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Abstract

Channel boundedness is a necessary condition for a message-passing
system to exhibit regular, finite-state behaviour at the global level.
For Message Sequence Graphs (MSGs), the most basic form of High-
level Message Sequence Charts (HMSCs), channel boundedness can
be characterized in terms of structural conditions on the underly-
ing graph. We consider MSGs enriched with timing constraints be-
tween events. These constraints restrict the global behaviour and
can impose channel boundedness even when it is not guaranteed by
the graph structure of the MSG. We show that we can use MSGs
with timing constraints to simulate computations of a two-counter
machine. As a consequence, even the more fundamental problem
of reachability, which is trivial for untimed MSGs, becomes unde-
cidable when we add timing constraints. Different forms of channel
boundedness also then turn out to be undecidable, using reductions
from the reachability problem.

Keywords: Communicating systems, message sequence charts, timed
specifications

1 Introduction

In a distributed system, several agents interact to generate a global be-
haviour. This interaction is usually specified in terms of scenarios, us-
ing message sequence charts (MSCs) [11]. A message sequence graph
(MSG) is a finite directed graph with nodes labelled by MSCs. MSGs

∗Partially supported by Timed-DISCOVERI, a project under the Indo-French Net-
working Programme.



158 Perspectives in Concurrency Theory

are the most basic versions of High-level Message Sequence Charts
(HMSCs) [12] and are a convenient mechanism for generating possi-
bly infinite collections of MSCs.

Communicating finite-state machines (CFMs) are a natural imple-
mentation model for message-passing systems. In recent years, there
has been a considerable body of work on the analysis of message-
passing systems specified in terms of MSCs and communicating finite-
state machines [4, 5, 8, 9, 15, 16]. A fruitful approach is to synthe-
size CFMs from MSC specifications and then use standard automata-
theoretic techniques for formal verification.

One essential requirement for effective synthesis of CFMs from
MSCs is channel boundedness. An MSC specification is said to be
universally bounded if there is a uniform upper bound on the size
of all channels along any execution consistent with the specification.
A specification is existentially bounded if every computation can be
scheduled in at least one way so that a uniform channel bound is main-
tained. Algorithms to synthesize CFMs from MSC specifications
were originally obtained for universally bounded specifications [9]
and later extended to the existentially bounded case [8].

MSG specifications are always existentially bounded. We also have
a precise characterization of universal boundedness for MSGs [14].
Interestingly, the channel boundedness problem is known to be un-
decidable for CFMs [6], so the limited expressiveness of MSGs with
respect to CFMs is responsible for making the problem decidable in
the setting of MSGs.

In this paper, we consider the analysis of message-passing systems
equipped with timing constraints. The basic MSC notation does not
have any provision for describing explicit real-time constraints. On
the other hand, timing is an important issue in practical specifications—
for instance, how long should a server wait before deciding to drop an
idle connection with a client?

Time-constrained MSCs (TC-MSCs) are an extension of the MSC
notation in which we can specify timing constraints between pairs of
events. If we label the nodes in an MSG with TC-MSCs, we obtain
a time-constrained MSG (TC-MSG). We can regard each node in a
TC-MSG as one phase of a protocol. To allow us to describe timing
constraints in making the transition from one phase to another, we
also permit time constraints along the edges between nodes in a TC-
MSG.

On the automaton front, each component in a CFM can be re-
placed by a timed automaton [3] yielding a natural timed extension of
the CFM model. Some progress has been made in extending the anal-
ysis of MSC specifications vis-a-vis CFMs to the timed setting [2, 7].



Reachability and Boundedness for TC-MSGs 159

Our focus in this paper is the boundedness problem for TC-MSGs.
Since the boundedness problem is already undecidable for untimed
CFMs, it is clear that it is also undecidable for timed CFMs. Some-
what surprisingly, it turns out that channel boundedness is undecid-
able for timed CFMs even if there is no communication loop by
which a sender gets feedback from the recipient of a message [10].
However, as in the untimed case, TC-MSGs are less expressive than
timed CFMs, so these undecidability results cannot be transported
directly to the TC-MSG setting.

Of course, if the underlying untimed MSG is universally bounded,
so will any TC-MSG derived from it by adding timing constraints.
However, it is also possible that timing constraints enforce universal
boundedness even if the underlying untimed MSG does not satisfy
the criterion described in [14].

On the other hand, even though untimed MSG specifications are
always existentially bounded, it is not difficult to construct TC-MSGs
in which the timing constraints do not guarantee existential bounded-
ness. This is because timing constraints may prevent us from choos-
ing the schedule required in the untimed case to guarantee a uniform
bound.

Our main results are negative. We show that various variants of the
boundedness problem are undecidable for TC-MSGs, even when we
impose severe restrictions on the manner in which timing constraints
can be used. The main technique that we use to demonstrate undecid-
ability is a simulation of two counter machines [13] using TC-MSGs.

Our simulation makes crucial use of timing contraints across the
edges of a TC-MSG. We believe that the boundedness problem is de-
cidable for TC-MSG specifications without edge constraints. We have
a sufficient condition for boundedness in this case, based on an anal-
ysis of a time-constrained producer-consumer system. However, de-
cidability of boundedness in this case remains open.

The paper is organized as follows. We begin with some preliminar-
ies about (timed) MSCs and MSGs. Section 3 formally describes the
various versions of the boundedness problem that we look at in this
paper. To show that boundedness is undecidable, in general, for TC-
MSGs, we first establish that reachability is undecidable, in Section 4.
We then show how to reduce reachability to boundedness. In Sec-
tion 6, we strengthen our undecidability results to the setting where
constraints can only be described using open intervals. In the next sec-
tion, we show that we can obtain undecidability even with bounded
channels. Finally, in Section 8 we show that we can restrict all edge
constraints to refer to a single process and still establish undecidabil-
ity. In Section 9 we obtain partial results concerning the decidability
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of boundedness for TC-MSGs without edge constraints. The paper
concludes with a brief discussion.

2 Preliminaries

2.1 Message sequence charts

Let P be a finite set of processes that communicate using a finite
set of message types M over reliable FIFO channels. For p ∈ P ,
let Actp = {p!q(m), p?q(m) | p 6= q ∈ P , m ∈ M} be the set of

communication actions for p. The actions p!q(m) and p?q(m) are
read as p sends m to q and p receives m from q , respectively. Let
Act=
⋃

p∈P Act p .

Labelled posets An Act-labelled poset is a structure M = (E ,≤,λ)
where (E ,≤) is a poset and λ : E →Act is a labelling function.

For e ∈ E , let ↓e = {e ′ | e ′ ≤ e}. For X ⊆ E , ↓X = ∪e∈X↓e . For p ∈
P and a ∈ Act, we set Ep = {e | λ(e) ∈ Actp} and Ea = {e | λ(e) = a},
respectively.

Let Ch = {(p, q) | p 6= q} denote the set of channels. For each
(p, q) ∈ Ch, we define a relation <pq as follows, to capture the fact

that channels are FIFO with respect to each message.

e <pq e ′
△
= λ(e) = p!q(m),
λ(e ′) = q?p(m) and
|↓e ∩ Ep !q(m)|= |↓e

′ ∩ Eq? p(m)|

Finally, for each p ∈P , we define the relation≤p p= (Ep×Ep )∩≤,

with <p p standing for the largest irreflexive subset of ≤p p .

Definition 1 An MSC (over P ) is a finite Act-labelled poset M =
(E ,≤,λ) that satisfies the following conditions.

1. Each relation ≤p p is a linear order.
2. If p 6= q then for each m ∈M , |Ep !q(m)|= |Eq? p(m)|.

3. If e <pq e ′, then |↓e∩
�
⋃

m∈M
Ep !q(m)

�

|= |↓e ′∩
�
⋃

m∈M
Eq? p(m)

�

|.

4. The partial order ≤ is the reflexive, transitive closure of the rela-
tion
⋃

p ,q∈P <pq .
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Figure 1: An MSC

The second condition ensures that every message sent along a chan-
nel is received. The third condition says that every channel is FIFO
across all messages.

In diagrams, the events of an MSC are presented in visual order.
The events of each process are arranged in a vertical line and mes-
sages are displayed as horizontal or downward-sloping directed edges.
Fig. 1 shows an example with three processes {p, q , r } and six events
{e1, e ′

1
, e2, e ′

2
, e3, e ′

3
} corresponding to three messages—m1 from p to q ,

m2 from q to r and m3 from p to r .
For an MSC M = (E ,≤,λ), we let lin(M ) = {λ(π) | π is a lin-

earization of (E ,≤)}. For instance, p!q(m1)q?p(m1)q !r (m2)p!r (m3)
r ?q(m2)r ?p(m3) is one linearization of the MSC in Fig. 1.

MSC languages An MSC language is a set of MSCs. An MSC language
L can also be seen as a word language L over Act corresponding to
the linearizations of the MSCs inL . For an MSC languageL , we set
lin(L ) =
⋃

{lin(M ) |M ∈L}.

Definition 2 An MSC language L is said to be a regular MSC lan-
guage if the word language lin(L ) is a regular language over Act.

Let M be an MSC and B ∈ N. We say that w ∈ lin(M ) is B -
bounded if for every prefix v of w and for every channel (p, q) ∈C h,
∑

m∈M |πp !q(m)(v)| −
∑

m∈M |πq? p(m)(v)| ≤ B , where πΓ(v) denotes

the projection of v on Γ ⊆ Act. This means that along the execution
of M described by w, no channel ever contains more than B -messages.
We say that M is universally B -bounded if every w ∈ lin(M ) is B -
bounded. An MSC language L is universally B -bounded if every
M ∈ L is universally B -bounded. Finally, L is universally bounded
if it is universally B -bounded for some B .

We then have the following result [9].

Theorem 3 If an MSC language L is regular then it is universally
bounded.
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Figure 2: A TC-MSC describing interaction with an ATM.

A weaker notion of channel boundedness is existential bounded-
ness. An MSC M is said to be existentially B -bounded if some w ∈
lin(M ) is B -bounded. Existential boundedness corresponds to choos-
ing a good schedule for the events to ensure the channel bound B .
An MSC language L is existentially B -bounded if every M ∈ L is
existentially B -bounded. Finally, L is existentially bounded if it is
existentially B -bounded for some B .

2.2 Timeconstrained MSCs

A time-constrained MSC (denoted TC-MSC) is an MSC annotated
with time intervals. For simplicity, we assume that the interval bounds
are natural numbers. For a, b ∈ N, we allow intervals that are open
(a, b ), closed [a, b], half-open (a, b], [a, b ), or unbounded [a,∞),
(a,∞). As usual, by (a, b ), we mean {x ∈R≥0 | a < x < b} and so on.
Let I denote the set of all such intervals.

Definition 4 Let M = (E ,≤,λ) be an MSC. An interval constraint
is a tuple 〈(e1, e2), I 〉 where e1, e2 ∈ E with e1 ≤p p e2 for some p ∈P or

e1 <pq e2 for some channel (p, q) ∈Ch and I ∈I .

The restrictions on e1 and e2 ensure that an interval constraint is
either local to a process or describes a bound on the delivery time of
a single message. Fig. 2 shows a TC-MSC describing the interaction
between a user, an ATM and a server. For instance, the constraint
[0, 2] on (s1, s2) specifies that the server is expected to respond to an
authentication request within 2 time units.

Definition 5 A time-constrained MSC (TC-MSC) is a pair T =
(M ,EC ) where M = (E ,≤,λ) is an MSC and EC ⊆ (E × E)×I is a
set of interval constraints such that each pair (e1, e2) is mapped to at most
one interval.
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Figure 3: A timed MSC describing interaction with an ATM.

2.3 Timed MSCs

In a timed MSC, events are explicitly time-stamped so that the order-
ing on the time-stamps respects the partial order on the events.

Definition 6 A timed MSC is pair (M ,τ) where M = (E ,≤,λ) is an
MSC and τ : E → R≥0 assigns a nonnegative time-stamp to each event,
such that for all e1, e2 ∈ E, if e1 ≤ e2 then τ(e1)≤ τ(e2).

A timed MSC realizes a TC-MSC if the time-stamps assigned to
events respect the interval constraints specified in the TC-MSC. Let
r ∈ R≥0 and I ∈ I . We write r |= I to denote that r lies in the
interval specified by I .

Definition 7 Let M = (E ,≤,λ) be an MSC, T = (M ,EC ) a TC-
MSC and Mτ = (M ,τ) a timed MSC. Mτ is said to realize T if for each
〈(e1, e2), I 〉 ∈ EC ,τ(e2)−τ(e1) |= I .
Fig. 3 shows a timed MSC that realizes the TC-MSC in Fig. 2.

We say that a TC-MSC is realizable if it is realized by at least one
timed MSC. Realizability amounts to checking if the constraints in a
TC-MSC are feasible. This can be checked by constructing a graph
corresponding to the events with weighted, directed edges in which
lower bounds are represented by negative weights and upper bounds
by positive weights. We can then show that the constraints in the
original TC-MSC are feasible if and only if this graph has no negative-
weight cycles—see, for instance, [4].

2.4 Message sequence graphs

Message sequence graphs (MSGs) are finite directed graphs with desig-
nated initial and terminal vertices. Each vertex in an MSG is labelled
by an MSC. The edges represent (asynchronous) MSC concatenation,
in which one MSC is “pasted” below the other. Formally, MSC con-
catenation is defined as follows.
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Figure 4: A message sequence graph

Let M1 = (E
1,≤1,λ1) and M2 = (E

2,≤2,λ2) be a pair of MSCs such
that E1 and E2 are disjoint. The (asynchronous) concatenation of M1
and M2 yields the MSC M1◦M2 = (E ,≤,λ)where E = E1∪E2, λ(e) =
λi (e) if e ∈ E i , i ∈ {1, 2}, and

≤=






≤1 ∪≤2 ∪
⋃

p∈P

E1
p
× E2

p







∗

.

A Message Sequence Graph is a structure G = (Q,→, Qi n, QF ,Φ),
where Q is a finite and nonempty set of states,→⊆Q ×Q, Qi n ⊆Q
is a set of initial states, QF ⊆Q is a set of final states and Φ labels each
state with an MSC.

Let π = q0 → q1 → ·· · → qn be a path through G. The MSC
generated by π is Φ(π) = Φ(q0) ◦ Φ(q1) ◦ · · · ◦ Φ(qn). A path π =
q0q1 . . . qn is a run if q0 ∈ Qi n and qn ∈ QF . The language of MSCs
accepted by G is L(G) = {Φ(π) |π is a run through G}.

An example of an MSG is depicted in Fig. 4. The initial state is
marked→ and the final state has a double circle. The languageL de-
fined by this MSG is not regular: L projected to {p!q(m), r !s (m)}∗

consists of σ ∈ {p!q(m), r !s (m)}∗ such that |πp !q(m)(σ)|= |πr !s (m)(σ)|
≥ 1, which is not a regular string language.

In general, it is undecidable whether an MSG describes a regular
MSC language [9]. However, in this paper, our main focus is not
regularity but channel-boundedness—is it the case that the MSC lan-
guageL defined by an MSG G is universally B -bounded?

It is easy to see that L is always existentially B -bounded. Since
each MSC M ∈L is generated by a path π= q0→ q1→ ·· ·→ qn, we
can decompose M =Φ(π) as Φ(q0)◦Φ(q1)◦· · ·◦Φ(qn). Each individual
Φ(qi ) is existentially Bi bounded for some bound Bi . By scheduling
events so that Φ(qi ) is completed before we start Φ(qi+1), we observe
that M is existentially B bounded for B = maxi∈{0,1,...,n}Bi . Thus,
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overallL must be existentially BG bounded, where BG =maxq∈Q Bq

and Bq is the existential bound associated with Φ(q).

A necessary and sufficient condition for the MSC language of an
MSG to be universally bounded is that the MSG be locally strongly
connected [14]. To formalize this, we define the notion of a commu-
nication graph.

Communication graph For an MSC M = (E ,≤,λ), let C GM , the com-
munication graph of M , be the directed graph (P , 7→) where:

• P is the set of processes of the system.
• (p, q)∈ 7→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be locally strongly connected if every connected compo-
nent of C GM is strongly connected. An MSG G is said to be lo-
cally strongly connected if for each simple loop π in G, Φ(π) is locally
strongly connected.

Notice that the MSC language defined by the MSG in Figure 4 is
universally 1-bounded, though the language is not regular, and that
the communication graph of the one simple loop in this MSG is in
fact locally strongly connected.

2.5 Timeconstrained MSGs

To describe infinite families of TC-MSCs, we label the nodes of an
MSG with TC-MSCs instead of normal MSCs. We also permit process-
wise timing constraints along the edges of the MSG. A constraint for
process p along an edge q −→ q ′ specifies a constraint between the
final p-event of Φ(q) and the initial p-event of Φ(q ′), provided p ac-
tively participates in both these nodes. If p does not participate in
either of these nodes, the constraint is ignored.

Definition 8 A time-constrained MSG (TC-MSG) is a structure G =
(Q,→, Qi n, QF ,Φ, EdgeC), where

• Q is a finite non-empty set of states with sets of initial and final
states Qi n and QF , respectively, and → ⊆ Q ×Q is a transition
relation, as in an MSG.

• Φ labels each node with a TC-MSC.
• EdgeC ⊆Q×Q×P ×I describes local constraints on the edges,

with the restriction that (q , q ′, p, I ) ∈ EdgeC only if q −→ q ′ and
each triple (q , q ′, p) is mapped to at most one interval.
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Figure 5: A TC-MSG and some TC-MSCs that it generates

For a path π= q0q1 . . .qn through G, we define Φ(π), the TC-MSC
generated by π as follows. We begin with the TC-MSC Φ(q0)◦Φ(q1)◦
· · · ◦ Φ(qn). For each edge qi −→ qi+1, 0 ≤ i < n, if (qi , qi+1, p, I ) ∈
EdgeC we add a constraint I between the last p-event in Φ(qi ) and
the first p-event in Φ(qi+1), provided p participates in both Φ(qi ) and
Φ(qi+1). Fig. 5 shows a TC-MSG and some of the TC-MSCs that it
generates.

3 Decision Problems for TimeConstrained MSGs

3.1 Channelboundedness

The focus of this paper is to address the problem of channel-boundedness
for time-constrained MSGs—that is, given a TC-MSG G, determine
if it is universally or existentially bounded. Recall that the underly-
ing untimed MSG is always existentially bounded and, if it is locally
strongly connected, it is also universally bounded.
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The situation for TC-MSGs is more complicated. It is possible
that the timing constraints do not allow a TC-MSG to be existen-
tially bounded. On the other hand, timing constraints may convert
an MSG that is unbounded into one that is univerally bounded. We il-
lustrate both scenarios with a simple TC-MSG modelling a producer-
consumer system where one process keeps sending messages to the
other, as shown in Figure 6.

In the untimed setting, this system is not universally bounded be-
cause in any MSC where k messages are sent, we can find a prefix in
which all k messages are sent by P before the first message is received
by C .

Proposition 9 Consider a producer-consumer system with timing
constraints as shown in Figure 6. The channel is universally bounded if
and only if U is finite and either lP > 0 or lC > 0.
Proof Suppose that U is finite and lP > 0 and P sends a message
every lP time units starting at time 0, with each message delayed by
U units, the maximum possible. We then have messages sent at times
0, lP , 2lP , . . ., which are received at times U , U + lP , U + 2lP , . . . re-
spectively. In this run, ⌈U

lP
⌉ messages are sent from time 0 to time U .

After this, with each new message inserted into the channel one old
message is received, so the channel never grows beyond this bound.

On the other hand suppose that U is finite and lC > 0 and there
are B messages in the channel at time t . All these messages must be
received by C before time t+U . However, at most ⌈ U

lC
⌉messages can

be received by C within the interval [t , t+U], so B ≤ ⌈ U
lC
⌉. Since t

was arbitrary, the channel is universally bounded.
Conversely, if U =∞ or lP = lC = 0, we can show that the channel

is unbounded. Suppose U =∞ and we propose a bound B . We can
delay the receipt of the first message sent by P till B+1 messages have
been inserted into the channel. On the other hand, if U is finite but
lP = lC = 0, P can send B+1 (in fact, any number of messages we
want) within U time units and all these messages can be received by
C since lC = 0.

Notice also that if U =∞ and lC > uP , the language of this TC-
MSG is not even existentially bounded. This is in sharp contrast to
untimed MSGs, which are always existentially bounded.

Variants of the problem

Our basic problem is to check whether a TC-MSG is universally and/or
existentially bounded. We can identify several ways to restrict the
class of TC-MSGs under consideration.
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Figure 6: Producer-Consumer with timing constraints

Restrictions on constraints The first restriction is to do with edge
constraints. In general, an edge in a TC-MSGs can have an indepen-
dent constraint for each process that participates in both nodes con-
nected by the edge. We consider two special cases:

• There are no edge constraints at all.
• Only one designated process p is permitted to have edge con-

straints (p is a fixed process for the entire TC-MSG).

We can also vary the type of constraints we consider. In general, as
we have seen, the intervals we use in constraints can be closed, open
or half open. In particular, we can have point intervals of the form
[a, a] which specify an exact delay. The special cases we can consider
are:

• Both open and closed intervals are permitted, including point
intervals.

• Only open intervals are permitted.

Restrictions on final states Normally, a TC-MSG is equipped with
final states and we are only interested in paths from the initial state to
one of the final states. We can drop the assumption that we have final
states and consider all paths starting from an initial state.

Type of boundedness As we saw with the Producer-Consumer exam-
ple, both universal and existential boundedness are nontrivial prob-
lems for TC-MSGs. The general question asks whether there exists
a bound B such that the TC-MSG is existentially or universally B -
bounded. We can also ask a weaker question: given a fixed bound B ,
is the TC-MSG existentially or universally bounded with respect to
this fixed bound?
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Figure 7: Reachability in TC-MSGs is difficult

3.2 Reachability in TCMSGs

Let G = (Q,→, Qi n, QF ,Φ, EdgeC) be a TC-MSG. A state q is said
to be reachable in G if there is a path q0q1 . . . qn such that q0 ∈ Qi n,
qn = q and Φ(q0) ◦Φ(q1) ◦ · · · ◦Φ(qn) is a realizable TC-MSC.

It turns out that even reachability is not trivial for TC-MSGs. Con-
sider the example in Figure 7. (In this example and elsewhere, we de-
note point intervals [a, a] by a single integer a.) To reach the last node
we cannot take the shortest path and we need to iterate the first loop
k times and the second loop ℓ times so that k p − ℓq = 1.

The negative results that we show for boundedness will, in fact,
be derived from negative results for reachability—that is, we will re-
duce reachability to boundedness. When addressing the reachability
problem, we will again consider restricted versions corresponding to
the special cases on constraints, as discussed above in the context of
boundedness.

4 Reachability With Edge Constraints is Undecidable

We first show that reachability is undecidable with unrestricted edge
constraints. For this, we show that we can simulate the behaviour of
a 2-counter machine [13]. As the name suggests, a 2-counter machine
has two counters c1 and c2, each of which can hold a non-negative
number. A program is a sequence of labelled instructions ℓ : I , where
I is one of the following:

• c1++ or c2++ which increments the value of the counter.
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• if c1
?
= 0 goto ℓ′ else c1−− which transfers control to the in-

struction labelled ℓ′ if counter c1 is zero, and otherwise it decre-
ments c1 and continues with the next instruction labelled ℓ+1.
Indeed, we also have a similar instruction for c2.

Observe, that 2-counter machines are deterministic. Thus, a given
machine will either reach its final instruction and implicitly halt after
a finite number of steps or perform an infinite computation.

To simulate a 2-counter machine, we construct a TC-MSG in which
each node represents one labelled instruction ℓ : I of the 2-counter
machine. We encode each counter by a pair of processes—the counter
value is represented by the difference in time between the local clock
values of the pair of processes associated with the counter.

Figure 8 shows a simple simulation for one counter c . Let tp and tq

denote the time stamp of the last event on processes p and q , respec-
tively. The value of counter c is encoded by tq − tp . We maintain, as

an invariant, that tp ≤ tq . Recall that a constraint of the form b de-

notes a point interval [b , b]. Notice that this simulation does not use
any time constraints on messages, but that it does use point intervals.

The initial node synchronizes p and q , thereby setting c = tq − tp

to 0. Between two nodes, we always use edge constraints (1, 1) enforc-
ing that the time difference between the last event on process p (resp.
q) in the previous node and the first event on process p (resp. q) in
the next node is always 1. Therefore, the node Freeze preserves the
value of the counter. The node labelled c++ delays q , thereby incre-
menting c . Symmetrically, the node labelled c−− delays p, which
decrements c . Since the last message in node c−− goes from p to
q , we have c = tq − tp ≥ 0 at the end. So this is realizable only if

counter c was positive before entering node c−−. The node c
?
= 0

checks if c is 0 by sending a message back from q to p. Let tp and

tq be the time stamps of the last events on p and q in the previous

node. The message in node c
?
= 0 is sent at time tq + 1 and received at

time tp + 1≥ tq + 1. Since our invariant demands that tp ≤ tq , this is

realizable precisely when tp = tq , which means c = 0. Note that the

invariant is preserved.

Having shown how to encode counter values, it is a simple mat-
ter to construct a TC-MSG that simulates a given 2-counter machine.
We use two pairs of processes (p1, q1) and (p2, q2) to encode the coun-
ters c1 and c2, respectively. By definition of the counter machine,
exactly one counter is active in each instruction, for which we use the
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p q
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c++

p q
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2
1

c−−

p q

(1, 1)

c
?
= 0

Figure 8: Simulating a counter machine

appropriate encoding described below. For the inactive counter, we
preserve the value using the Freeze construction.

For each instruction ℓ : c++ (c ∈ {c1, c2}) of the 2-counter ma-
chine, we construct a state ℓ in the TC-MSG corresponding to c++
and freezing the other counter. We connect state ℓ to the state(s) cor-
responding to instruction ℓ+1 in the TC-MSG to capture the implicit
control flow in the counter machine.

For each instruction ℓ : if c
?
= 0 goto ℓ′ else c−− we create two

states corresponding to ℓc=0 and ℓc−− which are labelled with the
corresponding MSCs from Figure 8. Again, we freeze the inactive
counter. We connect state ℓc=0 to the state(s) corresponding to in-
struction ℓ′ and state ℓc−− to the state(s) corresponding to instruction
ℓ+ 1.

Let ℓ f : I f be the final (halting) instruction of the 2-counter ma-

chine. Then, checking whether the corresponding node in the TC-
MSG is reachable is equivalent to checking whether the given 2-counter
machine halts. Since this is an undecidable problem for 2-counter ma-
chines, we have shown the following.

Theorem 10 The reachability problem for TC-MSGs with arbitrary
edge constraints is undecidable, even without constraints on message de-
lays.
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Figure 9: Reducing reachability to boundedness

5 Reducing Reachability to Boundedness

We add two new processes r and s to each node in our TC-MSG
simulation of a 2-counter machine with two messages from r to s as
shown in Figure 9. Events along r are tightly constrained by edge
constraints. On the other hand, there are no edge constraints for s ,
events along s can be delayed arbitrarily.

There are two cases to consider.

• If the counter machine halts then the simulation is finite and
channels are bounded by some B—we can calculate the bound
from the length of the computation.

• If the counter machine does not halt then the simulation is in-
finite and r and s form a timed producer-consumer system in
which the channel (r, s ) is both existentially and universally un-
bounded, as analyzed in Section 3.1.

This reduction gives us the following result.

Theorem 11 Both existential boundedness and universal bounded-
ness are undecidable for TC-MSGs with arbitrary edge constraints, even
without constraints on message delays.

We note, in passing, that boundedness does not imply reachability.
For instance, we can strengthen the notion of locally strongly con-
nected TC-MSGs to obtain the class of locally synchronized TC-MSGs
that have both bounded channels and regular behaviours [5, 9, 15].
However, reachability is still a nontrivial problem. In fact, it turns
out that reachabililty is decidable for locally synchronized TC-MSGs,
but this requires a somewhat sophisticated argument [2].
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6 Simulating Counters With Open Intervals

We next consider the restriction where constraints can only be open
intervals. Reachability remains undecidable even in this setting.

As before, we will model a counter by the difference in time across
two processes p and q . However, the counter value is denoted not by
tq − tp but by tq − tp − 1. Thus, the counter is 0 when tq − tp = 1.

Our simulation of counters will use only open intervals. Instead
of simulating p and q with timestamps that exactly capture the value
of the counter, we use two pairs of processes (pl , ql ) and (pu , qu) that
serve as the lower and upper approximations of the value denoted by
(p, q). We maintain as an invariant that 0 ≤ tql

− tpl
< tq − tp <

tqu
− tpu

.

The simulation is described in Figure 10. In the pictures, we show
p and q , the processes with point intervals whose value we are trying
to track, but this is only for reference. The actual simulation uses
only the pairs (pl , ql ) and (pu , qu)

The node Init sets up the invariant corresponding to tq − tp = 1,

i.e., the counter value is 0.
In the exact simulation using p and q , each edge carries a constraint

1. Correponding to this, we compose nodes using edge constraints for
the lower and upper approximations as shown in Composition. For
the pair of nodes n and n′ connected by such an edge, we use t to
denote the times associated with the last events in n and t ′ to denote
the times associated with the first events in n′. Then, we have:

t ′
ql
− t ′

pl
< tql

− tpl
(by edge constraints),

tql
− tpl

< tq − tp (by assumption on n),
tq − tp = t ′

q
− t ′

p
(exact delay of 1 on p and q),

tq − tp < tqu
− tpu

(by assumption on n),
tqu
− tpu

< t ′
qu
− t ′

pu
(by edge constraints).

From this, it follows that in n′, we still have 0≤ t ′
ql
− t ′

pl
< t ′

q
− t ′

p
<

t ′
qu
− t ′

pu
as required.

The node c++ increments the counter. Once again using t ′ for the
times of the second message and t for the times of the first one, we
have

0≤ t ′
ql
−t ′

pl
< tql
−tpl
+1< tq−tp+1= t ′

q
−t ′

p
< tqu
−tpu

+1< t ′
qu
−t ′

pu
,

so the lower and upper approximations correctly track c after the in-
crement.
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Figure 10: Open interval simulation
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The node c−− decrements the counter. Once again using t ′ for the
times of the second message and t for the times of the first one, we
have

0≤ t ′
ql
−t ′

pl
< tql
−tpl
−1< tq−tp−1= t ′

q
−t ′

p
< tqu
−tpu
−1< t ′

qu
−t ′

pu
,

so the lower and approximations correctly track c after the increment.
As before, we freeze a value by sending a single message on both

(pl , ql ) and (pu , qu).

For c
?
= 0, initially 1≤ tq − tp < tqu

− tpu
. Once again using t ′ for

the times of the second message and t for the times of the first one,
we have tqu

≤ t ′
qu
≤ t ′

pu
< tpu

+ 2. Hence, tqu
− tpu

< 2. From this, we

deduce that 1≤ tq − tp < 2, so tq − tp = 1 which means that c = 0.

Conversely, if c = 0, there is a timed MSC that realizes the path
used so far with the property that 1= tq− tp < tqu

− tpu
< 1+ 1

2
. This

means that the first two messages between pu and qu in the figure are
realizable. The next two messages between pu and qu then “reset” the
counter so that, at the end, 1< tqu

− tpu
.

We can now use two sets of lower and upper approximations to
track two counters and set up a TC-MSG that simulates a 2-counter
machine as in Section 4. It is a simple matter to add a suitably mod-
ified version of the MSC shown in Figure 9 to each node, so that we
have the following results.

Theorem 12 Reachability, existential boundedness and universal
boundedness are all undecidable for TC-MSGs even if we restrict all con-
straints to open intervals and without constraints on message delays.

7 Counter Simulation With Bounded Channels

We can use a more sophisticated construction to simulate a counter
in which all channels are 1-bounded. The main ingredients are shown
in Figure 11. The counter value c is encoded as the difference tq − tp .

This quantity is manipulated by sending messages on the channels
(p, p ′) and (q , q ′), with timing constraints on the send and receive
events along processes (p, p ′) and (q , q ′).

The main complication is that the construction for c−− does not
prevent the value in c from going below 0. Note however that the TC-

MSC for c
?
= 0 can be realized only when tq− tp = 0, i.e., it accurately

checks that c = 0 without assuming that the counter is non-negative.
We use this fact to implement a decrementation which “terminates”
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Figure 11: Counter simulation with bounded channels

c−−

c̄++

c
?
= 0 c̄

?
= 0

c++ c̄−−

Figure 12: Decrementation without going below 0

only if the counter stay above 0. We copy the contents of c to another
counter c̄ by repeatedly decrementing c and incrementing c̄ , allowing

the loop to terminate when c
?
= 0. In this case, we transfer the con-

tents back from c̄ to c using the same trick. The precise construction
is depicted in Figure 12. If c < 0 after the original decrement, we have
a livelock in which we cycle through the first loop an infinite number
of times, thus effectively blocking the simulation. So the simulation
(may) terminates only if the counter is non-negative after the initial
decrement.

For Freeze, we exchange a pair of messages between p, p ′ and be-
tween q , q ′ with the same delay along each process. So the node is
similar to that of c++ where we replace 3 by 2.

With these ingredients in place, we can once again simulate a 2-
counter machine with a TC-MSG using six pairs of processes,
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p p ′ p

2 2 2

Figure 13: Messages can be eliminated

{(p1, p ′
1
), (q1, q ′

1
), (p2, p ′

2
), (q2, q ′

2
), (p, p ′), (q , q ′)}, to encode the three

counters c1, c2 and c̄ . The main difference with our earlier construc-
tion is that even when the run of the 2-counter machine is infinite, the
corresponding TC-MSC traced out by our TC-MSG is 1-bounded.

The fact that this simulation of a 2-counter machine has 1-bounded
channels allows us to sharpen our undecidability result for bounded-
ness. In the earlier reduction from reachability to boundedness, we
had included the MSC in Figure 9 within each node of the 2-counter
simulation. Here, instead, we create a single separate node containing
this TC-MSC, with a self-loop. We then add an edge from the node
in our TC-MSG corresponding to the final instruction ℓ f : I f of the

2-counter machine to this new node.

Clearly, the new node with the TC-MSC from Figure 9 is reach-
able if and only if the 2-counter machine that we are simulating ter-
minates at ℓ f : I f . Once we enter this new node, we start generating

a TC-MSC that is not existentially or universally bounded for any
choice of B . On the other hand, if the 2-counter machine computa-
tion never terminates, we always remain within the 1-bounded por-
tion of the simulation. Thus, if we can decide whether this TC-MSG
is B -bounded, either existentially or universally, for any B ≥ 1, we can
also decide whether the 2-counter machine halts. Hence, we have the
following result.

Theorem 13 Checking whether a TC-MSG with arbitrary edge con-
traints is existentially or universally bounded with respect to a fixed bound
B is undecidable for every B ≥ 1.

In fact, the construction can be further simplified if we permit in-
ternal events along processes. We can then replace each exchange of a
pair of messages along the channel (p, p ′) by two internal events on p
with the same interval constraint, as shown in Figure 13. But we still
need to exchange messages between p and q to initialize the counter

or to check c
?
= 0. Thus, we can divide the number of processes by 2

in this simulation.
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Figure 14: Simulation with constraints along a single process

8 Edge Constraints Along a Single Process

The last case we consider is when edge constraints are only permitted
for a fixed process. This is a natural restriction — for instance this
process could be a controller that coordinates between the different
phases of a protocol. Let us denote this special process p. To simulate
a counter c , we add two processes q+

c
and q−

c
. Let t+

c
, t−

c
and t denote

the time of the last event along processes q+
c

, q−
c

and p, respectively.
We then maintain the value of c in terms of an upper approximation
c+ = t+

c
− t and a lower approximation c− = t− t−

c
, so that we always

have c+ ≥ c ≥ c− ≥ 0.

Figure 14 shows the basic constructs needed for the simulation. As
usual, the node labelled Init ensures that t+

c
= t = t−

c
, so initially

we have c+ = c− = 0. The node labelled Freeze preserves the cur-
rent value of c . The nodes labelled c++ and c−− correspond to in-
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crementing and decrementing the value of c , respectively. The node

labelled c
?
= 0 check if the value of c is 0.

Any sequence σ = s1 s2 . . . sn of states where each s j is one among

c++, c−−, Freeze and c
?
= 0 yields a TC-MSC Mσ . We say that σ

describes a valid computation if when executing the corresponding
sequence of instructions the counter c never goes below 0 and when-
ever a zero-test is performed then the value of c is indeed 0. Note that,
if σ describes a valid computation then Mσ is realizable by a T-MSC

such that after each instruction we have c+ = c = c− ≥ 0.
Conversely, to justify that c+ and c− track the value of c accurately,

we show that any T-MSC that realizes Mσ maintain the invariant c+ ≥
c ≥ c− ≥ 0. Let us denote |σ |a the number of occurrences of the letter
a in the sequence σ so that c = |σ |c++ − |σ |c−−. We verify that the
invariant holds with the following calculation.

c+ = t+
c
− t

≥ 3|σ |c+++ 2|σ |
c

?
=0
+ 2|σ |Freeze+ |σ |c−−−

2(|σ |c+++ |σ |c ?
=0
+ |σ |Freeze+ |σ |c−−)

= |σ |c++− |σ |c−− = c

c− = t − t−
c

≤ 2(|σ |c+++ |σ |c ?
=0
+ |σ |Freeze+ |σ |c−−)−

−(3|σ |c−−+ 2|σ |
c

?
=0
+ 2|σ |Freeze+ |σ |c++)

= |σ |c++− |σ |c−− = c

Note that we always have c− = t − t−
c
≥ 0 since the last message of

each node always goes from q−
c

to p. Hence, if Mσ is realizable then

c ≥ c− ≥ 0 and the counter never goes below 0 during the computa-
tion.

Moreover, the realization of the TC-MSC in c
?
= 0 implies t+

c
= t =

t−
c

at the end, i.e., c+ = c− = 0. Using the invariant, we deduce that

the counter must be 0 whenever we use state c
?
= 0 in the sequence σ .

The simulation of a 2-counter machine with a TC-MSG follows
along the usual lines. In each MSC of our simulation, we add a copy of
the TC-MSC from Figure 9. Since edge-constraints are permitted only
on p, we use p to play the role of r and introduce s as a fresh process.
Then, from our argument, the channel (p, s ) will be bounded if and
only if the 2-counter machine that we are simulating has a halting
computation. This yields the following result.
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Theorem 14 Reachability, existential boundedness and universal
boundedness are all undecidable for TC-MSGs even if all edge constraints
in the TC-MSG are restricted to a fixed process and without constraints
on message delays.

9 Decidability Without Edge Constraints

If we have no edge constraints in a TC-MSG, reachability is decidable
and the status of boundedness is still open.

9.1 Reachability

Since there are no edge constraints, for a path π = q0q1 . . . qn, we can
always choose to execute the events in Φ(π) = Φ(q0) ◦ Φ(q1) ◦ · · · ◦
Φ(qn) one node at a time, as in an untimed MSG. The only difficulty
that can arise is that a TC-MSC labelling a node is not realizable—
that is, the constraints within it are not feasible. We can check this
easily, as explained in Section 2.3, and delete nodes that are labelled
by unrealizable TC-MSCs. Reachabilty then amounts to finding a
path in the reduced graph after eliminating infeasible nodes.

9.2 Boundedness

When there are no constraints on edges, one strategy is to extend the
producer-consumer analysis in Section 3 and check universal and ex-
istential boundedness. Recall that an MSG in which every node is
labelled by a nonempty MSC is universally bounded if for every sim-
ple loop, the communication graph of the MSC described by the loop
is locally strongly connected. Given this, it suffices to concentrate on
simple loops where the communication graph of the underlying MC
is not locally strongly connected.

Fix a simple loop π whose underlying MSC is M =Φ(π) such that
C GM is not locally strongly connected. Let (p, q) be a pair of pro-
cesses such that there is an edge from p to q in C GM , but no path
back from q to p. If we iterate M , p and q play the role of P and
C from the producer-consumer system described in Section 3. This
system can be completely analyzed if we know the constraints on
messages from p to q as well as between successive send events on p
and receive events on q . The only difficulty is that the constraints
along p and q may arise due to the transitive closure of dependencies
through other pairs of events.
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Figure 15: Transitive dependency

For example, in the system shown in Figure 15, the channel (p, q)
is apparently unbounded since there is no explicit lower bound on
consecutive sends by p or consecutive receives by q , though there is
an upper bound on message delays along (p, q). However, the lower
bound between the two events along r implicitly enforces a lower
bound between the two corresponding events along q and hence im-
poses a lower bound between the receipt of consecutive messages by q
along the channel (p, q). Thus, this loop satisifies the condition speci-
fied in Proposition 9 for the channel (p, q) to be universally bounded.

Unfolding the loop π several times may “reveal” timing constraints
between two occurrences of the same send event p!q(m) in the loop,
or two occurrences of the same receive event q?p(m). These timing
constraints may be induced by constraints in the SCC of p or q re-
spectively. Doing so, we may obtain for some message from p to q
induced constraints [lp , up] and [lq , uq] for successive send and re-

ceive events, respectively. Considering in addition the bounds [L, U ]
carried by this message, we may apply Proposition 9 to prove that this
loop is universally bounded if U is finite and lp > 0 or lq > 0.

Unfortunately, we do not obtain a necessary and sufficient con-
dition following this approach. Consider the system in Figure 16.
There is a single loop whose communication graph is not strongly
connected. If we focus on the channel (p, r ), we can regard this as a
producer consumer system. In this system, we cannot derive an upper
bound for the message from p to r sent in the third node. Neverthe-
less, a careful analysis shows that the channel (p, r ) is indeed bounded

by
2+U1+U2

ℓ
.

Thus, we have a sufficient condition to ensure that a TC-MSG
without edge constraints is bounded, but not a necessary one.
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Figure 16: Boundedness without edge constraints

10 Discussion

We have shown that reachability and boundedness are, in general, un-
decidable for TC-MSGs. This is in contrast to the positive results
for both questions in the untimed setting, confirming the suspicion
that adding real-time constraints to specifications of distributed sys-
tems is tricky. As we have shown, even the simplest form of timing
constraints across edges of a TC-MSG induce undecidability. With-
out edge constraints, reachability becomes decidable for TC-MSGs.
We conjecture that boundedness is also decidable for this class of TC-
MSGs.

The main reason why timed distributed systems are difficult to ana-
lyze is that global time acts as a covert channel to convey information
across processes. This observation has also been made in the context
of timed CFMs [10]. One way to get around this problem is to allow
each component’s clock to drift with respect to other components.
The difficulty is to describe a model that permits this without mak-
ing the notion of time across components meaningless. A model of
timed CFMs with independently evolving clocks has been introduced
in [1]. It remains to be seen if similar ideas can be incorporated into
the TC-MSG framework.
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