τ , modulo βη-conversion.

For any set of variables A, a substitution θ at level n of domain A is any function that maps
every variable zψ to an element of T JψKn. When A is finite, we define the capture-avoiding
application Mθ of θ to the λ-term M in the usual way.

If θ and θ′ agree on the set of free variables of M , then Mθ = Mθ′. We can therefore extend
the notation Mθ to substitutions θ of arbitrary domains, by defining Mθ as Mθ|A, where A is
any finite subset containing the free variables of M .

Define again Env as
∏
xτ
T JτK. An element θ of Envn is a substitution at level n, so that

every λ-term M defines a map M̂n : Envn → T JτKn, which sends θ to Mθ. Then M̂ = (M̂n)n∈N
is a nabla-map from Env to T JτK.

Definition 4.7. For every type τ , let T (τ) be the set of all nabla-maps of the form M̂ , where
M ranges over the λ-terms of type τ .

T (τ) contains all the projections πxτ , since πxτ = x̂τ .

It is also clear that every element of T (τ) is of the form M̂ for a unique λ-term M (up to

βη-conversion): M = M̂(θ), where θ is the identity substitution. So the following makes sense.

Definition 4.8. Let App : T (ϕ → τ) × T (ϕ) → T (τ) be defined by App(M̂, N̂) = M̂N , and

Λxϕ : T (τ)→ T (ϕ→ τ) map M̂ to λ̂xϕ.M .

The following fact is immediate.

Fact 4.9. For every λ-term M : τ , for every substitution θ at level n, T JMKnθ = M̂(θ) = Mθ.

Lemma 4.10. Assume there is exactly one base type ι. T , defined in Definitions 4.5–4.8, is a
Henkin universe with enough maps.

Proof. Clearly, oldT JτK
n is injective. Properties 1–3 of Definition 4.1 are clear, given Fact 4.9.

Let N ∈ T JτKn+1. We wish to find an M ∈ T Jϕ→ τKn such that Mnew
T JϕK
n+1 = N (up to

βη-conversion).

Write ϕ is a unique way as ϕ1 → ϕ2 → · · · → ϕm → ι, and pick some arbitrary λ-terms
M1 : ϕ1, M2 : ϕ2, . . . , Mn : ϕn—variables, for example. Build a new term Ñ by replacing all
occurrences of an+1 in N by the term xϕM1M2 · · ·Mm, where xϕ is a fresh variable of type ϕ.

Finally, define M as λxϕ.Ñ . The only names ai that occur free in M are such that 1 ≤ i ≤ n, by

construction, so M is in T Jϕ→ τKn, and Mnew
T JϕK
n+1 = M(λx1 ϕ1

.λx2 ϕ2
. · · · .λxm ϕm .an+1) =

Ñ [λx1 ϕ1 .λx2 ϕ2 . · · · .λxm ϕm .an+1/xϕ] is equal to N .

(⊥L)
Γ, (σ .⊥) −→ ∆

(Ax)
Γ, J −→ J,∆

Γ −→ J,∆ Γ′, J −→ ∆′

(Cut)
Γ,Γ′ −→ ∆,∆′

Γ, J, J → ∆
(cL)

Γ, J → ∆

Γ→ ∆
(wL)

Γ, J → ∆

Γ→ ∆, J, J
(cR)

Γ→ ∆, J

Γ→ ∆
(wR)

Γ→ ∆, J

Γ, J → ∆
(J ≈ J ′) (≈ L)

Γ, J ′ → ∆

Γ→ ∆, J
(J ≈ J ′) (≈ R)

Γ→ ∆, J ′

Γ −→ ∆, (σ . F) Γ, (σ . G) −→ ∆
(⊃ L)

Γ, (σ . F ⊃ G) −→ ∆

Γ, (σ . F) −→ ∆, (σ . G)
(⊃ R)

Γ −→ ∆, (σ . F ⊃ G)

M : τ Γ, (σ . F [M/xτ]) −→ ∆
(∀L)

Γ, (σ . ∀xτ .F) −→ ∆

Γ −→ ∆, (σ . F [hσ/xτ])
(hσ→τ fresh) (∀R)

Γ −→ ∆, (σ . ∀xτ .F)

Γ, (σ, x : τ . F) −→ ∆
(∇L)

Γ, (σ .∇xτ .F) −→ ∆

Γ −→ ∆, (σ, x : τ . F)
(∇R)

Γ −→ ∆, (σ .∇xτ .F)

Figure 1: A Sequent Calculus Formulation of FOλ∇

5 A Semantics for FOλ∇, and Soundness

The logic FOλ∇ was introduced by Miller and Tiu [6], as an intuitionistic first-order logic with
predicates on higher-order terms, together with the ∇ operator. Schöpp [8] used a classical
variant of that logic. We use a close cousin of the latter: the only differences are that ∇xτ .F
will imply ∃xτ .F in our logic, and that ∇xτ .F and ∇yϕ.F will be equivalent if xτ and yϕ are
not free in F .

Instead of considering all the connectives, we shall restrict ourselves to ⊥ (false), ⊃ (impli-
cation) and ∀ (universal quantification). The other connectives could be dealt with similarly.
We profit from the fact that our logic is classical, so that those other connectives are definable:
¬F = F ⊃ ⊥, F ∨G = (¬F) ⊃ G, F ∧G = ¬(F ⊃ ¬G), ∃xτ .F = ¬(∀xτ .¬F).

We are given a countable set of so-called relation symbols P , each coming with an arity,
which is a finite list of types τ1, τ2, · · · , τk. Atomic formulae are of the form P (M1,M2, · · · ,Mk)
where M1 : τ1, M2 : τ2, . . . , Mk : τk are λ-terms and P is a relation symbol of arity τ1, τ2, · · · , τk.
The formulae are built from atomic formulae and ⊥ using ⊃, ∀, and the nabla quantifier ∇: if
F is a formula, then ∇xτ .F is a formula.

Call a signature any finite list σ of pairwise distinct variables x1 τ1 , x2 τ2 , · · · , xm τm . To
stick with conventional writing, we shall write that signature x1 : τ1, x2 : τ2, · · · , xm : τm.

A generic judgment (or, more simply, a judgment) J is an expression of the form σ . F
where σ is a signature (the local signature of the judgment) and F is a formula. The meaning
of x1 : τ1, x2 : τ2, · · · , xm : τm . F is intended to be the same as ∇x1 τ1 .∇x2 τ2 . · · · .∇xm τm .F .
We write λσ.F for λx1 : τ1, x2 : τ2, · · · , xm : τm . F . We also write σ, σ′ for the concatenation
of signatures when this makes sense.

Definition 5.1. Let ≈ be the smallest equivalence relation on judgments such that:

• if λσ.F and λσ′.F ′ are βη-convertible, then (σ . F) ≈ (σ′ . F ′);

• if xτ and yϕ are not free in F , then (σ, x : τ, σ′ . F) ≈ (σ, y : ϕ, σ′ . F).

A sequent of FOλ∇ is an expression Γ −→ ∆, where Γ, ∆ are finite multisets of judgments.

Remark 5.2. Those are slightly different from the sequents of [6], which are of the form
Σ; Γ −→ ∆, where Σ is a (global) signature. This makes a difference in our way of formulating
the (∀L) rule, which allows us to instantiate xτ by any term of type τ whatsoever, including
non-ground terms, hence to prove the implication ∀xτ .F ⊃ ∇xτ .F , and therefore also (since ∇
commutes with negation), ∇xτ .F ⊃ ∃xτ .F .

We write Γ, J for the addition of the judgment J to Γ, and Γ,Θ for the union of the multisets
Γ and Θ. We write M : τ to state that M is a term of type τ , as in the first premise of (∀L).

The rules of FOλ∇ are shown in Figure 5. In the rightmost premise of (∀L), one can find
a judgment σ . F [M/xτ]. F [M/xτ] denotes capture-avoiding substitution of M for xτ in F ,
but M is allowed to capture variables from σ, on purpose. In (∀R), h : σ → τ abbreviates
h : τ1 → τ2 → · · · → τn → τ , and hσ abbreviates hx1x2 · · ·xn.

We define a semantics of all the objects considered above, as follows.

Definition 5.3. Given a nabla-set D, let a nabla-predicate P on D be a family (Pn)n∈N of
subsets Pn of Dn.

Nabla-predicates are not nabla-relations, as defined in Proposition 3.5: we do not require
that for every n ∈ N and for every d ∈ Pn, oldDn (d) is in Pn+1.

Definition 5.4. A Henkin structure is a Henkin universe S, together with nabla-predicates
SJP K on SJτ1K× SJτ2K× · · · × SJτkK for each relation symbol P of arity τ1, τ2, · · · , τk.

A standard structure is a Henkin structure whose underlying Henkin universe is a standard
universe S (see Lemma 4.3).

We now define satisfaction of a formula F at level n as follows, in a Henkin structure S,
where ρ is a Σ-environment at level n.

S; ρ |=n P (M1, · · · ,Mk) iff (SJM1Kn(ρ), · · · , SJMkKn(ρ)) ∈ SJP Kn
S; ρ |=n ⊥ never

S; ρ |=n F ⊃ G iff (S; ρ 6|=n F or S; ρ |=n G)

S; ρ |=n ∀xτ .F iff (for every d ∈ SJτKn, S; ρ[x 7→ d] |=n F)

S; ρ |=n ∇xτ .F iff S; oldEnv
n (ρ)[x 7→ new

SJτK
n+1)] |=n+1 F.

This extends to judgments by letting S; ρ |=n x1 : τ1, x2 : τ2, · · · , xm : τm . F if and only if
S; ρ |=n ∇x1 τ1 .∇x2 τ2 . · · · .∇xm τm .F ; then, to sequents by letting S; ρ |=n Γ −→ ∆ if and only
if S; ρ 6|=n J for some J in Γ or S; ρ |=n J for some J in ∆.

Lemma 5.5. For every λ-term M of type τ , for every n ∈ N,

1. S; ρ |=n J [M/xτ] iff S; ρ[xτ 7→ SJMKnρ] |=n J for every judgment J ;

2. S; ρ |=n Γ[M/xτ] −→ ∆[M/xτ] iff S; ρ[xτ 7→ SJMKnρ] |=n Γ −→ ∆.

Proof. 1. It is enough to prove the claim when J is a formula, by structural induction on it,
paying attention to α-renaming in the case of universal quantification and ∇ quantification. We

describe the latter case, when J = ∇yϕ.F . By α-renaming, yϕ is different from xτ and not free

in M . Write ρ̃ for oldEnv
n (ρ)[yϕ 7→ new

SJϕK
n+1]. Then S; ρ |=n J if and only if S; ρ̃ |=n+1 F [M/xτ],

iff S; oldEnv
n (ρ)[yϕ 7→ new

SJϕK
n+1 , xτ 7→ SJMKn+1ρ̃] |=n+1 F (by induction hypothesis)

iff S; oldEnv
n (ρ)[yϕ 7→ new

SJϕK
n+1 , xτ 7→ SJMKn+1(oldEnv

n (ρ))] |=n+1 F (prop. 2 of Henkin universes)

iff S; oldEnv
n (ρ)[yϕ 7→ new

SJϕK
n+1 , xτ 7→ oldSJτK

n (SJMKnρ)] |=n+1 F (SJMK is a nabla-map)

iff S; oldEnv
n (ρ[xτ 7→ SJMKnρ])[yϕ 7→ new

SJϕK
n+1] |=n+1 F

iff S; ρ[xτ 7→ SJMKnρ] |=n ∇yϕ.F.

2. Immediate consequence of 1.

We say that two formulae F and G are equivalent if and only if, for every nabla-structure
S, for every n ∈ N, for every environment ρ at level n, S; ρ |=n F if and only if S; ρ |=n G.

Lemma 5.6. The following are pairs of equivalent formulae:

1. ∇xτ .(F ⊃ G) and (∇xτ .F) ⊃ (∇xτ .G);

2. ∇xτ .F and ∇yϕ.F , if neither xτ nor yϕ is free in F ;

3. ∇xτ .∀yϕ.F and ∀hτ→ϕ.∇xτ .F [hx/y].

Proof. The first equivalence is a simple verification. The second one follows from the fact that
the semantics of a formula F in an environment ρ does not depend on the values ρ(zψ) such that
zψ is not free in F . This an easy induction on F , which uses property 2 of Henkin structures
in the base case.

Finally, for the third equivalence, we have:

S; ρ |=n ∇xτ .∀yϕ.F iff S; oldEnv
n (ρ)[x 7→ newn+1] |=n+1 ∀yϕ.F

iff (for every d ∈ SJϕKn+1, S; oldEnv
n (ρ)[x 7→ newn+1, y 7→ d] |=n+1 F) (1)

while S; ρ |=n ∀hτ→ϕ.∇xτ .F [hx/y] if and only if:

(for every f ∈ SJτ → ϕKn, S; ρ[h 7→ f] |=n ∇xτ .F [hx/y])

iff (for every f ∈ SJτ → ϕKn, S; oldEnv
n (ρ[h 7→ f])[x 7→ newn+1] |=n+1 F [hx/y])

iff (for every f ∈ SJτ → ϕKn, (2)

S; oldEnv
n (ρ)[x 7→ newn+1, y 7→ Appn+1(oldn(f),newn+1)] |=n+1 F)

where we have used Lemma 5.5, item 2, and the fact that h is not free in F in the last line.
The two are equivalent: in one direction, for every f ∈ SJτ → ϕKn, Appn+1(oldn(f),newn+1)
is a value d in SJϕKn+1, so (1) implies (2). In the converse direction, for every d ∈ SJϕKn+1,

we can find an f ∈ SJτ → ϕKn such that Appn+1(oldn(f),new
SJϕK
n+1) = d, because S has enough

maps. Hence (2) implies (1).

We write S |=n Γ −→ ∆ if and only if S; ρ |=n Γ −→ ∆ for every Σ-environment ρ at level
n, and we say that Γ −→ ∆ is valid if and only if this holds for every n ∈ N and for every
Henkin structure S with enough maps.

Proposition 5.7 (Soundness). Every derivable sequent Γ −→ ∆ is valid.

Proof. It suffices to show that S; ρ |=n Γ −→ ∆ by induction on the given derivation.
In the case of the (⊃ L)/(⊃ R) rules, we must show that S; ρ |=n σ . (F ⊃ G) if and only if

S; ρ 6|=n σ .F or S; ρ |=n σ .G: this is an easy induction on the number of variables in σ, using
Lemma 5.6, item 1.

In the case of (≈ L)/(≈ R), we must show that S; ρ |=n J if and only if S; ρ |=n J
′, assuming

J ≈ J ′. It suffices to show that this is the case when J and J ′ are βη-convertible (which follows
from property 1 of Henkin universes), and when J = σ, x : τ, σ′ . F , J ′ = σ, y : ϕ, σ′ . F , with
xτ , yϕ not free in F (that follows from Lemma 5.6, item 2).

In the case of (∀R), assume that S; ρ |=n Γ −→ ∆, (σ . F [hσ/xτ]), with h fresh of
type σ → τ . Equivalently, S; ρ |=n Γ −→ ∆, (.∇σ.F [hσ/xτ]), where we write ∇σ for
∇x1 τ1 .∇x2 τ2 . · · · .∇xm τm , assuming σ = x1 : τ1, x2 : τ2, · · · , xm : τm. Trivially, this implies
S; ρ |=n Γ −→ ∆, (.∀hσ→τ .∇σ.F [hσ/xτ]), since h is fresh. By iterating Lemma 5.6, item 3, m
times, we obtain S; ρ |=n Γ −→ ∆, (.∇σ.∀xτ .F), that is, S; ρ |=n Γ −→ ∆, (σ . ∀xτ .F).

In the case of (∀L), let M be a λ-term of type τ , and assume S; ρn |=n Γ, (σ .F [M/xτ]) −→
∆. Assume also that S; ρ |=n J for every J in Γ, and S; ρ |=n (σ . ∀xτ .F). We aim to show
that S; ρ |=n J ′ for some J ′ in ∆. By Lemma 5.6, item 3 again, the latter implies S; ρ |=n

∀hσ→τ .∇σ.F [hσ/xτ]. Instantiate hσ→τ by λσ.M . It follows that S; ρ |=n ∇σ.F [M/xτ], hence
S; ρ |=n σ . F [M/xτ]. Since S; ρ |=n J for every J in Γ and S; ρn |=n Γ, (σ . F [M/xτ]) −→ ∆,
we conclude.

The other cases are immediate.

6 Henkin Completeness

We shall show that the deduction system of Figure 5 is complete using a variant of the technique
of Hintikka sets, a technique used to show that tableaux calculi are complete for first-order logic.
This will also show that the (Cut) rule is not needed for completeness.

Our purpose now is, given an unprovable sequent, to find a model of it.
A signed judgment is an expression of the form +J or −J , where J is a judgment. On

the semantic side, we understand +J as meaning “J is true”, and −J as “J is false”. On the
syntactic side, we see a sequent J1, · · · , Jm → J ′1, · · · , J ′n as a collection of signed judgments
+J1, · · · ,+Jm,−J ′1, · · · ,−J ′n. We extend ≈ to signed judgments in the obvious way.

Definition 6.1. A theory T is a set of signed judgments.
T is inconsistent if and only if there are finitely many signed judgments +J1, . . . , +Jm,

−J ′1, . . . , −J ′n in T such that the sequent J1, · · · , Jm → J ′1, · · · , J ′n is derivable in the system
of Figure 5, using all rules except the cut rule (Cut). T is consistent otherwise.
T is a Hintikka theory if and only if:

1. T is consistent;

2. if J ∈ T and J ≈ J ′ then J ′ ∈ T ;

3. if +σ . F ⊃ G is in T , then −σ . F or +σ . G is in T ;

4. if −σ . F ⊃ G is in T , then both +σ . F and −σ . G are in T ;

5. if +σ . ∀xτ .F is in T , then +σ . F [M/xτ] is in T for every λ-term M : τ ;

6. if −σ . ∀xτ .F is in T , then −σ . F [hσ/xτ] is in T for some variable hσ→τ that does not
occur in σ;

7. if +σ .∇xτ .F is in T , then +σ, x : τ . F is in T ;

8. if −σ .∇xτ .F is in T , then −σ, x : τ . F is in T .

Fact 6.2. A consistent theory cannot contain both +J and −J for the same judgment J ;
otherwise it would be inconsistent, using rule (Ax). It cannot contain a judgment of the form
+σ .⊥ either (rule (⊥L)).

Lemma 6.3. Let T be a consistent theory.

1. For every signed judgment of the form +σ . F ⊃ G in T , T ∪ {−σ . F} or T ∪ {+σ . G}
is consistent;

2. for every signed judgment of the form −σ.F ⊃ G in T , T ∪{+σ.F,−σ.G} is consistent;

3. for every signed judgment of the form +σ.∀xτ .F in T , for every M : τ , T ∪{+σ.F [M/xτ]}
is consistent;

4. for every signed judgment of the form −σ . ∀xτ .F in T , for every variable h : σ → τ that
is not free in T and does not occur in σ, T ∪ {−σ . F [hσ/xτ]} is consistent;

5. for every signed judgment of the form +σ .∇xτ .F in T , T ∪ {+σ, x : τ . F} is consistent;

6. for every signed judgment of the form −σ .∇xτ .F in T , T ∪ {−σ, x : τ . F} is consistent;

7. for every signed judgment +J in T , for every J ′ ≈ J , T ∪ {+J ′} is consistent;

8. for every signed judgment −J in T , for every J ′ ≈ J , T ∪ {−J ′} is consistent.

Proof. 1. Assume that both T ∪{−σ.F} and T ∪{+σ.G} are inconsistent. There are cut-free
derivations of sequent of the form Γ→ (σ . F)︸ ︷︷ ︸

m times

,∆ and Γ′, (σ . G)︸ ︷︷ ︸
n times

→ ∆′, where Γ and Γ′ consist

of judgments that appear with the + sign in T , ∆ and ∆′ consist of judgments that appear with
the − sign in T , and m,n ∈ N. Necessarily, m 6= 0 since otherwise T would be inconsistent.
Using the contraction rule (cR), we may assume that m = 1. Similarly, and using (cL), we may
assume that n = 1. Using the weakening rules (wL) and (wR), we may assume that Γ = Γ′ and
∆ = ∆′. It now suffices to apply (∀L) to obtain a cut-free derivation of Γ, (σ . F ⊃ G) → ∆.
However, +σ . F ⊃ G is in T , so that contradicts the consistency of T .

2–8. Similar analysis, using rule (⊃ R), (∀L), (∀R), (∇L), (∇R), (≈ L) or (≈ R) instead.

Lemma 6.4. Every finite consistent theory is contained in some Hintikka theory.

Proof. Since there are only countably many variables and countably many relation symbols,
there are only countably many λ-terms (up to βη-conversion), and countably many signed
judgments. Call a task either: a signed judgment ± J , where J is not of the form +σ . ∀xτ .F ;
or a pair (+σ . ∀xτ .F,M) where M : τ ; or a pair (+J,+J ′) or (−J,−J ′) with J ≈ J ′. Fix an
enumeration of all tasks, in such a way that every task occurs infinitely often on the list.

Let T0 be a finite consistent theory. We define an increasing sequence of finite consistent
theories Tn, n ∈ N, starting with T0. Given that Tn has been built, we build Tn+1 by considering
the nth task Θn on the enumeration.

If Θn is of the form +σ . F ⊃ G, and is in Tn, then by Lemma 6.3, item 1, Tn ∪ {−σ . F}
or Tn ∪ {+σ . G} is consistent: in the first case, let Tn+1 = Tn ∪ {−σ . F}, otherwise let
Tn+1 = Tn ∪ {+σ . G}. If Θn = +σ . F ⊃ G is not in Tn, then Tn+1 = Tn.

If Θn is of the form −σ . F ⊃ G and is in Tn, then we let Tn+1 = Tn ∪ {+σ . F,−σ . G},
using Lemma 6.3, item 2. And if Θn = −σ . F ⊃ G is not in Tn, then Tn+1 = Tn.

We proceed similarly if Θn is of the form ±σ .∇xτ .F , using item 5 or 6 of Lemma 6.3.
If Θn is of the form (+σ . ∀xτ .F,M) where +σ . ∀xτ .F is in T , and Mn is of type τ , then

we let Tn+1 = Tn ∪{+σ .F [Mn/xτ]}, using Lemma 6.3, item 3. If +σ .∀xτ .F is not in T , then
we let Tn+1 = Tn.

If Θn is of the form −σ . ∀xτ .F and is in Tn, then there is a variable h of type σ → τ
that is not free in Tn since Tn is finite. Relying on Lemma 6.3, item 4, we define Tn+1 as
Tn ∪ {−σ . F [hσ/xτ]}. If Θn = −σ . ∀xτ .F is not in Tn, then Tn+1 = Tn.

Finally, if Θn is of the form (+J,+J ′) with J ≈ J ′ (and similarly if it is of the form
(−J,−J ′)), either +J ∈ Tn and we let Tn+1 = Tn ∪ {+J ′}, relying on Lemma 6.3, items 7
and 8, or +J 6∈ Tn and we let Tn+1 = Tn.

Define T∞ as
⋃
n∈N Tn. T∞ is a Hintikka theory, as one checks easily.

Now consider the term universe T of Section 4.2. Recall that it only makes sense provided
there is a unique base type ι. For every local signature σ = x1 : τ1, x2 : τ2, · · · , xn : τn (of

length n), let θσ be the substitution [new
T Jτ1K
1 /x1,new

T Jτ2K
2 /x2, · · · ,new

T JτnK
n /xn]. This is a

substitution at level n.

Lemma 6.5. Let T be a Hintikka theory, and assume there is a unique base type ι.
Define T JP Kn, for each relation symbol P , of arity τ1, τ2, · · · , τk, as the set of k-tuples
(M1θσ,M2θσ, · · · ,Mkθσ) such that +σ . P (M1,M2, · · · ,Mk) ∈ T for some local signature σ of
length n. This defines a Henkin structure such that:

1. for every signed judgment +J ∈ T , T ; ε |=0 J ;

2. for every signed judgment −J ∈ T , T ; ε 6|=0 J .

where ε is the identity substitution (at level 0).

Proof. First look at the case where J = σ . P (M1,M2, · · · ,Mk), where σ is of length
n. If +J ∈ T then by definition (M1θσ,M2θσ, · · · ,Mkθσ) is in T JP Kn. By Lemma 4.9,
(T JMK1θσ, T JMK2θσ, · · · , T JMKkθσ) is in T JP Kn, so T ; θσ |=n P (M1,M2, · · · ,Mk). In
other words, T ; ε |=0 σ . P (M1,M2, · · · ,Mk). If −J ∈ T , then +J in not not T
(Fact 6.2), so (M1θσ,M2θσ, · · · ,Mkθσ) is not in T JP Kn. By a similar argument, T ; ε 6|=0

σ . P (M1,M2, · · · ,Mk).
Now assume J = σ . ⊥. Since every Hintikka theory is consistent, and using Fact 6.2, +J

is not in T . If −J is in T , T ; ε 6|=0 σ .⊥.
The case where J = σ .F ⊃ G presents no difficulty. If +J ∈ T , then −σ .F or +σ .G is in

T , hence by induction hypothesis T ; ε 6|=0 σ.F or T ; ε |=0 σ.G, meaning that T ; ε |=0 σ.F ⊃ G.
If −J ∈ T , then +σ . F and −σ . G are in T , so by induction hypothesis T ; ε |=0 σ . F and
T ; ε 6|=0 σ . G, meaning that T ; ε 6|=0 σ . F ⊃ G.

Now assume J = ∀xτ .F . If +J ∈ T , then +σ .F [M/xτ] is in T for every λ-term M : τ . By
induction hypothesis, this implies that T ; ε |=0 σ . F [M/xτ] for every λ-term M : τ . We wish
to show that T ; ε |=0 σ .∀xτ .F . Using Lemma 5.6, item 3, we know that the latter is equivalent
to T ; ε |=0 (.∀hσ→τ .∇σ.F [hσ/xτ]). Hence we must show that for every N ∈ T Jσ → τK0 (i.e.,
for every ordinary λ-term N : σ → τ , by Remark 4.6), T ; ε[h 7→ N] |=0 ∇σ.F [hσ/xτ]. Using

Lemma 5.5, and since T JNKε = N̂(ε) = N (Lemma 4.9), this boils down to showing that
T ; ε |=n (∇σ.F [hσ/xτ])[h 7→ N], that is, T ; ε |=n σ .F [Nσ/xτ] for every N : σ → τ that has no
free variable in the list σ. Since T ; ε |=0 σ . F [M/xτ] for every λ-term M : τ , this is clear.

If −J ∈ T for J = ∀xτ .F , then −σ . F [hσ/xτ] is in T for some variable h : σ → τ . By
induction hypothesis, T ; ε 6|=0 σ .F [hσ/xτ]. We wish to show that T ; ε 6|=0 σ .∀xτ .F , and using
the same machinery as above, this is equivalent to showing that T ; ε 6|=n σ .F [Nσ/xτ] for some
N : σ → τ that has no free variable in the list σ: we simply take N = h.

The cases when J = ∇xτ .F is easy.

Call any Henkin structure H whose underlying Henkin universe is the term universe T a
Herbrand structure.

Proposition 6.6. Assume there is a unique base type ι. Let Γ → ∆ be a sequent such that
H; ε |=0 Γ → ∆ for every Herbrand structure H. Then Γ → ∆ is derivable using the rules of
FOλ∇, without (Cut).

Proof. Assume Γ→ ∆ is not derivable. Let T0 be the theory containing the signed judgments
+J , J ∈ Γ and −J , J ∈ ∆. If T0 were inconsistent, then using the contraction and weakening
rules, we would obtain a derivation of Γ→ ∆. Therefore T0 is consistent. By Lemma 6.4, T0 is
contained in some Hintikka theory T . Using the Henkin structure H defined in Lemma 6.5—this
is a Herbrand structure—we obtain that H; ε 6|=0 Γ→ ∆, a contradiction.

As a corollary, we obtain:

Theorem 6.7 (Henkin Completeness). Assume there is a unique base type ι. The Henkin
semantics is complete for FOλ∇: every valid sequent is derivable in FOλ∇, and even by a
cut-free proof.

7 Incompleteness for Standard Structures

Standard structures are incomplete for FOλ∇. This has nothing to do with the nabla quantifier,
and is only due to the higher-order nature of the terms that FOλ∇ is based on, and to the fact
that ∇∇∇ validates the weak axiom of choice (Corollary 3.6).

Consider the formula:

(∀xϕ.∃yτ .F) ⊃ (∃hϕ→τ .∀xϕ.F [hx/y]) (AC)

where ∃zψ.G abbreviates ¬∀zψ.¬G, and ¬G abbreviates G ⊃ ⊥. Explicitly:

S; ρ |=n ∃zψ.F iff (for some e ∈ SJψKn, S; ρ[z 7→ e] |=n F).

Lemma 7.1. (AC) holds in every standard structure S.

Proof. Assume that S; ρ |=n ∀xϕ.∃yτ .F , in other words, for every d ∈ SJϕKn, there is an
e ∈ SJτKn such that S; ρ[x 7→ d, y 7→ e] |=n F . Let R ⊆ SJϕKn × SJτKn be the set of all
pairs (d, e) such that S; ρ[x 7→ d, y 7→ e] |=n F . Corollary 3.6 applies, so there is an element
f = (fm)m≥n of SJϕ→ τKn such that for every d ∈ SJϕKn, S; ρ[x 7→ d, y 7→ fn(d)] |=n F . In
other words, S; ρ |=n ∃hϕ→τ .∀xτ .F [hx/y].

However, (AC) is not provable in FOλ∇. The following states it for the instance of (AC)
where F = P (x, y), and ϕ = τ = ι.

Lemma 7.2. The sequent → .(∀xι.∃ι.P (x, y)) ⊃ (∃hι→ι.∀xι.P (x, hx)) is not derivable using
the rules of Figure 5.

Proof. We build a Herbrand structure by a diagonal argument. For each n ∈ N, since T Jι→ ιKn
is countably infinite, we can enumerate its elements as Mj , j ∈ N. Enumerate the elements of
T JιKn as Nj , j ∈ N, as well. Define T JP Kn ⊆ T JιKn×T JιKn to be a set of pairs (Nj , N

′
j), j ∈ N,

where for each j ∈ N, N ′j is chosen so as to be different from MjNj (remembering that all the
terms involved are considered up to βη-conversion). By construction, T ; ε |=0 ∀xι.∃yι.P (x, y),
but T ; ε 6|=0 ∃hι→ι.∀xι.P (x, hx), since the latter would mean that there is an element Mj of
T Jι→ ιK0 such that (Nk,MjNk) would be in T JP K0 for every k ∈ N; and that fails for k = j.
We conclude by using Proposition 5.7.

As a consequence, standard structures are incomplete for FOλ∇.

8 Π1-Completeness

However, we claim that we regain completeness for the fragment consisting of Π1 formulae
(which we define later). This requires some λ-calculus machinery to relate the interpretation
S1JMK of terms M in a specific standard universe S1 and the interpretation T JMK in the term
universe (which we do now).

We start with another standard universe S0, which is defined by specifying:

S0JτK = T JτK (3)

for every base type τ , and letting S0Jϕ→ τK be [S0JϕK → S0JτK] for all arrow types. We shall
define S1 later, by specifying S1JτK as well-chosen variants (Definition 3.3) of S0JτK.

Beware that (3) will fail for non-base types τ : for arrow types, T Jϕ→ τK is a nabla-set of
terms, in particular T Jι→ ιKn is countable for every n; on the contrary, S0Jϕ→ τK = [S0JϕK→
S0JτK], and in particular S0Jι→ ιK0 is uncountable.

Recall the notion of nabla-relation from Proposition 3.5. We define the following Kripke
logical relation.

Definition 8.1. Define the nabla-relations R[τ], for each type τ , between T JτK and S0JτK, by:

1. R[τ]n is equality, for each base type τ and every n ∈ N;

2. for every n ∈ N, for every M ∈ T Jϕ→ τKn, for every f = (fm)m≥n ∈ S0Jϕ→ τKn,
M R[ϕ→ τ]n f if and only if, for every m ≥ n, for all N ∈ T JϕKm and d ∈ S0JϕKm such
that N R[ϕ]m d, MN R[τ]m fm(d).

We check that this indeed defines nabla-relations, by induction on types. In the second
case, if M R[ϕ→ τ]n f was obtained by checking that for every m ≥ n, for all N ∈ T JϕKm
and d ∈ S0JϕKm such that N R[ϕ]m d, MN R[τ]m fm(d), then that is true in particular for

every m ≥ n+ 1. Recalling that old[ϕ→τ]
n (M) = M and oldS0Jϕ→τK

n (f) = (fm)m≥n+1, we obtain

old[ϕ→τ]
n (M) R[ϕ→ τ]n+1 oldS0Jϕ→τK

n (f).
The main result on logical relations is the so-called Basic Lemma, which we now state and

prove, in a nabla-set theoretic variant. The argument is standard.

Lemma 8.2 (Basic Lemma of Logical Relations). For every n ∈ N, for every substitution θ at
level n whose domain dom θ is finite, for every environment ρ at level n, we say that θ R ρ if
and only if for every variable zψ ∈ dom θ, θ(zψ) R[ψ]n ρ(zψ).

For every λ-term M of type τ whose free variables are in dom θ, if θ R ρ then Mθ R[τ]n
S0JMKnρ.

Beware that M is an ordinary λ-term here, not a nominal λ-term.

Proof. By induction on a typing derivation for M . This is clear for variables. If M is an
application M1M2 with M1 : ϕ → τ and M2 : ϕ, then the induction hypothesis tells us
that M1θ R[ϕ→ τ]n f , where f = S0JM1Knρ. It also tells us that M2θ R[ϕ]n S0JM2Knρ.
Using the definition of R[ϕ→ τ]n with m = n, we obtain that M1M2 R[τ]n fn(S0JM2Knρ) =
S0JM1M2Knρ.

If M is a λ-abstraction λxϕ.P of type ϕ → τ , then let f = (fm)m≥n = S0JMKnρ. We
must show that, for every m ≥ n, for all N ∈ [ϕ]m and d ∈ S0JϕKm such that N R[ϕ]m d,
(Mθ)N R[τ]m fm(d).

By α-renaming, we may assume that xϕ is not in dom θ, and not free in any term θ(xψ),
xψ ∈ dom θ. Let θ′ = θ[xϕ 7→ N], and ρ′ = oldEnv

n→m(ρ)[xϕ 7→ d]. We see that for every variable

zψ ∈ dom θ′, θ′(zψ) R[ψ]m ρ′(zψ): this follows from N R[ϕ]m d when zψ = xϕ, and from the
fact that R[ψ] is a nabla-relation in the other cases.

By induction hypothesis, Pθ′ R[τ]m S0JP Kmρ′. We conclude by noting that Pθ′ is equal
(up to βη-conversion) to (Mθ)N , and that S0JP Kmρ′ = fm(d).

Proposition 8.3. There are families of nabla-maps sτ : T JτK→ S0JτK and rτ : S0JτK→ T JτK,
indexed by types τ , such that the following implications hold for all M ∈ T JτKn and d ∈ S0JτKn:

(sτ)n(M) = d ⇒ M R[τ]n d (4)

M R[τ]n d ⇒ (rτ)n(d) = M. (5)

Proof. Those are built by structural induction on τ . For a base type τ , we define both sτ and
rτ as identities. We define sϕ→τ as Λ(s̃ϕ→τ), where s̃ϕ→τ is the following composition:

T Jϕ→ τK× S0JϕK
idTJϕ→τK×rϕ // T Jϕ→ τK× T JϕK

App // T JτK
sτ // S0JτK.

Here App : T Jϕ→ τK × T JϕK → T JτK is the nabla-map defined by letting Appn(M,N) be the
term MN (modulo βη); this is application in the term structure. Using the fact that sτ and
rϕ are nabla-maps by induction hypothesis, sϕ→τ is a nabla-map.

We must show that (4) holds at type ϕ → τ , that is, that for every M ∈ T Jϕ→ τKn
and for f = (sϕ→τ)n(M) ∈ S0Jϕ→ τKn, M R[ϕ→ τ]n f . To show this, let m ≥ n,
and N and d be such that N R[ϕ]m d. We must show that MN R[τ]m fm(d), where

f = (fm)m≥n. Since f = (sϕ→τ)n(M), fm maps d to (s̃ϕ→τ)m(oldT Jϕ→τK
n→m (M), d), namely,

to (sτ)m(App(oldT Jϕ→τK
n→m (M), (rϕ)m(d))) = (sτ)m(M((rϕ)m(d))), where the application of M

to (rϕ)m(d) is syntactic application. Since N R[ϕ]m d, by induction hypothesis on ϕ,
(rϕ)m(d) = N , so fm(d) = (sτ)m(MN). By induction hypothesis on τ , MN R[τ]m fm(d).

In order to build rϕ→τ , we show that, for every f ∈ S0Jϕ→ τKn, there is at most one element
M ∈ T Jϕ→ τKn such that M R[ϕ→ τ]n f . Imagine there are two, M1 and M2. By abuse of
language, consider M1 and M2 as terms, and pick a variable Xϕ that is not free in M1, and not
free in M2. Let d = (sϕ)n(Xϕ). By induction hypothesis, Xϕ R[ϕ]n d, so M1Xϕ R[τ]n fn(d)
and M2Xϕ R[τ]n fn(d). By induction hypothesis again, (rτ)n(fn(d)) is then equal to both
M1Xϕ and to M2Xϕ (up to βη-conversion). Therefore λXϕ.M1Xϕ = λXϕ.M2Xϕ, and by
η-conversion, M1 = M2.

This would lead us to define (rϕ→τ)n(f) as the unique M ∈ T Jϕ→ τKn such that
M R[ϕ→ τ]n f if such an M exists. That would not define a nabla-map. Instead, we
define (rϕ→τ)n(f) as follows. If there is an m ≥ n and an M ∈ T Jϕ→ τKn such that

M R[ϕ→ τ]m oldS0Jϕ→τK
n→m (f), then we let (rϕ→τ)n(f) be this M . (To show that this makes

sense, we ought to write oldT Jϕ→τK
n→m (M) instead of M on the left of R[ϕ→ τ]m, but of course

oldT Jϕ→τK
n→m (M) = M .) Otherwise, we let (rϕ→τ)n(f) be some fixed term of type ϕ → τ , inde-

pendent of n, say a variable zϕ→τ .
This is well-defined: if there are two natural numbers m1,m2 ≥ n and two elements M1,

M2 in T Jϕ→ τKn such that M1 R[ϕ→ τ]m1
oldS0Jϕ→τK

n→m1
(f) and M2 R[ϕ→ τ]m2

oldS0Jϕ→τK
n→m2

(f),

then we would have M1 R[ϕ→ τ]m oldS0Jϕ→τK
n→m (f) and M2 R[ϕ→ τ]m oldS0Jϕ→τK

n→m (f) where
m = max(m1,m2), using the fact that R[ϕ → τ] is a nabla-relation. We have seen that this
implies M1 = M2 (up to βη).

By construction, (5) is satisfied at type ϕ → τ ; in other words, M R[ϕ→ τ]n f implies
(rϕ→τ)n(f) = M . This is by definition, taking m = n. It remains to check that rϕ→τ is a nabla-
map. Since oldn works as the identity map on syntactic nabla-sets, that amounts to checking

that (rϕ→τ)n(f) = (rϕ→τ)n+1(oldS0Jϕ→τK
n (f)). If there is an m ≥ n and an M ∈ T Jϕ→ τKn

such that M R[ϕ→ τ]m oldS0Jϕ→τK
n→m (f), then (rϕ→τ)n(f) = M . In that case, using the fact

that R[ϕ → τ] is a nabla-map, M R[ϕ→ τ]m+1 old
S0Jϕ→τK
n→m+1 (f) = old

S0Jϕ→τK
n+1→m+1(oldS0Jϕ→τK

n (f)),

so (rϕ→τ)n+1(oldS0Jϕ→τK
n (f)) = M . In case there is no such m ≥ n and no such M , then

(rϕ→τ)n(f) and (rϕ→τ)n+1(oldS0Jϕ→τK
n (f)) are both equal to zϕ→τ .

Remark 8.4. It would be tempting to produce a different proof of Proposition 8.3 by giving an
explicit formula for rϕ→τ . The following seems to work—but does not:

(rϕ→τ)n(f) = λXϕ.(rτ)n(fn((sϕ)n(Xϕ))) (6)

for every f = (fm)m≥n ∈ S0Jϕ→ τKn. One can check that this defines a nabla-map. If you
try to prove (5) at type ϕ → τ with that formula, you will obtain that (rϕ→τ)n(d) is equal to
λXϕ.MXϕ. That is only η-convertible to M provided Xϕ is not free in M , and α-renaming Xϕ

into a fresh variable should do the trick. . . but (6) is not invariant under α-renaming! If you
pick a different variable Xϕ, you will in general get a different term. This is why we defined
rϕ→τ in a roundabout way. A similar difficulty occurs in the classical proof [7] of a similar
result by Harvey Friedman [2].

The paper we have just cited by H. Friedman shows the following. Define an interpretation
of simply-typed λ-terms up to βη-conversion in Set by defining a set JτK for each basic type τ ,
and letting Jϕ→ τK be the set of all functions from JϕK to JτK. Interpret λ-terms in the obvious
way. A λ-term is closed if and only if it has no free variable. If M and N are βη-equivalent
closed λ-terms, then JMK = JNK, and Friedman’s result states that there is a way of fixing JτK
for each basic type τ so that the converse implication holds.

As a parenthesis, a similar result holds in ∇∇∇, using our notion of interpretation of λ-terms,
as we now claim. For a closed term M , and a given nabla-universe S, SJMKnρ does not depend
on the environment ρ, and we write SJMKn for SJMKnρ in that case. This allows us to state:

Corollary 8.5. The semantics of λ-terms is equationally complete: there is a nabla-universe
S0 such that the following are equivalent, for any two closed λ-terms M , N of the same type τ :

1. M and N are βη-convertible;

2. S0JMK0 = S0JNK0.

Proof. 1 ⇒ 2 is obvious. For the converse implication, assume 2. Let d = S0JMK0 = S0JNK0.
By the Basic Lemma 8.2, used with n = 0 and the empty substitution θ, M R[τ]0 d and
N R[τ]0 d. Apply Proposition 8.3 to obtain that M = (rτ)0(d) and N = (rτ)0(d) (up to
βη-conversion), so M = N .

This ends our parenthesis.

Definition 8.6. Let S1 be the standard universe defined so that S1JτK is the variant of S0JτK
where new

S1JτK
n+1 = (sτ)n+1(new

T JτK
n+1) for every n ∈ N and every type τ .

It is easy to see that S1Jϕ→ τK is a variant of [S1JϕK→ S1JτK] for all types ϕ and τ . What is

perhaps less obvious is that new
S1JτK
n+1 is indeed outside Im oldS1JτK

n , as required in the definition

of a nabla-set. For that, note that (rτ)n+1(new
S1JτK
n+1) = (rτ ◦ sτ)n+1(new

T JτK
n+1) = new

T JτK
n+1 , since

rτ ◦ sτ = idTτ is a consequence of Proposition 8.3. If new
S1JτK
n+1 was equal to oldS1JτK

n (d) for some

d, then (rτ)n+1(new
S1JτK
n+1) would be equal to oldT JτK

n ((rτ)n(d)), since rτ is a nabla-map, and

that would entail new
T JτK
n+1 = oldT JτK

n ((rτ)n(d)), a contradiction.

Definition 8.7. A ∆0 formula of FOλ∇ is a formula whose universal and existential quantifiers
are first-order, i.e., of the form ∀xι or ∃xι, where ι is a base type. (There is no restriction on
the nabla quantifier.)

A Π1 formula is a formula of the form ∀x1 τ1 , · · · , xp τp .G, where G is a ∆0 formula.

Proposition 8.8. Let H be a Herbrand structure. Define a standard structure SH1 on the
standard universe S1 by letting:

SH1 JP Kn = {(d1, d2, · · · , dk) ∈
k∏
i=1

S1JτiK | (rτ1(d1), rτ2(d2), · · · , rτk(dk)) ∈ HJP Kn}.

for every relation symbol P of arity τ1, τ2, · · · , τk and every n ∈ N.
For every n ∈ N, for every substitution θ at level n, for every environment ρ such that θ R ρ:

1. for every ∆0 formula G whose free variables are included in dom θ, SH1 ; ρ |=n G if and
only if H; θ |=n G;

2. for every Π1-formula F whose free variables are included in dom θ, if SH1 ; ρ |=n F then
H; θ |=n F .

Proof. 1. By structural induction on G.
If G is an atomic formula P (M1,M2, · · · ,Mk), where each Mi has type τi, then

SH1 ; ρ |=n G if and only if (S1JM1Knρ, S1JM2Knρ, · · · ,S1JMkKnρ) is in SH1 JP Kn. By the Ba-
sic Lemma (Lemma 8.2), Miθ R[τi]n S1JMKiρ, so, using Proposition 8.3 and specifically (5),
rτi(S1JMKiρ) = Miθ. Using the definition of SH1 JP Kn, we obtain that SH1 ; ρ |=n G if and only if
(M1θ,M2θ, · · · ,Mkθ) ∈ HJP Kn. The latter is equivalent to (T JM1Knθ, T JM2Knθ, · · · , T JMkKnθ) ∈
HJP Kn (Fact 4.9), hence to H; θ |=n G.

If G is a first-order quantified formula ∀xι.G′, then SH1 ; ρ |=n G if and only if SH1 ; ρ[x 7→
d] |=n G′ for every d ∈ S1JιK. Since S1JιK = HJιK, and R[ι]n is the identity relation, θ[x 7→
d] R ρ[x 7→ d] for every d ∈ S1JιK. Hence SH1 ; ρ |=n G if and only H; θ[x 7→ d] |=n G

′ for every
d ∈ S1JιK = HJιK, if and only if H; θ |=n G.

The other cases follow by an easy induction, except perhaps when G is of the form ∇xτ .G′.
Then SH1 ; ρ |=n G if and only if SH1 ; oldEnv(ρ)[x 7→ new

S1JτK
n+1] |=n+1 G

′. Let ρ′ = oldEnv(ρ)[x 7→
new

S1JτK
n+1], θ′ = θ[x 7→ new

T JτK
n+1]. Since we chose new

S1JτK
n+1 = (sτ)n+1(new

T JτK
n+1), Proposition 8.3

(and specifically (4)) implies that new
T JτK
n+1 R[τ]n+1 new

S1JτK
n+1 . Hence θ′ R ρ′, and we can

apply the induction hypothesis: SH1 ; ρ′ |=n+1 G
′ if and only if H; θ′ |=n+1 G

′, and therefore
SH1 ; ρ |=n G if and only if H; θ |= G.

2. Let now F be a Π1 formula ∀x1 τ1 , · · · , xp τp .G, where G is a ∆0 formula. If SH1 ; ρ |=n F ,
then SH1 ; ρ[x1 7→ d1, · · · , xp 7→ dp] |=n G for all values d1 ∈ S1Jτ1Kn, . . . , dp ∈ S1JτpKn. This is
in particular true if we pick d1 = (sτ1)n(N1), . . . , dp = (sτp)n(Np) for arbitrary elements N1 ∈
T Jτ1Kn, . . . , Np ∈ T JτpKn. Let ρ′ = ρ[x1 7→ d1, · · · , xp 7→ dp], and θ′ = θ[x1 7→ N1, · · · , xp 7→
Np]. By Proposition 8.3, and specifically (4), θ′ R ρ′. By part 1 of the Proposition, we conclude
that H; θ[x1 7→ N1, · · · , xp 7→ Np] |=n G for all N1 ∈ T Jτ1Kn, . . . , Np ∈ T JτpKn, that is, that
H; θ |=n F .

Write S |=0 F if S; ρ |=0 F , where F is a closed formula; in that case, the environment ρ is
irrelevant.

Proposition 8.9 (Π1-Completeness). Assume there is a unique base type ι. Let F be a closed
Π1 formula. If S |=0 F for every standard structure S, then → .F is derivable in FOλ∇, and
even by a cut-free proof.

Proof. Let ρ be any environment at level 0: then ε R ρ. Hence we can use Proposition 8.8,
item 2, and conclude that H; ε |=n F . By Theorem 6.7,→ .F has a cut-free proof in FOλ∇.

Remark 8.10. Proposition 8.9 in particular implies that FOλ∇ is complete for all first-order
formulae F in standard structures. This is because every first-order formula is a ∆0 formula,
hence a Π1-formula.

9 Open Questions

If FOλ∇ plus (AC) complete for standard models? What would happen if there were more than
one base type ι? Can we extend the present results to the logic of Abella, which includes such
proof principles as the equivalence of ∇x.F and F when x is not free in F , and of ∇x.∇y.F (x, y)
and ∇y.∇x.F (x, y)? Does all this extend to intuitionistic versions of FOλ∇?

10 Conclusion

Happy 60th, Dale!

References

[1] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Programming.
Birkhäuser, Boston, MA, 1993.

[2] Harvey Friedman. Equality between functionals. In Rohit Parikh, editor, Logic Colloquium 1972-73,
volume 453 of Lecture Notes in Mathematics, pages 22–37. Springer-Verlag, 1975.

[3] Murdoch Jamie Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving binders.
In 14th Annual Symposium on Logic in Computer Science, pages 214–224. IEEE Computer Society
Press, Washington, 1999.

[4] Andrew Gacek. The Abella interactive theorem prover (system description). In A. Armando,
P. Baumgartner, and G. Dowek, editors, Proceedings of IJCAR 2008, volume 5195 of Lecture Notes
in Artificial Intelligence, pages 154–161. Springer, August 2008.

[5] Dale Miller. The pi-calculus as a theory in linear logic: Preliminary results. Technical Report
MS-CIS-92-48, University of Pennsylvania (CIS), October 1992.

[6] Dale Miller and Alwen Tiu. A proof theory for generic judgments. Transactions on Computational
Logic, 6(4):749–783, 2005.

[7] John C. Mitchell. Foundations for Programming Languages. MIT Press, 1985.

[8] Ulrich Schöpp. Modelling generic judgments. Electronic Notes in Theoretical Computer Science,
174(5):19–35, 2007. Proceedings of the First International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP 2006).

	Prolog(ue)
	Introduction
	Nabla-Sets
	Standard and Henkin Semantics for -Terms
	The Standard Universe
	The Term Universe

	A Semantics for FO, and Soundness
	Henkin Completeness
	Incompleteness for Standard Structures
	1-Completeness
	Open Questions
	Conclusion

