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Abstract
In the paper “Structural Cut Elimination”, Pfenning gives a proof of the admissibility

of cut for intuitionistic and classical logic. The proof is remarkable in that it does not
rely on difficult termination metrics, but rather a nested lexicographical induction on the
structure of formulas and derivations. A crucial requirement for this proof to go through
is that contraction is not an inference rule of the system. Because of this, it is necessary
to change the inference rules so that contraction becomes an admissible rule rather than
an inference rule. This change also requires that weakening is admissible, hence it is not
directly applicable to logics in which only contraction is admissible (e.g. relevance logic).

We present a sequent calculus which admits a unified structural cut elimination proof
that encompasses Intuitionistic MALL and its affine, strict and intuitionistic extensions.
A nice feature of the calculus is that, for instance, moving from linear to strict logic is as
simple as allowing the presence of a rule corresponding to contraction.

Finally, based on the insights we obtain from this design, we present a strongly focused
sequent calculus for strict logic (i.e. Intuitionistic MALL with free contraction).

1 Introduction

The most important theorem about any sequent calculus is that of cut elimination. This
theorem usually ensures that the sequent calculus is consistent and internally sound. Addi-
tionally, the admissibility of the cut rule usually implies a host of useful inversion properties.

There are many different proofs of the admissibility of cut, but among these one of
the most straightforward and elegant is the structural cut admissibility proof due to Pfen-
ning [Pfe00]. For instance, given the following rules — which correspond to the implica-
tional fragment of Intuitionistic MALL [Gir87],

init
a =⇒ a

∆ =⇒ A ∆′, B =⇒ C
( L

∆,∆′, A ( B =⇒ C

∆, A =⇒ B
( R

∆ =⇒ A ( B

the cut rule is
∆ =⇒ A ∆′, A =⇒ C

cut
∆,∆′ =⇒ C

and the statement of cut admissibility is

Theorem 1. Given derivations D :: ∆ =⇒ A and E :: ∆′, A =⇒ C there exists a derivation
F :: ∆,∆′ =⇒ C.

Pfenning’s proof of this theorem proceeds by a lexicographic induction on the structure
of the cut formula A and the two input derivations D and E . To see how this induction
ordering naturally arises, we will consider two cases:

• First, we consider a case where the cut formula is not the principal formula of the
last inference rule in E :

D

∆ =⇒ A

E

∆′, A,B =⇒ C
( R

∆′, A =⇒ B ( C
cut

∆,∆′ =⇒ B ( C
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Here, the thick rule for cut is a reminder that this is the rule we are going to prove
admissible. In particular, this means that both D and E are assumed to be cut-free
derivations.

In this case, we argue as follows:

∆,∆′, B =⇒ C by cut on A,D, E .
∆,∆′ =⇒ B ( C by ( R.

Thus, in this case we appeal to the induction hypothesis on a subderivation, but keep-
ing the cut formula the same. Note that although we are appealing to the induction
hypothesis, we will write it as an appeal to the rule we are proving admissible.

• In the principal case:

D

∆, A =⇒ B
( R

∆ =⇒ A ( B

E1

∆1 =⇒ A

E2

∆2, B =⇒ C
( L

∆1,∆2, A ( B =⇒ C
cut

∆,∆1,∆2 =⇒ C

we reason as follows:

D′ :: ∆,∆1 =⇒ B by cut on A, E1,D.
∆,∆1,∆2 =⇒ C by cut on B,D′, E2.

Here, although the derivation D′ may be much larger than the two input derivations,
the second use of the cut rule is justified by the fact that the cut formula itself got
strictly smaller.

If we add the contraction rule

∆, A,A =⇒ C
contract

∆, A =⇒ C

to the above system, the above proof does not go through. When cutting against an
contraction:

D

∆ =⇒ A

E

∆′, A,A =⇒ C
contract

∆, A =⇒ C
cut

∆,∆′ =⇒ C

we would like to reason as follows:

E ′ :: ∆,∆′, A =⇒ C by cut on A,D, E .
∆,∆,∆′ =⇒ C by cut on A,D, E ′.(*)
∆,∆′ =⇒ C by contract (repeated).

But the line marked (*) is not a smaller cut according to our induction ordering.
For intuitionistic logic, Pfenning circumvents this problem by baking the rule of con-

traction into every single rule of inference in the system. Thus, the left implication rule
would look as follows:

∆, A ⊃ B =⇒ A ∆, A ⊃ B,B =⇒ C
⊃L

∆, A ⊃ B =⇒ C

With the above rule, contraction becomes an admissible rule of inference. Note, how-
ever, that the above rule requires weakening to be present in the system as well. Because of
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this, the above solution cannot directly be applied to logics that do not admit weakening,
unless they also forego contraction, as in linear logic.

We will present three different but related calculi in this paper, all having the desired
structural cut admissibility property. The first one will have a straightforward motivation,
but fails to be sound for strict logic. With a small tweak, we get the second calculus which
is sound and complete for the four substructural fragments of intuitionistic logic that we
study, but which has less desirable inversion properties where the additive connectives are
concerned. The final system is a strongly focused [And92] calculus for strict logic.

The reason for keeping the “unsound” calculus around is twofold. First of all, the
unsoundness is subtle and easy to miss, and hence it is useful to draw attention to exactly
where it appears. Secondly, the calculus itself is internally sound and complete (in the
sense of having the identity expansion and cut admissibility properties), and hence it is
by most standards a well-defined calculus for some logic, although it is not entirely clear
what logic that is.

2 Cut Elimination

From a proof search perspective, the rule of contraction is problematic, as it requires the
search procedure to guess in advance whether a formula will be required several times or
not. When weakening is allowed, this is not a problem as one can simply make extra copies
whenever assumptions are consumed or the context is split. Any superfluous copies can
then be discarded by means of weakening.

Rather than require a proof search procedure to be prescient, we do the obvious thing:
whenever an assumption is used, it is not forgotten, but merely put aside so that it may
potentially be used again further up in the proof. With this in mind, it makes sense to
divide the assumptions into two contexts corresponding to whether they have already been
used or not. Thus, the judgments of our system have two contexts on the left hand side of
the sequent arrow. The difference between these contexts can be summed up as follows:

• The context ∆ is a multiset of assumptions that must be used in the derivation of
the sequent.

• The context Γ is a multiset of assumptions that may be used in the derivation of the
sequent.

The sequent arrows themselves have an annotation to show which structural rules are
present in the derivation of the sequent in question. These annotations are elements of the
free semilattice over the set {w, c}, in other words they must be one of either ·, w, c, or
w + c. We use + for the join operation on this structure.

The syntax of formulas is standard:

A,B ::= a | A&B | A⊗B | A ( B | A⊕B | > | 0 | 1

The inference rules can be seen in Figure 1.
To see how these inference rules arise, consider the behaviour of the ( L rule in strict

logic (i.e. with contraction but not weakening)1. A first attempt at a suitable ( L rule
would be the following

Γ;∆1
x−→ A Γ;∆2, B

y−→ C
( L

Γ;∆1,∆2, A ( B
x+y−→ C

1One could also refer to this logic as either relevance logic or relevant logic, but as these names refer to a
host of related logics, we prefer to use the word strict for the logic arising from disallowing the structural rule
of weakening.
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init
Γ; a

x−→ a
>R

Γ;∆
x−→ >

0L
Γ;∆,0

x−→ C
1R

Γ; · x−→ 1

Γ, A1 &A2;∆, Ai
x−→ C

&Li
Γ;∆, A1 &A2

x−→ C

Γ;∆
x−→ A Γ;∆

y−→ B
&R

Γ;∆
x+y−→ A&B

Γ,1;∆
x−→ C

1L
Γ;∆,1

x−→ C

Γ, A⊗B;∆, A,B
x−→ C

⊗L
Γ;∆, A⊗B

x−→ C

Γ,∆2;∆1
x−→ A Γ,∆1;∆2

y−→ B
⊗R

Γ;∆1,∆2
x+y−→ A⊗B

Γ, A⊕B;∆, A
x−→ C Γ, A⊕B;∆, B

y−→ C
⊕L

Γ;∆, A⊕B
x+y−→ C

Γ;∆
x−→ Ai

⊕Ri
Γ;∆

x−→ A1 ⊕A2

Γ,∆2, A ( B;∆1
x−→ A Γ,∆1, A ( B;∆2, B

y−→ C
( L

Γ;∆1,∆2, A ( B
x+y−→ C

Γ;∆, A
x−→ B

( R
Γ;∆

x−→ A ( B

Γ;∆, A
x−→ C

promote
Γ, A;∆

x+c−→ C

Γ, A;∆
x−→ C

demote
Γ;∆, A

x+w−→ C

Figure 1: Sequent calculus for IMALL with promote and demote rules.

This rule is too strict, however, as we might want to use the assumption A ( B again. To
enable this, we copy this formula into both of the “may use” contexts:

Γ, A ( B;∆1
x−→ A Γ, A ( B;∆2, B

y−→ C
( L

Γ;∆1,∆2, A ( B
x+y−→ C

This is better, but still too restrictive; if both subderivations want to use a hypothesis in
∆1, say, the proof can’t go through. To fix this, we additionally give each of the premisses
a copy of the “must use” context of the other premiss. Thus, the final rule looks as follows:

Γ,∆2, A ( B;∆1
x−→ A Γ,∆1, A ( B;∆2, B

y−→ C
( L

Γ;∆1,∆2, A ( B
x+y−→ C

Transferring hypotheses between the “must use” and “may use” contexts is done using
the structural rules for promotion and demotion. The promote rule moves a hypothesis
from the “may use” context to the “must use” context, thus corresponding to a “delayed”
application of contraction. Conversely, the demote rule moves a hypothesis from the “must
use” context to the “may use” context, corresponding to the action of weakening away the
hypothesis in question. Thus, depending on the annotation of the sequent, we get the
following four systems:

• If the label is ·, then so is the label on all sequents in the derivation. Thus, the only
way to get rid of assumptions is to decompose them using the corresponding inference
rule, and there is no way to reintroduce assumptions from the “may use” context into
the “must use” context. The resulting system is thus simply IMALL.
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• If the label is w, we can apply the demote rule freely, thus allowing us to discard
assumptions at will. This corresponds to an affine extension of IMALL.

• If the label is c, we can move assumptions back into the “must use” context, thus
corresponding to using an assumption more than once. We are not able, however, to
discard assumptions — every assumption must be used at least once, corresponding
to a strict extension of IMALL.

• Finally, if the label is w + c, we can move assumptions freely between the two con-
texts. This essentially collapses the two contexts into one, and the resulting system
is equivalent to LJ.

As an example of a derivation in this system, here is a proof of a ( (a ⊗ a) using
contraction:

init
·; a ·−→ a

init
·; a ·−→ a

promote
a; · c−→ a

⊗R
·; a c−→ a⊗ a

( R
·; · c−→ a ( (a⊗ a)

Note that although the context Γ above is not the usual persistent context seen in e.g.
DILL [BP96], it admits weakening nonetheless:

Theorem 2 (Weakening). The following rule is admissible:

Γ;∆
x−→ C

weaken
Γ, A;∆

x−→ C

Furthermore, it is strongly admissible, in the sense that it does not change the shape of
the resulting derivation.

Proof. By structural induction on the derivation of Γ;∆
x−→ C.

Conversely, contraction is also admissible. Because of the dyadic context and the rules
for moving across this context, proving this requires a mutual induction between three
related forms of contraction:

Theorem 3 (Contraction). The following inference rules are admissible

Γ, A,A;∆
x−→ C

ucontract
Γ, A;∆

x−→ C

Γ, A;∆, A
x−→ C

contract
Γ;∆, A

x−→ C

Γ;∆, A,A
x−→ C

pcontract
Γ;∆, A

x+c−→ C

Proof. By structural induction on the given derivations. We will show a few of the more
interesting cases:

• pcontract, principal case for ( L:

D

Γ,∆2, A ( B;∆1, A ( B
x−→ A

E

Γ,∆1, A ( B;∆2, B
y−→ C

( L
Γ;∆1,∆2, A ( B,A ( B

x+y−→ C
pcontract

Γ;∆1,∆2, A ( B
x+y+c−→ C

Γ,∆2;∆1, A ( B
x−→ A by contract on D.

D′ :: Γ,∆2, A ( B;∆1
x+c−→ A by promote.

Γ;∆1,∆2, A ( B
x+y+c−→ C by ( L on D′, E .
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• contract, principal case for promote:

D

Γ;∆, A,A
x−→ C

promote
Γ, A;∆, A

x+c−→ C
contract

Γ;∆, A
x+c−→ C

Γ;∆, A
x+c−→ C by pcontract on D.

With contraction and weakening in place, we can now prove the central cut admissibility
result. Again, because we have two contexts, we must have two cuts corresponding to which
context the cut formula is in. The second cut rule, ucut, is a curious generalisation of the
cut rule for the persistent context one sees in presentations of ILL.

Theorem 4 (Cut admissibility). The following inference rules are admissible

Γ;∆
x−→ A Γ;∆, A

y−→ C
cut

Γ;∆,∆
x+y−→ C

Γ;∆
x−→ A Γ, A;∆

y−→ C
ucut

Γ,∆;∆
x+y−→ C

Proof. By structural induction on the cut formula and the given derivations. Again, we
show some of the more interesting cases:

• Principal cut for (:

D

Γ;∆, A
x−→ B

( R
Γ;∆

x−→ A ( B

E1

Γ,∆2, A ( B;∆1
y−→ A

E2

Γ,∆1, A ( B;∆2, B
z−→ C

( L
Γ;∆1,∆2, A ( B

y+z−→ C
cut

Γ;∆,∆1,∆2
x+y+z−→ C

Let D′ be the entire first premiss of this cut, i.e. the proof of Γ;∆
x−→ A ( B. We

now reason as follows (with implicit appeals to the weakening lemma):

E ′
1 :: Γ,∆2,∆;∆1

x+y−→ A by ucut on A ( B,D′, E1.

E ′
2 :: Γ,∆1,∆;∆2, B

x+z−→ C by ucut on A ( B,D′, E2.

F :: Γ,∆2,∆;∆,∆1
x+y−→ B by cut on A, E ′

1,D.

Γ,∆,∆1,∆2;∆,∆1,∆2
x+y+z−→ C by cut on B,F , E ′

2.

Γ;∆,∆1,∆2
x+y+z−→ C by contract (repeated).

• Cutting against a promotion:

D

Γ;∆
x−→ A

E

Γ;∆′, A
y−→ C

promote
Γ, A;∆′ y+c−→ C

ucut
Γ,∆;∆′ x+y+c−→ C

Γ;∆′,∆
x+y−→ C by cut on A,D, E .

Γ,∆;∆′ x+y+c−→ C by promote (repeated).

Observe that this has exactly the structure we would have liked to see for reducing a cut
against a contraction: the cut is permuted above the structural rule, which may therefore
need to be replaced with several instances of said structural rule. Because the promote
rule does not duplicate any formulas, however, the induction ordering is not violated.

6



Substructural Cut Elimination Taus Brock-Nannestad

init
a

x
=⇒ a

>R
∆

x
=⇒ >

0L
∆,0

x
=⇒ C

1R
· x
=⇒ 1

∆, Ai
x

=⇒ C
&Li

∆, A1 &A2
x

=⇒ C

∆
x

=⇒ A ∆
y

=⇒ B
&R

∆
x+y
=⇒ A&B

∆
x

=⇒ C
1L

∆,1
x

=⇒ C

∆, A,B
x

=⇒ C
⊗L

∆, A⊗B
x

=⇒ C

∆1
x

=⇒ A ∆2
y

=⇒ B
⊗R

∆1,∆2
x+y
=⇒ A⊗B

∆, A
x

=⇒ C ∆, B
y

=⇒ C
⊕L

∆, A⊕B
x+y
=⇒ C

∆
x

=⇒ Ai
⊕Ri

∆
x

=⇒ A1 ⊕A2

∆1
x

=⇒ A ∆2, B
y

=⇒ C
( L

∆1,∆2, A ( B
x+y
=⇒ C

∆, A
x

=⇒ B
( R

∆
x

=⇒ A ( B

∆, A,A
x

=⇒ C
contract

∆, A
x+c
=⇒ C

∆
x

=⇒ C
weaken

∆, A
x+w
=⇒ C

Figure 2: Sequent calculus for IMALL with tracked contraction and weakening.

3 Soundness and Completeness

In this section, we will show that the sequent calculus introduced in the previous section is
complete and (almost) sound with regard to the standard presentation of IMALL and the
structural rules of contraction and weakening. Again, we annotate the sequent arrow to
keep track of which structural rules are used. The inference rules can be seen in Figure 2.

Theorem 5 (Completeness). If ∆
x

=⇒ C then Γ;∆
x−→ C for any Γ.

Proof. By induction over the structure of ∆
x

=⇒ C. In the case of contract:

D

∆, A,A
x

=⇒ C
contract

∆, A
x+c
=⇒ C

(to show)
Γ;∆, A

x+c−→ C

we appeal to the contraction lemma:

Γ;∆, A,A
x−→ C by the induction hypothesis on D.

Γ;∆, A
x+c−→ C by pcontract.

Stating the soundness theorem is, alas, not quite as straightforward. A problem in this
regard is that we need to account for the fact that Γ can be weakened and thus can contain
assumptions that are irrelevant to the given derivation. A more serious issue is that the
calculus is in fact not sound for all fragments. To account for this, we state the theorem
as follows:
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Theorem 6 (Soundness). If Γ;∆
x−→ C, and there are no occurrences of the ⊕L or &R

rules with the sequent annotation c, then Γ?,∆
x

=⇒ C for some Γ? ⊆ Γ. If c � x i.e. there
are no occurrences of the promote rule in the given derivation, then Γ? may be chosen to
be empty.

Proof. To make the proof more intuitive, we will use (−)? to indicate that the given formula
may occur 0 or 1 times. This is extended to contexts in such a way that e.g. (A,B)? is
either (A,B), (A), (B) or (·). When we apply the contraction rule in the following, we will
allow the contraction of A? and A into just A. If A? = A this is just contraction, and if
A? = ·, the contraction rule simply disappears.

Similarly, given Γ?,Γ?, we can always contract this together into Γ? by repeated uses
of the contract rule.

The proof proceeds by induction on the derivation of Γ;∆
x−→ C:

• Case (L:

D1···
Γ,∆2, A1 ( A2;∆1

x−→ A1

D2···
Γ,∆1, A1 ( A2;∆2, A2

y−→ C
( L

Γ;∆1,∆2, A1 ( A2
x+y−→ C

(to show)
Γ?,∆1,∆2, A1 ( A2

x+y
=⇒ C

If c � x+ y then c � x and c � y, and we reason as follows:

D′
1 :: ∆1

x
=⇒ A1 by i.h. on D1.

D′
2 :: ∆2, A2

y
=⇒ C by i.h. on D2.

∆1,∆2, A1 ( A2
x+y
=⇒ C by ( L.

If c ≤ x+ y, then x+ y = x+ y + c and we reason as follows:

D′
1 :: Γ?,∆?

2, (A1 ( A2)
?,∆1

x
=⇒ A1 by i.h. on D1.

D′
2 :: Γ?,∆?

1, (A1 ( A2)
?,∆2, A2

y
=⇒ C by i.h. on D2.

Γ?,Γ?,∆?
1,∆

?
2, (A1 ( A2)

?, (A1 ( A2)
?,∆1,∆2, A1 ( A2

x+y
=⇒ C

by ( L.

Γ?,∆1,∆2, A1 ( A2
x+y+c
=⇒ C by contract.

The extra restrictions on occurrences of the ⊕L and &R rules are crucial in order for
the proof to go through.

To see where the proof would otherwise break down, this, let us consider the case for
&R:

D1···
Γ;∆

x−→ C1

D2···
Γ;∆

y−→ C2

&R
Γ;∆

x+y−→ C1 & C2

(to show)
Γ?,∆

x+y
=⇒ C1 & C2

If c � x we reason as follows:

D′
1 :: ∆

x
=⇒ C1 by i.h. on D1.

D′
2 :: ∆

y
=⇒ C2 by i.h. on D2.

∆
x+y
=⇒ C1 & C2 by &R.

If c ≤ x, then x = x+ c and we reason as follows:

8



Substructural Cut Elimination Taus Brock-Nannestad

D′
1 :: Γ?,∆

x
=⇒ C1 by i.h. on D1.

D′
2 :: Γ?,∆

y
=⇒ C2 by i.h. on D2.

At this point, it would be tempting to attempt to reapply the &R rule in the hopes of

deriving Γ?,∆
x+y
=⇒ C1 &C2. Unfortunately, to apply the rule we need the context in both

premises to be exactly the same, and this is not necessarily the case. Recall that the
notation Γ? indicates some subset of Γ. In particular, there is no guarantee that the two
occurrences of Γ? in D′

1 and D′
2 in fact denote the same subset.

If we have w ≤ x+y, then we can simply apply weakening to both contexts, turning Γ?

into Γ, and then reapply the &R rule to get the desired result. Thus, the only case in which
the above proof does not go through is when the derivation is of the form Γ;∆

c−→ C,
where there is an occurrence of &R or ⊕L somewhere in the derivation. For this reason,
we will in the following focus on the case where the sequent arrow annotation is c, i.e. the
strict logic fragment, and elide the annotation.

Before we show how to fix this problem, we note that it is not simply a matter of
suitably reformulating the soundness theorem to get the proof to go through. To see this,
observe that we have the following derivation in our system:

init
·; a −→ a

init
a; b −→ b

init
b; a −→ a

promote
a, b; · −→ a

init
a; b −→ b

promote
a, b; · −→ b

&R
a, b; · −→ a& b

⊗R
a; b −→ b⊗ (a& b)

⊗R
·; a, b −→ a⊗ (b⊗ (a& b))

but there is clearly no way to derive a, b =⇒ a⊗ (b⊗ (a& b)) no matter how contraction
is applied.

The problem in this case is that by allowing the context Γ to be copied additively to
each premise, we allow the above type of “asymmetric contraction” which is unsound with
regard to ordinary contraction.

A similar problem makes itself apparent with the ⊕L rule. To fix the above problem,
we replace the &R and ⊕L rules with the following rules:

·;∆ x−→ A ·;∆ y−→ B
&R

Γ;∆
x+y−→ A&B

A⊕B;∆, A
x−→ C A⊕B;∆, B

y−→ C
⊕L

Γ;∆, A⊕B
x+y−→ C

Intuitively, these rules force any contraction (i.e. use of the promote rule) to take place
before the next additive connective is decomposed. By doing this, we effectively prevent
the problem that caused the previous unsoundness. That aside, let us now show that
with the altered &R and ⊕L rules above, the system is sound with regard to MALL. The
situation in the &R case is now as follows:

D1···
·;∆ x−→ C1

D2···
·;∆ y−→ C2

&R
Γ;∆

x+y−→ C1 & C2

(to show)
Γ?,∆

x+y
=⇒ C1 & C2

We reason as follows:

9
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D′
1 :: (·)?,∆ x

=⇒ C1 by i.h. on D1.

D′
2 :: (·)?,∆ y

=⇒ C2 by i.h. on D2.

Because (·)? = · the two contexts are equal, and we may now apply the &R rule to get the
desired derivation.

In the case of ⊕L:

D1···
A1 ⊕A2;∆, A1

x−→ C

D2···
A1 ⊕A2;∆, A2

y−→ C
⊕L

Γ;∆, A1 ⊕A2
x+y−→ C

(to show)
Γ?,∆, A1 ⊕A2

x+y
=⇒ C

We reason as follows:

D′
1 :: (A1 ⊕A2)

?,∆, A1
x

=⇒ C by i.h. on D1.

D′
2 :: (A1 ⊕A2)

?,∆, A2
y

=⇒ C by i.h. on D2.

If c � x+ y then c � x and c � y, and hence (A1 ⊕A2)
? = · in both derivations. Applying

the ⊕L rule then gives the desired result.
If on the other hand we have c ≤ x + y, and in D′

1 we have (A1 ⊕ A2)
? = A1 ⊕ A2,

then we may cut this derivation against one of A1
·

=⇒ A1 ⊕ A2 to yield a derivation of
∆, A1, A1

x
=⇒ C which can be contracted into ∆, A1

x
=⇒ C. A similar argument allows us

to contract any occurrences of A1 ⊕ A2 into A2 in D′
2, and at that point we can simply

reapply the ⊕L rule to get the desired result.
With the above change, we have thus regained soundness, and can now state this result

as follows

Theorem 7. If Γ;∆
x−→ C, then Γ?,∆

x
=⇒ C for some Γ? ⊆ Γ. If c � x i.e. there are

no occurrences of the promote rule in the given derivation, then Γ? may be chosen to be
empty.

Of course it is no longer clear that the system is internally sound, i.e. has the cut
elimination property. To show this, we must go through the weakening, contraction and
cut admissibility theorems and show that these properties continue to hold in this new
system. Luckily, because we have fixed the &R and ⊕L rules, we have a powerful new tool
at our disposal in the form of the following strengthening lemma:

Lemma 1 (Strengthening). If Γ, A;∆
x−→ C then either Γ;∆

x−→ C or Γ;∆, A
x−→ C and

c ≤ x. In either case, the height of the resulting derivation is no greater than the height of
the given derivation.

Proof. By induction on the given derivation of Γ, A;∆
x−→ C. We use the shorthand

Γ;∆, A? x−→ C to represent the result of appealing to the induction hypothesis in cases
where it does not matter whether A was strengthened away or not. We show here two
representative cases:

• Case ( L:

D1···
Γ, A,∆2, A1 ( A2;∆1

x−→ A1

D2···
Γ, A,∆1, A1 ( A2;∆2, A2

y−→ C
( L

Γ, A;∆1,∆2, A1 ( A2
x+y−→ C

If applying the induction hypothesis to D1 and D2 yields either D′
1 :: Γ,∆2, A1 (

A2;∆1, A
x−→ A1 or D′

2 :: Γ,∆1, A1 ( A2;∆2, A2, A
y−→ C, we reason as follows:

10
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Γ;∆1,∆2, A1 ( A2, A
x+y−→ C

by ( L on D′
1 and D2 or D1 and D′

2.

Otherwise, A must be strengthened away from each subderivation, and we reason as
follows:

D′
1 :: Γ,∆2, A1 ( A2;∆1

x−→ A1 by i.h. on D1.

D′
2 :: Γ,∆1, A1 ( A2;∆2, A2

x−→ C by i.h. on D2.

Γ;∆1,∆2, A1 ( A2
x+y−→ C by ( L on D′

1 and D′
2.

• Case ( R:
D···

Γ, A;∆, C1
x−→ C2

( R
Γ, A;∆

x−→ C1 ( C2

We reason as follows:

Γ;∆, A?, C1
x−→ C2 by i.h. on D.

Γ;∆, A? x−→ C1 ( C2 by ( R.

Although this lemma may seem somewhat tame, it will in fact help us to vastly cut
down on the number of cases that we need to consider when reestablishing the contraction
and cut admissibility properties.

Theorem 8 (Contraction). The following inference rules are admissible

Γ, A,A;∆
x−→ C

ucontract
Γ, A;∆

x−→ C

Γ, A;∆, A
x−→ C

contract
Γ;∆, A

x−→ C

Γ;∆, A,A
x−→ C

pcontract
Γ;∆, A

x+c−→ C

Proof. First, note that by applying the strengthening lemma to

Γ, A,A;∆
x−→ C

we get either
Γ, A;∆

x−→ C

in which case we have shown ucontract admissible, or

Γ, A;∆, A
x−→ C, c ≤ x

in which case we can appeal to the admissibility of contract to get

···
Γ, A;∆, A

x−→ C
contract

Γ;∆, A
x−→ C

promote
Γ, A;∆

x−→ C

as c ≤ x implies x = x + c. Thus, the admissibility of the ucontract rule follows directly
from the admissibility of the contract rule. Similarly, to prove the admissibility of the
contract rule, we can apply the strengthening lemma to

Γ, A;∆, A
x−→ C

to get either
Γ;∆, A

x−→ C

11
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in which case we are done, or

Γ;∆, A,A
x−→ C, c ≤ x

in which case we may appeal directly to the pcontract rule. Thus, we only need to consider
cases for the pcontract rule, which we prove by induction on the structure of the given
derivation.. The complete proof may be seen in the appendix.

The cut admissibility theorem follows in a similar way. Again, the use of the strength-
ening lemma enables us to skip a whole swathe of cases.

Theorem 9 (Cut admissibility). The following inference rules are admissible

Γ;∆1
x−→ A Γ;A,∆2

y−→ C
cut

Γ;∆1,∆2
x+y−→ C

Γ;∆1
x−→ A Γ, A;∆2

y−→ C
ucut

Γ,∆1;∆2
x+y−→ C

Proof. By lexicographic induction on the cut formulas and the two given derivations. For
the ucut rule, we reason as follows. Given

D···
Γ;∆1

x−→ A

E···
Γ, A;∆2

y−→ C
(to show)

Γ,∆1;∆2
x+y−→ C

we first apply the strengthening lemma to E . If this results in a derivation of

Γ;∆2
y−→ C

then the result is immediate by the admissibility of weakening. If not, we have a derivation

E ′ :: Γ;∆2, A
y−→ C

and c ≤ y. Applying the cut rule to (A,D, E ′) yields a derivation of the sequent

Γ;∆1,∆2
x+y−→ C

and as c ≤ y we have x + y = x + y + c and we can therefore apply the promote rule
repeatedly to get a derivation of the desired sequent.

The complete proof may be seen in the appendix.

4 Variations

Non-contracting Rules. It is well known that for some of the left rules of the sequent
calculus it is unnecessary to copy the principal formula to all the premisses of said rule.
This is the case for e.g. the ⊗L and ( L rules, where the following more restricted rules
have the same expressive power as their unrestricted counterparts in Figure 1:

Γ;∆, A,B
x−→ C

⊗L
Γ;∆, A⊗B

x−→ C

Γ,∆2, A ( B;∆1
x−→ A Γ,∆1;∆2, B

y−→ C
( L

Γ;∆1,∆2, A ( B
x+y−→ C

What is more surprising is that the left rules for & also admit this kind of non-contracting
presentation:

Γ, A;∆, B
x−→ C

&L1

Γ;∆, A&B
x−→ C

Γ, B;∆, A
x−→ C

&L2

Γ;∆, A&B
x−→ C

The benefit of this seems limited, however, as using these rules instead greatly complicates
the proof of the admissibility of contraction.

12
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Asymmetric splitting. One curious aspect of the system presented is the fact that
although it is sound and complete at the level of provability, in general there will be many
more derivations in the system with the promote rule than in the system with the contract
rule. For example, there is essentially one proof of a

c
=⇒ (a⊗ a):

init
a

·
=⇒ a

init
a

·
=⇒ a

⊗R
a, a

·
=⇒ a⊗ a

contract
a

c
=⇒ a⊗ a

In the present system, however, there are two derivations, corresponding to which branch
of the ⊗R rule gets the principal copy of a:

init
·; a ·−→ a

init
·; a ·−→ a

promote
a; · c−→ a

⊗R
a

c
=⇒ a⊗ a

init
·; a ·−→ a

promote
a; · c−→ a

init
·; a ·−→ a

⊗R
a

c
=⇒ a⊗ a

One way of fixing this is to make the ⊗R rule, and indeed any rule that splits the context,
asymmetric in how it handles the splitting.

First, observe that any instance of the promote rule can be permuted down until just
above the rule that introduces the principal connective into the “may use” context. As-
suming this has been done, we note that the following reduction is always permitted:

···
Γ,∆2;∆1, A

x−→ C
p

Γ,∆2, A;∆1
x+c−→ C

···
Γ,∆1;∆2, A

y−→ D
⊗R

Γ;∆1,∆2, A
x+y+c−→ C ⊗D

;

···
Γ,∆2;∆1, A

x−→ C

···
Γ,∆1;∆2, A

y−→ D
p

Γ,∆1, A;∆2
y+c−→ D

⊗R
Γ;∆1,∆2, A

x+y+c−→ C ⊗D

where p is used as shorthand for the promote rule. Assuming the above reduction is applied
maximally, anything left over in ∆2 in the first premiss can simply be strengthened away,
as it is not promoted back into the linear context. In other words, the following asymmetric
version of the ⊗R rule is sufficient:

Γ;∆1
x−→ A Γ,∆1;∆2

y−→ B
⊗R

Γ;∆1,∆2
x+y−→ A⊗B

Adopting this change does not complicate the proof of the admissibility of cut.

5 A Strongly Focused Calculus for Strict Logic

Now that we have established both the internal and external soundness of our calculus,
it is natural to consider whether the focusing methodology can be applied to this system.
For the linear, affine, and intuitionistic subsystems, this is straightforward and well-known.
Focusing is perhaps most elegant in the linear setting, and the addition of weakening does
not make matters any more difficult, as this only affects the initial rules. Going from affine
to intuitionistic logic has a notable effect on the calculus where contraction is concerned.
A standard way of presenting the left implication rule for focused intuitionistic logic is as
follows:

Γ −→ [A] Γ, [B] −→ C
(L

Γ, [A ( B] −→ C

13
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Note that unlike the previous additive presentation of (L in intuitionistic logic, we do
not explicitly make a copy of the principal formula A ( B. Thus, the rule above is closer
to the rule in linear logic, with the exception that the context Γ in the conclusion is not
split into two contexts, one for each premiss.

Instead of incorporating contraction in the above rule, it is made a part of the rule for
selecting foci on the left, usually referred to as the left decision rule:

Γ, A, [A] −→ C
decL

Γ, A −→ C

Essentially, in the focused setting we can restrict the use of (multiplicative) contraction to
this rule, which greatly cuts down on the number of formulas that are accumulated in the
sequent as we move up the proof.

Now, the above rule may seem a bit dangerous, as it is very similar to the unrestricted
contraction rule that we had to work around to get a structural cut admissibility argument.
The similarity is only superficial, however: the above rule is not an unrestricted use of
contraction, precisely because the copy of A that we add to the context is under focus and
must therefore be decomposed immediately. This small requirement is enough to allow
a cut against the sequent Γ −→ A to go through, by first performing a cut on A, and
then a cut on [A]. As long as we are able to consider the second cut to be “smaller”, this
argument is well-founded.

For strict logic, the decL rule above is not sufficient. First of all, we must at the very
least have an additional rule that picks a focus without making a copy of the principal
formula:

Γ, [A] −→ C
decL′

Γ, A −→ C

Unfortunately, this is not enough. In strict logic, we have that a −→ a ⊗ a is provable,
but with the above rules, we cannot prove this. If we focus on the left, we get either the
sequent [a] −→ a ⊗ a or a, [a] −→ a ⊗ a, both of which which fail since a 6= a ⊗ a. If we
focus on the right, we get (without loss of generality)

···
a −→ [a]

···
· −→ [a]

⊗R
a −→ a⊗ a

and here the second premiss has no proof.
Thus, there is a fundamental tension between contraction and focusing, and this in part

explains why such systems have not been presented in the past.
Despite these difficulties, we in fact have all the necessary ingredients for constructing

such a calculus. The main ingredient is of course — as we have seen already — a rule that
“saves” the contracted formula in a separate context and permits it to be contracted at a
later point.

The calculus presented in the previous sections has one major drawback with regard to
focusing, however. In the focusing methodology, connectives are assigned a polarity based
on their inversion properties. Connectives that are invertible when they appear on the left
hand side of the sequent are positive, and conversely the ones that are invertible on the right
hand side of the sequent are negative. Usually, this works out nicely, and every connective
gets a unique polarity. Unfortunately, two of the connectives are not invertible on either
side of the sequent. Perhaps unsurprisingly, the culprits are the additive connectives. The
& connective, for instance, has the following rules:

Γ, A1 &A2;∆, Ai −→ C
&Li

Γ;∆, A1 &A2 −→ C

·;∆ −→ A1 ·;∆ −→ A2

&R
Γ;∆ −→ A1 &A2

14
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If the &L1 rule were invertible, then applying it to the sequent ·; a & b −→ b would yield
the sequent a & b; a −→ b. But no matter what rules we apply (bottom-up) in order to
prove this sequent, there is no way of getting rid of the a in the linear context, and hence
no way of proving just b. A similar argument applies for the &L2 rule. To see that the

&R rule is non-invertible, we note that a & b; · −→ a & b is provable — simply apply the
promote rule to get ·; a&b −→ a&b, which is straightforward to prove. If the &R rule were
invertible, we would get that ·; · −→ a should be provable, and it is clearly not. In this
case, the problem is that the &R rule discards the context Γ, thus preventing any formulas
in this context from being promoted. This creates a dependency: to prove a sequent we
may need to apply the promote rule before applying the &R rule, and hence the &R rule
cannot be invertible.

Thus, neither of the rules are invertible, and a similar argument may be applied to
the ⊕Ri and ⊕L rules. Off hand, it may seem surprising that this is the case, given that
inversion properties usually follow from having the cut elimination and identity expansion
properties. Thus, to show that &R is invertible, one would usually construct the following
cut:

···
Γ −→ A&B

idA

A −→ A
&L1

A&B −→ A
cut

Γ −→ A

and a similar cut would show that Γ −→ B is likewise derivable. In the calculus presented
in the previous section, the corresponding cut would be the following:

···
Γ;∆ −→ A&B

idA

A&B;A −→ A
&L1

·;A&B −→ A
cut

Γ;∆ −→ A

Note the difference: the resulting sequent Γ;∆ −→ A does not match the premiss of the

&R rule, since Γ may be non-empty. In a sense, the calculus is unharmonious (albeit for a
different notion of harmony than the usual one) — the inversion properties are too weak.

In focused calculi, the counterpart to inversion is chaining : once a formula has been
selected as a focus, it is decomposed eagerly, retaining this focus for as long as possible.
Thus, one might hope that by being non-invertible on both sides of the sequent, the ⊕ and
& connectives would instead be chaining on both sides. In particular, this would require
the &R rule to be focused on both the principal formula and its immediate subformulas:

·;∆ −→ [A] ·;∆ −→ [B]
&R

Γ;∆ −→ [A&B]

Alas, this does not work either. Attempting to prove the sequent ·; a −→ (a& a)⊗ (a& a),
we would (without loss of generality) end up with the following partial proof:

···
·; · −→ [a]

···
·; · −→ [a]

&R
a; · −→ [a& a]

···
·; a −→ [a& a]

⊗R
·; a −→ [(a& a)⊗ (a& a)]

Clearly, the above partial proof cannot be completed.

To present the calculus, we will use a polarised calculus, with the following formulas
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P,Q ::= p | P ⊗Q | P ⊕Q | 1 | 0 | ↓N
N,M ::= n | P ( N | N &M | > | ↑P

Note in particular that — as is standard — we distinguish between two polarities of
the atomic formulas, and we use explicit polarity shifts to mediate between positive and
negative formulas. Our system has three judgements:

Γ;∆, [N ] −→ ν

Γ;∆ −→ [P ]

Σ −→ 〈N〉

corresponding to left chaining, right chaining and inversion respectively. We will consis-
tently use the following definitions of contexts:

ν ::= n | ↑P
π ::= p | ↓N
Γ ::= · | Γ, π
Σ ::= Γ | Σ, 〈P 〉

The mnemonic for the π and ν classes of formulas is that they are respectively positive and
negative, but non-invertible where they occur. We will refer to such formulas as neutral.
Observe that in particular in the judgements where foci appear, all other formulas must
be neutral. Maintaining this invariant ensures that inversion phases are maximal.

The rules of the system can be seen in Figure 3. Observe that during the chaining phase,
we have a dual context, just as in the calculi presented previously. Unlike the previous
systems, however, any promotion of formulas in these contexts must happen before the
next inversion phase begins. This ensures that the additive rules become invertible, unlike
the unfocused calculus of the previous section.

When initiating a chaining phase, we populate the extra context either with the formula
we focused upon (in the case of the left decision rule) or with no formulas at all (in the case
of the right decision rule). Thus, this context tracks the formulas that have “disappeared”
during this chaining phase, either because they were consumed when the phase began, or
because a multiplicative rule split them off into a different subderivation.

To establish the cut admissibility result, we once again begin with strengthening :

Lemma 2 (Strengthening). The following properties hold:

1. If Γ, π;∆, [N ] −→ ν then either Γ;∆, [N ] −→ ν or Γ;∆, π, [N ] −→ ν.

2. If Γ, π;∆ −→ [P ] then either Γ;∆ −→ [P ] or Γ;∆, π −→ [P ].

Furthermore, the resulting output derivations have the same structure as the input deriva-
tions.

Proof. By induction over the structure of the given derivations. See the appendix for the
full proof.

In the unfocused calculus, we directly have the promote rule that always permits us to
move hypotheses from the “must use” context to the “may use” context. In the focused
calculus, this rule is not explicitly available, and hence we must show it admissible instead:
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Left-chaining

init−

Γ; [n] −→ n

Γ;∆, [Ni] −→ ν
&Li

Γ;∆, [N1 &N2] −→ ν

Γ,∆2;∆1 −→ [P ] Γ,∆1;∆2, [N ] −→ ν
( L

Γ;∆1,∆2, [P ( N ] −→ ν

Right-chaining:

init+

Γ; p −→ [p]
1R

Γ; · −→ [1]

Γ,∆2;∆1 −→ [P ] Γ,∆1;∆2 −→ [Q]
⊗R

Γ;∆1,∆2 −→ [P ⊗Q]

Γ;∆ −→ [Pi]
⊕Ri

Γ;∆ −→ [P1 ⊕ P2]

Inversion:

>R
Σ −→ 〈>〉

0L
Σ, 〈0〉 −→ 〈N〉

Σ −→ 〈N〉 Σ −→ 〈M〉
&R

Σ −→ 〈N &M〉

Σ −→ 〈N〉
1L

Σ, 〈1〉 −→ 〈N〉

Σ, 〈P 〉, 〈Q〉 −→ 〈N〉
⊗L

Σ, 〈P ⊗Q〉 −→ 〈N〉

Σ, 〈P 〉 −→ 〈N〉 Σ, 〈Q〉 −→ 〈N〉
⊕L

Σ, 〈P ⊕Q〉 −→ 〈N〉

Σ, 〈P 〉 −→ 〈N〉
( R

Σ −→ 〈P ( N〉
Structural:

↓N ; Γ, [N ] −→ ν
↓L

Γ, ↓N −→ ν

·; Γ −→ [P ]
↑R

Γ −→↑P

Γ,∆ −→ 〈N〉
↓R

Γ,Γ′;∆ −→ [↓N ]

Γ,∆, 〈P 〉 −→ 〈ν〉
↑L

Γ,Γ′;∆, [↑P ] −→ ν

Γ,∆ −→ ν
rel

Γ, 〈∆〉 −→ 〈ν〉

Figure 3: Focused sequent calculus for IMALL with contraction.

Lemma 3 (Admissibility of promotion). The following inference rules are admissible

Γ;∆, π, [N ] −→ ν
promote−

Γ, π;∆, [N ] −→ ν

Γ;∆, π −→ [P ]
promote+

Γ, π;∆ −→ [P ]

Proof. By induction on the structure of the given derivations. See the appendix for the
full proof.

Next, we need a focused version of the contraction result. We show this only for neutral
positive formulas:

Theorem 10 (Neutral contraction). The following inference rules are admissible

Γ, π, π;∆, [N ] −→ ν
ucontract−

Γ, π;∆, [N ] −→ ν

Γ, π;∆, π, [N ] −→ ν
contract−

Γ;∆, π, [N ] −→ ν

Γ;∆, π, π, [N ] −→ ν
pcontract−

Γ;∆, π, [N ] −→ ν

Γ, π, π;∆ −→ [P ]
ucontract+

Γ, π;∆ −→ [P ]

Γ, π;∆, π −→ [P ]
contract+

Γ;∆, π −→ [P ]

Γ;∆, π, π −→ [P ]
pcontract+

Γ;∆, π −→ [P ]

Σ, π, π −→ 〈N〉
icontract

Σ, π −→ 〈N〉

Γ, π, π −→ ν
contract

Γ, π −→ ν
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Proof. By repeated use of the preceding lemmas, it suffices to show that the pcontract−

and pcontract+ rules are admissible. Thus, for instance, given

Γ, π, π;∆ −→ [P ]

we apply the strengthening lemma to get either

Γ, π;∆ −→ [P ] or Γ, π;∆, π −→ [P ]

In the former case, we are done, and in the latter case, we appeal to the contract+ rule
followed by the promote+ rule. For the contract+ rule, we again apply the strengthening
lemma, resulting in either

Γ;∆, π −→ [P ] or Γ;∆, π, π −→ [P ]

Again, in the former case, we are done, and in the latter case we appeal to the pcontract+

rule. A similar argument reduces ucontract− to contract− to pcontract−.
To show these cases, we reason by induction on the given derivations. The full proof

may be seen in the appendix.

With these lemmas, we are now able to state and prove the admissibility of cut:

Theorem 11 (Admissibility of cut). The following rules are admissible:

Γ;∆ −→ [P ] Σ, 〈P 〉 −→ 〈N〉
cut+

Γ?,∆,Σ −→ 〈N〉

Σ −→ 〈N〉 Γ;∆, [N ] −→ ν
cut−

Γ?,∆,Σ −→ ν

where Γ? represents some subset of Γ.

Γ −→ 〈N〉 ∆, ↓N −→ ν
ncut

Γ,∆ −→ ν

Γ −→ 〈N〉 ∆, ↓N −→ 〈M〉
icut

Γ,∆ −→ 〈M〉

Γ1 −→ 〈N〉 Γ2;∆, ↓N, [M ] −→ ν
ncut−

Γ2; Γ1,∆, [M ] −→ ν

Γ1 −→ 〈N〉 Γ2;∆, ↓N −→ [P ]
ncut+

Γ2; Γ1,∆ −→ [P ]

Γ1 −→ 〈N〉 Γ2, ↓N ;∆, [M ] −→ ν
ucut−

Γ2,Γ1;∆, [M ] −→ ν

Γ1 −→ 〈N〉 Γ2, ↓N ;∆ −→ [P ]
ucut+

Γ2,Γ1;∆ −→ [P ]

Proof. By induction on the given derivations. Before we start the proof proper, we will
make a few simplifying observations. Consider first the cut+ rule:

Γ;∆ −→ [P ] Σ, 〈P 〉 −→ 〈N〉
cut+

Γ?,∆,Σ −→ 〈N〉

by repeatedly applying the strengthening lemma to the first premiss, we get a derivation of
·; Γ?,∆ −→ [P ] with the same shape as the original derivation. We are therefore justified
in showing a slightly more restrictive variant of the cut+ rule,

·;∆ −→ [P ] Σ, 〈P 〉 −→ 〈N〉
cut+

∆,Σ −→ 〈N〉

in cases where this is convenient. A similar argument holds for cut−. Regarding the (−)?

notation, we note the following properties: (·)? = ·, and Γ? ⊆ Γ, and if contraction is
available, Γ?,Γ? (where each occurrence of (−)? may represent a different subset of Γ) can
always be contracted into Γ?. In particular, Γ?,Γ can be contracted into Γ.

18



Substructural Cut Elimination Taus Brock-Nannestad

Likewise, we may use the strengthening lemma to reduce ucut− to ncut− and ucut+ to
ncut+. Applying strengthening to the formula ↓N in Γ2, ↓N ;∆, [M ] −→ ν results in either
a derivation of Γ2;∆, [M ] −→ ν in which case we may simply weaken the first context with
Γ1 to get the desired result, or alternatively we get a derivation of Γ2;∆, ↓N, [M ] −→ ν.
In the latter case, the ncut− rule gives us Γ2;∆,Γ1, [M ] −→ ν, and repeated use of the
promote− rule then yields the desired sequent Γ2,Γ1;∆, [M ] −→ ν.

Starting with the cut+ and cut− rules (which contain the principal cases of the cut
admissibility argument), we will now sketch the way in which the various cuts are reduced.
In the aforementioned rules, we proceed by induction on the derivation that does not
contain the focused formula. There are essentially two cases to consider: either the cut
formula 〈P 〉 or 〈N〉 is the principal formula of the final rule of the derivation, in which
case we have a principal cut, and reduce it to cuts on subformulas, or the cut formula is
not principal, in which case we simply permute this rule below the cut. The remaining
cuts likewise have one premiss that can only be decomposed one way: ∆ −→ 〈N〉 or
∆, 〈P 〉 −→ ν. The cuts containing these premisses are permuted up the other premiss
until the cut formula (↓ N or ↑ P ) is focused upon, at which point we return to the
principal cuts.

With the cut admissibility theorem, and the corresponding identity expansion property
— that 〈P 〉 −→↑ P and ↓ N −→ 〈N〉 for all P and N — it is straightforward to show
that all unfocused rules can be simulated in the focused system, thus proving its complete-
ness [Sim14, CPP08]. Soundness is trivial, as usual, since the focused rules are simply
more restricted versions of their unfocused counterparts.

6 Future Work

Exponentials In this paper, we chose to use IMALL as the base system. An obvious
next step would be to add exponentials to the system, to see whether the cut elimination
result extends to full ILL. We conjecture that the ! modality can be implemented using
the following inference rules:

Γ; · x−→ A
!R

Γ; · x−→!A

Γ, !A;∆, A
x−→ C

!L
Γ, !A;∆

x−→ C

Γ, !A;∆
x−→ C

!L
Γ;∆, !A

x−→ C

Alternatively, one could add a third context representing the truly persistent assumptions.

Structural Modalities The way our system tracks the structural rules as part of the
sequent suggests that it might be possible to internalise this as a modality. Thus, one
might consider rules of the following form:

Γ;∆
x−→ A

[s]R
Γ;∆

x+s−→ [s]A

Γ;∆
x−s−→ A

[¬s]R
Γ;∆

x−→ [¬s]A

Here, [s]A would indicate that A is provable in the presence of the structural rules in s,
whereas [¬s]A conversely indicates that A is provable in the absence of these rules. It is
not clear, however, whether there are sensible left rules to accompany the above rules in
such a way that cut elimination still holds.

7 Conclusion

We have presented a sequent calculus for Intuitionistic MALL and the affine, strict, and
intuitionistic extensions arising from the addition of contraction and weakening to this
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system. The structural cut admissibility argument we present works uniformly for all
combinations of the structural rules. Moreover, proving the soundness and completeness
of this system with regard to the usual presentation can be done by a straightforward
induction.

The calculus itself can be related to the “Omnibus” logic presented by Hodas in his
thesis [Hod94]. This logic explicitly encodes intuitionistic, affine, strict and linear behaviour
through a context with four parts, each corresponding to a logical fragment. Hypotheses in
the “strict” context can be contracted into two copies — one in the intuitionistic context,
and one in the linear context. This ensures that strict hypotheses must be used at least
once.

It is not immediately clear whether this logic admits a straightforward proof of cut-
elimination (and Hodas does not attempt to do this). One potential problem is that
cutting against the contraction mentioned above requires two separate cuts on the same
cut formula, much like in the usual formulation of LJ with an explicit contraction rule.
Because of this, it is not immediately clear that the cuts can be justified through a simple
lexicographic ordering.

Finally, we should add that Hodas’ work only considers a small fragment of the possible
connectives. As an example of this, one can consider the additive disjunction, for which
Hodas does not include the left rule.

The main novelty of this paper is the presentation of a structural cut admissibility
argument for strict logic. In contrast, the admissibility of cut for linear, affine and intu-
itionistic logic is comparatively well known. This is not to say that cut elimination for
logics with contraction but not weakening (e.g. relevance logic) has not been attempted
before. In [DR02], Dunn and Restall present a cut elimination argument that proceeds
along the lines of Gentzen’s original proof. Because of this, the termination metric is much
more elaborate.

Finally, we have presented a strongly focused sequent calculus for strict logic, and
showed how to unite focusing and contraction in the absence of weakening.
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A Appendix

In this appendix, we have put the complete proofs of most of the lemmas and theorems
of the paper. Be warned that there may be a few inconcistencies in the presentation, as
most of the text was taken directly from the author’s Ph.d. thesis. I do not recommend
attempting to read all these proofs in full — writing them was painful enough!

A.1 Proofs concerning the unfocused calculi

Theorem 12 (Weakening). The following rule is admissible:

Γ;∆
x−→ C

weaken
Γ, A;∆

x−→ C

Furthermore, it is strongly admissible, in the sense that it does not change the shape of
the resulting derivation.

Proof. We proceed by induction on the structure of Γ;∆
x−→ C:

• Case init:
init

Γ; a
x−→ a

(to show)
Γ, A; a

x−→ a
We reason as follows:

Γ, A; a
x−→ a by init.

• Case >R:
>R

Γ;∆
x−→ >

(to show)
Γ, A;∆

x−→ >
We reason as follows:

Γ, A;∆
x−→ > by >R.

• Case 0L:
0L

Γ;∆,0
x−→ C

(to show)
Γ, A;∆,0

x−→ C
We reason as follows:

Γ, A;∆,0
x−→ C by 0L.

• Case 1R:
1R

Γ; · x−→ 1
(to show)

Γ, A; · x−→ 1
We reason as follows:

Γ, A; · x−→ 1 by 1R.

• Case &Li, i ∈ {1, 2}:
D···

Γ, A1 &A2;∆, Ai
x−→ C

&Li

Γ;∆, A1 &A2
x−→ C

(to show)
Γ, A;∆, A1 &A2

x−→ C
We reason as follows:
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Γ, A,A1 &A2;∆, Ai
x−→ C by i.h. on D.

Γ, A;∆, A1 &A2
x−→ C by &Li.

• Case &R:
D1···

Γ;∆
x−→ C1

D2···
Γ;∆

y−→ C2

&R
Γ;∆

x+y−→ C1 & C2

(to show)
Γ, A;∆

x+y−→ C1 & C2

We reason as follows:

D′
1 :: Γ, A;∆

x−→ C1 by i.h. on D1.

D′
2 :: Γ, A;∆

y−→ C2 by i.h. on D2.

Γ, A;∆
x+y−→ C1 & C2 by &R on D′

1 and D′
2.

• Case 1L:
D···

Γ,1;∆
x−→ C

1L
Γ;∆,1

x−→ C
(to show)

Γ, A;∆,1
x−→ C

We reason as follows:

Γ, A,1;∆
x−→ C by i.h. on D.

Γ, A;∆,1
x−→ C by 1L.

• Case ⊗L:
D···

Γ, B1 ⊗B2;∆, B1, B2
x−→ C

⊗Li

Γ;∆, B1 ⊗B2
x−→ C

(to show)
Γ, A;∆, B1 ⊗B2

x−→ C

We reason as follows:

Γ, A,B1 ⊗B2;∆, B1, B2
x−→ C by i.h. on D.

Γ, A;∆, B1 ⊗B2
x−→ C by ⊗L.

• Case ⊗R:
D1···

Γ,∆2;∆1
x−→ C1

D2···
Γ,∆1;∆2

y−→ C2

⊗R
Γ;∆1,∆2

x+y−→ C1 ⊗ C2

(to show)
Γ, A;∆1,∆2

x+y−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ, A,∆2;∆1

x−→ C1 by i.h. on D1.

D′
2 :: Γ, A,∆1;∆2

y−→ C2 by i.h. on D2.

Γ, A;∆1,∆2
x+y−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.
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• Case ⊕L:
D1···

Γ, B1 ⊕B2;∆, B1
x−→ C

D2···
Γ, B1 ⊕B2;∆, B2

y−→ C
&R

Γ;∆, B1 ⊕B2
x+y−→ C

(to show)
Γ, A;∆, B1 ⊕B2

x+y−→ C

We reason as follows:

D′
1 :: Γ, A,B1 ⊕B2;∆, B1

x−→ C by i.h. on D1.

D′
2 :: Γ, A,B1 ⊕B2;∆, B2

y−→ C by i.h. on D2.

Γ, A;∆, B1 ⊕B2
x+y−→ C by ⊕L on D′

1 and D′
2.

• Case ⊕Ri, i ∈ {1, 2}:
D···

Γ;∆
x−→ Ci

⊕Ri

Γ;∆
x−→ C1 ⊕ C2

(to show)
Γ, A;∆

x−→ C1 ⊕ C2

We reason as follows:

Γ, A;∆
x−→ Ci by i.h. on D.

Γ, A;∆
x−→ C1 ⊕ C2 by ⊕Ri.

• Case ( L:

D1···
Γ,∆2, B1 ( B2;∆1

x−→ B1

D2···
Γ,∆1, B1 ( B2;∆2, B2

y−→ C
( L

Γ;∆1,∆2, B1 ( B2
x+y−→ C

(to show)
Γ, A;∆1,∆2, B1 ( B2

x+y−→ C

We reason as follows:

D′
1 :: Γ, A,∆2, B1 ( B2;∆1

x−→ B1 by i.h. on D1.

D′
2 :: Γ, A,∆1, B1 ( B2;∆2, B2

y−→ C by i.h. on D2.

Γ, A;∆1,∆2, B1 ( B2
x+y−→ C by ( L on D′

1 and D′
2.

• Case ( R:
D···

Γ;∆, B
x−→ C

( L
Γ;∆

x−→ B ( C
(to show)

Γ, A;∆
x−→ B ( C

We reason as follows:

Γ, A;∆, B
x−→ C by i.h. on D.

Γ, A;∆
x−→ B ( C by ( R.

24



Substructural Cut Elimination Taus Brock-Nannestad

• Case promote:
D···

Γ;∆, B
x−→ C

promote
Γ, B;∆

x+c−→ C
(to show)

Γ, B,A;∆
x+c−→ C

We reason as follows:

Γ, A;∆, B
x−→ C by i.h. on D.

Γ, B,A;∆
x+c−→ C by promote.

• Case demote:
D···

Γ, B;∆
x−→ C

demote
Γ;∆, B

x+w−→ C
(to show)

Γ, A;∆, B
x+w−→ C

We reason as follows:

Γ, A,B;∆
x−→ C by i.h. on D.

Γ, A;∆, B
x+w−→ C by demote.

Theorem 13 (Contraction). The following inference rules are admissible

Γ, A,A;∆
x−→ C

ucontract
Γ, A;∆

x−→ C

Γ, A;∆, A
x−→ C

contract
Γ;∆, A

x−→ C

Γ;∆, A,A
x−→ C

pcontract
Γ;∆, A

x+c−→ C

Proof. We prove the admissibility by a mutual induction the given input derivations. To
increase readability, we will refer to the relevant induction hypothesis using the names
given above, e.g. “by pcontract” instead of “by i.h. 3”. We begin by considering the cases
for the ucontract rule:

• Case init:
init

Γ, A,A; a
x−→ a

ucontract
Γ, A; a

x−→ a
We reason as follows:

Γ, A; a
x−→ a by init.

• Case >R:
>R

Γ, A,A;∆
x−→ >

ucontract
Γ, A;∆

x−→ >
We reason as follows:

Γ, A;∆
x−→ > by >R.

• Case 0L:
0L

Γ, A,A;∆,0
x−→ C

ucontract
Γ, A;∆,0

x−→ C
We reason as follows:
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Γ, A;∆,0
x−→ C by 0L.

• Case 1R:
1R

Γ, A,A; · x−→ 1
ucontract

Γ, A; · x−→ 1

We reason as follows:

Γ, A; · x−→ 1 by 1R.

• Case &Li, i ∈ {1, 2}:
D···

Γ, A,A,A1 &A2;∆, Ai
x−→ C

&Li

Γ, A,A;∆, A1 &A2
x−→ C

ucontract
Γ, A;∆, A1 &A2

x−→ C

We reason as follows:

Γ, A,A1 &A2;∆, Ai
x−→ C by ucontract on D.

Γ, A;∆, A1 &A2
x−→ C by &Li.

• Case &R:
D1···

Γ, A,A;∆
x−→ C1

D2···
Γ, A,A;∆

y−→ C2

&R
Γ, A,A;∆

x+y−→ C1 & C2

ucontract
Γ, A;∆

x+y−→ C1 & C2

We reason as follows:

D′
1 :: Γ, A;∆

x−→ C1 by ucontract on D1.

D′
2 :: Γ, A;∆

y−→ C2 by ucontract on D2.

Γ, A;∆
x+y−→ C1 & C2 by &R on D′

1 and D′
2.

• Case 1L:
D···

Γ, A,A,1;∆
x−→ C

1L
Γ, A,A;∆,1

x−→ C
ucontract

Γ, A;∆,1
x−→ C

We reason as follows:

Γ, A,1;∆
x−→ C by ucontract on D.

Γ, A;∆,1
x−→ C by 1L.

• Case ⊗L:
D···

Γ, A,A,B1 ⊗B2;∆, B1, B2
x−→ C

⊗Li

Γ, A,A;∆, B1 ⊗B2
x−→ C

ucontract
Γ, A;∆, B1 ⊗B2

x−→ C

We reason as follows:
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Γ, A,B1 ⊗B2;∆, B1, B2
x−→ C by ucontract on D.

Γ, A;∆, B1 ⊗B2
x−→ C by ⊗L.

• Case ⊗R:
D1···

Γ, A,A,∆2;∆1
x−→ C1

D2···
Γ, A,A,∆1;∆2

y−→ C2

⊗R
Γ, A,A;∆1,∆2

x+y−→ C1 ⊗ C2

ucontract
Γ, A;∆1,∆2

x+y−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ, A,∆2;∆1

x−→ C1 by ucontract on D1.

D′
2 :: Γ, A,∆1;∆2

y−→ C2 by ucontract on D2.

Γ, A;∆1,∆2
x+y−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.

• Case ⊕L:

D1···
Γ, A,A,B1 ⊕B2;∆, B1

x−→ C

D2···
Γ, A,A,B1 ⊕B2;∆, B2

y−→ C
⊕L

Γ, A,A;∆, B1 ⊕B2
x+y−→ C

ucontract
Γ, A;∆, B1 ⊕B2

x+y−→ C

We reason as follows:

D′
1 :: Γ, A,B1 ⊕B2;∆, B1

x−→ C by ucontract on D1.

D′
2 :: Γ, A,B1 ⊕B2;∆, B2

y−→ C by ucontract on D2.

Γ, A;∆, B1 ⊕B2
x+y−→ C by ⊕L on D′

1 and D′
2.

• Case ⊕Ri, i ∈ {1, 2}:
D···

Γ, A,A;∆
x−→ Ci

⊕Ri

Γ, A,A;∆
x−→ C1 ⊕ C2

ucontract
Γ, A;∆

x−→ C1 ⊕ C2

We reason as follows:

Γ, A;∆
x−→ Ci by ucontract on D.

Γ, A;∆
x−→ C1 ⊕ C2 by ⊕Ri.

• Case ( L:

D1···
Γ, A,A,∆2, B1 ( B2;∆1

x−→ B1

D2···
Γ, A,A,∆1, B1 ( B2;∆2, B2

y−→ C
( L

Γ, A,A;∆1,∆2, B1 ( B2
x+y−→ C

ucontract
Γ, A;∆1,∆2, B1 ( B2

x+y−→ C

We reason as follows:

D′
1 :: Γ, A,∆2, B1 ( B2;∆1

x−→ B1 by ucontract on D1.

D′
2 :: Γ, A,∆1, B1 ( B2;∆2, B2

y−→ C by ucontract on D2.

Γ, A;∆1,∆2, B1 ( B2
x+y−→ C by ( L on D′

1 and D′
2.
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• Case ( R:
D···

Γ, A,A;∆, B
x−→ C

( R
Γ, A,A;∆

x−→ B ( C
ucontract

Γ, A;∆
x−→ B ( C

We reason as follows:

Γ, A;∆, B
x−→ C by ucontract on D.

Γ, A;∆
x−→ B ( C by ( R.

• Case promote, A non-principal:

D···
Γ, A,A;∆, B

x−→ C
promote

Γ, A,A,B;∆
x+c−→ C

ucontract
Γ, B,A;∆

x+c−→ C

We reason as follows:

Γ, A;∆, B
x−→ C by ucontract on D.

Γ, B,A;∆
x+c−→ C by promote.

• Case promote, A principal:

D···
Γ, A;∆, A

x−→ C
promote

Γ, A,A;∆
x+c−→ C

ucontract
Γ, A;∆

x+c−→ C

We reason as follows:

Γ;∆, A
x−→ C by contract on D.

Γ, A;∆
x+c−→ C by promote.

• Case demote:
D···

Γ, A,A,B;∆
x−→ C

demote
Γ, A,A;∆, B

x+w−→ C
ucontract

Γ, A;∆, B
x+w−→ C

We reason as follows:

Γ, A,B;∆
x−→ C by ucontract on D.

Γ, A;∆, B
x+w−→ C by demote.

Next, we consider the cases for the contract rule:

• Case init:
init

Γ, A; a
x−→ a

contract
Γ; a

x−→ a
We reason as follows:
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Γ; a
x−→ a by init.

• Case >R:
>R

Γ, A;∆, A
x−→ >

contract
Γ;∆, A

x−→ >
We reason as follows:

Γ;∆, A
x−→ > by >R.

• Case 0L, A non-principal:

0L
Γ, A;∆, A,0

x−→ C
contract

Γ;∆, A,0
x−→ C

We reason as follows:

Γ;∆, A,0
x−→ C by 0L.

• Case 0L, A = 0 principal:

0L
Γ,0;∆,0

x−→ C
contract

Γ;∆,0
x−→ C

We reason as follows:

Γ;∆,0
x−→ C by 0L.

• Case 1R: Impossible.

• Case &Li, i ∈ {1, 2}, A non-principal:

D···
Γ, A,A1 &A2;∆, A,Ai

x−→ C
&Li

Γ, A;∆, A,A1 &A2
x−→ C

contract
Γ;∆, A,A1 &A2

x−→ C

We reason as follows:

Γ, A1 &A2;∆, A,Ai
x−→ C by contract on D.

Γ;∆, A,A1 &A2
x−→ C by &Li.

• Case &Li, i ∈ {1, 2}, A = A1 &A2 principal:

D···
Γ, A1 &A2, A1 &A2;∆, Ai

x−→ C
&Li

Γ, A1 &A2;∆, A1 &A2
x−→ C

contract
Γ;∆, A1 &A2

x−→ C

We reason as follows:

Γ, A1 &A2;∆, Ai
x−→ C by ucontract on D.

Γ;∆, A1 &A2
x−→ C by &Li.
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• Case &R:
D1···

Γ, A;∆, A
x−→ C1

D2···
Γ, A;∆, A

y−→ C2

&R
Γ, A;∆, A

x+y−→ C1 & C2

contract
Γ;∆, A

x+y−→ C1 & C2

We reason as follows:

D′
1 :: Γ;∆, A

x−→ C1 by contract on D1.

D′
2 :: Γ;∆, A

y−→ C2 by contract on D2.

Γ;∆, A
x+y−→ C1 & C2 by &R on D′

1 and D′
2.

• Case 1L, A non-principal:

D···
Γ, A,1;∆, A

x−→ C
1L

Γ, A;∆, A,1
x−→ C

contract
Γ;∆, A,1

x−→ C

We reason as follows:

Γ,1;∆, A
x−→ C by contract on D.

Γ;∆, A,1
x−→ C by 1L.

• Case 1L, A = 1 principal:
D···

Γ,1,1;∆
x−→ C

1L
Γ,1;∆,1

x−→ C
contract

Γ;∆,1
x−→ C

We reason as follows:

Γ,1;∆
x−→ C by ucontract on D.

Γ;∆,1
x−→ C by 1L.

• Case ⊗L, A non-principal:

D···
Γ, A,B1 ⊗B2;∆, A,B1, B2

x−→ C
⊗L

Γ, A;∆, A,B1 ⊗B2
x−→ C

contract
Γ;∆, A,B1 ⊗B2

x−→ C

We reason as follows:

Γ, B1 ⊗B2;∆, A,B1, B2
x−→ C by contract on D.

Γ;∆, A,B1 ⊗B2
x−→ C by ⊗L.
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• Case ⊗L, A = B1 ⊗B2 principal:

D···
Γ, B1 ⊗B2, B1 ⊗B2;∆, B1, B2

x−→ C
⊗L

Γ, B1 ⊗B2;∆, B1 ⊗B2
x−→ C

contract
Γ;∆, B1 ⊗B2

x−→ C

We reason as follows:

Γ, B1 ⊗B2;∆, B1, B2
x−→ C by ucontract on D.

Γ;∆, B1 ⊗B2
x−→ C by ⊗L.

• Case ⊗R, A in linear context of first premise:

D1···
Γ, A,∆2;∆1, A

x−→ C1

D2···
Γ, A,∆1, A;∆2

y−→ C2

⊗R
Γ, A;∆1,∆2, A

x+y−→ C1 ⊗ C2

contract
Γ;∆1,∆2, A

x+y−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ,∆2;∆1, A

x−→ C1 by contract on D1.

D′
2 :: Γ,∆1, A;∆2

y−→ C2 by ucontract on D2.

Γ;∆1,∆2, A
x+y−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.

• Case ⊗R, A in linear context of second premise:

D1···
Γ, A,∆2, A;∆1

x−→ C1

D2···
Γ, A,∆1;∆2, A

y−→ C2

⊗R
Γ, A;∆1,∆2, A

x+y−→ C1 ⊗ C2

contract
Γ;∆1,∆2, A

x+y−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ,∆2, A;∆1

x−→ C1 by ucontract on D1.

D′
2 :: Γ,∆1;∆2, A

y−→ C2 by contract on D2.

Γ;∆1,∆2, A
x+y−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.

• Case ⊕L, A non-principal:

D1···
Γ, A,B1 ⊕B2;∆, A,B1

x−→ C

D2···
Γ, A,B1 ⊕B2;∆, A,B2

y−→ C
⊕L

Γ, A;∆, A,B1 ⊕B2
x+y−→ C

contract
Γ;∆, A,B1 ⊕B2

x+y−→ C

We reason as follows:

D′
1 :: Γ, B1 ⊕B2;∆, A,B1

x−→ C by contract on D1.

D′
2 :: Γ, B1 ⊕B2;∆, A,B2

y−→ C by contract on D2.

Γ;∆, A,B1 ⊕B2
x+y−→ C by ⊕L on D′

1 and D′
2.
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• Case ⊕L, A = B1 ⊕B2 principal:

D1···
Γ, B1 ⊕B2, B1 ⊕B2;∆, B1

x−→ C

D2···
Γ, B1 ⊕B2, B1 ⊕B2;∆, B2

y−→ C
⊕L

Γ, B1 ⊕B2;∆, B1 ⊕B2
x+y−→ C

contract
Γ;∆, B1 ⊕B2

x+y−→ C

We reason as follows:

D′
1 :: Γ, B1 ⊕B2;∆, B1

x−→ C by ucontract on D1.

D′
2 :: Γ, B1 ⊕B2;∆, B2

y−→ C by ucontract on D2.

Γ;∆, B1 ⊕B2
x+y−→ C by ⊕L on D′

1 and D′
2.

• Case ⊕Ri, i ∈ {1, 2}:
D···

Γ, A;∆, A
x−→ Ci

⊕Ri

Γ, A;∆, A
x−→ C1 ⊕ C2

contract
Γ;∆, A

x−→ C1 ⊕ C2

We reason as follows:

Γ;∆, A
x−→ Ci by contract on D.

Γ;∆, A
x−→ C1 ⊕ C2 by ⊕Ri.

• Case ( L, A in linear context of first premise:

D1···
Γ, A,∆2, B1 ( B2;∆1, A

x−→ B1

D2···
Γ, A,∆1, A,B1 ( B2;∆2, B2

y−→ C
( L

Γ, A;∆1, A,∆2, B1 ( B2
x+y−→ C

contract
Γ;∆1, A,∆2, B1 ( B2

x+y−→ C

We reason as follows:

D′
1 :: Γ,∆2, B1 ( B2;∆1, A

x−→ B1 by contract on D1.

D′
2 :: Γ,∆1, A,B1 ( B2;∆2, B2

y−→ C by ucontract on D2.

Γ;∆1, A,∆2, B1 ( B2
x+y−→ C by ( L on D′

1 and D′
2.

• Case ( L, A in linear context of second premise:

D1···
Γ, A,∆2, A,B1 ( B2;∆1

x−→ B1

D2···
Γ, A,∆1, B1 ( B2;∆2, A,B2

y−→ C
( L

Γ, A;∆1,∆2, A,B1 ( B2
x+y−→ C

contract
Γ;∆1,∆2, A,B1 ( B2

x+y−→ C

We reason as follows:

D′
1 :: Γ,∆2, A,B1 ( B2;∆1

x−→ B1 by ucontract on D1.

D′
2 :: Γ,∆1, B1 ( B2;∆2, A,B2

y−→ C by contract on D2.

Γ;∆1,∆2, A,B1 ( B2
x+y−→ C by ( L on D′

1 and D′
2.

32



Substructural Cut Elimination Taus Brock-Nannestad

• Case ( L, A = B1 ( B2 principal:

D1···
Γ, B1 ( B2,∆2, B1 ( B2;∆1

x−→ B1

D2···
Γ, B1 ( B2,∆1, B1 ( B2;∆2, B2

y−→ C
( L

Γ, B1 ( B2;∆1,∆2, B1 ( B2
x+y−→ C

contract
Γ;∆1,∆2, B1 ( B2

x+y−→ C

We reason as follows:

D′
1 :: Γ,∆2, B1 ( B2;∆1

x−→ B1 by ucontract on D1.

D′
2 :: Γ,∆1, B1 ( B2;∆2, B2

y−→ C by ucontract on D2.

Γ;∆1,∆2, B1 ( B2
x+y−→ C by ( L on D′

1 and D′
2.

• Case ( R:
D···

Γ, A;∆, A,B
x−→ C

( R
Γ, A;∆, A

x−→ B ( C
contract

Γ;∆, A
x−→ B ( C

We reason as follows:

Γ;∆, A,B
x−→ C by contract on D.

Γ;∆, A
x−→ B ( C by ( R.

• Case promote, A non-principal:

D···
Γ, A;∆, A,B

x−→ C
promote

Γ, A,B;∆, A
x+c−→ C

contract
Γ, B;∆, A

x+c−→ C

We reason as follows:

Γ;∆, A,B
x−→ C by contract on D.

Γ, B;∆, A
x+c−→ C by promote.

• Case promote, A principal:
D···

Γ;∆, A,A
x−→ C

promote
Γ, A;∆, A

x+c−→ C
contract

Γ;∆, A
x+c−→ C

We reason as follows:

Γ;∆, A
x+c−→ C by pcontract on D.
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• Case demote, A non-principal:

D···
Γ, A,B;∆, A

x−→ C
demote

Γ, A;∆, A,B
x+w−→ C

contract
Γ;∆, A,B

x+w−→ C

We reason as follows:

Γ, B;∆, A
x−→ C by contract on D.

Γ;∆, A,B
x+w−→ C by demote.

• Case demote, A principal:
D···

Γ, A,A;∆
x−→ C

demote
Γ, A;∆, A

x+w−→ C
contract

Γ;∆, A
x+w−→ C

We reason as follows:

Γ, A;∆
x−→ C by ucontract on D.

Γ;∆, A
x+w−→ C by demote.

Finally, we look at the cases for the pcontract rule:

• Case init: Impossible.

• Case >R:
>R

Γ;∆, A,A
x+c−→ >

pcontract
Γ;∆, A

x+c−→ >
We reason as follows:

Γ;∆, A
x+c−→ > by >R.

• Case 0L, A non-principal:

0L
Γ;∆, A,A,0

x+c−→ C
pcontract

Γ;∆, A,0
x+c−→ C

We reason as follows:

Γ;∆, A,0
x+c−→ C by 0L.

• Case 0L, A = 0 principal:

0L
Γ;∆,0,0

x+c−→ C
pcontract

Γ;∆,0
x+c−→ C

We reason as follows:

Γ;∆,0
x+c−→ C by 0L.

• Case 1R: Impossible.
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• Case &Li, i ∈ {1, 2}, A non-principal:

D···
Γ, A1 &A2;∆, A,A,Ai

x−→ C
&Li

Γ;∆, A,A,A1 &A2
x−→ C

pcontract
Γ;∆, A,A1 &A2

x+c−→ C

We reason as follows:

Γ, A1 &A2;∆, A,Ai
x+c−→ C by pcontract on D.

Γ;∆, A,A1 &A2
x+c−→ C by &Li.

• Case &Li, i ∈ {1, 2}, A = A1 &A2 principal:

D···
Γ, A1 &A2;∆, A1 &A2, Ai

x−→ C
&Li

Γ;∆, A1 &A2, A1 &A2
x−→ C

pcontract
Γ;∆, A1 &A2

x+c−→ C

We reason as follows:

Γ;∆, A1 &A2, Ai
x−→ C by contract on D.

Γ, A1 &A2;∆, Ai
x+c−→ C by promote.

Γ;∆, A1 &A2
x+c−→ C by &Li.

• Case &R:
D1···

Γ;∆, A,A
x−→ C1

D2···
Γ;∆, A,A

y−→ C2

&R
Γ;∆, A,A

x+y−→ C1 & C2

pcontract
Γ;∆, A

x+y+c−→ C1 & C2

We reason as follows:

D′
1 :: Γ;∆, A

x+c−→ C1 by pcontract on D1.

D′
2 :: Γ;∆, A

y+c−→ C2 by pcontract on D2.

Γ;∆, A
x+y+c−→ C1 & C2 by &R on D′

1 and D′
2.

• Case 1L, A non-principal:

D···
Γ,1;∆, A,A

x−→ C
1L

Γ;∆, A,A,1
x−→ C

pcontract
Γ;∆, A,1

x+c−→ C

We reason as follows:

Γ,1;∆, A
x+c−→ C by pcontract on D.

Γ;∆, A,1
x+c−→ C by 1L.
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• Case 1L, A = 1 principal:
D···

Γ,1;∆,1
x−→ C

1L
Γ;∆,1,1

x−→ C
pcontract

Γ;∆,1
x+c−→ C

We reason as follows:

Γ;∆,1
x−→ C by contract on D.

Γ,1;∆
x+c−→ C by promote.

Γ;∆,1
x+c−→ C by 1L.

• Case ⊗L, A non-principal:

D···
Γ, B1 ⊗B2;∆, A,A,B1, B2

x−→ C
⊗L

Γ;∆, A,A,B1 ⊗B2
x−→ C

pcontract
Γ;∆, A,B1 ⊗B2

x+c−→ C

We reason as follows:

Γ, B1 ⊗B2;∆, A,B1, B2
x+c−→ C by pcontract on D.

Γ;∆, A,B1 ⊗B2
x+c−→ C by ⊗L.

• Case ⊗L, A = B1 ⊗B2 principal:

D···
Γ, B1 ⊗B2;∆, B1 ⊗B2, B1, B2

x−→ C
⊗L

Γ;∆, B1 ⊗B2, B1 ⊗B2
x−→ C

pcontract
Γ;∆, B1 ⊗B2

x+c−→ C

We reason as follows:

Γ;∆, B1 ⊗B2, B1, B2
x−→ C by contract on D.

Γ, B1 ⊗B2;∆, B1, B2
x+c−→ C by promote.

Γ;∆, B1 ⊗B2
x+c−→ C by ⊗L.

• Case ⊗R, A,A in linear context of first premise:

D1···
Γ,∆2;∆1, A,A

x−→ C1

D2···
Γ,∆1, A,A;∆2

y−→ C2

⊗R
Γ;∆1, A,A,∆2

x+y−→ C1 ⊗ C2

pcontract
Γ;∆1, A,∆2

x+y+c−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ,∆2;∆1, A

x+c−→ C1 by pcontract on D1.

D′
2 :: Γ,∆1, A;∆2

y−→ C2 by ucontract on D2.

Γ;∆1,∆2, A
x+y+c−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.
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• Case ⊗R, A and A in separate linear contexts:

D1···
Γ,∆2, A;∆1, A

x−→ C1

D2···
Γ,∆1, A;∆2, A

y−→ C2

⊗R
Γ;∆1, A,∆2, A

x+y−→ C1 ⊗ C2

pcontract
Γ;∆1,∆2, A

x+y+c−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ,∆2;∆1, A

x−→ C1 by contract on D1.

Γ,∆1;∆2, A
y−→ C2 by contract on D2.

D′
2 :: Γ,∆1, A;∆2

y+c−→ C2 by promote.

Γ;∆1,∆2, A
x+y+c−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.

• Case ⊗R, A,A in linear context of second premise:

D1···
Γ,∆2, A,A;∆1

x−→ C1

D2···
Γ,∆1;∆2, A,A

y−→ C2

⊗R
Γ;∆1,∆2, A,A

x+y−→ C1 ⊗ C2

pcontract
Γ;∆1,∆2, A

x+y+c−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ,∆2, A;∆1

x−→ C1 by ucontract on D1.

D′
2 :: Γ,∆1;∆2, A

y+c−→ C2 by pcontract on D2.

Γ;∆1,∆2, A
x+y+c−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.

• Case ⊕L, A non-principal:

D1···
Γ, B1 ⊕B2;∆, A,A,B1

x−→ C

D2···
Γ, B1 ⊕B2;∆, A,A,B2

y−→ C
⊕L

Γ;∆, A,A,B1 ⊕B2
x+y−→ C

pcontract
Γ;∆, A,B1 ⊕B2

x+y+c−→ C

We reason as follows:

D′
1 :: Γ, B1 ⊕B2;∆, A,B1

x+c−→ C by pcontract on D1.

D′
2 :: Γ, B1 ⊕B2;∆, A,B2

y+c−→ C by pcontract on D2.

Γ;∆, A,B1 ⊕B2
x+y+c−→ C by ⊕L on D′

1 and D′
2.

• Case ⊕L, A = B1 ⊕B2 principal:

D1···
Γ, B1 ⊕B2;∆, B1 ⊕B2, B1

x−→ C

D2···
Γ, B1 ⊕B2;∆, B1 ⊕B2, B2

y−→ C
⊕L

Γ;∆, B1 ⊕B2, B1 ⊕B2
x+y−→ C

pcontract
Γ;∆, B1 ⊕B2

x+y+c−→ C

We reason as follows:
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Γ;∆, B1 ⊕B2, B1
x−→ C by contract on D1.

D′
1 :: Γ, B1 ⊕B2;∆, B1

x+c−→ C by promote.

Γ;∆, B1 ⊕B2, B2
y−→ C by contract on D2.

D′
2 :: Γ, B1 ⊕B2;∆, B2

y+c−→ C by promote.

Γ;∆, B1 ⊕B2
x+y+c−→ C by ⊕L on D′

1 and D′
2.

• Case ⊕Ri, i ∈ {1, 2}:
D···

Γ;∆, A,A
x−→ Ci

⊕Ri

Γ;∆, A,A
x−→ C1 ⊕ C2

pcontract
Γ;∆, A

x+c−→ C1 ⊕ C2

We reason as follows:

Γ;∆, A
x+c−→ Ci by pcontract on D.

Γ;∆, A
x+c−→ C1 ⊕ C2 by ⊕Ri.

• Case ( L, A,A in linear context of first premise:

D1···
Γ,∆2, B1 ( B2;∆1, A,A

x−→ B1

D2···
Γ,∆1, A,A,B1 ( B2;∆2, B2

y−→ C
( L

Γ;∆1, A,A,∆2, B1 ( B2
x+y−→ C

pcontract
Γ;∆1, A,∆2, B1 ( B2

x+y+c−→ C

We reason as follows:

D′
1 :: Γ,∆2, B1 ( B2;∆1, A

x+c−→ B1 by pcontract on D1.

D′
2 :: Γ,∆1, A,B1 ( B2;∆2, B2

y−→ C by ucontract on D2.

Γ;∆1, A,∆2, B1 ( B2
x+y+c−→ C by ( L on D′

1 and D′
2.

• Case ( L, A,A in linear context of second premise:

D1···
Γ,∆2, A,A,B1 ( B2;∆1

x−→ B1

D2···
Γ,∆1, B1 ( B2;∆2, A,A,B2

y−→ C
( L

Γ;∆1,∆2, A,A,B1 ( B2
x+y−→ C

pcontract
Γ;∆1,∆2, A,B1 ( B2

x+y+c−→ C

We reason as follows:

D′
1 :: Γ,∆2, A,B1 ( B2;∆1

x−→ B1 by ucontract on D1.

D′
2 :: Γ,∆1, B1 ( B2;∆2, A,B2

y+c−→ C by pcontract on D2.

Γ;∆1,∆2, A,B1 ( B2
x+y+c−→ C by ( L on D′

1 and D′
2.

• Case ( L, A and A in separate linear contexts:

D1···
Γ,∆2, A,B1 ( B2;∆1, A

x−→ B1

D2···
Γ,∆1, A,B1 ( B2;∆2, A,B2

y−→ C
( L

Γ;∆1, A,∆2, A,B1 ( B2
x+y−→ C

pcontract
Γ;∆1,∆2, A,B1 ( B2

x+y+c−→ C
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We reason as follows:

D′
1 :: Γ,∆2, B1 ( B2;∆1, A

x−→ B1 by contract on D1.

Γ,∆1, B1 ( B2;∆2, A,B2
y−→ C by contract on D2.

D′
2 :: Γ,∆1, A,B1 ( B2;∆2, B2

y+c−→ C by promote.

Γ;∆1,∆2, A,B1 ( B2
x+y+c−→ C by ( L on D′

1 and D′
2.

• Case ( L, A = B1 ( B2 principal and in linear context of first premise:

D1···
Γ,∆2, B1 ( B2;∆1, B1 ( B2

x−→ B1

D2···
Γ,∆1, B1 ( B2, B1 ( B2;∆2, B2

y−→ C
( L

Γ;∆1, B1 ( B2,∆2, B1 ( B2
x+y−→ C

pcontract
Γ;∆1,∆2, B1 ( B2

x+y+c−→ C

We reason as follows:

Γ,∆2;∆1, B1 ( B2
x−→ B1 by contract on D1.

D′
1 :: Γ,∆2, B1 ( B2;∆1

x+c−→ B1 by promote.

D′
2 :: Γ,∆1, B1 ( B2;∆2, B2

y−→ C by ucontract on D2.

Γ;∆1,∆2, B1 ( B2
x+y+c−→ C by ( L on D′

1 and D′
2.

• Case ( L, A = B1 ( B2 principal and in linear context of second premise:

D1···
Γ,∆2, B1 ( B2, B1 ( B2;∆1

x−→ B1

D2···
Γ,∆1, B1 ( B2;∆2, B1 ( B2, B2

y−→ C
( L

Γ;∆1,∆2, B1 ( B2, B1 ( B2
x+y−→ C

pcontract
Γ;∆1,∆2, B1 ( B2

x+y+c−→ C

We reason as follows:

D′
1 :: Γ,∆2, B1 ( B2;∆1

x−→ B1 by ucontract on D1.

Γ,∆1;∆2, B1 ( B2, B2
y−→ C by contract on D2.

D′
2 :: Γ,∆1, B1 ( B2;∆2, B2

y+c−→ C by promote.

Γ;∆1,∆2, B1 ( B2
x+y+c−→ C by ( L on D′

1 and D′
2.

• Case ( R:
D···

Γ;∆, A,A,B
x−→ C

( R
Γ;∆, A,A

x−→ B ( C
pcontract

Γ;∆, A
x+c−→ B ( C

We reason as follows:

Γ;∆, A,B
x+c−→ C by pcontract on D.

Γ;∆, A
x+c−→ B ( C by ( R.

• Case promote:
D···

Γ;∆, A,A,B
x−→ C

promote
Γ, B;∆, A,A

x+c−→ C
pcontract

Γ, B;∆, A
x+c−→ C
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We reason as follows:

Γ;∆, A,B
x+c−→ C by pcontract on D.

Γ, B;∆, A
x+c−→ C by promote.

• Case demote, A non-principal:

D···
Γ, B;∆, A,A

x−→ C
demote

Γ;∆, A,A,B
x+w−→ C

pcontract
Γ;∆, A,B

x+w+c−→ C

We reason as follows:

Γ, B;∆, A
x+c−→ C by pcontract on D.

Γ;∆, A,B
x+w+c−→ C by demote.

• Case demote, A principal:
D···

Γ, A;∆, A
x−→ C

demote
Γ;∆, A,A

x+w−→ C
pcontract

Γ;∆, A
x+w+c−→ C

We reason as follows:

Γ;∆, A
x+w+c−→ C by contract on D.

This completes the proof.

Theorem 14 (Cut admissibility). The following inference rules are admissible

Γ;∆1
x−→ A Γ;A,∆2

y−→ C
cut

Γ;∆1,∆2
x+y−→ C

Γ;∆1
x−→ A Γ, A;∆2

y−→ C
ucut

Γ,∆1;∆2
x+y−→ C

Proof. We proceed by lexicographic induction on triples (A,D, E), where A is the cut
formula, and D and E are the two premises to the cut rule at hand.

The cases of the cut admissibility argument naturally fall into various classes depending
on how we handle them in the proof. First, we handle all cases for the cut rule where the
first premise ends in a left rule:

• Case 0L:

0L
Γ;∆1,0

x−→ A

E···
Γ;A,∆2

y−→ C
cut (to show)

Γ;∆1,0,∆2
x+y−→ C

We reason as follows:

Γ;∆1,0,∆2
x+y−→ C by 0L.

40



Substructural Cut Elimination Taus Brock-Nannestad

• Case &Li, i ∈ {1, 2}:

D···
Γ, B1 &B2;∆1, Bi

x−→ A
&Li

Γ;∆1, B1 &B2
x−→ A

E···
Γ;A,∆2

y−→ C
cut (to show)

Γ;∆1, B1 &B2,∆2
x+y−→ C

We reason as follows:

E ′ :: Γ, B1 &B2;A,∆2
x−→ C by weakening on E .

Γ, B1 &B2;∆1, Bi,∆2
x+y−→ C by cut on (A,D, E ′).

Γ;∆1, B1 &B2,∆2
x+y−→ C by &Li.

• Case ⊗L:

D···
Γ, B1 ⊗B2;∆1, B1, B2

x−→ A
⊗L

Γ;∆1, B1 ⊗B2
x−→ A

E···
Γ;A,∆2

y−→ C
cut (to show)

Γ;∆1, B1 ⊗B2,∆2
x+y−→ C

We reason as follows:

E ′ :: Γ, B1 ⊗B2;A,∆2
x−→ C by weakening on E .

Γ, B1 ⊗B2;∆1, B1, B2,∆2
x+y−→ C by cut on (A,D, E ′).

Γ;∆1, B1 ⊗B2,∆2
x+y−→ C by ⊗L.

• Case ⊕L:

D1···
Γ, B1 ⊕B2;∆1, B1

x−→ A

D2···
Γ, B1 ⊕B2;∆1, B2

x−→ A
⊕L

Γ;∆1, B1 ⊕B2
x−→ A

E···
Γ;A,∆2

y−→ C
cut (to show)

Γ;∆1, B1 ⊕B2,∆2
x+y−→ C

We reason as follows:

E ′ :: Γ, B1 ⊕B2;A,∆2
x−→ C by weakening on E .

D′
1 :: Γ, B1 ⊕B2;∆1, B1,∆2

x+y−→ C by cut on (A,D1, E ′).

D′
2 :: Γ, B1 ⊕B2;∆1, B2,∆2

x+y−→ C by cut on (A,D2, E ′).

Γ;∆1, B1 ⊕B2,∆2
x+y−→ C by ⊕L on D′

1 and D′
2.

• Case ( L:

D1···
Γ, B1 ( B2;∆1

x−→ B1

D2···
Γ, B1 ( B2;∆2, B2

y−→ A
( L

Γ;∆1,∆2, B1 ( B2
x+y−→ A

E···
Γ;A,∆3

z−→ C
cut (to show)

Γ;∆1,∆2, , B1 ( B2,∆3
x+y+z−→ C

We reason as follows:
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E ′ :: Γ, B1 ( B2;A,∆3
z−→ C by weakening on E .

D′
2 :: Γ, B1 ( B2;∆2, B2,∆3

y+z−→ C by cut on (A,D2, E ′).

Γ;∆1,∆2, B1 ( B2,∆3
x+y+z−→ C by ( L on D1 and D′

2.

• Case promote:

D···
Γ;∆1, B

x−→ A
promote

Γ, B;∆1
x+c−→ A

E···
Γ, B;A,∆2

y−→ C
cut (to show)

Γ, B;∆1,∆2
x+y+c−→ C

We reason as follows:

D′ :: Γ, B;∆1, B
x−→ A by weakening on D.

Γ, B;∆1, B,∆2
x+y−→ C by cut on (A,D′, E).

Γ, B,B;∆1,∆2
x+y+c−→ C by promote.

Γ, B;∆1,∆2
x+y+c−→ C by ucontract.

• Case demote:

D···
Γ, B;∆1

x−→ A
demote

Γ;∆1, B
x+w−→ A

E···
Γ;A,∆2

y−→ C
cut (to show)

Γ;∆1, B,∆2
x+y+w−→ C

We reason as follows:

E ′ :: Γ, B;A,∆2
x−→ C by weakening on E .

Γ, B;∆1,∆2
x+y−→ C by cut on (A,D, E ′).

Γ;∆1, B,∆2
x+y+w−→ C by demote.

Next, the cases where the second premise ends in a right rule:

• Case >R:
D···

Γ;∆1
x−→ A

>R
Γ;A,∆2

y−→ >
cut (to show)

Γ;∆1,∆2
x+y−→ >

We reason as follows:

Γ;∆1,∆2
x+y−→ > by >R.

• Case 1R: Impossible

• Case &R:

D···
Γ;∆1

x−→ A

E1···
Γ;A,∆2

y−→ C1

E2···
Γ;A,∆2

z−→ C2

&R
Γ;A,∆2

y+z−→ C1 & C2

cut (to show)
Γ;∆1,∆2

x+y+z−→ C1 & C2

We reason as follows:
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E ′
1 :: Γ;∆1,∆2

x+y−→ C1 by cut on (A,D, E1).

E ′
2 :: Γ;∆1,∆2

x+z−→ C2 by cut on (A,D, E2).

Γ;∆1,∆2
x+y+z−→ C1 & C2 by &R on E ′

1 and E ′
2.

• Case ⊗R, A in linear context of first premise:

D···
Γ;∆1

x−→ A

E1···
Γ,∆3;A,∆2

y−→ C1

E2···
Γ, A,∆2;∆3

z−→ C2

⊗R
Γ;A,∆2,∆3

y+z−→ C1 ⊗ C2

cut (to show)
Γ;∆1,∆2,∆3

x+y+z−→ C1 ⊗ C2

We reason as follows:

D′ :: Γ,∆3;∆1
x−→ A by weakening on D.

E ′
1 :: Γ,∆3;∆1,∆2

x+y−→ C1 by cut on (A,D′, E1).

E ′
2 :: Γ,∆1,∆2;∆3

z−→ C2 by ucut on (A,D, E2).

Γ;∆1,∆2,∆3
x+y+z−→ C1 ⊗ C2 by ⊗R on E ′

1 and E ′
2.

• Case ⊗R, A in linear context of second premise:

D···
Γ;∆1

x−→ A

E1···
Γ, A,∆3;∆2

y−→ C1

E2···
Γ,∆2;A,∆3

z−→ C2

⊗R
Γ;A,∆2,∆3

y+z−→ C1 ⊗ C2

cut (to show)
Γ;∆1,∆2,∆3

x+y+z−→ C1 ⊗ C2

We reason as follows:

D′ :: Γ,∆2;∆1
x−→ A by weakening on D.

E ′
2 :: Γ,∆2;∆1,∆3

x+y−→ C1 by cut on (A,D′, E2).

E ′
1 :: Γ,∆1,∆3;∆2

z−→ C2 by ucut on (A,D, E1).

Γ;∆1,∆2,∆3
x+y+z−→ C1 ⊗ C2 by ⊗R on E ′

1 and E ′
2.

• Case ⊕Ri, i ∈ {1, 2}:

D···
Γ;∆1

x−→ A

E···
Γ;A,∆2

y−→ Ci

⊕Ri

Γ;A,∆2
y−→ C1 ⊕ C2

cut (to show)
Γ;∆1,∆2

x+y−→ C1 ⊕ C2

We reason as follows:

Γ;∆1,∆2
x+y−→ Ci by cut on (A,D, E).

Γ;∆1,∆2
x+y−→ C1 ⊕ C2 by ⊕Ri.

• Case ( R:

D···
Γ;∆1

x−→ A

E···
Γ;A,∆2, B

y−→ C
( R

Γ;A,∆2
y−→ B ( C

cut (to show)
Γ;∆1,∆2

x+y−→ B ( C
We reason as follows:
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Γ;∆1,∆2, B
x+y−→ C by cut on (A,D, E).

Γ;∆1,∆2
x+y−→ B ( C by ( R.

For the last set of commutative cases for the cut rule, we consider the cases where the
second premise ends in a left rule for which the cut formula is not the principal formula:

• Case 0L:
D···

Γ;∆1
x−→ A

0L
Γ;A,∆2,0

y−→ C
cut (to show)

Γ;∆1,∆2,0
x+y−→ C

We reason as follows:

Γ;∆1,∆2,0
x+y−→ C by 0L.

• Case &Li, i ∈ {1, 2}:

D···
Γ;∆1

x−→ A

E···
Γ, B1 &B2;A,∆2, Bi

y−→ C
&Li

Γ;A,∆2, B1 &B2
y−→ C

cut (to show)
Γ;∆1,∆2, B1 &B2

x+y−→ C

We reason as follows:

D′ :: Γ, B1 &B2;∆1
x−→ A by weakening on D.

Γ, B1 &B2;∆1,∆2, Bi
x+y−→ C by cut on (A,D′, E).

Γ;∆1,∆2, B1 &B2
x+y−→ C by &Li.

• Case 1L:

D···
Γ;∆1

x−→ A

E···
Γ,1;A,∆2

y−→ C
1L

Γ;A,∆2,1
y−→ C

cut (to show)
Γ;∆1,∆2,1

x+y−→ C

We reason as follows:

D′ :: Γ,1;∆1
x−→ A by weakening on D.

Γ,1;∆1,∆2
x+y−→ C by cut on (A,D′, E).

Γ;∆1,∆2,1
x+y−→ C by 1L.

• Case ⊗L:

D···
Γ;∆1

x−→ A

E···
Γ, B1 ⊗B2;A,∆2, B1, B2

y−→ C
⊗L

Γ;A,∆2, B1 ⊗B2
y−→ C

cut (to show)
Γ;∆1,∆2, B1 ⊗B2

x+y−→ C

We reason as follows:

D′ :: Γ, B1 ⊗B2;∆1
x−→ A by weakening on D.

Γ, B1 ⊗B2;∆1,∆2, B1, B2
x+y−→ C by cut on (A,D′, E).

Γ;∆1,∆2, B1 ⊗B2
x+y−→ C by ⊗L.
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• Case ⊕L:

D···
Γ;∆1

x−→ A

E1···
Γ, B1 ⊕B2;A,∆2, B1

y−→ C

E2···
Γ, B1 ⊕B2;A,∆2, B2

z−→ C
⊕L

Γ;A,∆2, B1 ⊕B2
y+z−→ C

cut (to show)
Γ;∆1,∆2, B1 ⊕B2

x+y+z−→ C

We reason as follows:

D′ :: Γ, B1 ⊕B2;∆1
x−→ A by weakening on D.

E ′
1 :: Γ, B1 ⊕B2;∆1,∆2, B1

x+z−→ C by cut on (A,D′, E1).

E ′
2 :: Γ, B1 ⊕B2;∆1,∆2, B2

y+z−→ C by cut on (A,D′, E2).

Γ;∆1,∆2, B1 ⊕B2
x+y+z−→ C by ⊕L on E ′

1 and E ′
2.

• Case ( L, A in linear context of first premise:

D···
Γ;∆1

x−→ A

E1···
Γ,∆3, B1 ( B2;A,∆2

y−→ B1

E2···
Γ, A,∆2, B1 ( B2;∆3, B2

z−→ C
( L

Γ;A,∆2,∆3, B1 ( B2
y+z−→ C

cut (to show)
Γ;∆1,∆2,∆3, B1 ( B2

x+y+z−→ C

We reason as follows:

D′ :: Γ,∆3, B1 ( B2;∆1
x−→ A by weakening on D.

E ′
1 :: Γ,∆3, B1 ( B2;∆1,∆2

x+y−→ B1 by cut on (A,D′, E1).

E ′
2 :: Γ,∆1,∆2, B1 ( B2;∆3, B2

z−→ C by ucut on (A,D′, E2).

Γ;∆1,∆2,∆3, B1 ( B2
x+y+z−→ C by ( L on E ′

1 and E ′
2.

• Case ( L, A in linear context of second premise:

D···
Γ;∆1

x−→ A

E1···
Γ,∆3, B1 ( B2;∆2

y−→ B1

E2···
Γ,∆2, B1 ( B2;A,∆3, B2

z−→ C
( L

Γ;A,∆2,∆3, B1 ( B2
y+z−→ C

cut (to show)
Γ;∆1,∆2,∆3, B1 ( B2

x+y+z−→ C

We reason as follows:

D′ :: Γ,∆2, B1 ( B2;∆1
x−→ A by weakening on D.

E ′
1 :: Γ,∆2, B1 ( B2;∆1,∆3, B2

x+z−→ C by cut on (A,D′, E1).

E ′
2 :: Γ,∆1,∆3, B1 ( B2;∆2

y−→ B1 by ucut on (A,D′, E2).

Γ;∆1,∆2,∆3, B1 ( B2
x+y+z−→ C by ( L on E ′

1 and E ′
2.

• Case promote:

D···
Γ, B;∆1

x−→ A

E···
Γ;A,∆2, B

y−→ C
promote

Γ, B;A,∆2
y+c−→ C

cut (to show)
Γ, B;∆1,∆2

x+y+c−→ C
We reason as follows:
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E ′ :: Γ, B;A,∆2, B
y−→ C by weakening on E .

Γ, B;∆1,∆2, B
x+y−→ C by cut on (A,D, E ′).

Γ, B,B;∆1,∆2
x+y+c−→ C by promote.

Γ, B;∆1,∆2
x+y+c−→ C by ucontract.

• Case demote:

D···
Γ;∆1

x−→ A

E···
Γ, B;A,∆2

y−→ C
demote

Γ;A,∆2, B
y+w−→ C

cut (to show)
Γ;∆1,∆2, B

x+y+w−→ C
We reason as follows:

D′ :: Γ, B;∆1
x−→ A by weakening on D.

Γ, B;∆1,∆2
x+y−→ C by cut on (A,D′, E).

Γ;∆1,∆2, B
x+y+w−→ C by promote.

We have now covered all cases where the cut formula A does not appear as the principal
formula in either premise of the cut rule. This leaves the cases where A is principal in both
premises:

• Case A = a:
init

Γ; a
x−→ a

init
Γ; a

y−→ a
cut (to show)

Γ; a
x+y−→ a

We reason as follows:

Γ; a
x+y−→ a by init.

• Case A = 1:

1R
D :: Γ; · x−→ 1

E···
Γ,1;∆2

y−→ C
1L

Γ;∆2,1
y−→ C

cut (to show)
Γ;∆2

x+y−→ C

Here and in the following cases, we will use D to refer to the first subderiation of the
cut rule. As a reminder of this, the conclusion of the first subderivation is written as
D :: Γ;∆1

x−→ A in the general case.

We reason as follows:

Γ;∆2
x+y−→ C by ucut on (1,D, E).

• Case A = >: Impossible, as there is no left rule for >.

• Case A = 0: Impossible, as there is no right rule for 0.

• Case A = A1 &A2, i ∈ {1, 2}:

D1···
Γ;∆1

x−→ A1

D2···
Γ;∆1

y−→ A2

&R
D :: Γ;∆1

x+y−→ A1 &A2

E···
Γ, A1 &A2;∆2, Ai

z−→ C
&Li

Γ;∆2, A1 &A2
z−→ C

cut (to show)
Γ;∆1,∆2

x+y+z−→ C

We reason as follows:
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E ′ :: Γ,∆1;∆2, Ai
x+y+z−→ C by ucut on (A1 &A2,D, E).

D′
i :: Γ,∆1;∆1

x−→ Ai by weakening on Di.

Γ,∆1;∆1,∆2
x+y+z−→ C by cut on (Ai,D′

i, E ′).

Γ;∆1,∆2
x+y+z−→ C by contract (repeated).

• Case A = A1 ⊗A2:

D1···
Γ,∆2;∆1

x−→ A1

D2···
Γ,∆1;∆2

y−→ A2

⊗R
D :: Γ;∆1,∆2

x+y−→ A1 ⊗A2

E···
Γ, A1 ⊗A2;∆3, A1, A2

z−→ C
⊗L

Γ;∆3, A1 ⊗A2
z−→ C

cut (to show)
Γ;∆1,∆2,∆3

x+y+z−→ C

We reason as follows:

E ′ :: Γ,∆1,∆2;∆3, A1, A2
x+y+z−→ C by ucut on (A1 ⊗A2,D, E).

D′
1 :: Γ,∆1,∆2;∆1

x−→ A1 by weakening on D1.

F :: Γ,∆1,∆2;∆1,∆3, A2
x+y+z−→ C by cut on (A,D′

1, E ′).

D′
2 :: Γ,∆1,∆2;∆2

x−→ A2 by weakening on D2.

Γ,∆1,∆2;∆1,∆2,∆3
x+y+z−→ C by cut on (A,D′

2,F).

Γ;∆1,∆2,∆3
x+y+z−→ C by contract (repeated).

• Case A = A1 ⊕A2, i ∈ {1, 2}:

D′
···

Γ;∆1
x−→ Ai

⊕Ri

D :: Γ;∆1
x−→ A1 ⊕A2

E1···
Γ, A1 ⊕A2;∆2, A1

y−→ C

E2···
Γ, A1 ⊕A2;∆2, A2

z−→ C
⊕L

Γ;∆2, A1 ⊕A2
y+z−→ C

cut (to show)
Γ;∆1,∆2

x+y+z−→ C

We reason as follows:

E ′
i :: Γ,∆1;∆2, Ai

x+y+z−→ C by ucut on (A1 ⊕A2,D, Ei).

D′′ :: Γ,∆1;∆1
x−→ Ai by weakening on D.

Γ,∆1;∆1,∆2
x+y+z−→ C by cut on (Ai,D′′, Ei).

Γ;∆1,∆2
x+y+z−→ C by contract (repeated).

• Case A = A1 ( A2:

D′
···

Γ;∆1, A1
x−→ A2

( R
D :: Γ;∆1

x−→ A1 ( A2

E1···
Γ,∆3, A1 ( A2;∆2

y−→ A1

E2···
Γ,∆2, A1 ( A2;∆3, A2

z−→ C
( L

Γ;∆2,∆3, A1 ( A2
y+z−→ C

cut (to show)
Γ;∆1,∆2,∆3

x+y+z−→ C

We reason as follows:

E ′
1 :: Γ,∆1,∆3;∆2

x+y−→ A1 by ucut on (A1 ( A2,D, E1).

D′′ :: Γ,∆1,∆3;∆1, A1
x−→ A2 by weakening on D′.

Γ,∆1,∆3;∆1,∆2
x+y+z−→ A2 by cut on (A1, E ′

1,D′′).

F :: Γ,∆1,∆2,∆3;∆1,∆2
x+y+z−→ A2 by weakening.
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E ′
2 :: Γ,∆1,∆2,∆3;∆3, A2

x+z−→ C by ucut on (A1 ( A2,D, E2).

Γ,∆1,∆2,∆3;∆1,∆2,∆3
x+y+z−→ C by cut on (A2,F , E ′

2).

Γ;∆1,∆2,∆3
x+y+z−→ C by contract (repeated).

• Case demote:

D···
Γ;∆1

x−→ A

E···
Γ, A;∆2

y−→ C
demote

Γ;∆2, A
y+w−→ C

cut (to show)
Γ;∆1,∆2

x+y+w−→ C

We reason as follows:

Γ,∆1;∆2
x+y−→ C by ucut on (A,D, E).

Γ;∆1,∆2
x+y+w−→ C by demote (repeated).

This completes the cases for the cut rule. To complete the proof, we now need to
consider the cases for the ucut rule. Again, these can be dealt with in various ways. We
start by handling the cases where the second premise ends in a right rule:

• Case >R:
D···

Γ;∆1
x−→ A

>R
Γ, A;∆2

y−→ >
ucut (to show)

Γ,∆1;∆2
x+y−→ >

We reason as follows:

Γ,∆1;∆2
x+y−→ > by >R.

• Case 1R:
D···

Γ;∆1
x−→ A

1R
Γ, A; · y−→ 1

ucut (to show)
Γ,∆1; ·

x+y−→ 1

We reason as follows:

Γ,∆1; ·
x+y−→ 1 by 1R.

• Case &R:

D···
Γ;∆1

x−→ A

E1···
Γ, A;∆2

y−→ C1

E2···
Γ, A;∆2

z−→ C2

&R
Γ, A;∆2

y+z−→ C1 & C2

ucut (to show)
Γ,∆1;∆2

x+y+z−→ C1 & C2

We reason as follows:

E ′
1 :: Γ,∆1;∆2

x+y−→ C1 by ucut on (A,D, E1).

E ′
2 :: Γ,∆1;∆2

x+z−→ C2 by ucut on (A,D, E2).

Γ,∆1;∆2
x+y+z−→ C1 & C2 by &R on E ′

1 and E ′
2.
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• Case ⊗R:

D···
Γ;∆1

x−→ A

E1···
Γ,∆3, A;∆2

y−→ C1

E2···
Γ,∆2, A;∆3

z−→ C2

⊗R
Γ, A;∆2,∆3

y+z−→ C1 ⊗ C2

ucut (to show)
Γ,∆1;∆2,∆3

x+y+z−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ,∆3;∆1

x−→ A by weakening on D.

E ′
1 :: Γ,∆3,∆1;∆2

x+y−→ C1 by ucut on (A,D′
1, E1).

D′
2 :: Γ,∆2;∆1

x−→ A by weakening on D.

E ′
2 :: Γ,∆2,∆1;∆3

x+y−→ C2 by ucut on (A,D′
2, E2).

Γ,∆1;∆2,∆3
x+y+z−→ C1 ⊗ C2 by ⊗R on E ′

1 and E ′
2.

• Case ⊕Ri, i ∈ {1, 2}:

D···
Γ;∆1

x−→ A

E···
Γ, A;∆2

y−→ Ci

⊕Ri

Γ, A;∆2
y−→ C1 ⊕ C2

ucut (to show)
Γ,∆1;∆2

x+y−→ C1 ⊕ C2

We reason as follows:

Γ,∆1;∆2
x+y−→ Ci by ucut on (A,D, E).

Γ,∆1;∆2
x+y−→ C1 ⊕ C2 by ⊕Ri.

• Case ( R:

D···
Γ;∆1

x−→ A

E···
Γ, A;∆2, B

y−→ C
( R

Γ, A;∆2
y−→ B ( C

ucut (to show)
Γ,∆1;∆2

x+y−→ B ( C

We reason as follows:

Γ,∆1;∆2, B
x+y−→ C by ucut on (A,D, E).

Γ,∆1;∆2
x+y−→ B ( C by ( R.

Next, the cases where the second derivation ends in a left rule:

• Case 0L:
D···

Γ;∆1
x−→ A

0L
Γ, A;∆2,0

y−→ C
cut (to show)

Γ,∆1;∆2,0
x+y−→ C

We reason as follows:

Γ,∆1;∆2,0
x+y−→ C by 0L.
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• Case &Li, i ∈ {1, 2}:

D···
Γ;∆1

x−→ A

E···
Γ, B1 &B2, A;∆2, Bi

y−→ C
&Li

Γ, A;∆2, B1 &B2
y−→ C

cut (to show)
Γ,∆1;∆2, B1 &B2

x+y−→ C

We reason as follows:

D′ :: Γ, B1 &B2;∆1
x−→ A by weakening on D.

Γ, B1 &B2,∆1;∆2, Bi
x+y−→ C by ucut on (A,D′, E).

Γ,∆1;∆2, B1 &B2
x+y−→ C by &Li.

• Case 1L:

D···
Γ;∆1

x−→ A

E···
Γ,1, A;∆2

y−→ C
1L

Γ, A;∆2,1
y−→ C

cut (to show)
Γ,∆1;∆2,1

x+y−→ C
We reason as follows:

D′ :: Γ,1;∆1
x−→ A by weakening on D.

Γ,1,∆1;∆2
x+y−→ C by ucut on (A,D′, E).

Γ,∆1;∆2,1
x+y−→ C by 1L.

• Case ⊗L:

D···
Γ;∆1

x−→ A

E···
Γ, B1 ⊗B2, A;∆2, B1, B2

y−→ C
⊗L

Γ, A;∆2, B1 ⊗B2
y−→ C

cut (to show)
Γ,∆1;∆2, B1 ⊗B2

x+y−→ C
We reason as follows:

D′ :: Γ, B1 ⊗B2;∆1
x−→ A by weakening on D.

Γ, B1 ⊗B2,∆1;∆2, B1, B2
x+y−→ C by ucut on (A,D′, E).

Γ,∆1;∆2, B1 ⊗B2
x+y−→ C by ⊗L.

• Case ⊕L:

D···
Γ;∆1

x−→ A

E1···
Γ, B1 ⊕B2, A;∆2, B1

y−→ C

E2···
Γ, B1 ⊕B2, A;∆2, B2

z−→ C
⊕L

Γ, A;∆2, B1 ⊕B2
y+z−→ C

cut (to show)
Γ,∆1;∆2, B1 ⊕B2

x+y+z−→ C

We reason as follows:

D′ :: Γ, B1 ⊕B2;∆1
x−→ A by weakening on D.

E ′
1 :: Γ, B1 ⊕B2,∆1;∆2, B1

x+z−→ C by ucut on (A,D′, E1).

E ′
2 :: Γ, B1 ⊕B2,∆1;∆2, B2

y+z−→ C by ucut on (A,D′, E2).

Γ,∆1;∆2, B1 ⊕B2
x+y+z−→ C by ⊕L on E ′

1 and E ′
2.
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• Case ( L:

D···
Γ;∆1

x−→ A

E1···
Γ,∆3, B1 ( B2, A;∆2

y−→ B1

E2···
Γ,∆2, B1 ( B2;∆3, B2

z−→ C
( L

Γ, A;∆2,∆3, B1 ( B2
y+z−→ C

cut (to show)
Γ,∆1;∆2,∆3, B1 ( B2

x+y+z−→ C

We reason as follows:

D′
1 :: Γ,∆3, B1 ( B2;∆1

x−→ A by weakening on D.

E ′
1 :: Γ,∆3, B1 ( B2,∆1;∆2

x+y−→ B1 by ucut on (A,D′
1, E1).

D′
2 :: Γ,∆2, B1 ( B2;∆1

x−→ A by weakening on D.

E ′
1 :: Γ,∆2, B1 ( B2,∆1;∆3, B2

x+z−→ C by ucut on (A,D′
2, E1).

Γ,∆1;∆2,∆3, B1 ( B2
x+y+z−→ C by ( L on E ′

1 and E ′
2.

• Case promote, A not principal:

D···
Γ, B;∆1

x−→ A

E···
Γ, A;∆2, B

y−→ C
promote

Γ, B,A;∆2
y+c−→ C

cut (to show)
Γ, B,∆1;∆2

x+y+c−→ C

We reason as follows:

E ′ :: Γ, B,A;∆2, B
y−→ C by weakening on E .

Γ, B,∆1;∆2, B
x+y−→ C by ucut on (A,D, E).

Γ, B,B,∆1;∆2
x+y+c−→ C by promote.

Γ, B,∆1;∆2
x+y+c−→ C by ucontract.

• Case promote, A principal:

D···
Γ;∆1

x−→ A

E···
Γ;A,∆2

y−→ C
promote

Γ, A;∆2
y+c−→ C

cut (to show)
Γ,∆1;∆2

x+y+c−→ C

We reason as follows:

Γ;∆1,∆2
x+y−→ C by cut on (A,D, E).

Γ,∆1;∆2
x+y+c−→ C by promote (repeated).

• Case demote:

D···
Γ;∆1

x−→ A

E···
Γ, B,A;∆2

y−→ C
demote

Γ, A;∆2, B
y+w−→ C

cut (to show)
Γ,∆1;∆2, B

x+y+w−→ C

We reason as follows:
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D′ :: Γ, B;∆1
x−→ A by weakening on D.

Γ, B,∆1;∆2
x+y−→ C by ucut on (A,D′, E).

Γ,∆1;∆2, B
x+y+w−→ C by demote.

This completes the proof.

Theorem 15 (Completeness). If ∆
x

=⇒ C then Γ;∆
x−→ C for any Γ.

Proof. The proof proceeds by induction over the derivation ∆
x

=⇒ C:

• Case init:
init

a
x

=⇒ a
(to show)

Γ; a
x−→ a

We reason as follows:

Γ; a
x−→ a by init.

• Case >R:
>R

∆
x

=⇒ >
(to show)

Γ;∆
x−→ >

We reason as follows:

Γ;∆
x−→ > by >R.

• Case 0L:
0L

∆,0
x

=⇒ C
(to show)

Γ;∆,0
x−→ C

We reason as follows:

Γ;∆,0
x−→ C by 0L.

• Case 1R:
1R

· x
=⇒ 1

(to show)
Γ; · x−→ 1

We reason as follows:

Γ; · x−→ 1 by 1R.

• Case &Li, i ∈ {1, 2}:
D···

∆, Ai
x

=⇒ C
&Li

∆, A1 &A2
x

=⇒ C
(to show)

Γ;∆, A1 &A2
x−→ C

We reason as follows:

Γ, A1 &A2;∆, Ai
x−→ C by i.h. on D.

Γ;∆, A1 &A2
x−→ C by &Li.
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• Case &R:
D1···

∆
x

=⇒ C1

D2···
∆

y
=⇒ C2

&R
∆

x+y
=⇒ C1 & C2

(to show)
Γ;∆

x+y−→ C1 & C2

We reason as follows:

D′
1 :: Γ;∆

x−→ C1 by i.h. on D1.

D′
2 :: Γ;∆

y−→ C2 by i.h. on D2.

Γ;∆
x+y−→ C1 & C2 by &R on D′

1, D′
2.

• Case 1L:
D···

∆
x

=⇒ C
1L

∆,1
x

=⇒ C
(to show)

Γ;∆,1
x−→ C

We reason as follows:

Γ,1;∆
x−→ C by i.h. on D.

Γ;∆,1
x−→ C by 1L.

• Case ⊗L:
D···

∆, A1, A2
x

=⇒ C
⊗L

∆, A1 ⊗A2
x

=⇒ C
(to show)

Γ;∆, A1 ⊗A2
x−→ C

We reason as follows:

Γ, A1 ⊗A2;∆, A1, A2
x−→ C by i.h. on D.

Γ;∆, A1 ⊗A2
x−→ C by ⊗L.

• Case ⊗R:
D1···

∆1
x

=⇒ C1

D2···
∆2

y
=⇒ C2

⊗R
∆1,∆2

x+y
=⇒ C1 ⊗ C2

(to show)
Γ;∆1,∆2

x+y−→ C1 ⊗ C2

We reason as follows:

D′
1 :: Γ,∆2;∆1

x−→ C1 by i.h. on D1.

D′
2 :: Γ,∆1;∆2

y−→ C2 by i.h. on D2.

Γ;∆1,∆2
x+y−→ C1 ⊗ C2 by ⊗R on D′

1, D′
2.
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• Case ⊕L:
D1···

∆, A1
x

=⇒ C

D2···
∆, A2

y
=⇒ C

⊕L
∆, A1 ⊕A2

x+y
=⇒ C

(to show)
Γ;∆, A1 ⊕A2

x+y−→ C

We reason as follows:

D′
1 :: Γ, A1 ⊕A2;∆, A1

x−→ C by i.h. on D1.

D′
2 :: Γ, A1 ⊕A2;∆, A2

y−→ C by i.h. on D2.

Γ;∆, A1 ⊕A2
x+y−→ C by ⊕L on D′

1, D′
2.

• Case ⊕Ri, i ∈ {1, 2}:
D···

∆
x

=⇒ Ci

⊕Ri

∆
x

=⇒ C1 ⊕ C2

(to show)
Γ;∆

x−→ C1 ⊕ C2

We reason as follows:

Γ;∆
x−→ Ci by i.h. on D.

Γ;∆
x−→ C1 ⊕ C2 by ⊕Ri.

• Case ( L:
D1···

∆1
x

=⇒ A1

D2···
∆2, A2

y
=⇒ C

( L
∆1,∆2, A1 ( A2

x+y
=⇒ C

(to show)
Γ;∆1,∆2, A1 ( A2

x+y−→ C

We reason as follows:

D′
1 :: Γ,∆2, A1 ( A2;∆1

x−→ A1 by i.h. on D1.

D′
2 :: Γ,∆1, A1 ( A2;∆2, A2

y−→ C by i.h. on D2.

Γ;∆1,∆2, A1 ( A2
x+y−→ C by ( L on D′

1, D′
2.

• Case ( R:
D···

∆, C1
x

=⇒ C2

( R
∆

x
=⇒ C1 ( C2

(to show)
Γ;∆

x−→ C1 ( C2

We reason as follows:

Γ;∆, C1
x−→ C2 by i.h. on D.

Γ;∆
x−→ C1 ( C2 by ( R.
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• Case contract:
D···

∆, A,A
x

=⇒ C
contract

∆, A
x+c
=⇒ C

(to show)
Γ;∆, A

x+c−→ C

We reason as follows:

Γ;∆, A,A
x−→ C by i.h. on D.

Γ;∆, A
x+c−→ C by pcontract.

• Case weaken:
D···

∆
x

=⇒ C
weaken

∆, A
x+w
=⇒ C

(to show)
Γ;∆, A

x+w−→ C

We reason as follows:

Γ, A;∆
x−→ C by i.h. on D.

Γ;∆, A
x+w−→ C by demote.

This completes the proof.

Theorem 16 (Soundness). If Γ;∆
x−→ C, and this derivation does not use the ⊕L or &R

rules, then Γ?,∆
x

=⇒ C for some Γ? ⊆ Γ. If c � x i.e. there are no occurrences of the
promote rule in the given derivation, then Γ′ may be chosen to be empty.

Proof. To make the proof more intuitive, we will use (−)? to indicate that the given formula
may occur 0 or 1 times. This is extended to contexts in such a way that e.g. (A,B)? is
either (A,B), (A), (B) or (·). When we apply the contraction rule in the following, we will
allow the contraction of A? and A into just A. If A? = A this is just contraction, and if
A? = ·, the contraction rule simply disappears.

Similarly, given Γ?,Γ?, we can always contract this together into Γ? by repeated uses
of the contract rule.

The proof proceeds by induction on the derivation of Γ;∆
x−→ C:

• Case init:
init

Γ; a
x−→ a

(to show)
Γ?, a

x
=⇒ a

We reason as follows:

a
x

=⇒ a by init.

• Case >R:
>R

Γ;∆
x−→ >

(to show)
Γ?,∆

x
=⇒ >

We reason as follows:

∆
x

=⇒ > by >R.
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• Case 0L:

0L
Γ;∆,0

x−→ C
(to show)

Γ?,∆,0
x

=⇒ C

We reason as follows:

∆,0
x

=⇒ C by 0L.

• Case 1R:

1R
Γ; · x−→ 1

(to show)
Γ?, · x

=⇒ 1

We reason as follows:

· x
=⇒ 1 by 1R.

• Case &Li, i ∈ {1, 2}:
D···

Γ, A1 &A2;∆, Ai
x−→ C

&Li

Γ;∆, A1 &A2
x−→ C

(to show)
Γ?,∆, A1 &A2

x
=⇒ C

If c � x we reason as follows:

∆, Ai
x

=⇒ C by i.h. on D.

∆, A1 &A2
x

=⇒ C by &Li.

If c ≤ x, then x = x+ c and we reason as follows:

Γ?, (A1 &A2)
?,∆, Ai

x
=⇒ C by i.h. on D.

Γ?, (A2 &A2)
?,∆, A1 &A2

x
=⇒ C by &Li.

Γ?,∆, A1 &A2
x+c
=⇒ C by contract.

• Case 1L:
D···

Γ,1;∆
x−→ C

1L
Γ;∆,1

x−→ C
(to show)

Γ?,∆,1
x

=⇒ C

If c � x we reason as follows:

∆
x

=⇒ C by i.h. on D.

∆,1
x

=⇒ C by 1L.

If c ≤ x, then x = x+ c and we reason as follows:

Γ?,1?,∆
x

=⇒ C by i.h. on D.

Γ?,1?,∆,1
x

=⇒ C by 1L.

Γ?,∆,1
x+c
=⇒ C by contract.
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• Case ⊗L:
D···

Γ, A1 ⊗A2;∆, A1, A2
x−→ C

⊗L
Γ;∆, A1 ⊗A2

x−→ C
(to show)

Γ?,∆, A1 ⊗A2
x

=⇒ C

If c � x we reason as follows:

∆, A1, A2
x

=⇒ C by i.h. on D.

∆, A1 ⊗A2
x

=⇒ C by ⊗L.

If c ≤ x, then x = x+ c and we reason as follows:

Γ?, (A1 ⊗A2)
?,∆, A1, A2

x
=⇒ C by i.h. on D.

Γ?, (A2 ⊗A2)
?,∆, A1 ⊗A2

x
=⇒ C by ⊗L.

Γ?,∆, A1 ⊗A2
x+c
=⇒ C by contract.

• Case ⊕Ri, i ∈ {1, 2}:
D···

Γ;∆
x−→ Ci

⊕Ri

Γ;∆
x−→ C1 ⊕ C2

(to show)
Γ?,∆

x
=⇒ C1 ⊕ C2

We reason as follows:

Γ?,∆
x

=⇒ Ci by i.h. on D.

Γ?,∆
x

=⇒ C1 ⊕ C2 by ⊕Ri.

• Case ( R:
D···

Γ;∆, C1
x−→ C2

( R
Γ;∆

x−→ C1 ( C2

(to show)
Γ?,∆

x
=⇒ C1 ( C2

We reason as follows:

Γ?,∆, C1
x

=⇒ C2 by i.h. on D.

Γ?,∆
x

=⇒ C1 ( C2 by ( R.

• Case ⊗R:
D1···

Γ,∆2;∆1
x−→ C1

D2···
Γ,∆1;∆2

y−→ C2

⊗R
Γ;∆1,∆2

x+y−→ C1 ⊗ C2

(to show)
Γ?,∆1,∆2

x+y
=⇒ C1 ⊗ C2

If c � x+ y then c � x and c � y, and we reason as follows:

D′
1 :: ∆1

x
=⇒ C1 by i.h. on D1.

D′
2 :: ∆2

y
=⇒ C2 by i.h. on D2.

∆1,∆2
x+y
=⇒ C1 ⊗ C2 by ⊗R.
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If c ≤ x+ y, then x+ y = x+ y + c and we reason as follows:

D′
1 :: Γ?,∆?

2,∆1
x

=⇒ C1 by i.h. on D1.

D′
2 :: Γ?,∆?

1,∆2
y

=⇒ C2 by i.h. on D2.

Γ?,Γ?,∆?
1,∆

?
2,∆1,∆2

x+y
=⇒ C1 ⊗ C2 by ⊗R.

Γ?,∆1,∆2
x+y+c
=⇒ C1 ⊗ C2 by contract.

• Case ( L:

D1···
Γ,∆2, A1 ( A2;∆1

x−→ A1

D2···
Γ,∆1, A1 ( A2;∆2, A2

y−→ C
( L

Γ;∆1,∆2, A1 ( A2
x+y−→ C

(to show)
Γ?,∆1,∆2, A1 ( A2

x+y
=⇒ C

If c � x+ y then c � x and c � y, and we reason as follows:

D′
1 :: ∆1

x
=⇒ A1 by i.h. on D1.

D′
2 :: ∆2, A2

y
=⇒ C by i.h. on D2.

∆1,∆2, A1 ( A2
x+y
=⇒ C by ( L.

If c ≤ x+ y, then x+ y = x+ y + c and we reason as follows:

D′
1 :: Γ?,∆?

2, (A1 ( A2)
?,∆1

x
=⇒ A1 by i.h. on D1.

D′
2 :: Γ?,∆?

1, (A1 ( A2)
?,∆2, A2

y
=⇒ C by i.h. on D2.

Γ?,Γ?,∆?
1,∆

?
2, (A1 ( A2)

?, (A1 ( A2)
?,∆1,∆2, A1 ( A2

x+y
=⇒ C

by ( L.

Γ?,∆1,∆2, A1 ( A2
x+y+c
=⇒ C by contract.

• Case promote:
D···

Γ;∆, A
x−→ C

promote
Γ, A;∆

x+c−→ C
(to show)

Γ?, A?,∆
x+c
=⇒ C

We reason as follows:

Γ?, A?,∆, A
x+c
=⇒ C by i.h. on D.

Γ?,∆, A
x+c
=⇒ C by contract.

• Case demote:
D···

Γ, A;∆
x−→ C

promote
Γ;∆, A

x+w−→ C
(to show)

Γ?,∆, A
x+w
=⇒ C

We reason as follows:

Γ?, A?,∆
x

=⇒ C by i.h. on D.

Γ?,∆, A
x+w
=⇒ C by weaken.
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The preceding soundness theorem has a few extra restrictions that were not present in
the paper. The reason for this is that without these restrictions, the theorem is not true in
general. In the remainder of this appendix, we will discuss how soundness fails, and how
to fix the problem.

First of all, where does the proof of soundness break down? To see this, let us consider
the case for &R:

D1···
Γ;∆

x−→ C1

D2···
Γ;∆

y−→ C2

&R
Γ;∆

x+y−→ C1 & C2

(to show)
Γ?,∆

x+y
=⇒ C1 & C2

If c � x we reason as follows:

D′
1 :: ∆

x
=⇒ C1 by i.h. on D1.

D′
2 :: ∆

y
=⇒ C2 by i.h. on D2.

∆
x+y
=⇒ C1 & C2 by &R.

If c ≤ x, then x = x+ c and we reason as follows:

D′
1 :: Γ?,∆

x
=⇒ C1 by i.h. on D1.

D′
2 :: Γ?,∆

y
=⇒ C2 by i.h. on D2.

At this point, it would be tempting to attempt to reapply the &R rule in the hopes of

deriving Γ?,∆
x+y
=⇒ C1 &C2. Unfortunately, to apply the rule we need the context in both

premises to be exactly the same, and this is not necessarily the case. Recall that the
notation Γ? indicates some subset of Γ. In particular, there is no guarantee that the two
occurrences of Γ? in D′

1 and D′
2 in fact denote the same subset.

If we have w ≤ x+y, then we can simply apply weakening to both contexts, turning Γ?

into Γ, and then reapply the &R rule to get the desired result. Thus, the only case in which
the above proof does not go through is when the derivation is of the form Γ;∆

c−→ C,
where there is an occurrence of &R or ⊕L somewhere in the derivation. For this reason,
we will in the following focus on the case where the sequent arrow annotation is c, i.e. the
strict logic fragment.

Before we show how to fix this problem, we note that it is not simply a matter of
suitably reformulating the soundness theorem to get the proof to go through. To see this,
we note that we have the following derivation in our system:

init
·; a −→ a

init
a; b −→ b

init
b; a −→ a

promote
a, b; · −→ a

init
a; b −→ b

promote
a, b; · −→ b

&R
a, b; · −→ a& b

⊗R
a; b −→ b⊗ (a& b)

⊗R
·; a, b −→ a⊗ (b⊗ (a& b))

but there is clearly no way to derive a, b =⇒ a⊗ (b⊗ (a& b)) no matter how contraction
is applied.

The problem in this case is that by allowing the context Γ to be copied additively to
each premise, we allow the above type of “asymmetric contraction” which is unsound with
regard to ordinary contraction.
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A similar problem makes itself apparent with the ⊕L rule. To fix the above problem,
we replace the &R and ⊕L rules with the following rules:

·;∆ x−→ A ·;∆ y−→ B
&R

Γ;∆
x+y−→ A&B

·;∆, A
x−→ C ·;∆, B

y−→ C
⊕L

Γ;∆, A⊕B
x+y−→ C

·;∆, A⊕B,A
x−→ C ·;∆, A⊕B,B

y−→ C
⊕Lc

Γ;∆, A⊕B
x+y+c−→ C

Intuitively, these rules force any contraction (i.e. uses of the promote rule) to take place
before the next additive connective is decomposed. By doing this, we effectively prevent
the problem that caused the previous unsoundness.

The need for two ⊕L rules is unfortunate, but seems unavoidable in the current pre-
sentation. In effect it is due to the fact that the ⊕L rule is both additive — which implies
the “may use” context must be emptied — but also constitutes a use of the hypothesis
A⊕B; which we might want to decompose twice. For this reason we add the ⊕Lc rule to
allow for this contraction.

Remark Morally, the ⊕Lc rule should not be needed. To see this, we first note that the
⊕L rule in MALL is invertible, as e.g. the following derivation shows:

idAi

Ai =⇒ Ai

⊕Ri

Ai =⇒ A1 ⊕A2

···
∆, A1 ⊕A2 =⇒ C

cut
∆, Ai =⇒ C

Since both identity expansion and cut admissibility hold in strict logic, we get the desired
inversion property. Now, consider a derivation that applies contraction to a disjunction in
the context:

D···
∆, A1 ⊕A2, A1 ⊕A2 =⇒ C

contract
∆, A1 ⊕A2 =⇒ C

By appealing to the invertibility of A1 ⊕A2 repeatedly, we get the following derivations

D11 :: ∆, A1, A1 =⇒ C

D12 :: ∆, A1, A2 =⇒ C

D21 :: ∆, A2, A1 =⇒ C

D22 :: ∆, A2, A2 =⇒ C

From these, we may now construct the following derivation:

D11···
∆, A1, A1 =⇒ C

contract
∆, A1 =⇒ C

D22···
∆, A2, A2 =⇒ C

contract
∆, A2 =⇒ C

⊕L
∆, A1 ⊕A2 =⇒ C

By repeating the above procedure, we can ensure that contraction is not applied to dis-
junctions, hence the ⊕Lc rule should morally be superfluous. Unfortunately, the argument
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above relies on the fact that cut is admissible — the very fact we want to prove — and
hence cannot be used directly.

That aside, let us now show that with the altered &R and ⊕L rules above, the system
is sound with regard to MALL. The situation in the &R case is now as follows:

D1···
·;∆ x−→ C1

D2···
·;∆ y−→ C2

&R
Γ;∆

x+y−→ C1 & C2

(to show)
Γ?,∆

x+y
=⇒ C1 & C2

We reason as follows:

D′
1 :: (·)?,∆ x

=⇒ C1 by i.h. on D1.

D′
2 :: (·)?,∆ y

=⇒ C2 by i.h. on D2.

Because (·)? = · the two contexts are equal, and we may now apply the &R rule to get the
desired derivation.

• Case ⊕L:
D1···

·;∆, A1
x−→ C

D2···
·;∆, A2

y−→ C
⊕L

Γ;∆, A1 ⊕A2
x+y−→ C

(to show)
Γ?,∆, A1 ⊕A2

x+y
=⇒ C

We reason as follows:

D′
1 :: (·)?,∆, A1

x
=⇒ C by i.h. on D1.

D′
2 :: (·)?,∆, A2

y
=⇒ C by i.h. on D2.

∆, A1 ⊕A2
x+y
=⇒ C by ⊕L on D′

1 and D′
2.

• Case ⊕Lc:
D1···

·;∆, A1 ⊕A2, A1
x−→ C

D2···
·;∆, A2 ⊕A2, A2

y−→ C2

⊕Lc

Γ;∆, A1 ⊕A2
x+y+c−→ C

(to show)
Γ?,∆, A1 ⊕A2

x+y+c
=⇒ C

We reason as follows:

D′
1 :: (·)?,∆, A1 ⊕A2, A1

x
=⇒ by i.h. on D1.

D′
2 :: (·)?,∆, A1 ⊕A2, A2

y
=⇒ C by i.h. on D2.

∆, A1 ⊕A2, A1 ⊕A2
x+y
=⇒ by ⊕L on D′

1 and D′
2.

∆, A1 ⊕A2
x+y+c
=⇒ C by contract.

With the above change, we have thus regained soundness, but of course it is no longer clear
that the system is internally sound, i.e. has the cut elimination property. To show this,
we must go through the weakening, contraction and cut theorems and show that these
properties continue to hold in this new system.

Before we do that, however, we need the following useful lemma
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Lemma 4 (Strengthening). If Γ, A;∆
x−→ C then either Γ;∆

x−→ C or Γ;∆, A
x−→ C and

c ≤ x. In either case, the height of the resulting derivation is no greater than the height of
the given derivation.

Proof. By induction on the given derivation of Γ, A;∆
x−→ C. We use the shorthand

Γ;∆, A? x−→ C to represent the result of appealing to the induction hypothesis in cases
where it does not matter whether A was strengthened away or not.

• Case init:

D :: init
Γ, A; a

x−→ a

We reason as follows:

Γ; a
x−→ a by init.

• Case >R:

D :: >R
Γ, A;∆

x−→ >
We reason as follows:

Γ;∆
x−→ > by >R.

• Case 0L:

D :: 0L
Γ, A;∆,0

x−→ C

We reason as follows:

Γ;∆,0
x−→ C by 0L.

• Case 1R:

D :: 1R
Γ, A; · x−→ 1

We reason as follows:

Γ; · x−→ 1 by 1R.

• Case &Li, i ∈ {1, 2}:
D···

Γ, A,A1 &A2;∆, Ai
x−→ C

&Li

Γ, A;∆, A1 &A2
x−→ C

We reason as follows:

Γ, A1 &A2;∆, A?, Ai
x−→ C by i.h. on D.

Γ;∆, A?, A1 &A2
x−→ C by &Li.

• Case &R:
D1···

·;∆ x−→ C1

D2···
·;∆ y−→ C2

&R
Γ, A;∆

x+y−→ C1 & C2

We reason as follows:

Γ;∆
x+y−→ C1 & C2 by &R on D1 and D2.
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• Case 1L:
D···

Γ, A,1;∆
x−→ C

1L
Γ, A;∆,1

x−→ C

We reason as follows:

Γ,1;∆, A? x−→ C by i.h. on D.

Γ;∆, A?,1
x−→ C by 1L.

• Case ⊗L:
D···

Γ, A,A1 ⊗A2;∆, A1, A2
x−→ C

⊗L
Γ, A;∆, A1 ⊗A2

x−→ C

We reason as follows:

Γ, A1 ⊗A2;∆, A?, A1, A2
x−→ C by i.h. on D.

Γ;∆, A?, A1 ⊗A2
x−→ C by ⊗L.

• Case ⊗R:
D1···

Γ, A,∆2;∆1
x−→ C1

D2···
Γ, A,∆1;∆2

y−→ C2

⊗R
Γ, A;∆1,∆2

x+y−→ C1 ⊗ C2

If applying the induction hypothesis to D1 and D2 yields either D′
1 :: Γ,∆2;∆1, A

x−→
C1 or D′

2 :: Γ,∆1;∆2, A
y−→ C2, we reason as follows:

Γ;∆1,∆2, A
x+y−→ C1 ⊗ C2 by ⊗R on D′

1 and D2 or D1 and D′
2.

Otherwise, A must be strengthened away from each subderivation, and we reason as
follows:

D′
1 :: Γ,∆2;∆1

x−→ C1 by i.h. on D1.

D′
2 :: Γ,∆1;∆2

x−→ C2 by i.h. on D2.

Γ;∆1,∆2
x+y−→ C1 ⊗ C2 by ⊗R on D′

1 and D′
2.

• Case ⊕L:
D1···

·;∆, A1
x−→ C

D2···
·;∆, A2

y−→ C
⊕L

Γ, A;∆, A1 ⊕A2
x+y−→ C

We reason as follows:

Γ;∆, A1 ⊕A2
x+y−→ C by ⊕L.

• Case ⊕Lc:
D1···

·;∆, A1 ⊕A2, A1
x−→ C

D2···
·;∆, A1 ⊕A2, A2

y−→ C
⊕Lc

Γ, A;∆, A1 ⊕A2
x+y+c−→ C

We reason as follows:
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Γ;∆, A1 ⊕A2
x+y+c−→ C by ⊕Lc.

• Case ⊕Ri, i ∈ {1, 2}:
D···

Γ, A;∆
x−→ Ci

⊕Ri

Γ, A;∆
x−→ C1 ⊕ C2

We reason as follows:

Γ;∆, A? x−→ Ci by i.h. on D.

Γ;∆, A? x−→ C1 ⊕ C2 by ⊕Ri.

• Case ( L:

D1···
Γ, A,∆2, A1 ( A2;∆1

x−→ A1

D2···
Γ, A,∆1, A1 ( A2;∆2, A2

y−→ C
( L

Γ, A;∆1,∆2, A1 ( A2
x+y−→ C

If applying the induction hypothesis to D1 and D2 yields either D′
1 :: Γ,∆2, A1 (

A2;∆1, A
x−→ A1 or D′

2 :: Γ,∆1, A1 ( A2;∆2, A2, A
y−→ C, we reason as follows:

Γ;∆1,∆2, A1 ( A2, A
x+y−→ C

by ( L on D′
1 and D2 or D1 and D′

2.

Otherwise, A must be strengthened away from each subderivation, and we reason as
follows:

D′
1 :: Γ,∆2, A1 ( A2;∆1

x−→ A1 by i.h. on D1.

D′
2 :: Γ,∆1, A1 ( A2;∆2, A2

x−→ C by i.h. on D2.

Γ;∆1,∆2, A1 ( A2
x+y−→ C by ( L on D′

1 and D′
2.

• Case ( R:
D···

Γ, A;∆, C1
x−→ C2

( R
Γ, A;∆

x−→ C1 ( C2

We reason as follows:

Γ;∆, A?, C1
x−→ C2 by i.h. on D.

Γ;∆, A? x−→ C1 ( C2 by ( R.

• Case promote, A not principal:

D···
Γ, A;∆, B

x−→ C
promote

Γ, A,B;∆
x+c−→ C

We reason as follows:

Γ;∆, A?, B
x−→ C by i.h. on D.

Γ, B;∆, A? x+c−→ C by promote.
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• Case promote, A principal:
D···

Γ;∆, A
x−→ C

promote
Γ, A;∆

x+c−→ C
We reason as follows:

Γ;∆, A
x−→ C by D.

• Case demote:
D···

Γ, A,B;∆
x−→ C

demote
Γ, A;∆, B

x+w−→ C
We reason as follows:

Γ, B;∆, A? x−→ C by i.h. on D.

Γ;∆, A?, B
x+w−→ C by demote.

This completes the proof.

By repeatedly applying the preceding lemma, we get the following useful corollary:

Corollary 1. If Γ;∆
x−→ C then ·; Γ′,∆

x−→ C for some Γ′ ⊆ Γ. Furthermore, if c � x
then Γ′ is empty.

We are now in a position to reprove the remaining theorems of the paper for this new
system. As there is a substantial overlap between the inference rules, we will only prove
the new cases, i.e. the cases where the &R and ⊕L rules were involved. The remaining
cases are unchanged.

Theorem 17 (Weakening). The following rule is admissible:

Γ;∆
x−→ C

weaken
Γ, A;∆

x−→ C

Furthermore, it is strongly admissible, in the sense that it does not change the shape of
the resulting derivation.

Proof. • Case &R:
D1···

·;∆ x−→ C1

D2···
·;∆ y−→ C2

&R
Γ;∆

x+y−→ C1 & C2

(to show)
Γ, A;∆

x+y−→ C1 & C2

We reason as follows:

Γ, A;∆
x+y−→ C1 & C2 by &R on D1 and D2.

• Case ⊕L:
D1···

·;∆, A1
x−→ C

D2···
·;∆, A2

y−→ C
⊕L

Γ;∆, A1 ⊕A2
x+y−→ C

(to show)
Γ, A;∆, A1 ⊕A2

x+y−→ C
We reason as follows:
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Γ, A;∆, A1 ⊕A2
x+y−→ C by ⊕L on D1 and D2.

• Case ⊕Lc:
D1···

·;∆, A1 ⊕A2, A1
x−→ C

D2···
·;∆, A1 ⊕A2, A2

y−→ C
⊕Lc

Γ;∆, A1 ⊕A2
x+y+c−→ C

(to show)
Γ, A;∆, A1 ⊕A2

x+y+c−→ C

We reason as follows:

Γ, A;∆, A1 ⊕A2
x+y+c−→ C by ⊕Lc on D1 and D2.

This completes the proof.

Theorem 18 (Contraction). The following inference rules are admissible

Γ, A,A;∆
x−→ C

ucontract
Γ, A;∆

x−→ C

Γ, A;∆, A
x−→ C

contract
Γ;∆, A

x−→ C

Γ;∆, A,A
x−→ C

pcontract
Γ;∆, A

x+c−→ C

Proof. First, note that by applying the strengthening lemma to

Γ, A,A;∆
x−→ C

we get either

Γ, A;∆
x−→ C

in which case we have shown ucontract admissible, or

Γ, A;∆, A
x−→ C, c ≤ x

in which case we can appeal to the admissibility of contract to get

···
Γ, A;∆, A

x−→ C
contract

Γ;∆, A
x−→ C

promote
Γ, A;∆

x−→ C

as c ≤ x implies x = x + c. Thus, the admissibility of the ucontract rule follows directly
from the admissibility of the contract rule. Similarly, to prove the admissibility of the
contract rule, we can apply the strengthening lemma to

Γ, A;∆, A
x−→ C

to get either

Γ;∆, A
x−→ C

in which case we are done, or

Γ;∆, A,A
x−→ C, c ≤ x

in which case we may appeal directly to the pcontract rule. Thus, we only need to consider
cases for the pcontract rule in the following. We proceed by induction on the height of the
given derivation.
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• Case &R:
D1···

·;∆, A,A
x−→ C1

D2···
·;∆, A,A

y−→ C2

&R
Γ;∆, A,A

x+y−→ C1 & C2

(to show)
Γ;∆, A

x+y+c−→ C1 & C2

We reason as follows:

D′
1 :: ·;∆, A

x+c−→ C1 by pcontract on D1.

D′
2 :: ·;∆, A

y+c−→ C2 by pcontract on D2.

Γ;∆, A
x+y+c−→ C1 & C2 by &R on D′

1 and D′
2.

• Case ⊕L, A = A1 ⊕A2 principal:

D1···
·;∆, A1 ⊕A2, A1

x−→ C

D2···
·;∆, A1 ⊕A2, A2

y−→ C
⊕L

Γ;∆, A1 ⊕A2, A1 ⊕A2
x+y−→ C

(to show)
Γ;∆, A1 ⊕A2

x+y+c−→ C

We reason as follows:

Γ;∆, A1 ⊕A2
x+y+c−→ C by ⊕Lc on D1 and D2.

• Case ⊕L, A not principal:

D1···
·;∆, A,A,A1

x−→ C

D2···
·;∆, A,A,A2

y−→ C
⊕L

Γ;∆, A,A,A1 ⊕A2
x+y−→ C

(to show)
Γ;∆, A,A1 ⊕A2

x+y+c−→ C

We reason as follows:

D′
1 :: ·;∆, A,A1

x+c−→ C by pcontract on D1.

D′
2 :: ·;∆, A,A2

y+c−→ C by pcontract on D2.

Γ;∆, A,A1 ⊕A2
x+y+c−→ C by ⊕L on D′

1 and D′
2.

• Case ⊕Lc, A = A1 ⊕A2 principal:

D1···
·;∆, A1 ⊕A2, A1 ⊕A2, A1

x−→ C

D2···
·;∆, A1 ⊕A2, A1 ⊕A2, A2

y−→ C
⊕Lc

Γ;∆, A1 ⊕A2, A1 ⊕A2
x+y−→ C

(to show)
Γ;∆, A1 ⊕A2

x+y+c−→ C

We reason as follows:

D′
1 :: ·;∆, A1 ⊕A2, A1

x+c−→ C by pcontract on D1.

D′
2 :: ·;∆, A1 ⊕A2, A2

y+c−→ C by pcontract on D2.

Γ;∆, A1 ⊕A2
x+y+c−→ C by ⊕Lc on D′

1 and D′
2.
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• Case ⊕Lc, A not principal:

D1···
·;∆, A,A,A1 ⊕A2, A1

x−→ C

D2···
·;∆, A,A,A1 ⊕A2, A2

y−→ C
⊕Lc

Γ;∆, A,A,A1 ⊕A2
x+y+c−→ C

(to show)
Γ;∆, A,A1 ⊕A2

x+y+c−→ C

We reason as follows:

D′
1 :: ·;∆, A,A1 ⊕A2, A1

x+c−→ C by pcontract on D1.

D′
2 :: ·;∆, A,A1 ⊕A2, A2

y+c−→ C by pcontract on D2.

Γ;∆, A,A1 ⊕A2
x+y+c−→ C by ⊕Lc on D′

1 and D′
2.

This completes the proof.

Theorem 19 (Cut admissibility). The following inference rules are admissible

Γ;∆1
x−→ A Γ;A,∆2

y−→ C
cut

Γ;∆1,∆2
x+y−→ C

Γ;∆1
x−→ A Γ, A;∆2

y−→ C
ucut

Γ,∆1;∆2
x+y−→ C

Proof. In addition to the cases we proved in the previous cut admissibility theorem, we
need to revisit the following cases for cut:

1. Cases where the first premise ends in ⊕L or ⊕Lc.

2. Cases where the second premise ends in &R.

3. Cases where the second premise ends in ⊕L or ⊕Lc, and finally

4. The principal cases for ⊕ and &.

For the ucut rule, we can appeal to the strengthening lemma, which we will show at the
end of the proof. We will now consider these cases in the order indicated above. First, the
cases where the first premise ends in an ⊕L or ⊕Lc rule:

• Case ⊕L:

D1···
·;∆1, B1

x−→ A

D2···
·;∆1, B2

y−→ A
⊕L

Γ;∆1, B1 ⊕B2
x+y−→ A

E···
Γ;A,∆2

z−→ C
cut (to show)

Γ;∆1, B1 ⊕B2,∆2
x+y+z−→ C

We reason as follows:

E ′ :: ·;A,∆2,Γ
′ y−→ C, Γ′ ⊆ Γ by strengthening on E .

D′
1 :: ·;∆1, B1,∆2,Γ

′ x+z−→ C by cut on (A,D1, E ′).

D′
2 :: ·;∆1, B2,∆2,Γ

′ y+z−→ C by cut on (A,D2, E ′).

Γ;∆1, B1 ⊕B2,∆2,Γ
′ x+y+z−→ C by ⊕L on D′

1 and D′
2.

Now, either Γ′ = ·, in which case we are done, or c ≤ z in which case we can promote
all items in Γ′ into the other context to get

Γ,Γ′;∆1, B1 ⊕B2,∆2
x+y+z−→ C

from which the desired result follows by applying ucontract repeatedly.
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• Case ⊕Lc:

D1···
·;∆1, B1 ⊕B2, B1

x−→ A

D2···
·;∆1, B1 ⊕B2, B2

y−→ A
⊕Lc

Γ;∆1, B1 ⊕B2
x+y+c−→ A

E···
Γ;A,∆2

z−→ C
cut (to show)

Γ;∆1, B1 ⊕B2,∆2
x+y+z+c−→ C

We reason as follows:

E ′ :: ·;A,∆2,Γ
′ z−→ C, Γ′ ⊆ Γ by strengthening on E .

D′
1 :: ·;∆1, B1 ⊕B2, B1,∆2,Γ

′ x+z−→ C by cut on (A,D1, E ′).

D′
2 :: ·;∆1, B1 ⊕B2, B2,∆2,Γ

′ y+z−→ C by cut on (A,D2, E ′).

Γ;∆1, B1 ⊕B2,∆2,Γ
′ x+y+z+c−→ C by ⊕Lc on D′

1 and D′
2.

Γ,Γ′;∆1, B1 ⊕B2,∆2
x+y+z+c−→ C by promote (repeated).

Γ;∆1, B1 ⊕B2,∆2
x+y+z+c−→ C by ucontract (repeated).

Next, we have the single case where the second premise ends in a &R rule:

• Case &R:

D···
Γ;∆1

x−→ A

E1···
·;A,∆2

y−→ C1

E2···
·;A,∆2

z−→ C2

&R
Γ;A,∆2

y+z−→ C1 & C2

cut (to show)
Γ;∆1,∆2

x+y+z−→ C1 & C2

We reason as follows:

D′ :: ·;∆1,Γ
′ x−→ A, Γ′ ⊆ Γ by strengthening on D.

E ′
1 :: ·;∆1,Γ

′,∆2
x+y−→ C1 by cut on (A,D′, E1).

E ′
2 :: ·;∆1,Γ

′,∆2
x+z−→ C2 by cut on (A,D′, E2).

Γ;∆1,Γ
′,∆2

x+y+z−→ C1 & C2 by &R on E ′
1 and E ′

2.

Now, if Γ′ = ·, we are done. If not, we must have c ≤ x, in which case we can promote
all items in Γ′ into the other context to get

Γ,Γ′;∆1,∆2
x+y+z−→ C1 & C2

from which the desired result follows by repeated use of the admissible ucontract rule.

Next, we consider the cases where the second derivation ends in either the ⊕L or ⊕Lc rule,
and for which the cut formula is not the principal formula:

• Case ⊕L:

D···
Γ;∆1

x−→ A

E1···
·;A,∆2, B1

y−→ C

E2···
·;A,∆2, B2

z−→ C
⊕L

Γ;A,∆2, B1 ⊕B2
y+z−→ C

cut (to show)
Γ;∆1,∆2, B1 ⊕B2

x+y+z−→ C

We reason as follows:
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D′ :: ·;∆1,Γ
′ x−→ A, Γ′ ⊆ Γ by strengthening on D.

E ′
1 :: ·;∆1,Γ

′,∆2, B1
x+z−→ C by cut on (A,D′, E1).

E ′
2 :: ·;∆1,Γ

′,∆2, B2
y+z−→ C by cut on (A,D′, E2).

Γ;∆1,Γ
′,∆2, B1 ⊕B2

x+y+z−→ C by ⊕L on E ′
1 and E ′

2.

Now, if Γ′ = ·, we are done. If not, we must have c ≤ x, in which case we can promote
all items in Γ′ into the other context to get

Γ,Γ′;∆1,∆2, B1 ⊕B2
x+y+z−→ C

from which the desired result follows by repeated use of the admissible ucontract rule.

• Case ⊕Lc:

D···
Γ;∆1

x−→ A

E1···
·;A,∆2, B1 ⊕B2, B1

y−→ C

E2···
·;A,∆2, B1 ⊕B2, B2

z−→ C
⊕Lc

Γ;A,∆2, B1 ⊕B2
y+z+c−→ C

cut (to show)
Γ;∆1,∆2, B1 ⊕B2

x+y+z+c−→ C

We reason as follows:

D′ :: ·;∆1,Γ
′ x−→ A, Γ′ ⊆ Γ by strengthening on D.

E ′
1 :: ·;∆1,Γ

′,∆2, B1 ⊕B2, B1
x+z−→ C by cut on (A,D′, E1).

E ′
2 :: ·;∆1,Γ

′,∆2, B1 ⊕B2, B2
y+z−→ C by cut on (A,D′, E2).

Γ;∆1,Γ
′,∆2, B1 ⊕B2

x+y+z+c−→ C by ⊕Lc on E ′
1 and E ′

2.

Γ,Γ′;∆1,∆2, B1 ⊕B2
x+y+z+c−→ C by promote (repeated).

Γ;∆1,∆2, B1 ⊕B2
x+y+z+c−→ C by ucontract (repeated).

Finally, we have the principal cases for cut. Note that there are two cases for ⊕, depending
on which left rule is used:

• Case A = A1 &A2, i ∈ {1, 2}:

D1···
·;∆1

x−→ A1

D2···
·;∆1

y−→ A2

&R
D :: Γ;∆1

x+y−→ A1 &A2

E···
Γ, A1 &A2;∆2, Ai

z−→ C
&Li

Γ;∆2, A1 &A2
z−→ C

cut (to show)
Γ;∆1,∆2

x+y+z−→ C

We reason as follows:

E ′ :: Γ,∆1;∆2, Ai
x+y+z−→ C by ucut on (A1 &A2,D, E).

D′
i :: Γ,∆1;∆1

x+y−→ Ai by weakening on Di.

Γ,∆1;∆1,∆2
x+y+z−→ C by cut on (Ai,D′

i, E ′).

Γ;∆1,∆2
x+y+z−→ C by contract (repeated).

• Case A = A1 ⊕A2, i ∈ {1, 2}:

D′
···

Γ;∆1
x−→ Ai

⊕Ri

D :: Γ;∆1
x−→ A1 ⊕A2

E1···
·;∆2, A1

y−→ C

E2···
·;∆2, A2

z−→ C
⊕L

Γ;∆2, A1 ⊕A2
y+z−→ C

cut (to show)
Γ;∆1,∆2

x+y+z−→ C
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We reason as follows:

E ′
i :: Γ;∆2, Ai

x+y−→ C by weakening on Ei.

Γ;∆1,∆2
x+y+z−→ C by cut on (Ai,D, E ′

i).

• Case A = A1 ⊕A2, i ∈ {1, 2}:

D′
···

Γ;∆1
x−→ Ai

⊕Ri

D :: Γ;∆1
x−→ A1 ⊕A2

E1···
·;∆2, A1 ⊕A2, A1

y−→ C

E2···
·;∆2, A1 ⊕A2, A2

z−→ C
⊕Lc

Γ;∆2, A1 ⊕A2
y+z+c−→ C

cut (to show)
Γ;∆1,∆2

x+y+z+c−→ C

We reason as follows:

E ′
i :: Γ;∆2, A1 ⊕A2, Ai

y+z−→ C by weakening on Ei.

E ′′
i :: Γ;∆2,∆1, Ai

x+y+z−→ C by cut on (A1 ⊕A2,D, E ′
i).

Γ;∆1,∆1,∆2
x+y+z−→ C by cut on (Ai,D′, E ′′

i ).

Γ;∆1,∆2
x+y+z+c−→ C by pcontract (repeated).

This concludes the cases for the cut rule.

For the ucut rule, we reason as follows. Given

D···
Γ;∆1

x−→ A

E···
Γ, A;∆2

y−→ C
ucut (to show)

Γ,∆1;∆2
x+y−→ C

we first apply the strengthening lemma to E . If this results in a derivation of

Γ;∆2
y−→ C

then the result is immediate by the admissibility of weakening. If not, we have a derivation

E ′ :: Γ;∆2, A
y−→ C

and c ≤ y. Applying the cut rule to (A,D, E ′) yields a derivation of the sequent

Γ;∆1,∆2
x+y−→ C

and as c ≤ y we have x + y = x + y + c and we can therefore apply the promote rule
repeatedly to get a derivation of the desired sequent.

This concludes the proof.

Finally, we show that our system is still complete with regard to MALL:

Theorem 20 (Completeness). If ∆
x

=⇒ C then Γ;∆
x−→ C for any Γ.

Proof. The cases where the last rule in the given derivation is not &R or ⊕L carry over
directly from the previous proof of completeness. The remaining two cases we handle as
follows:
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• Case &R:
D1···

∆
x

=⇒ C1

D2···
∆

y
=⇒ C2

&R
∆

x+y
=⇒ C1 & C2

(to show)
Γ;∆

x+y−→ C1 & C2

We reason as follows:

D′
1 :: ·;∆ x−→ C1 by i.h. on D1.

D′
2 :: ·;∆ y−→ C2 by i.h. on D2.

Γ;∆
x+y−→ C1 & C2 by &R on D′

1, D′
2.

• Case ⊕L:
D1···

∆, A1
x

=⇒ C

D2···
∆, A2

y
=⇒ C

⊕L
∆, A1 ⊕A2

x+y
=⇒ C

(to show)
Γ;∆, A1 ⊕A2

x+y−→ C
We reason as follows:

D′
1 :: ·;∆, A1

x−→ C by i.h. on D1.

D′
2 :: ·;∆, A2

y−→ C by i.h. on D2.

Γ;∆, A1 ⊕A2
x+y−→ C by ⊕L on D′

1, D′
2.

This completes the proof.

A.2 Proofs concerning the focused calculus

Lemma 5 (Strengthening). The following properties hold:

1. If Γ, π;∆, [N ] −→ ν then either Γ;∆, [N ] −→ ν or Γ;∆, π, [N ] −→ ν.

2. If Γ, π;∆ −→ [P ] then either Γ;∆ −→ [P ] or Γ;∆, π −→ [P ].

Furthermore, the resulting output derivations have the same structure as the input deriva-
tions.

Proof. By induction over the structure of Γ, π;∆, [N ] −→ ν and Γ, π;∆ −→ [P ]. We use
the notation π? to represent either π or ·, in cases where our reasoning is the same for both
cases.

• Case init−:
init−

Γ, π; [n] −→ n
(to show)

Γ;π?, [n] −→ n
We reason as follows:

Γ; [n] −→ n by init−.

• Case &Li:
D

Γ, π;∆, [Ni] −→ ν
&Li

Γ, π;∆, [N1 &N2] −→ ν
(to show)

Γ;∆, π?, [N1 &N2] −→ ν
We reason as follows:

72



Substructural Cut Elimination Taus Brock-Nannestad

D′ :: Γ;∆, π?, [Ni] −→ ν by the induction hypothesis on D.

Γ;∆, π?, [N1 &N2] −→ ν by &Li.

• Case (L:
D

Γ, π,∆2;∆1 −→ [P ]

E

Γ, π,∆1;∆2, [N ] −→ ν
(L

Γ, π;∆1,∆2, [P ( N ] −→ ν
(to show)

Γ;∆1,∆2, π
?, [P ( N ] −→ ν

We reason as follows: if applying the induction hypothesis to D results in a derivation
D′ :: Γ,∆2;∆1, π −→ [P ], we have

Γ;∆1,∆2, π, [P ( N ] −→ ν by (L on D′ and E .

Likewise, if applying the induction hypothesis to E results in a derivation E ′ ::
Γ,∆1;∆2, π, [N ] −→ ν, we have

Γ;∆1,∆2, π, [P ( N ] −→ ν by (L on D and E ′.

Otherwise, π must be strengthened away from both derivations, and we reason as
follows:

D′ :: Γ,∆2;∆1 −→ [P ] by the induction hypothesis on D.
E ′ :: Γ,∆1;∆2, [N ] −→ ν by the induction hypothesis on E .

Γ;∆1,∆2, [P ( N ] −→ ν by (L on D′, E ′.

• Case ↑L: Here, we have two cases, depending on what happens to π:

D

Γ,∆, 〈P 〉 −→ 〈ν〉
↑L

Γ, (Γ′, π);∆, [↑P ] −→ ν
(to show)

Γ,Γ′;∆, π?, [↑P ] −→ ν

In this case we reason as follows:

Γ,Γ′;∆, [↑P ] −→ ν by ↑L on D.

In the other case, we have

D

(Γ, π),∆, 〈P 〉 −→ 〈ν〉
↑L

(Γ, π),Γ′;∆, [↑P ] −→ ν
(to show)

Γ,Γ′;∆, π?, [↑P ] −→ ν

and we reason as follows:

Γ,Γ′;∆, π, [↑P ] −→ ν by ↑L on D.

• Case init+:
init+

Γ, π; p −→ [p]
(to show)

Γ;π?, p −→ [p]

We reason as follows:

Γ; p −→ [p] by init−.
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• Case 1R:
1R

Γ, π; · −→ [1]
(to show)

Γ;π? −→ [1]

We reason as follows:

Γ; · −→ [1] by 1R.

• Case ⊗R:
D

Γ, π,∆2;∆1 −→ [P ]

E

Γ, π,∆1;∆2 −→ [Q]
⊗R

Γ, π;∆1,∆2 −→ [P ⊗Q]
(to show)

Γ;∆1,∆2, π
? −→ [P ⊗Q]

We reason as follows: if applying the induction hypothesis to D results in a derivation
D′ :: Γ,∆2;∆1, π −→ [P ], we have

Γ;∆1,∆2, π −→ [P ⊗Q] by ⊗R on D′ and E .

Likewise, if applying the induction hypothesis to E results in a derivation E ′ ::
Γ,∆1;∆2, π −→ [Q], we have

Γ;∆1,∆2, π −→ [P ⊗Q] by ⊗R on D and E ′.

Otherwise, π must be strengthened away from both derivations, and we reason as
follows:

D′ :: Γ,∆2;∆1 −→ [P ] by the induction hypothesis on D.
E ′ :: Γ,∆1;∆2 −→ [Q] by the induction hypothesis on E .

Γ;∆1,∆2 −→ [P ⊗Q] by ⊗R on D′, E ′.

• Case ⊕Ri:
D

Γ, π;∆ −→ [Pi]
⊕Ri

Γ, π;∆ −→ [P1 ⊕ P2]
(to show)

Γ;∆, π? −→ [P1 ⊕ P2]

We reason as follows:

Γ;∆, π? −→ [Pi] by the induction hypothesis on D.

Γ;∆, π? −→ [P1 ⊕ P2] by ⊕Ri.

• Case ↓L: Here, we have two cases, depending on what happens to π:

D

Γ,∆ −→ 〈N〉
↓R

Γ, (Γ′, π);∆ −→ [↓N ]
(to show)

Γ,Γ′;∆, π? −→ [↓N ]

In this case we reason as follows:

Γ,Γ′;∆ −→ [↓N ] by ↓R on D.
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In the other case, we have

D

(Γ, π),∆ −→ 〈N〉
↓R

(Γ, π),Γ′;∆ −→ [↓N ]
(to show)

Γ,Γ′;∆, π? −→ [↓N ]

and we reason as follows:

Γ,Γ′;∆, π −→ [↓N ] by ↓R on D.

This completes the proof.

Next, admissibilty of promotion:

Lemma 6 (Admissibility of promotion). The following inference rules are admissible

Γ;∆, π, [N ] −→ ν
promote−

Γ, π;∆, [N ] −→ ν

Γ;∆, π −→ [P ]
promote+

Γ, π;∆ −→ [P ]

Proof. By induction on the given derivations. We begin with the cases for promote−:

• Case init−: Impossible

• Case &Li:
D

Γ;∆, π, [Ni] −→ ν
&Li

Γ;∆, π, [N1 &N2] −→ ν
(to show)

Γ, π;∆, [N1 &N2] −→ ν

We reason as follows:

D′ :: Γ, π;∆, [Ni] −→ ν by promote− on D.
Γ, π;∆, [N1 &N2] −→ ν by &Li.

• Case (L, π in linear context of first premiss:

D

Γ,∆2;∆1, π −→ [P ]

E

Γ, (∆1, π);∆2, [N ] −→ ν
(L

Γ; (∆1, π),∆2, [P ( N ] −→ ν
(to show)

Γ, π;∆1,∆2, [P ( N ] −→ ν

We reason as follows:

D′ :: Γ, π,∆2;∆1 −→ [P ] by promote+ on D.
Γ, π;∆1,∆2, [P ( N ] −→ ν by (L on D′ and E .

• Case (L, π in linear context of second premiss:

D

Γ, (∆2, π);∆1 −→ [P ]

E

Γ,∆1;∆2, π, [N ] −→ ν
(L

Γ;∆1, (∆2, π), [P ( N ] −→ ν
(to show)

Γ, π;∆1,∆2, [P ( N ] −→ ν

We reason as follows:
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E ′ :: Γ, π,∆1;∆2, [N ] −→ ν by promote− on E .
Γ, π;∆1,∆2, [P ( N ] −→ ν by (L on D and E ′.

• Case ↑L:
D

Γ,∆, π, 〈P 〉 −→ 〈ν〉
↑L

Γ,Γ′;∆, π, [↑P ] −→ ν
(to show)

Γ,Γ′, π;∆, [↑P ] −→ ν

In this case we reason as follows:

Γ,Γ′, π;∆, [↑P ] −→ ν by ↑L on D.

Next, the cases for promote+:

• Case init+: Impossible.

• Case 1R: Impossible.

• Case ⊗R, π in linear context of first premiss:

D

Γ,∆2;∆1, π −→ [P ]

E

Γ,∆1, π;∆2 −→ [Q]
⊗R

Γ; (∆1, π),∆2 −→ [P ⊗Q]
(to show)

Γ, π;∆1,∆2 −→ [P ⊗Q]

We reason as follows:

D′ :: Γ, π,∆2;∆1 −→ [P ] by promote+ on D.
Γ, π;∆1,∆2 −→ [P ⊗Q] by ⊗R on D′ on E .

• Case ⊗R, π in linear context of second premiss:

D

Γ,∆2, π;∆1 −→ [P ]

E

Γ,∆1;∆2, π −→ [Q]
⊗R

Γ;∆1, (∆2, π) −→ [P ⊗Q]
(to show)

Γ, π;∆1,∆2 −→ [P ⊗Q]

We reason as follows:

E ′ :: Γ, π,∆1;∆2 −→ [Q] by promote+ on E .
Γ, π;∆1,∆2 −→ [P ⊗Q] by ⊗R on D on E ′.

• Case ⊕Ri:
D

Γ;∆, π −→ [Pi]
⊕Ri

Γ;∆, π −→ [P1 ⊕ P2]
(to show)

Γ, π;∆ −→ [P1 ⊕ P2]

We reason as follows:

Γ, π;∆ −→ [Pi] by promote+ on D.
Γ, π;∆ −→ [P1 ⊕ P2] by ⊕Ri.
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• Case ↓L:
D

Γ,∆, π −→ 〈N〉
↓R

Γ,Γ′;∆, π −→ [↓N ]
(to show)

Γ,Γ′, π;∆ −→ [↓N ]

In this case we reason as follows:

Γ, π,Γ′;∆ −→ [↓N ] by ↓R on D.

This completes the proof.

Next, contraction properties galore.

Theorem 21 (Neutral contraction). The following inference rules are admissible

Γ, π, π;∆, [N ] −→ ν
ucontract−

Γ, π;∆, [N ] −→ ν

Γ, π;∆, π, [N ] −→ ν
contract−

Γ;∆, π, [N ] −→ ν

Γ;∆, π, π, [N ] −→ ν
pcontract−

Γ;∆, π, [N ] −→ ν

Γ, π, π;∆ −→ [P ]
ucontract+

Γ, π;∆ −→ [P ]

Γ, π;∆, π −→ [P ]
contract+

Γ;∆, π −→ [P ]

Γ;∆, π, π −→ [P ]
pcontract+

Γ;∆, π −→ [P ]

Σ, π, π −→ 〈N〉
icontract

Σ, π −→ 〈N〉

Γ, π, π −→ ν
contract

Γ, π −→ ν

Proof. By repeated use of the preceding lemmas, it suffices to show that the pcontract−

and pcontract+ rules are admissible. Thus, for instance, given

Γ, π, π;∆ −→ [P ]

we apply the strengthening lemma to get either

Γ, π;∆ −→ [P ] or Γ, π;∆, π −→ [P ]

In the former case, we are done, and in the latter case, we appeal to the contract+ rule
followed by the promote+ rule. For the contract+ rule, we again apply the strengthening
lemma, resulting in either

Γ;∆, π −→ [P ] or Γ;∆, π, π −→ [P ]

Again, in the former case, we are done, and in the latter case we appeal to the pcontract+

rule. A similar argument reduces ucontract− to contract− to pcontract−.
To show the admissibility of these rules, we proceed by induction on the given deriva-

tions. First, the cases for pcontract−:

• Case init−: Impossible.

• Case &Li:
D

Γ;∆, π, π, [Ni] −→ ν
&Li

Γ;∆, π, π, [N1 &N2] −→ ν
(to show)

Γ;∆, π, [N1 &N2] −→ ν

We reason as follows:

Γ;∆, π, [Ni] −→ ν by the induction hypothesis on D.
Γ;∆, π, [N1 &N2] −→ ν by &Li.
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• Case (L, π, π in linear context of first premiss:

D

Γ,∆2;∆1, π, π −→ [P ]

E

Γ,∆1, π, π;∆2, [N ] −→ ν
(L

Γ; (∆1, π, π),∆2, [P ( N ] −→ ν
(to show)

Γ;∆1,∆2, π, [P ( N ] −→ ν

We reason as follows:

D′ :: Γ,∆2;∆1, π −→ [P ] by pcontract+ on D.
E ′ :: Γ,∆1, π;∆2, [N ] −→ ν by ucontract− on E .

Γ;∆1,∆2, π, [P ( N ] −→ ν by (L on D′ and E ′.

• Case (L, π, π in linear context of second premiss:

D

Γ,∆2, π, π;∆1 −→ [P ]

E

Γ,∆1;∆2, π, π, [N ] −→ ν
(L

Γ;∆1, (∆2, π, π), [P ( N ] −→ ν
(to show)

Γ;∆1,∆2, π, [P ( N ] −→ ν

We reason as follows:

D′ :: Γ,∆2, π;∆1 −→ [P ] by ucontract+ on D.
E ′ :: Γ,∆1;∆2, π, [N ] −→ ν by pcontract− on E .

Γ;∆1,∆2, π, [P ( N ] −→ ν by (L on D′ and E ′.

• Case (L, π and π in separate linear contexts:

D

Γ,∆2, π;∆1, π −→ [P ]

E

Γ,∆1, π;∆2, π, [N ] −→ ν
(L

Γ; (∆1, π), (∆2, π), [P ( N ] −→ ν
(to show)

Γ;∆1,∆2, π, [P ( N ] −→ ν

We reason as follows:

D′ :: Γ,∆2;∆1, π −→ [P ] by contract+ on D.
Γ,∆1;∆2, π, [N ] −→ ν by contract− on E .

E ′ :: Γ,∆1, π;∆2, [N ] −→ ν by promote−.
Γ;∆1,∆2, π, [P ( N ] −→ ν by (L on D′ and E ′.

• Case ↑L:
D

Γ,∆, π, π, 〈P 〉 −→ 〈ν〉
↑L

Γ,Γ′;∆, π, π, [↑P ] −→ ν
(to show)

Γ,Γ′;∆, π, [↑P ] −→ ν

We reason as follows:

Γ,∆, π, 〈P 〉 −→ 〈ν〉 by icontract on D.
Γ,Γ′;∆, π, [↑P ] −→ ν by ↑L.

Next, the cases for pcontract+:

• Case init+: Impossible.
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• Case 1R: Impossible.

• Case ⊕Ri:
D

Γ;∆, π, π −→ [Pi]
⊕Ri

Γ;∆, π, π −→ [P1 ⊕ P2]
(to show)

Γ;∆, π −→ [P1 ⊕ P2]

We reason as follows:

Γ;∆, π −→ [Pi] by the induction hypothesis on D.
Γ;∆, π −→ [P1 ⊕ P2] by ⊕Ri.

• Case ⊗R, π, π in linear context of first premiss:

D

Γ,∆2;∆1, π, π −→ [P ]

E

Γ,∆1, π, π;∆2 −→ [Q]
⊗R

Γ; (∆1, π, π),∆2 −→ [P ⊗Q]
(to show)

Γ;∆1,∆2, π −→ [P ⊗Q]

We reason as follows:

D′ :: Γ,∆2;∆1, π −→ [P ] by pcontract+ on D.
E ′ :: Γ,∆1, π;∆2 −→ [Q] by ucontract+ on E .

Γ;∆1,∆2, π −→ [P ⊗Q] by ⊗R on D′ and E ′.

• Case ⊗R, π, π in linear context of second premiss:

D

Γ,∆2, π, π;∆1 −→ [P ]

E

Γ,∆1;∆2, π, π −→ [Q]
⊗R

Γ;∆1, (∆2, π, π) −→ [P ⊗Q]
(to show)

Γ;∆1,∆2, π −→ [P ⊗Q]

We reason as follows:

D′ :: Γ,∆2, π;∆1 −→ [P ] by ucontract+ on D.
E ′ :: Γ,∆1;∆2, π −→ [Q] by pcontract+ on E .

Γ;∆1,∆2, π −→ [P ⊗Q] by ⊗R on D′ and E ′.

• Case ⊗R, π and π in separate linear contexts:

D

Γ,∆2, π;∆1, π −→ [P ]

E

Γ,∆1, π;∆2, π −→ [Q]
⊗R

Γ; (∆1, π), (∆2, π) −→ [P ⊗Q]
(to show)

Γ;∆1,∆2, π −→ [P ⊗Q]

We reason as follows:

D′ :: Γ,∆2;∆1, π −→ [P ] by contract+ on D.
Γ,∆1;∆2, π −→ [Q] by contract+ on E .

E ′ :: Γ,∆1, π;∆2 −→ [Q] by promote+.
Γ;∆1,∆2, π −→ [P ⊗Q] by ⊗R on D′ and E ′.
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• Case ↓R:
D

Γ,∆, π, π −→ 〈N〉
↓R

Γ,Γ′;∆, π, π −→ [↓N ]
(to show)

Γ,Γ′;∆, π −→ [↓N ]

We reason as follows:

Γ,∆, π −→ 〈N〉 by icontract on D.
Γ,Γ′;∆, π −→ [↓N ] by ↓R.

Next, the cases for icontract:

• Case >R:

>R
Σ, π, π −→ 〈>〉

(to show)
Σ, π −→ 〈>〉

We reason as follows:

Σ, π −→ 〈>〉 by >R.

• Case 0L:

0L
Σ, π, π, 〈0〉 −→ 〈N〉

(to show)
Σ, π, 〈0〉 −→ 〈N〉

We reason as follows:

Σ, π, 〈0〉 −→ 〈N〉 by 0L.

• Case &R:
D

Σ, π, π −→ 〈N〉

E

Σ, π, π −→ 〈M〉
&R

Σ, π, π −→ 〈N &M〉
(to show)

Σ, π −→ 〈N &M〉
We reason as follows:

D′ :: Σ, π −→ 〈N〉 by icontract on D.
E ′ :: Σ, π −→ 〈M〉 by icontract on E .

Σ, π −→ 〈N &M〉 by &R on D′ and E ′.

• Case 1L:
D

Σ, π, π −→ 〈N〉
1L

Σ, π, π, 〈1〉 −→ 〈N〉
(to show)

Σ, π, 〈1〉 −→ 〈N〉
We reason as follows:

Σ, π −→ 〈N〉 by icontract on D.
Σ, π, 〈1〉 −→ 〈N〉 by 1L.
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• Case ⊗L:
D

Σ, π, π, 〈P 〉, 〈Q〉 −→ 〈N〉
⊗L

Σ, π, π, 〈P ⊗Q〉 −→ 〈N〉
(to show)

Σ, π, 〈P ⊗Q〉 −→ 〈N〉
We reason as follows:

Σ, π, 〈P 〉, 〈Q〉 −→ 〈N〉 by icontract on D.
Σ, π, 〈P ⊗Q〉 −→ 〈N〉 by ⊗L.

• Case ⊕L:
D

Σ, π, π, 〈P 〉 −→ 〈N〉

E

Σ, π, π, 〈Q〉 −→ 〈N〉
⊕L

Σ, π, π, 〈P ⊕Q〉 −→ 〈N〉
(to show)

Σ, π, 〈P ⊕Q〉 −→ 〈N〉
We reason as follows:

D′ :: Σ, π, 〈P 〉 −→ 〈N〉 by icontract on D.
E ′ :: Σ, π, 〈Q〉 −→ 〈N〉 by icontract on E .

Σ, π, 〈P ⊕Q〉 −→ 〈N〉 by ⊕L on D′ and E ′.

• Case (R:
D

Σ, π, π, 〈P 〉 −→ 〈N〉
(R

Σ, π, π −→ 〈P ( N〉
(to show)

Σ, π −→ 〈P ( N〉
We reason as follows:

Σ, π, 〈P 〉 −→ 〈N〉 by icontract on D.
Σ, π −→ 〈P ( N〉 by (R.

• Case rel:
D

Γ, π, π,∆ −→ ν
rel

Γ, π, π, 〈∆〉 −→ 〈ν〉
(to show)

Γ, π, 〈∆〉 −→ 〈ν〉
We reason as follows:

Γ, π,∆ −→ ν by contract on D.
Γ, π, 〈∆〉 −→ 〈ν〉 by rel.

Finally, the cases for contract:

• Case ↓L, π non-principal:

D

↓N ; Γ, π, π, [N ] −→ ν
↓L

Γ, π, π, ↓N −→ ν
(to show)

Γ, π, ↓N −→ ν

We reason as follows:
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↓N ; Γ, π, [N ] −→ ν by pcontract− on D.
Γ, π, ↓N −→ ν by ↓L.

• Case ↓L, π =↓N principal:

D

↓N ; Γ, ↓N, [N ] −→ ν
↓L

Γ, ↓N, ↓N −→ ν
(to show)

Γ, ↓N −→ ν

We reason as follows:

·; Γ, ↓N, [N ] −→ ν by contract− on D.
↓N ; Γ, [N ] −→ ν by promote−.
Γ, ↓N −→ ν by ↓L.

• Case ↑R:
D

·; Γ, π, π −→ [P ]
↑R

Γ, π, π −→↑P
(to show)

Γ, π −→↑P
We reason as follows:

·; Γ, π −→ [P ] by pcontract+ on D.
Γ, π −→↑P by ↑R.
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