
Logical Methods in Computer Science
Vol. 5 (2:9) 2009, pp. 1–17
www.lmcs-online.org

Submitted Jul. 10, 2008
Published May 25, 2009

SOLVING SIMPLE STOCHASTIC GAMES

WITH FEW RANDOM VERTICES

HUGO GIMBERT a AND FLORIAN HORN b

a LaBRI, CNRS, Bordeaux, France
e-mail address: hugo.gimbert@labri.fr

b CWI, Amsterdam, The Netherlands
e-mail address: f.horn@cwi.nl

Abstract. Simple stochastic games are two-player zero-sum stochastic games with turn-
based moves, perfect information, and reachability winning conditions.

We present two new algorithms computing the values of simple stochastic games. Both
of them rely on the existence of optimal permutation strategies, a class of positional strate-
gies derived from permutations of the random vertices. The “permutation-enumeration”
algorithm performs an exhaustive search among these strategies, while the “permutation-
improvement” algorithm is based on successive improvements, à la Hoffman-Karp.

Our algorithms improve previously known algorithms in several aspects. First they run
in polynomial time when the number of random vertices is fixed, so the problem of solving
simple stochastic games is fixed-parameter tractable when the parameter is the number
of random vertices. Furthermore, our algorithms do not require the input game to be
transformed into a stopping game. Finally, the permutation-enumeration algorithm does
not use linear programming, while the permutation-improvement algorithm may run in
polynomial time.

Introduction

Simple stochastic games (SSGs) are played by two players called Max and Min in a
sequence of steps. The players move a pebble along the edges of a directed graph (V,E)
whose vertices are partionned into three sets: VMax, VMin, and VR. When the pebble is on
a vertex of VMax or VMin, the corresponding player chooses an outgoing edge and moves the
pebble along it. When the pebble is on a vertex of VR (a random vertex), the outgoing
edge is chosen randomly according to a fixed probability distribution. The players have
opposite goals, as Max wants to reach a special sink vertex ⊚ while Min wants to avoid it
forever. An example of SSG is depicted in Figure 1, with vertices of VMax represented as
#’s, vertices of VMin represented as 2’s, and vertices of VR represented as △’s.

SSGs are a natural model of reactive systems. Consider, for example, a hardware
component. It can be modelled as an SSG, whose vertices represent the global states of
the component and the target is some error state to avoid. The nature of a given vertex

1998 ACM Subject Classification: I.2.1, G.3.
Key words and phrases: simple stochastic games, algorithm.

b This research was partially supported by the french project ANR “DOTS”. The second author held the
tenure of an ERCIM “Alain Bensoussan” fellowship programme.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (2:9) 2009
c© H. Gimbert and F. Horn
CC© Creative Commons

http://creativecommons.org/about/licenses

2 H. GIMBERT AND F. HORN

a b c d

.4

.6

.3

.1

.4 .1

.1

.2

.8

.2
.6

.2

Figure 1: A Simple Stochastic Game.

depends on who can influence the immediate evolution of the system: it is a Min vertex if the
software can choose between different options, a Max vertex if there is a (non-deterministic)
input asked from the user, and a random vertex if the evolution depends on a stochastic
environment. An optimal strategy for Min can then be used as the basis for the synthesis
of a “good” driver, i.e. one which minimises the probability of entering the error state
independently of the behaviour of the user.

The main algorithmic problem about SSGs is the computation of values of the vertices
and optimal strategies for the players. This problem was first adressed by Condon, who
showed that deciding whether the value of a vertex is greater than 1

2 belongs to NP and
co-NP [Con92]. Condon’s algorithm guesses non-deterministically the values of vertices,
which are rational numbers of linear size, and checks that they are solutions of some local
optimality equations. This algorithm is correct only for stopping games, where the pebble
reaches either the target or a sink target with probability one, regardless of the players’
strategies. Any SSG can be transformed in polynomial time into a stopping SSG with
(almost) the same values, but it incurs a quadratic blow-up of the size of the game.

Three other algorithms for solving SSGs are presented in [Con93]. The first one com-
putes the values of the vertices using a quadratic program with linear constraints. The
second one computes iteratively from below the values of the vertices, and the third is a
strategy improvement algorithm à la Hoffman-Karp [HK66]. The two latter algorithms,
as the ones recently proposed in [Som05], solve a series of linear programs which could be
of exponential length. Furthermore, solving a linear program requires high-precision arith-
metic, even if it can be done in polynomial time [Kha79, Ren88]. The best randomised

algorithms achieve sub-exponential expected time eO(
√

n) [Lud95, Hal07].
In this paper we present two algorithms computing the values and optimal strategies

in SSGs: the “permutation-enumeration” and the “permutation-improvement” algorithms.
The common basis for both algorithms is that optimal strategies can be looked for in a
subset of the positional strategies called permutation strategies. Permutation strategies are
derived from permutations over the random vertices. In order to find optimal strategies, the
permutation-enumeration algorithm performs an exhaustive search among all permutation
strategies, whereas the permutation-improvement algorithm performs successive improve-
ments of permutation strategies, à la Hoffman-Karp [HK66].

SOLVING SIMPLE STOCHASTIC GAMES... 3

The permutation-enumeration and the permutation-improvement algorithms share two
advantages over existing algorithms. First, they perform much better on SSGs with few
random vertices, as they run in polynomial time when the number of random vertices is
logarithmic in the size of the game: it follows that the problem of solving SSGs is fixed-
parameter tractable when the parameter is the number of random vertices. Second, they
do not rely on the transformation of the input SSG into a stopping SSG, which avoids
the quadratic blow-up of the size of the game. Moreover, the permutation-enumeration
algorithm does not use linear or quadratic programming, (it just computes the solutions
to linear systems) and its worst-case complexity is O

(

|VR|! · (|E| + |δ|)
)

, where |VR| is
the number of random vertices, |E| is the number of edges and |δ| is the maximal bit-
length of transition probabilities. The nominal complexity of the permutation-improvement
algorithm is higher but we do not know any non-trivial lower bound for its complexity: the
permutation-improvement algorithm may actually run in polynomial time.

Outline. In Section 1, we provide formal definitions for SSGs, values and optimal strategies.
We describe then in Section 2 the central notion of permutation strategies. Section 3
presents the permutation-enumeration algorithm, based on the self-consistency and liveness
properties. Section 4 introduces an improvement policy for permutations which leads to the
permutation-improvement algorithm.

1. Simple Stochastic Games

1.1. Plays and strategies. A simple stochastic game is a tuple (V, VMax, VMin, VR, E, δ,⊚),
where (V,E) is a graph, (VMax, VMin, VR) is a partition of V , and ⊚ is a distinguished sink
vertex in V called the target of the game. The transitions from the random vertices are
equipped with probabilities described by the function δ : VR → V → [0, 1], such that for all
v ∈ VR, w ∈ V , δ(v)(w) > 0 ⇒ (v,w) ∈ E, and

∑

w∈V δ(v)(w) = 1.
An infinite play ρ is an infinite sequence ρ0ρ1 · · · ∈ V ω of vertices such that for all

i ∈ N, (ρi, ρi+1) ∈ E. It is winning for Max if there is a i ∈ N such that ρi = ⊚ (as ⊚ is
a sink, it follows that ∀j > i, ρj = ⊚). Otherwise, ρ is winning for Min. A finite play is a
finite prefix of an infinite play.

A (pure) strategy for Max is a mapping σ : V ∗VMax → V such that for each finite play
h = h0 . . . hi ending in a Max vertex, (hi, σ(h)) ∈ E. It is positional if it only depends
on the last vertex of h: σ(h) = σ(hi). A play ρ0ρ1 . . . is consistent with σ if for every i
such that ρi ∈ VMax, ρi+1 = σ(ρ0 . . . ρi). Strategies for Min are defined analogously and are
generally denoted by τ .

1.2. Measures and values. The set of plays is made into a measurable space on the
σ-algebra generated by the canonical projections {Vi}i∈N, where Vi(ρ0ρ1 . . .) = ρi [Bil95].
Once an initial vertex v and two strategies σ and τ for players Max and Min have been
fixed, the probability measure P

σ,τ
v is defined by:

P
σ,τ
v (V0 = v) = 1 ,

P
σ,τ
v (Vi+1 = σ(V0 . . . Vi) | Vi ∈ VMax) = 1 ,

P
σ,τ
v (Vi+1 = τ(V0 . . . Vi) | Vi ∈ VMin) = 1 ,

P
σ,τ
v (Vi+1 | Vi ∈ VR) = δ(Vi)(Vi+1) .

4 H. GIMBERT AND F. HORN

The expectation of a real-valued, measurable and bounded function ϕ under P
σ,τ
v is denoted

E
σ,τ
v [ϕ]. We will often use implicitly the following formulae which rule the probabilities and

expectations once a finite prefix h = h0 . . . hi is fixed:

P
σ,τ
v (Γ | V0 . . . Vi = h0 . . . hi) = P

σ[h],τ [h]
hi

(Γ[h]) , (1.1)

E
σ,τ
v [ϕ | V0 . . . Vi = h0 . . . hi] = E

σ[h],τ [h]
hi

[ϕ[h]] , (1.2)

where σ[h](ρ0ρ1 . . .) = σ(h0 . . . hi−1ρ0ρ1 . . .), and τ [h], Γ[h], and ϕ[h] are defined analo-
gously.

If we fix only Max’s strategy σ and the initial vertex v, the target vertex will be reached
with probability at least:

inf
τ

P
σ,τ
v (Reach(⊚)) ,

where Reach(⊚) is the event {∃i ∈ N, Vi = ⊚}. Starting from v, player Max has strategies
that guarantee a winning outcome with a probability greater than:

val∗(v) = sup
σ

inf
τ

P
σ,τ
v (Reach(⊚)) ,

minus ǫ for any ǫ > 0. Symmetrically, Min has strategies that guarantee a winning outcome
with a probability less than:

val∗(v) = inf
τ

sup
σ

P
σ,τ
v (Reach(⊚)) ,

plus ǫ for any ǫ > 0. It is clear that val∗(v) ≤ val∗(v). In the case of SSGs, stronger results
are known:

Theorem 1.1 ([Sha53, Gil57, LL69]). Let G = (V, VMax, VMin, VR, E,⊚, δ) be a SSG. Then,
for any vertex v ∈ V ,

val∗(v) = val∗(v) .

This common value is denoted by val(v). Furthermore, there are positional optimal strategies
for both players, i.e. positional strategies σ# and τ# such that, for any strategies σ and τ :

P
σ,τ#

v (Reach(⊚)) ≤ val(v) ≤ P
σ#,τ
v (Reach(⊚)) .

1.3. Normalised games. A SSG is normalised if the only vertex with value 1 is the target
⊚ and there is only one (sink) vertex ⊗ with value 0. Our motivations for the introduction
of this notion are twofold. First, several proofs are much simpler for normalised games.
Second, any SSG can be reduced to an equivalent normalised game in linear time and the
resulting game is smaller than the original one. This reduction is presented on Figure 2: it
simply consists in merging the region with value one into ⊚ and the region with value zero
into a new sink vertex ⊗.

In the remainder of this article, we assume that we are working on a normalised SSG
G = (V, VMax, VMin, VR, E, δ,⊚,⊗), with k random vertices.

SOLVING SIMPLE STOCHASTIC GAMES... 5

val = 0

val = 1

Figure 2: Normalisation.

2. Permutation strategies

The existence of positional optimal strategies is a key property of SSGs and the cor-
nerstone of many algorithms solving these games. The algorithms we propose rely on a
refinement of this result: optimal strategies can be looked for among a subset of the posi-
tional strategies, the set of “permutation strategies”.

As a matter of fact, Theorem 1.1 is a corollary of results of the present paper. The
proofs of our results often rely on the existence of values and optimal (not only ǫ-optimal)
strategies in SSGs. This could be avoided —the main point is to use val∗ instead of val—
but we felt that it was not worth the extra complexity.

The main intuition underlying permutation strategies is that the only meaningful events
in a play are the visits to random vertices. Between two visits the players only strive to
impose which random vertex will be visited next, and the result of their interaction can be
easily predicted. This is illustrated by Figure 3, which zooms on two details of Figure 1.

b c

.1

.3

.4 .1

.1

.2

.8

a b.4

.4

.6

.3

.1

.1

.1

Figure 3: Coherence and contention.

In the left part of Figure 3, Max must choose between the two random vertices b and
c (refusing to choose is not really an option). There is no reason to choose b in one of the
vertices, and c in the other. We could consider only the strategies “always go to b” and

6 H. GIMBERT AND F. HORN

“always go to c”. In the right part of Figure 3, we consider relationships between the two
players’ strategies. From their respective vertices # and 2, Max and Min can send the
pebble to either a or b. We could restrict our attention to the cases where Max goes to one,
and Min to the other.

Underlying these intuitions is the idea of a “preference order” over the random vertices.
In the remainder of this article, we formalise it as a permutation: a one-to-one correspon-
dance f between VR and {1, . . . , k}. For simplicity, we often write fi instead of f−1(i) and
we consider the sink and target vertices as random vertices with the implicit assumption
that they are respectively the lowest and greatest vertices: f0 = ⊗ and fk+1 = ⊚.

2.1. Attractors and f-regions. Once a permutation f : VR → {1, . . . , k} has been fixed,
the f -strategies consist in Max trying to reach the highest (with respect to f) possible
random vertex, while Min tries to thwart her. Notice that the situation is not exactly
symmetric, since the burden of reaching a random vertex lies with Max: in case the peb-
ble remains forever in controlled vertices then player Min wins. The formal definition of
permutation strategies is based on the notion of deterministic attractor.

Definition 2.1. Let X ⊆ V be a set of vertices. The deterministic attractor of Max to X,
denoted by DetAtt(X), is computed recursively:

X0 = X ,

Xi+1 = Xi ∪
{

v ∈ VMax | ∃w ∈ Xi, (v,w) ∈ E
}

∪
{

v ∈ VMin | ∀w ∈ V, (v,w) ∈ E ⇒ w ∈ Xi
}

,

DetAtt(X) =
⋃

i>0

Xi .

An attracting strategy to X for Max is a positional strategy σ such that:

∀i ≥ 1, σ(Xi) ⊆ Xi−1 .

Symmetrically, a trapping strategy out of X for Min is a positional strategy τ such that:

τ(V \ DetAtt(X)) ⊆ V \ DetAtt(X) .

The f -regions associated with a permutation f : VR → {1, . . . , k} are defined as embed-
ded deterministic attractors to the random vertices:

Wf [k + 1] = {⊚} ,

∀1 ≤ i ≤ k,Wf [i] = DetAtt({fi, . . . , fk,⊚}) \
⋃

j>i

Wf [j] ,

Wf [0] = {⊗} .

2.2. Permutation strategies. The f -strategies σf and τf are strategies such that, on each
Wf [i]:

• σf coincides with an attractor strategy to {fi, . . . , fk,⊚},
• τf coincides with a trapping strategy out of {fi+1, . . . , fk,⊚}.

SOLVING SIMPLE STOCHASTIC GAMES... 7

The f -regions partition V , so we extend the definition domain of f : VR → {1, . . . , k}
to V in a natural way: f(v) = i if v ∈Wf [i]. The following properties are easy to prove:

∀v ∈ VMax, f(v) = f(σf (v)) , (2.1)

∀v ∈ VMax,∀(v,w) ∈ E, f(v) ≥ f(w) , (2.2)

∀v ∈ VMin, f(v) = f(τf (v)) , (2.3)

∀v ∈ VMin,∀(v,w) ∈ E, f(v) ≤ f(w) . (2.4)

If Max plays σf and Min plays τf from an initial vertex v, the first random vertex reached
by the pebble is the unique random vertex w such that f(w) = f(v). Figure 4 describes the
f -regions and f -strategies of the game of Figure 1, for f = abcd.

f1 f2 f3 f4

Figure 4: f -regions and f -strategies in the game of Figure 1.

2.3. The f-values. When both players use their respective permutation strategies, the
probability that a pebble starting in v reaches ⊚ is denoted by ϕf (v):

ϕf (v) = P
σf ,τf
v (Reach(⊚)) .

Proposition 2.2. Let f be a permutation. The f -regions and the f -strategies can be com-
puted in time O

(

|E| log∗(|V |)
)

and the f -values can be computed in time O
(

|VR|
3|δ|

)

.

Proof. The f -regions and f -strategies can be expressed in terms of deterministic games as
they do not depend on what happens once a random vertex is reached. We can thus use
the results of [AHMS08] to compute them in time O(|E| log∗(|V |). In order to compute
the f -values, we build a Markov chain Mf designed to mimic the behaviour of G when the
players use their f -strategies. Intuitively, we merge each region Wf [i] into a single vertex i;
formally, Mf is a Markov chain with states S = {0, . . . , k + 1} such that 0 and k + 1 are
absorbing and, for every 1 ≤ i ≤ k and 0 ≤ j ≤ k + 1, the transition probability from i to
j is given by:

pij =
∑

v∈Wf [j]

δ(fi)(v) .

The values x∗ : {0, . . . , k + 1} → [0, 1] of Mf are computed as follows. Let I ⊆ S be
the set of vertices from which k + 1 is reachable in Mf . Then, for each i /∈ I, x∗i = 0, and

8 H. GIMBERT AND F. HORN

(x∗i)i∈I is the unique solution of the following linear system:
{

x∗k+1 = 1

x∗i =
∑

j∈I pi,j · x
∗
j ,

which can be solved in time O
(

|VR|
3|δ|

)

[Dix82]. For each v ∈ V , ϕf (v) = x∗
f(v).

3. The permutation-enumeration algorithm

In this section we describe the permutation-enumeration algorithm which computes
optimal strategies for both players. This algorithm relies on the following key property of
permutation strategies.

Theorem 3.1. In every SSG, there exists a permutation f such that σf is optimal for Max
and τf is optimal for Min.

This theorem suggests a very simple enumerative algorithm computing values and op-
timal strategies: check for each permutation f whether the f -strategies are optimal. Each
test can be performed in polynomial time using linear programming [Der72, Con92]. How-
ever, linear programming requires high-precision arithmetic and is expensive in practice.
Our permutation-enumeration algorithm uses a simpler criterion based on a refinement of
Theorem 3.1: we look for permutations which are live and self-consistent.

3.1. Liveness and self-consistency. The permutation-enumeration algorithm is based
on two simple properties on permutations: self-consistency and liveness. Self-consistency
expresses the adequation between a priori preferences (permutation f) and resulting values
(the f -values ϕf). Liveness stipulates that each random vertex has a positive probability to
immediately lead to a better —from Max’s point of view— region.

Definition 3.2. A permutation f is self-consistent if:

ϕf (f1) ≤ ϕf (f2) ≤ . . . ≤ ϕf (fk) .

Definition 3.3. A permutation f is live if:

∀1 ≤ i ≤ k,∃j > i,∃v ∈Wf [j], δ(fi)(v) > 0 .

As we show below, the f -strategies associated with a live and self-consistent permuta-
tion f are optimal and there is always such a permutation. The permutation-enumeration
algorithm performs an exhaustive search for a live and self-consistent permutation.

Input: A normalised simple stochastic game G = (V, VMax, VMin, VR, E, δ,⊚,⊗).
Output: Optimal strategies for Max and Min.
forall permutation f over VR do1

compute the f -regions;2

compute the f -values;3

if f is live and self-consistent then4

return σf and τf ;5

Algorithm 1: The permutation-enumeration algorithm.

SOLVING SIMPLE STOCHASTIC GAMES... 9

Theorem 3.4. The permutation-enumeration algorithm terminates and returns optimal
strategies for Max and Min. Its worst-case running time is O

(

|VR|! · (|E| + |δ|)
)

.

Proof. Correctness and termination are proved in Lemmas 3.7 and 3.10, respectively. The
worst-case complexity follows from the fact that there are at most k! permutations and
Proposition 2.2.

Before we proceed with the proofs of the main lemmas, let us make a case for live-
ness: Figure 5 shows that self-consistency is not enough to guarantee the optimality of the
resulting strategies1.

a b c

.4

.6

.3

.1

.4 .1

.1

.2

.8

Figure 5: Self-consistency does not guarantee optimality.

In this excerpt from the game of Figure 1, Max’s strategy in # should be to send
the pebble to b, as Min could otherwise trap the play in {a,#,2}. However, consider the
permutation g = bcad: Min sends the pebble from 2 to c to avoid a; Max sends the pebble
from # to 2 to reach either a or c. We have thus ϕg(a) = ϕg(c). As a matter of fact, we
have ϕg(b) ≤ ϕg(a) = ϕg(c) ≤ ϕg(d), so g is self-consistent even though the g-values are
not the correct ones. Liveness forbids this kind of gambits from Max. It replaces, in this
aspect, the “stopping” hypothesis of Condon.

3.2. Correctness of the permutation-enumeration algorithm. We first show that if
a permutation f is live and self-consistent, the f -strategies are optimal (Lemma 3.7). We
need two preliminary propositions. First, if f is self-consistent and Max plays according
to σf , the sequence (ϕf (Vi))i∈N is a submartingale2 and symmetrically if f is self-consistent
and Min plays according to τf the sequence (ϕf (Vi))i∈N is a supermartingale.

Proposition 3.5. Let f be a self-consistent permutation. Then, for any strategies σ and τ
for Max and Min, vertex v, and integer i,

E
σf ,τ
v [ϕf (Vi+1) | V0 . . . Vi] ≥ ϕf (Vi) , (3.1)

E
σ,τf
v [ϕf (Vi+1) | V0 . . . Vi] ≤ ϕf (Vi) . (3.2)

1It would be enough in stopping games, but testing liveness is cheaper than the reduction.
2We do not use any result about martingales in this paper.

10 H. GIMBERT AND F. HORN

Proof. In order to prove (3.1), it is enough to show that for any finite play h = h0 . . . hi,

E
σf ,τ
v [ϕf (Vi+1) | V0 . . . Vi = h0 . . . hi] ≥ ϕf (hi) . (3.3)

Depending on the owner of hi, (3.3) follows from one of the following properties of ϕf :

∀v ∈ VMax, ϕf (v) = ϕf (σf (v)) , (3.4)

∀v ∈ VMin,∀(v,w) ∈ E, ϕf (v) ≤ ϕf (w) , (3.5)

∀v ∈ VR, ϕf (v) =
∑

w∈V

δ(v)(w) · ϕf (w) . (3.6)

The equations (3.4) and (3.6) follows from the definition of ϕf , and (3.5) follows from
the self-consistency of f : by definition of the f -regions, if v ∈ VMin and (v,w) ∈ E then
f(v) ≤ f(w) (see (2.2)), so ϕf (v) ≤ ϕf (w). The proof of (3.2) is similar and we do not detail
it.

Second, we show a “stopping property” in the case where f is live and Max plays σf .

Proposition 3.6. Let f be a live permutation. Then, for any strategy τ for Min and initial
vertex v,

P
σf ,τ
v (Reach(⊚) ∨ Reach(⊗)) = 1 .

Proof. By definition of liveness,

α = min
1≤i≤k

∑

w∈S

j>i Wf [j]

δ(fi)(w)

is positive. Let n = |V | and k = |VR| then the definition of σf yields:

P
σf ,τ
v (Vn = ⊚ | V0 6= ⊗) ≥ αk ,

or, since ⊚ and ⊗ are sinks:

P
σf ,τ
v (∀m ≤ n, Vm /∈ {⊚,⊗}) ≤ 1 − αk .

Equation (1.1) yields:

∀i ∈ N,Pσf ,τ
v (∀m ≤ i · n, Vm /∈ {⊚,⊗}) ≤ (1 − αk)i ,

hence P
σf ,τ
v (∀m ∈ N, Vm /∈ {⊚,⊗}) = 0 hence Proposition 3.6.

We can now prove the correctness of the permutation-enumeration algorithm:

Lemma 3.7. Let f be a live and self-consistent permutation. Then σf is optimal for Max
and τf is optimal for Min.

Proof. We first prove that σf ensures that a pebble starting from v has probability at least
ϕf (v) to reach ⊚:

P
σf ,τ
v (Reach(⊚)) = E

σf ,τ
v

[

lim
i∈N

ϕf (Vi)

]

(3.7)

= lim
i∈N

E
σf ,τ
v [ϕf (Vi)] (3.8)

≥ E
σf ,τ
v [ϕf (V0)] = ϕf (v) , (3.9)

where (3.7) comes from Proposition 3.6, (3.8) is a property of expectations, and (3.9) comes
from Proposition 3.5.

SOLVING SIMPLE STOCHASTIC GAMES... 11

Then, we show that τf ensures that a pebble starting from v has probability at most
ϕf (v) to reach ⊚:

P
σ,τf
v (Reach(⊚)) ≤ E

σ,τf
v

[

lim inf
i∈N

ϕf (Vi)

]

(3.10)

≤ lim inf
i∈N

E
σ,τf
v [ϕf (Vi)] (3.11)

≤ E
σ,τf
v [ϕf (V0)] = ϕf (v) , (3.12)

where (3.10) holds because ⊚ is a sink and ϕf (⊚) = 1, (3.11) is a property of expectations,
and (3.12) comes from Proposition 3.5.

Thus, for any strategies σ and τ for Max and Min,

P
σ,τf
v (Reach(⊚)) ≤ P

σf ,τf
v (Reach(⊚)) ≤ P

σf ,τ
v (Reach(⊚)) ,

which completes the proof of Lemma 3.7

3.3. Termination of the permutation-enumeration algorithm. Now we show the
existence of a live and self-consistent permutation (Lemma 3.10). Our construction is based
on Proposition 3.8 and its correctness on Proposition 3.9.

Proposition 3.8. Let X ⊆ V be a set of vertices including the target vertex ⊚ and Y be
V \ DetAtt(X). Then either Y = {⊗} or there is a random vertex v in Y such that:

val(v) = max{val(w) | w ∈ Y } ,

∃w ∈ DetAtt(X), δ(v)(w) > 0 .

Proof. Let Z be the set of vertices with maximal value in Y :

Z = {v ∈ Y | val(v) = max
w∈Y

val(w)} ,

and suppose that:
∀v ∈ VR ∩ Z,∀w ∈ DetAtt(X), δ(v)(w) = 0 .

Let v be a vertex in Z. As G is normalised, we just need to show that val(v) = 0, i.e. there

is a strategy θ for Min such that for every strategy σ for Max, P
σ,θ
v (Reach(⊚)) = 0.

By definition of DetAtt(X), there is a positional strategy τ for Min such that τ(Y) ⊆ Y ,
and it follows from the definition of Z that τ(Z) ⊆ Z. As Z is also closed under random
moves, a pebble starting in Z can only leave Z through a move of Max, which leads to Y \Z
as Y = V \ DetAtt(X).

We define now a non-positional strategy θ in which Min plays according to τ as long
as the play remains in Z and switches definitively to an optimal strategy the first time the
pebble moves out of Z. We can thus partition the plays starting in v and consistent with
σ and θ depending on if and where the play gets out of Z: ΓZ is the set of plays remaining
forever in Z, and for each w in Y \Z, Γw is the set of plays where w is the first visited vertex

outside of Z. Clearly P
σ,θ
v (Reach(⊚) | ΓZ) = 0 and by definition of the strategy θ, ∀w ∈

Y \ Z, P
σ,θ
v (Reach(⊚) | Γw) ≤ val(w). Hence P

σ,θ
v (Reach(⊚)) ≤ max(0,maxw∈Y \Z val(w))

and since this holds for every σ, val(v) ≤ max(0,maxw∈Y \Z val(w)). By definition of Z this
implies val(v) = 0.

12 H. GIMBERT AND F. HORN

Proposition 3.9. Let f be a live permutation such that:

val(f1) ≤ val(f2) ≤ . . . ≤ val(fk) .

Then f is self-consistent.

Note that under the same hypotheses, Lemma 3.7 imply that f -strategies are optimal.

Proof. We first show that:

∀v ∈ V,∀1 ≤ i ≤ k, (f(v) = i) ⇒ (val(v) = val(fi)) . (3.13)

Consider the strategy σ∗, which mimics σf until the first time the pebble reaches a random
vertex and then switches definitively to an optimal strategy. By definition of σf , the first
random vertex belongs to {fi, . . . , fk,⊚}, so σ∗ ensures that a pebble starting in q reaches
⊚ with probability at least min{val(fi), . . . , val(fk), val(⊚)} = val(fi). A similar strategy
τ∗ for Min ensures that this probability is at most val(fi). So val(v) = val(fi), and (3.13)
follows.

Now we prove that val and ϕf coincide. According to (3.13) and by definition of
permutation strategies,

∀v ∈ VMax, val(v) = val(σf (v)) ,

∀v ∈ VMin, val(v) = val(τf (v)) ,

∀v ∈ VR, val(v) =
∑

w∈V

δ(v)(w) · val(w) .

So, if Max and Min play according to their f -strategies, the sequence val(Vi)i∈N is a mar-
tingale:

E
σf ,τf
v [val(Vi+1) | V0 . . . Vi] = val(Vi) . (3.14)

Consequenly, for every vertex v, ϕf (v) = val(v):

ϕf (v) = P
σf ,τf
v (Reach(⊚)) = E

σf ,τf
v

[

lim
i∈N

val(Vi)

]

(3.15)

= lim
i∈N

E
σf ,τf
v [val(Vi)] (3.16)

= E
σf ,τ
v [val(V0)] = val(v) , (3.17)

where (3.15) comes from Proposition 3.6, (3.16) is a property of expectations, and (3.17)
comes from (3.14). Since val and ϕf coincide, the hypothesis yields the self-consistency of
f . This completes the proof of Proposition 3.9.

Lemma 3.10. There exists a live and self-consistent permutation.

Proof. We use iteratively Proposition 3.8 in order to build a permutation f such that, for
every k ≥ i ≥ 1,

• val(fi) = max {val(v) | v ∈ V \ DetAtt(fi+1, fi+2, . . . , fk)};
• ∃w ∈ DetAtt(fi+1, fi+2, . . . , fk), δ(fi)(w) > 0.

By construction f is live and val(f1) ≤ val(f2) ≤ . . . ≤ val(fk). Proposition 3.9 yields the
self-consistency of f , and Lemma 3.10 follows.

SOLVING SIMPLE STOCHASTIC GAMES... 13

4. The permutation-improvement algorithm

A drawback of the permutation-enumeration algorithm is that it considers each and ev-
ery possible permutation of the random vertices, so |VR|! is a lower bound for the worst-case
complexity of this algorithm. Strategy-improvement algorithms avoid such enumerations,
instead these algorithms proceed by successive improvements of a strategy: information
about sub-optimality of a strategy is used to determine a “better” strategy, which en-
sures convergence to an optimal strategy. In this section, we emulate this idea with a
permutation-improvement algorithm.

4.1. A natural but incorrect improvement policy. Starting from an initial permu-
tation f , we would like to improve f again and again until the permutation strategies σf

and τf are optimal. To test optimality we check that f is live and self-consistent (see
Lemma 3.7). When f is live but not self-consistent we compute a new permutation g which
is live and“better” than f . A natural improvement policy consists in choosing g consistent
with the f -values i.e. g refines the pre-order induced by ϕf . Unfortunately this is too
näıve: the corresponding algorithm does not always terminate3, a counter-example is given
by Figure 6.

a b c
.09

.01

.9

.5.5
.09

.01

.9

Figure 6: A counter-example for the näıve improvement algorithm.

If we start with the permutation f = acb, the f -strategies are as follows: in # Max goes
to b and in 2 Min goes to c. Hence, the f -values of vertices a, c, and b are respectively .82,
.9, and .5, so f is not self-consistent. The next permutation is g = bac, and the following
g-strategies ensue: in # Max goes to a and in 2 Min goes to #. The g-values of vertices
b, a, and c are respectively .5, .1, and .18, so g is not self-consistent either. Moreover, the
next permutation is f = acb, so the näıve algorithm oscillates endlessly between f and g,
never reaching the correct permutation abc.

4.2. A correct improvement policy. The correct permutation-improvement policy is a
bit more complex: given a live but not self-consistent permutation f , we choose a permu-
tation g which is live and self-consistent in the one-player game G[σf], where vertices of
player Max have only one outgoing edge: the edge consistent with the positional f -strategy
σf . This improvement policy guarantees that the value of σg is greater than the value of σf

(see Lemma 4.4) and is implemented by the following algorithm.

3Actually, the näıve algorithm terminates (and is correct) in the special case of one-player games [Hor08].

14 H. GIMBERT AND F. HORN

Input: A normalised simple stochastic game G = (V, VMax, VMin, VR, E, δ,⊚,⊗).
Output: Optimal strategies for Max and Min.
Pick a live permutation f ;1

repeat2

if f is self-consistent in G then3

return σf and τf ;4

else5

replace f with a live and self-consistent permutation in G[σf] ;6

Algorithm 2: The permutation-improvement algorithm.

The computation of a live and self-consistent permutation in G[σf] in line 2 relies on
the computation of values of the one-player game G[σf]. Details are given in the proof of
the following theorem.

Theorem 4.1. The permutation-improvement algorithm terminates and returns optimal
strategies for Max and Min in at most |VR|! improvement steps. Furthermore, each im-
provement step can be carried out in polynomial time.

Proof. According to Lemma 4.2 the algorithm returns a permutation which is both live and
self-consistent in G hence according to Lemma 3.7 the corresponding permutation strategies
are optimal in G which proves correctness of the algorithm.

Termination and the maximal number of iterations follows from Lemma 4.4, which
proves that sucessive strategies σf have better and better values.

The computation of a live and self-consistent permutation inG[σf] in line 2 is achieved in
polynomial time in the following way. First, compute the values of the one-player game G[σf]
using linear programming [HK79, Con93]. Second, build in linear time a live permutation
g consistent with these values like in the proof of Lemma 3.10. The permutation g is such
that valσf

(g1) ≤ valσf (g2) ≤ . . . ≤ val σf (gk), where valσf
denotes the values in the game

G[σf]. According to Proposition 4.3 the game G[σf] is normalised hence Proposition 3.9
guarantees that g is consistent in G[σf].

Let us compare briefly the permutation-enumeration and the permutation-improvement
algorithms. Each improvement step of the permutation-improvement algorithm requires the
computation of values of a one-player SSG, which can be performed using linear program-
ming. These values could be computed as well using a permutation-improvement policy or
a strategy-improvement algorithm in order to avoid linear programming altogether. Either
way, we have to forfeit one of the advantages of the permutation-enumeration algorithm:
the computational simplicity of its inner loop. On the other hand, we do not know any
non-trivial lower bound on the number of loops in a run of the permutation-improvement
algorithm: it may be polynomial.

4.3. Soundness and correctness of the permutation-improvement algorithm. The
correctness proof is based on the following two results.

Lemma 4.2. Let σ be a positional strategy for Max and f be a permutation. If f is live in
G[σ] it is also live in G.

SOLVING SIMPLE STOCHASTIC GAMES... 15

Proof. Let Wf and Xf denote the f -regions in G and G[σ], respectively. By definition,
∪j>iWf [j] is the deterministic attractor of Max to {fi, . . . , fk,⊚} in G, while ∪j>iXf [j] is
the same attractor in G[σ]. As the moves of Max are restricted in G[σ], we get

∀1 ≤ i ≤ k,
⋃

j>i

Xf [j] ⊆
⋃

j>i

Wf [j] . (4.1)

Thus, the liveness of f in G follows from its liveness in G[σ], and Lemma 4.2 ensues.

Proposition 4.3. Let f be a live permutation. Then G[σf] is normalised.

Proof. In the proof of Proposition 3.6, we have shown the existence of a positive real number
α such that for any strategy τ for min and vertex v 6= ⊗, P

σf ,τ
v (Vn = ⊚) ≥ αk hence only ⊗

has value 0 in G[σf]. Clearly only ⊚ has value 1 in G[σf] hence Proposition 4.3 follows.

4.4. Termination of the permutation-improvement algorithm. The value of a strat-
egy σ is denoted valσ and defined by:

∀v ∈ V, valσ(v) = inf
τ

P
σ,τ
v (Reach(⊚)) .

For proving termination of the permutation-improvement algorithm we prove that successive
strategies σf chosen by the algorithm have greater and greater values.

Lemma 4.4. Let f be a live permutation in G and g be a live and self-consistent permutation
in G[σf]. Then for all v ∈ V ,

valσf
(v) ≤ valσg(v) . (4.2)

Moreover, if for all v ∈ V , valσg(v) = valσf
(v) then g is self-consistent in G.

Proof. A key remark in the proof of Lemma 4.4 is that:

valσf
(g1) ≤ valσf

(g2) ≤ . . . ≤ valσf
(gk) . (4.3)

Let ψf ,g be the g-values in G[σf]. The self-consistency of g in G[σf] is:

ψf ,g(g1) ≤ ψf ,g(g2) ≤ . . . ≤ ψf ,g(gk) .

Lemma 3.7 applied to G[σf] implies that the g-strategy of player Min in G[σf] is optimal
in G[σf] hence ψf ,g = valσf

and (4.3) follows.
Consider now the sequence (σn)n∈N, where σn is the strategy where Max plays according

to σg until the pebble has visited n random vertices, and plays according to σf afterwards.
In particular σ0 = σf . We show that for every vertex v the sequence (valσn(v))n∈N is non-
decreasing and that its limit is less than valσg(v). Since σ0 = σf this will prove Lemma (4.2).

We first show by induction that for any integer n,

∀v ∈ V, valσn+1(v) ≥ valσn(v) . (4.4)

Basis (n = 0): We have to prove that values of σ1 are greater than values of σf . Let v be
a vertex, i be the index of the g-region of v in G, and j be the index of the g-region of v
in G[σf]. As the moves of Max are restricted in G[σf] the definition of the g-regions gives
i ≥ j and (4.3) yields:

valσf
(gi) ≥ valσf

(gj) . (4.5)

16 H. GIMBERT AND F. HORN

If Max plays with σ1, the definition of σg ensures that the first random vertex belongs
to {gi,gi+1, . . . ,gk,⊚}, so valσ1(v) ≥ min{valσf

(gi), valσf
(gi+1), . . . , valσf

(gk), 1} and (4.3)
yields:

valσ1(v) ≥ valσf
(gi) . (4.6)

On the other hand we prove:
valσf

(v) = valσf
(gj) . (4.7)

Let ψf ,g denote g-values in G[σg]. We have already proved above that ψf ,g is equal to
valσf

. By definition of j, gj is the first random vertex in a play in G[σf] starting from v and
consistent with a g-strategy for Min in G[σf] hence ψf ,g(v) = ψf ,g(gj) which yields (4.7).

It follows from (4.5), (4.6), and (4.7) that (4.4) holds for n = 0.
Inductive step (n ⇒ n + 1): The strategies σn+2 and σn+1 coincides with σg until the
first visit to a random vertex. Then σn+2 switches to σn+1 while σn+1 switches to σn. By
induction hypothesis, valσn+1 ≥ valσn , so valσn+2 ≥ valσn+1 and (4.4) holds for n+ 1.

Now we show that for every v, limn∈N valσn(v) ≤ valσg(v). Let τ be a strategy for Min.
We have:

P
σg,τ
v (Reach(⊚)) = P

σg,τ
v (¬Reach(⊗)) , (4.8)

= lim
n

P
σg,τ
v (∀m ≤ n, Vm 6= ⊗) ,

= lim
n

P
σn,τ
v (∀m ≤ n, Vm 6= ⊗) , (4.9)

≥ lim
n

P
σn,τ
v (Reach ⊚) ≥ lim

n
valσn(v) , (4.10)

where (4.8) follows from Proposition 3.6, (4.9) holds because σg coincides with σn for at
least n steps, and (4.10) by event inclusion and by definition of the value. This holds for
every strategy τ hence valσg(v) ≥ limn valσn(v).

Altogether, valσf
(v) = valσ0(v) ≤ valσ1(v) ≤ · · · ≤ limn valσn(v) ≤ valσg(v) hence (4.2),

which achieves to prove the first part of the lemma.
Let us suppose now that valσf

= valσg . Equation (4.3) yields:

valσg(g1) ≤ valσg(g2) ≤ . . . ≤ valσg(gk) . (4.11)

We can thus apply Proposition 3.9 to g in G[σg] which yields the self-consistency of g in
G[σg]. By definition of g-zones, they coincide in G and G[σg] hence the g-values are equal
in G and G[σg] and g is also self-consistent in G.

Conclusion

We have presented two algorithms computing optimal strategies in simple stochas-
tic games: the permutation-enumeration and the permutation-improvement algorithms.
Both of them rely on the existence of optimal permutation strategies. The permutation-
enumeration algorithm simply tests every permutation until it finds a live and self-consistent
one. The permutation-improvement algorithm uses a smarter policy in order to choose a
“better” permutation in the next round, à la Hoffman-Karp.

The permutation-enumeration algorithm has exponential worst-case complexity but it is
a witness that solving SSGs is fixed-parameter tractable when the parameter is the number
of random vertices. The nominal complexity of the permutation-improvement algorithm is
a bit higher but we do not know any non-trivial lower bound on the number of improvement
steps: the permutation-improvement algorithm may actually run in polynomial time.

SOLVING SIMPLE STOCHASTIC GAMES... 17

Whether simple stochastic games are solvable in polynomial time remains a challenging
open question.

Acknowledgements We would like to thank Marcin Jurdziński for some fruitful discus-
sions, the anonymous reviewers for several useful suggestions and Julien Cristau for his
invaluable comments during the writing of the final version.

References

[AHMS08] Daniel Andersson, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen.
Deterministic Graphical Games Revisited. In Proceedings of CiE’08, volume 5028 of LNCS, pages
1–10. Springer-Verlag, 2008.

[Bil95] Patrick Billingsley. Probability and Measure. John Wiley & Sons, 1995.
[Con92] Anne Condon. The Complexity of Stochastic Games. Information and Computation, 96(2):203–

224, 1992.
[Con93] Anne Condon. On Algorithms for Simple Stochastic Games. In Advances in Computational Com-

plexity Theory, volume 13 of DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, pages 51–73. American Mathematical Society, 1993.
[Der72] Cyrus Derman. Finite State Markovian Decision Processes. Academic Press, 1972.
[Dix82] John D. Dixon. Exact Solution of Linear Equations Using p-adic Expansions. Numerische Math-

ematik, 40:137–141, 1982.
[Gil57] Dean Gillette. Stochastic Games with Zero Stop Probability, volume 3 of Contributions to the

Theory of Games, pages 179–187. Princeton University Press, 1957.
[Hal07] Nir Halman. Simple Stochastic Games, Parity Games, Mean Payoff Games and Discounted Payoff

Games are all LP-Type Problems. Algorithmica, 49:37–50, 2007.
[HK66] Alan J. Hoffman and Richard M. Karp. On Nonterminating Stochastic Games. Management

Science, 12(5):359–370, 1966.
[HK79] Arie Hordijk and L.C.M. Kallenberg. Linear Programming and Markov Decision Chains. Man-

agement Science, 25(4):353–362, 1979.
[Hor08] Florian Horn. Random Games. PhD thesis, Université Paris 7 and RWTH Aachen, 2008.
[Kha79] Leonid G. Khachiyan. A Polynomial Algorithm in Linear Programming. Soviet Mathematics

Doklady, 20:191–194, 1979.
[LL69] Thomas M. Liggett and Steven A Lippman. Stochastic Games with Perfect Information and

Time Average Payoff. SIAM Review, 11(4):604–607, 1969.
[Lud95] Walter Ludwig. A Subexponential Randomized Algorithm for the Simple Stochastic Game Prob-

lem. Information and Computation, 117(1):151–155, 1995.
[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear program-

ming. Mathematical Programming, 40(1):59–93, 1988.
[Sha53] Lloyd S. Shapley. Stochastic Games. In Proceedings of the National Academy of Science of the

USA, volume 39, pages 1095–1100, 1953.
[Som05] Rafal Somla. New Algorithms for Solving Simple Stochastic Games. 119(1):51–65, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Simple Stochastic Games
	1.1. Plays and strategies
	1.2. Measures and values
	1.3. Normalised games

	2. Permutation strategies
	2.1. Attractors and f-regions
	2.2. Permutation strategies
	2.3. The f-values

	3. The permutation-enumeration algorithm
	3.1. Liveness and self-consistency
	3.2. Correctness of the permutation-enumeration algorithm
	3.3. Termination of the permutation-enumeration algorithm

	4. The permutation-improvement algorithm
	4.1. A natural but incorrect improvement policy
	4.2. A correct improvement policy
	4.3. Soundness and correctness of the permutation-improvement algorithm
	4.4. Termination of the permutation-improvement algorithm

	Conclusion
	References

