Intuitionistic Logic

David Baelde

ENS Cachan, L3, 2015-2016

1 Kripke semantics

We first define Kripke semantics for (unsorted) first-order intuitionistic logic.

Definition 1.1 (Kripke structure). A *Kripke structure* is given by:

- a set $\mathcal W$ of worlds;
- an order \leq on worlds, often called *accessibility relation*;
- a mapping \mathcal{D} which associates, to each world w, a non-empty domain \mathcal{D}_w ;
- a mapping α which associates, to each world w and predicate symbol $p \in \mathcal{P}$ or arity n, a subset of \mathcal{D}_w^n ;
- for each function symbol $f \in \mathcal{F}$ of arity n, and for each world $w \in \mathcal{W}$, an interpretation $\hat{f}_w : \mathcal{D}_w^n \to \mathcal{D}$.

Furthermore, D, α and \hat{f} must be monotonic with respect to the accessibility relation: for all $w \leq w'$ we require that

- $D_w \subseteq D_{w'};$
- $\alpha(w,p) \subseteq \alpha(w',p)$ for all $p \in \mathcal{P}$;
- $\hat{f}_w(v_1,\ldots,v_n) = \hat{f}_{w'}(v_1,\ldots,v_n)$ for all f of arity n and $(v_1,\ldots,v_n) \in \mathcal{D}_w^n$.

When \mathcal{K} is a Kripke structure, we shall denote its set of worlds by $\mathcal{W}(\mathcal{K})$. In most cases, we actually simply write \mathcal{W} , \mathcal{D} , etc. since the underlying Kripke structure is clear from the context.

Definition 1.2 (Satisfaction). Given a Kripke structure \mathcal{K} , a world $w \in \mathcal{W}$, a formula ϕ and an assignemnt $\sigma : \mathsf{fv}(\phi) \to \mathcal{D}_w$, the *satisfaction* relation is defined by induction on ϕ :

- $\mathcal{K}, w, \sigma \models p(t_1, \ldots, t_n)$ iff $(\llbracket t_1 \rrbracket_{\sigma}, \ldots, \llbracket t_n \rrbracket_{\sigma}) \in \alpha(w, p);$
- $\mathcal{K}, w, \sigma \models \top$ always holds;
- $\mathcal{K}, w, \sigma \models \bot$ never holds;

- $\mathcal{K}, w, \sigma \models \phi \land \psi$ iff $\mathcal{K}, w, \sigma \models \phi$ and $\mathcal{K}, w, \sigma \models \psi$;
- $\mathcal{K}, w, \sigma \models \phi \lor \psi$ iff $\mathcal{K}, w, \sigma \models \phi$ or $\mathcal{K}, w, \sigma \models \psi$;
- $\mathcal{K}, w, \sigma \models \phi \Rightarrow \psi$ iff for all $w' \ge w, \mathcal{K}, w', \sigma \models \phi$ implies $\mathcal{K}, w', \sigma \models \psi$;
- $\mathcal{K}, w, \sigma \models \neg \psi$ iff for all $w' \ge w, \mathcal{K}, w', \sigma \not\models \psi$;
- $\mathcal{K}, w, \sigma \models \exists x.\psi$ iff there exists $v \in \mathcal{D}_w$ such that $\mathcal{K}, w, \sigma + \{x \mapsto v\} \models \psi$;
- $\mathcal{K}, w, \sigma \models \forall x.\psi$ iff for all $w' \ge w$ and $v \in \mathcal{D}_{w'}, \mathcal{K}, w', \sigma + \{x \mapsto v\} \models \psi$.

We say that a set of formulas E is satisfied by $w \in \mathcal{W}(\mathcal{K})$ when $\mathcal{K}, w \models \phi$ for all $\phi \in E$. When \mathcal{K} is obvious, we simply omit it and write $w \models \phi$ or $w \models \phi$.

Note that the previous definition is only valid because domains are monotonic. Specifically, this is used (in four cases) to be able to consider the assignment σ : fv(ϕ) $\rightarrow D_w$ as an assignment of type fv(ψ) $\rightarrow D_{w'}$ for $w \leq w'$.

Definition 1.3 (Validity, logical consequence). Let ϕ , ψ be formulas. We define *validity* ($\models \phi$) and *logical consequence* ($\phi \models \psi$) as follows:

- $\models \phi$ when for all \mathcal{K} and all $w \in \mathcal{W}(\mathcal{K}), w \models \phi$.
- $\phi \models \psi$ when $\mathcal{K}, w \models \psi$ for all \mathcal{K} and $w \in \mathcal{W}(\mathcal{K})$ such that $\mathcal{K}, w \models \phi$.

When E is a set of formulas, $E \models \phi$ means that $\mathcal{K}, w \models \phi$ for all \mathcal{K} and $w \in \mathcal{W}(\mathcal{K})$ such that $w \models E$.

Remark 1.4. Note that $\neg \phi$ is logically equivalent to $\phi \Rightarrow \bot$. This observation allows us to often ignore negation in the following.

Exercise 1.5. Consider the validity of a few interesting formulas:

- $\neg \neg \phi \Rightarrow \phi \text{ and } \phi \Rightarrow \neg \neg \phi;$
- de Morgan laws;
- $((\phi \land \phi') \lor \psi) \Rightarrow ((\phi \lor \psi) \land (\phi' \lor \psi))$ and the converse;
- $(\phi \Rightarrow \psi) \lor (\psi \Rightarrow \phi);$
- $\phi \lor \neg \phi$;
- $\exists x.b(x) \Rightarrow \forall y.b(y).$

Proposition 1.6 (Satisfaction is monotonic). For all \mathcal{K} , w and σ , we have that \mathcal{K} , w, $\sigma \models \phi$ and $w \le w'$ implies \mathcal{K} , w', $\sigma \models \phi$. *Proof.* By (structural) induction on ϕ . This is obvious for logical constants (their satisfaction does not depend on the world being considered) and propositional variables (because α is assumed to be monotonic). It follows immediately from induction hypotheses for disjunction and conjunction formulas. We consider the case of implication: assuming $w \leq w'$ and $w \models \phi \Rightarrow \psi$, let us show that $w' \models \phi \Rightarrow \psi$. We have to show that $w'' \models \psi$ for all $w'' \geq w'$ such that $w'' \models \phi$. By transitivity of the accessibility relation, we have $w'' \geq w$. By $w \models \phi \Rightarrow \psi$ and $w'' \models \phi$, we conclude $w'' \models \psi$. The case of negation is similar, as observed in Remark 1.4. The case of quantifiers is left as an exercise.

Proposition 1.7. Intuitionistically valid formulas are also classically valid.

Proof. It suffices to observe that any classical interpretation \mathcal{I} . can be seen as a Kripke structure $\mathcal{K}_{\mathcal{I}}$ with a single world w_0 , in such a way that $\mathcal{I} \models \phi$ (in the classical sense) is equivalent to $\mathcal{K}_{\mathcal{I}}, w_0 \models \phi$ (in the intuitionistic sense).

2 Sequent calculus proof system

A sequent $\Gamma \vdash \phi$ is built from formula ϕ and a multiset of formulas Γ . It should be read as "the conjunction of all formulas in Γ implies ϕ ".

Definition 2.1. The rules of intuitionistic sequent calculus LJ_1 are given in Figure 1. We write $\Gamma \vdash_{LJ1} \phi$ when the sequent $\Gamma \vdash \phi$ admits a derivation in LJ_1 .

We briefly motivate the organization of rules in three groups. The *logical group* describes how connectives should be treated. For each connective, there is only rule allowing to introduce a formula with that toplevel connective on the left of a sequent, and one introducing such a formula on the right. The *identity group* contains the only two rules whose application requires to check that two formulas are equal. The *structural group* deals with the multiset structure, allowing to increase of decrease the arity of a formula in the multiset.

Exercise 2.2. Show that LJ_1 and NJ_1 are equivalent.

3 Soundness

We say that a sequent $\Gamma \vdash \phi$ is valid (written $\Gamma \models \phi$) when:

- for all $\mathcal{K}, w \in \mathcal{W}$ and $\sigma : \mathsf{fv}(\Gamma, \Delta) \to \mathcal{D}_w$,
- if $\mathcal{K}, w, \sigma \models \psi$ for all $\psi \in \Gamma$, then $\mathcal{K}, w, \sigma \models \phi$.

Note that $\vdash \phi$ is valid iff ϕ is valid.

Theorem 3.1. $\Gamma \vdash_{LJ1} \phi$ implies $\Gamma \models \phi$.

Proof. Straightforward (structural) induction on ϕ : for each rule of LJ₁, can show that, if the premises are valid, the conclusion is also valid.

Corollary 3.2. The sequent $\phi \lor \neg \phi$ is not derivable in LJ₁.

Logical group

$\overline{\Gamma, \bot \vdash \phi} \ ^{\perp_L}$	$\overline{\vdash \top} \perp_R$
$\frac{\Gamma, \phi_1, \phi_2 \vdash \psi}{\Gamma, \phi_1 \land \phi_2 \vdash \psi} \ \land_L$	$\frac{\Gamma \vdash \phi_1 \Delta \vdash \phi_2}{\Gamma, \Delta \vdash \phi_1 \land \phi_2} \ \wedge_R$
$\frac{\Gamma, \phi_1 \vdash \psi \Gamma, \phi_2 \vdash \psi}{\Gamma, \phi_1 \lor \phi_2 \vdash \psi} \lor_L$	$\frac{\Gamma \vdash \phi_i}{\Gamma \vdash \phi_1 \lor \phi_2} \lor_R$
$\frac{\Gamma \vdash \phi_1 \Delta, \phi_2 \vdash \psi}{\Gamma, \Delta, \phi_1 \Rightarrow \phi_2 \vdash \psi} \Rightarrow_L$	$\frac{\Gamma,\phi\vdash\psi}{\Gamma\vdash\phi\Rightarrow\psi}\Rightarrow_R$
$\frac{\Gamma, \phi[t/x] \vdash \psi}{\Gamma, \forall x. \phi \vdash \psi} \ \forall_L$	$\frac{\Gamma \vdash \phi}{\Gamma \vdash \forall x. \phi} \forall_R \; (x \not\in fv(\Gamma, \psi))$
$\frac{\Gamma, \phi \vdash \psi}{\Gamma, \exists x. \phi \vdash \psi} \exists_L (x \not\in fv(\Gamma))$	$\frac{\Gamma \vdash \phi[t/x]}{\Gamma \vdash \exists x.\phi} \exists_R$

Identity group

$$\frac{\Gamma \vdash \psi \quad \psi, \Delta \vdash \phi}{\Gamma, \Delta \vdash \phi} \text{ cut}$$

Structural group

$$\frac{\Gamma, \phi, \phi \vdash \psi}{\Gamma, \phi \vdash \psi} \text{ contraction } \qquad \frac{\Gamma \vdash \psi}{\Gamma, \phi \vdash \psi} \text{ weakening}$$

Figure 1: Inference rules for LJ_1

4 Completeness

This section only deals with the propositional case, even though the result holds in firstorder logic as well. In that case, $\alpha(w)$ is simply seen as a subset of \mathcal{P} . The derivation system LJ₀ is obtained from LJ₁ by dropping the rules associated to quantifiers.

We shall now establish completeness: any sequent that is valid with respect to Kripke semantics can be derived in LJ_0 . To do so, we introduce the universal Kripke structure in which satisfaction is closely related to derivability.

We shall work under the assumption that the set of propositional variables \mathcal{P} is countably infinite. This implies that there exists a bijection $r : \mathcal{F}_0 \to \mathbb{N}$.

Definition 4.1 (Saturated). Given a (possibly infinite) set E of formulas, we write $E \vdash_{LJ} \phi$ when there is a finite subset $\Gamma \subseteq E$ such that $\Gamma \vdash_{LJ} \phi$. A set of formulas E is *saturated* if, for any ϕ such that $E \vdash_{LJ} \phi$, we have $\phi \in E$. Given a set F, the set $F^* = \{ \phi : F \vdash_{LJ} \phi \}$ is saturated.

Definition 4.2 (World-set). We say that E is *consistent* if $\perp \notin E$. We say that E has the *disjunction property* if for all $\phi_1 \lor \phi_2 \in E$, there is some $i \in \{1, 2\}$ such that $\phi_i \in E$. We say that Γ is a *world-set* when it is saturated, consistent and has the disjunction property.

Definition 4.3 (Universal Kripke structure). The universal structure \mathcal{U} is defined by: $\mathcal{W}(\mathcal{U}) = \{ w_E : E \text{ is a world-set } \}; w_E \leq w_{E'} \text{ iff } E \subseteq E'; \alpha(w_E) = E \cap \mathcal{P}.$

Lemma 4.4. Let *E* be a set of formulas, and ϕ a formula such that $E \not\models_{LJ} \phi$. There exists a world-set *E'* such that $E \subseteq E'$ and $E' \not\models_{LJ} \phi$.

Proof. We define an increasing sequence $(E_i)_{i \in \mathbb{N}}$ of saturated sets such that for all i, $\phi \notin E_i$. We set $E_0 = E^*$. If E_n enjoys the disjunction property, then $E_{n+1} = E_n$. Otherwise, let $\phi_1 \lor \phi_2$ be the formula in E_n such that $\phi_1 \notin E_n$ and $\phi_2 \notin E_n$, and such that $r(\phi_1 \lor \phi_2)$ is minimal among the formulas having that property. It cannot be that both $E_n \cup \{\phi_1\} \vdash_{\mathrm{LJ}} \phi$ and $E_n \cup \{\phi_2\} \vdash_{\mathrm{LJ}} \phi$, because by rule \lor_L that would contradict $E_n \nvdash_{\mathrm{LJ}} \phi$. Let i be such that $E_n \cup \{\phi_i\} \nvdash_{\mathrm{LJ}} \phi$, and let $E_{n+1} = (E_n \cup \{\phi_i\})^*$.

Let us show that $E' = \bigcup_{i \in \mathbb{N}} E_i$ satisfies the expected conditions. The set is saturated: if for a finite subset $\Gamma \in E'$, we have $\Gamma \vdash_{\mathrm{LJ}} \psi$, then because Γ is finite we have $\Gamma \subseteq E_k$ for some k, and by saturation of E_k we have $\psi \in E_k \subseteq E'$. The same argument shows that $E' \not\vdash_{\mathrm{LJ}} \phi$, and thus E' is consistent: if \bot could be derived, ϕ would also be derivable by rule \bot_L . It only remains to show that E' enjoys the disjunction property. Let $\phi = \phi_1 \lor \phi_2 \in E'$, there must be some k such that $\phi \in E_k$. By construction, the disjunction property will be restored for that formula in at least $r(\phi)$ steps, thus we have $\phi_1 \in E_{k+r(\phi)}$ or $\phi_2 \in E_{k+r(\phi)}$, and the disjunction property is satisfied for ϕ in E'.

Lemma 4.5. Let *E* be a world-set and ϕ a formula. We have $\mathcal{U}, w_E \models \phi$ iff $\phi \in E$.

Proof. We proceed by (structural) induction on the formula.

• Case of \top . We always have $w_E \models \top$ and also always have $\top \in E$ by saturation and rule \top_R .

- Case of \bot . We never have $w_E \models \bot$, and never have $\bot \in E$ for a consistent E.
- Case of P. By definition, $w_E \models P$ iff $P \in \alpha(w_E) = E \cap P$ iff $P \in E$.
- Case of $\phi_1 \wedge \phi_2$.
 - (⇒) From $w_E \models \phi_1 \land \phi_2$ we obtain $w_E \models \phi_1$ and $w_E \models \phi_2$. By induction hypotheses we thus have $E \vdash_{LJ} \phi_1$ and $E \vdash_{LJ} \phi_2$, and we can conclude by rule \land_R .
 - (\Leftarrow) By assumption we have $E \vdash_{LJ} \phi_1 \land \phi_2$. This allows us to conclude $E \vdash_{LJ} \phi_i$ for each $i \in \{1, 2\}$, using rules \land_L , cut and axiom. By induction hypotheses this yields $w_E \models \phi_i$ for each i, which allows us to conclude.
- Case of $\phi_1 \lor \phi_2$.
 - (\Rightarrow) As in the previous case, but using rule \lor_R instead of \land_R .
 - (\Leftarrow) If $\phi_1 \lor \phi_2 \in E$, then by the disjunction property of world-sets we have $\phi_i \in E$ for some *i*. By induction hypothesis this yields $w_E \models \phi_i$ and thus $w_E \models \phi_1 \lor \phi_2$.
- Case of $\phi_1 \Rightarrow \phi_2$.
 - (⇒) By rule ⇒_R it suffices to show $E \cup \{\phi_1\} \vdash_{LJ} \phi_2$. Assume the contrary. Then by Lemma 4.4 there is some world-set E' such that $E \leq E'$, $\phi_1 \in E'$ and $\phi_2 \notin E'$. By induction hypothesis $w_{E'} \models \phi_1$, but then by our assumption $w_E \models \phi_1 \Rightarrow \phi_2$ we must also have $w_{E'} \models \phi_2$. We then have $\phi_2 \in E'$ by induction hypothesis, which is a contradiction.
 - (\Leftarrow) Assuming $E \vdash_{LJ} \phi_1 \Rightarrow \phi_2$, we show $w_E \models \phi_1 \Rightarrow \phi_2$. We simply follow the definition of satisfaction for an implication. For any $E \leq E'$ such that $w_{E'} \models \phi_1$, we have to establish $w_{E'} \models \phi_2$. By induction hypothesis we have $\phi_1 \in E'$, or in other words $E' \vdash_{LJ} \phi_1$. Since we also have $E' \vdash_{LJ} \phi_1 \Rightarrow \phi_2$, we conclude $E' \vdash_{LJ} \phi_2$ by rules cut, axiom and \Rightarrow_L . By induction hypothesis we can finally conclude: $w_{E'} \models \phi_2$.

Theorem 4.6. $\Gamma \models \phi$ implies $\Gamma \vdash_{LJ} \phi$.

Proof. Assume $\Gamma \models \phi$ and $\Gamma \not\models_{LJ} \phi$. By Lemma 4.4 we have some world-set E such that $\Gamma \subseteq E$ and $\phi \notin E$. We obviously have $w_E \models \Gamma$, so by $\Gamma \models \phi$ we also have $w_E \models \phi$. By Lemma 4.5, this implies $\phi \in E$, which is a contradiction. \Box