
Local safety and local liveness for distributed

systems⋆

Volker Diekert1 and Paul Gastin2

1 FMI, Universität Stuttgart, Universitätsstraße 38, D-70569 Stuttgart
Volker.Diekert@fmi.uni-stuttgart.de

2 LSV, ENS Cachan, CNRS, France
Paul.Gastin@lsv.ens-cachan.fr

Abstract. We introduce local safety and local liveness for distributed
systems whose executions are modeled by Mazurkiewicz traces. We char-
acterize local safety by local closure and local liveness by local density.
Restricting to first-order definable properties, we prove a decomposition
theorem in the spirit of the separation theorem for linear temporal logic.
We then characterize local safety and local liveness by means of canonical
local temporal logic formulae.
Keywords: Local temporal logics, safety, liveness, Mazurkiewicz traces,
concurrency.

1 Introduction

Distributed systems are widely used nowadays in almost all application fields of
computer science such as telecomunication systems or embedded systems. Since
most of these are safety critical systems it is important to develop theory and
tools to formally specify and verify them.

Abstract models of distributed systems such as Petri nets have been in-
troduced. Concurrent executions of such systems are naturally described with
partial orders such as Mazurkiewicz traces [20, 21] or event structures [30] and
Thiagarajan with other authors [17, 25–27] described the relationships between
Petri nets and Mazurkiewicz traces or event structures.

When it comes to specification languages, temporal logics are amongst the
best formalisms both because they are intuitive and enjoy good algorithmic
properties [19]. It turns out that any property can be written as a conjunction
of some safety and some liveness properties [4]. For sequential systems, we can
characterize safety and liveness by topological closure and density as well as by
canonical temporal logic formulae [1, 2, 4].

When dealing with distributed systems, temporal logics should be extended
in order to specify properties of partial orders instead of linear orders. Several
temporal logics were introduced [18, 23] but with a global semantics and an ex-
istential until these logics are undecidable. One of the first decidable temporal

⋆ This work has been partially supported by projects ANR-06-SETIN-003 DOTS, and
P2R MODISTE-COVER/RNP Timed-DISCOVERI.

logic for traces was introduced by Ebinger [11] in his PhD-Thesis and another
one (TrPTL) was introduced by Mukund and Thiagarajan [22]. Characterizing
the expressive power of temporal logics for traces was a major open problem
for several years until Thiagarajan with Walukiewicz showed that the global
temporal logic LTrL with universal semantics and some past constants has the
same expressive power as first-order logic [28]. Unfortunately, the satisfiability
problem for this logic is non-elementary [29]. The expressivity result was later
improved with algebraic techniques by showing that the pure future global tem-
poral logic is also expressively complete for first-order logic [7]. This opened the
way to the characterization of safety and liveness properties for trace languages
with global temporal logic [8].

The global semantics means that we are interested in properties a system may
satisfy at global configurations corresponding to possible snapshots or global
views. Another interesting approach is to look at local configurations, which
describe what a local process may know about the current state of the system.
A global configuration correspond to some finite partial order possibly having
several maximal events whereas local configurations only have a single maximal
event, and can thus be identified with events of the partial order describing an
execution. Several local temporal logics for traces were introduced and studied
[3, 6]. A major achievement was to establish that the simplest pure future local
temporal logic is expressively complete for first-order logic [9]. Contrary to global
temporal logics for which the satisfiability problem is either undecidable or non-
elementary, local temporal logics enjoy much better algorithmic properties since
both satisfiability and model checking are decidable in PSPACE [14,15].

in the present paper, we introduce and study local safety and local liveness
for distributed systems. Intuitively, a system is locally safe if all local configu-
rations it can reach are “good” configurations. We characterize local safety by
local closure. A local configuration is locally live with respect to some property
if it can be extended to a distributed execusion which meets the property. Local
liveness properties (those for which all local configurations are locally live) are
characterized by local density. In order to obtain local temporal logic characteri-
zations, we restrict to first-order definable properties. Building on the expressive
completeness of local temporal logic for traces [9], one of our main result is a
decomposition theorem for all first-order properties in the spirit of the separa-
tion theorem of [13] for linear temporal logic. We also generalize this separation
theorem to local temporal logic over traces. Using our decomposition theorem,
we are able to characterize local safety and local liveness by canonical local tem-
poral logic formulae. We also introduce a stronger notion of local liveness and
give a characterization with special local decomposition formulae.

The paper is organized as follows. In the first section we give some general
remarks, next we recall basic definitions on Mazurkiewicz traces. In Section 4
we define local temporal logic and recall the main result of [9] on which this
work is based. Our local decomposition theorem and the generalization of the
separation theorem to local temporal logic are established in Section 5. The last

2

two sections are devoted to the definitions and characterizations of local safety
and local liveness respectively.

2 General remarks

Before we dive into our specific setting, let us try to explain some basic ideas
from a general viewpoint. Some background is useful to understand the following
lines. But the reader is free to skip this section since its aim is only to put our
work in perspective and it is not needed to understand the rest or the paper.

If X is a topological space, then the topology can be defined in terms of the
closure operator L 7→ L. Clearly, for L ⊆ X we have L = L ∩ (L ∪ (X \ L)).
Hence, in a topological space, every set is the intersection of a closed set and a
dense set, because L is closed by definition and L∪ (X \L) is dense, because its
closure contains at least L ∪ (X \ L), hence its closure is X .

Now, if C is a family of subsets of X which forms a Boolean algebra and
which contains L for every L ∈ C, then, trivially, every L ∈ C can be written as
an intersection L = A ∩B where A,B ∈ C and A is closed and B is dense.

In the setting of infinite words and temporal logic,X is the (compact) Cantor
space Σω and C is the set of LTL-definable languages. Closed LTL-definable lan-
guages are called safety properties and dense LTL-definable languages are called
liveness properties. Safety properties play an important role in applications. In
some sense they are simpler to handle, e.g., they can be recognized by deter-
ministic Büchi automata. We note that actually we could replace C by other
varieties like FO2-definable languages and we would have a similar statement.

Now, everything transfers smoothly to Mazurkiewicz traces, provided we use
the Scott topology which is defined by saying that infinite traces are (very) close,
if they agree on (very) long finite prefixes. This means however that we work with
a global semantics where we have control over prefixes. This is not natural in the
setting of Mazurkiewicz traces, because events are ordered by the information
flow and the model should reflect this. As a consequence in a purely distributed
setting we do not know the global state and therefore we cannot control global
prefexes. This is one of the reasons to favor a local temporal logic. Another one
is that these logics allow much better complexities for model checking. From an
abstract viewpoint this means that we have to switch from a topology setting
to a domain theoretical setting. The local closure of a language L now includes
all traces where every finite prefix which has a single maximal vertex is a prefix
of some element in L. By the very definition every locally closed language is
closed in the Scott topology, but the converse does not hold. Consider {a∞} and
{b∞}. Both sets are locally closed, but the union is not, as soon as a and b are
independent. Thus, a local safety property is a stronger condition than a global
safety property and cannot be investigated from a purely topological viewpoint.
Things become more complicate and we need some careful analysis. On the
other hand, knowing that a language satisfies a local safety property makes a
distributed model checking possible. Our results show that, indeed, local safety
is a robust and natural concept.

3

3 Mazurkiewicz traces

We recall some standard notations from trace theory which will be used in the
paper. The reader is refered to [10] for more details.

A dependence alphabet is a pair (Σ,D) where the alphabetΣ is a finite set and
the dependence relation D ⊆ Σ×Σ is reflexive and symmetric. The independence
relation I is the complement of D. For a ∈ Σ, we let I(a) = {b ∈ Σ | (a, b) ∈ I}
be the set of letters independent from a.

A Mazurkiewicz trace is an equivalence class of a labelled partial order t =
[V,≤, λ] where V is a set of vertices labelled by λ : V → Σ and ≤ is a partial
order over V satisfying the following conditions: For all x ∈ V , the downward set
↓x = {y ∈ V | y ≤ x} is finite, and for all x, y ∈ V we have that (λ(x), λ(y)) ∈
D implies x ≤ y or y ≤ x, and that x ⋖ y implies (λ(x), λ(y)) ∈ D, where
⋖ = < \ <2 is the immediate successor relation in t. For x ∈ V , we also define
↑x = {y ∈ V | x ≤ y}.

The trace t is finite if V is finite and we denote the set of finite traces by
M(Σ,D) (or simply M). By R(Σ,D) (or simply R), we denote the set of finite or
infinite traces (also called real traces). We write alph(t) = λ(V) for the alphabet
of t and we let alphinf(t) = {a ∈ Σ | λ−1(a) is infinite} be the set of letters
occurring infinitely often in t.

We define the concatenation for traces t1 = [V1,≤1, λ1] and t2 = [V2,≤2, λ2],
provided alphinf(t1) × alph(t2) ⊆ I. It is given by t1 · t2 = [V,≤, λ] where V is
the disjoint union of V1 and V2, λ = λ1 ∪ λ2, and ≤ is the transitive closure of
the relation ≤1 ∪ ≤2 ∪ (V1 × V2 ∩ λ−1(D)). The set M of finite traces is then a
monoid with the empty trace 1 = (∅, ∅, ∅) as unit.

The concatenation of two trace languages K,L ⊆ R is K · L = {r · s | r ∈
K, s ∈ L and alphinf(r) × alph(s) ⊆ I}.

Let r, t ∈ R be traces. We say that r is a prefix of t and we write r ≤ t if t = r·s
for some s ∈ R. Prefixes of t = [V,≤, λ] can be identified with downward closed
subsets U = ↓U of V . We denote by Pref(t) the set of finite prefixes of t. This
notation is extended to languages in the obvious way. The set R endowed with
the prefix partial order relation is a coherently complete domain. In particular,
any real trace t is the least upper bound of its finite prefixes: t = ⊔Pref(t).

A trace p is called prime, if it is finite and has a unique maximal element.
The maximal event of a prime trace t is denoted max(t). The set of all prime
traces in R is denoted by P. The set of prime prefixes of a trace t is denoted
Pref(t) = Pref(t) ∩ P. Prime prefixes of t = [V,≤, λ] can be identified with
downward closures ↓x of events x ∈ V . Any real trace t is the least upper bound
of its prime prefixes: t = ⊔Pref(t).

4 Local temporal logic

Our characterization of local safety and local liveness will be in terms of temporal
logic formulae under a local semantics. Contrary to the global semantics which
defines when a formula holds at some global configuration in some trace, the

4

local semantics characterizes the local events in a trace satisfying some temporal
formulae. In this section, we recall the definition and semantics of local temporal
logic over traces, together with the main expressivity result from [9] which is
needed for our characterizations of local safety and local liveness.

The syntax of local temporal logic LocTLΣ [EX,U,EY, S] is given by

ϕ ::= ⊤ | a | ¬ϕ | ϕ ∨ ϕ | EXϕ | ϕ U ϕ | EYϕ | ϕ S ϕ

where a ranges over Σ and ⊤ denotes true. Here EX denotes the usual (existen-
tial) next -operator and U means until. Their past versions are EY and S meaning
Yesterday and Since.

Formally, the locally defined semantics of LocTLΣ [EX,U,EY, S] is given as
follows. Let t = [V,≤, λ] ∈ R \ {1} be a real trace and x ∈ V be a local event
(we also write x ∈ t instead of x ∈ V). Then we define:

t, x |= ⊤
t, x |= a if λ(x) = a

t, x |= ¬ϕ if t, x 6|= ϕ

t, x |= ϕ ∨ ψ if t, x |= ϕ or t, x |= ψ

t, x |= EXϕ if ∃y ∈ t (x⋖ y and t, y |= ϕ)
t, x |= ϕ U ψ if ∃z ∈ t (x ≤ z and t, z |= ψ and ∀y ∈ t (x ≤ y < z ⇒ t, y |= ϕ))
t, x |= EYϕ if ∃y ∈ t (y ⋖ x and t, y |= ϕ)
t, x |= ϕ S ψ if ∃z ∈ t (z ≤ x and t, z |= ψ and ∀y ∈ t (z < y ≤ x⇒ t, y |= ϕ)).

As ususal, we use Fϕ as an abbreviation for ⊤ U ϕ and Gϕ = ¬F¬ϕ. The
meaning of Fϕ is that somewhere in the future ϕ holds, whereas Gϕ means that
always in the future ϕ holds. By ⊥ we mean ¬⊤, which denotes false.

Henceforth formulae in LocTLΣ [EY, S] using only the past modalities are
called past formulae whereas we refer to formulae in LocTLΣ [EX,U] using only
future modalities as future formulae. It is easy to see by structural induction
that if ϕ is a past formula then for all t ∈ R and x ∈ t we have t, x |= ϕ if and
only if ↓x, x |= ϕ. Similarly, if ϕ is a future formula then for all t ∈ R and x ∈ t

we have t, x |= ϕ if and only if ↑x, x |= ϕ.

Formulae of the form Fϕ and Gϕ with ϕ ∈ LocTLΣ [EX,U,EY, S] are called F

and G formulae respectively. A formula in LocTLΣ [EX,U,EY, S] can be viewed,
by definition, as a first-order formula in one free variable. However, for F and G

formulae, it is also natural to give a direct interpretation on traces. Let t ∈ R,
we define:

t |=ℓ Fϕ if ∃x ∈ t, t, x |= ϕ

t |=ℓ Gψ if ∀x ∈ t, t, x |= ψ.

More generally, if γ is any Boolean combination of F and G formulae, then we
extend the meaning of t |=ℓ γ in the obvious way; and this defines a language
L(γ) = {t ∈ R | t |=ℓ γ}. Note that the empty trace 1 |= Gϕ but 1 6|= Fϕ for all
ϕ ∈ LocTLΣ .

Our results are consequences of the following theorem.

5

Theorem 1 ([9]). Let L ⊆ R be a first-order definable real trace language.
Then there is a future formula ϕ ∈ LocTLΣ [EX,U] such that

L ∩ R1 = {t ∈ R1 | t,min(t) |= ϕ}.

By duality, Theorem 1 implies the following corollary where we let R1 be the
set of real traces t with exactly one minimal event, denoted min(t).

Corollary 2. Let L ⊆ R be a first-order definable real trace language. Then
there is a past formula ψ ∈ LocTLΣ [EY, S] such that

L ∩ P = {t ∈ P | t,max(t) |= ψ}.

Proof. It is clear that P is first-order definable. Hence, if L is first-order definable,
then so is L∩P. Now, we reverse all traces, i.e., we read traces from right-to-left
(formally, we replace ≤ by ≥). For the reverse language of L∩P (which is a first-
order definable subset in R1∩M) we obtain a future formula ϕ ∈ LocTLΣ [EX,U]
by Theorem 1. We obtain ψ by replacing in ϕ all occurrences of EX by EY and
all occurrences of U by S. ⊓⊔

5 Local decomposition of first-order languages

In this section, we establish a decomposition theorem based on the local se-
mantics of temporal logic. This decomposition theorem is in the spirit of the
separation theorem for temporal logic over words [13]. Since the proof technique
is quite similar, we also extend this separation theorem to the local semantics of
temporal logic over traces.

Given a trace t = [V,≤, λ] ∈ R and a vertex x ∈ V , we are interested in the
sets of vertices that are strictly below x or strictly above x or concurrent to x:

⇓x = {y ∈ V | y < x}

⇑x = {y ∈ V | x < y}

‖x = {y ∈ V | x 6≤ y and y 6≤ x}.

By slight abuse of notation, we also denote by ⇓x, ⇑x and ‖x the corresponding
factors of t. We have a canonical decomposition of t, depicted in Figure 1:

V = ⇓x ∪ {x} ∪ ‖x ∪ ⇑x

t = (⇓x) · λ(x) · (‖x) · (⇑x)

Let us introduce a new local modality CO which talks about the part ‖x of
the trace which is concurrent to the current vertex x. By a concurrent formula
we mean a formula of type CO γ, where γ is any Boolean combination of F and
G formulae. The semantics of a concurrent formula is given by

t, x |= CO γ if ‖x |=ℓ γ.

6

x

⇓x ⇑x

‖x

Fig. 1. Canonical decomposition of a trace

The main result of this section associates with any first-order definable lan-
guage some decomposition formula. A decomposition formula is a disjunction

δ =
∨

j∈J

aj ∧ ψj ∧ ϕj ∧ CO γj

where J is some finite index set, and for each j ∈ J , aj ∈ Σ is a letter, ψj ∈
LocTLΣ(EY, S) is a past formula, ϕj ∈ LocTLΣ(EX,U) is a future formula, and
γj is an F or G formula. Note that, if J = ∅ then we get δ = ⊥ by convention.
We can now state the decompotion theorem.

Theorem 3. Let L ⊆ R be a first-order definable real trace language. Then there
exists a decomposition formula δ =

∨
j∈J aj ∧ ψj ∧ ϕj ∧ CO γj such that

(i) L ∪ {1} = L(G δ),
(ii) L \ {1} = L(F δ),
(iii) Pref(L) = {r ∈ P | r,max(r) |=

∨
j∈J aj ∧ ψj},

(iv) for each j ∈ J , the formula aj ∧ ψj ∧ ϕj ∧ CO γj is satisfiable.

Proof. The proof is by induction on the size of the alphabet. If Σ = ∅ then we
let J = ∅ so that δ = ⊥. We have L(F δ) = ∅ and L(G δ) = {1}. Statements (i-iv)
are satisfied since either L = ∅ or L = {1} and in any cases Pref(L) = ∅.

Assume now that Σ 6= ∅. Since L is first-order, it is also aperiodic [12]. Let
h : M(Σ,D) → S be a morphism to some finite aperiodic monoid S which
recognizes3 L. Without loss of generality, we assume that h is alphabetic, i.e.,
h(r) = h(s) implies alph(r) = alph(s) for all r, s ∈ M(Σ,D).

Let t ∈ L be a nonempty trace and let x ∈ t. The h-equivalence classes [⇓x],
[⇑x] and [‖x] are recognized by h, hence are first-order definable trace languages.
Note also that all vertices in ‖x are labeled with letters independent from λ(x).
Since h is alphabetic, we deduce that the trace language [‖x] is over a strict
sub-alphabet of Σ.

We define the index set

J = {(λ(x), [⇓x], [‖x], [⇑x]) | t ∈ L \ {1} and x ∈ t}

3 The reader is refered to [24] for recognizability by morphisms. Here we will only use
the fact that the morphism h induces an equivalence relation on R with finitely many
classes and which saturates L (t ∈ L implies [t] ⊆ L) and satisfies [r] · [s] ⊆ [r · s]
whenever the product r ·s is defined. Moreover, each h-equivalence class is first-order
definable.

7

which is finite since there are finitely many h-equivalence classes. Fix now some
index j = (aj , L

j
p, L

j
c, L

j
f) ∈ J . By Theorem 1 and Corollary 2 we find a future

formula ϕj and a past formula ψj such that

aj · L
j
f ∩ R1 = {s ∈ R1 | s,min(s) |= ϕj}

Lj
p · aj ∩ P = {r ∈ P | r,max(r) |= ψj}.

Now, Lj
c is over a strict sub-alphabet of Σ and by induction we find a decom-

position formula δj for this language. Depending on whether 1 ∈j
c L or not we

let γj = G δj or γj = F δj so that Lj
c = L(γj). We claim that the decomposition

formula δ =
∨

j∈J aj ∧ ψj ∧ ϕj ∧ CO γj satisfies statements (i-iv).
First, let t ∈ L \ {1} and let x ∈ t. Fix the index j = (aj , [⇓x], [‖x], [⇑x]) ∈ J

with aj = λ(x). We have ↓x = ⇓x · aj and ↑x = aj · ⇑x, hence by definition of
ϕj and ψj we get ↓x, x |= ψj and ↑x, x |= ϕj and ‖x |= γj . Since ψj is a past
formula and ϕj is a future formula, we deduce that t, x |= aj ∧ ψj ∧ ϕj ∧ CO γj ,
which is therefore a satisfiable formula. We have also shown t |= G δ and t |= F δ

for all t ∈ L \ {1} and that r,max(r) |=
∨

j∈J aj ∧ ψj for all r ∈ Pref(L). Hence,
we have proved statement (iv) and that the left hand side is contained in the
right hand side for statements (i-iii).

Conversely, assume that t |= F δ or that t 6= 1 and t |= G δ. Let x ∈ t and
j ∈ J be such that t, x |= aj∧ψj ∧ϕj ∧CO γj . For clarity, we write below r, s and
u for the factors ⇓x, ⇑x and ‖x of t. Since ψj is a past formula and ϕj is a future
formula, we deduce that raj , x |= ψj and ajs, x |= ϕj and u |= γj and λ(x) = aj .
Let t′ ∈ L \ {1} and x′ ∈ t′ be such that j = (λ(x′), [⇓x′], [‖x′], [⇑x′]). As above,
we write r′, s′ and u′ for the factors ⇓x′, ⇑x′ and ‖x′ of t′. By definition of the
formulae ψj , ϕj and γj we have r ∈ [r′], s ∈ [s′] and u ∈ [u′]. We deduce that
t = r · aj · u · s ∈ [t′]. Since t′ ∈ L and h recognizes L we obtain t ∈ L.

For the converse inclusion of (iii), let j ∈ J and raj ∈ P be such that
raj ,max(raj) |= aj ∧ ψj . Let t′ ∈ L \ {1} and x′ ∈ t′ be such that j =
(λ(x′), [⇓x′], [‖x′], [⇑x′]). As above, we write r′, s′ and u′ for the factors ⇓x′,
⇑x′ and ‖x′ of t′. We obtain r ∈ [r′]. Let t = r · aj · u′ · s′. We have t ∈ [t′] and
we get t ∈ L. Therefore, raj ∈ Pref(L). ⊓⊔

A similar proof allows to generalize the separation theorem from words to
traces with the local semantics of temporal logic.

Theorem 4. Let ϕ ∈ FOΣ(<) be a first-order formula with one free variable.
Then there exists a decomposition formula δ =

∨
j∈J aj ∧ ψj ∧ ϕj ∧ CO γj such

that for all t ∈ R \ {1} and all x ∈ t we have

t |= ϕ(x) iff t, x |= δ.

6 Local safety properties

In this section, we investigate local safety for distributed systems. Intuitively,
a safety property is defined by a set P of safe partial executions. A finite or

8

infinite execution is safe if all its partial executions are in the given set P . The
difference between global safety and local safety stems from the semantics of
partial execution. For local safety, the partial executions of a trace t ∈ R are
its prime prefixes Pref(t). The advantage of local safety is that it can be locally
enforced by processes of the system: before executing an action, a local process
makes sure that the partial execution having this action as maximal event is in
the set P of safe partial executions.

Below, we first define local safety. Then we characterize local safety my means
of local closure. Next, for local safety properties which are first-order definable,
we give a characterization by local temporal logic formulae of the form Gψ where
ψ is a past formula.

We say that a trace t ∈ R is locally safe with respect to some set P ⊆ P if
Pref(t) ⊆ P . A trace language L ⊆ R is said to be a local safety property, if we
can find some set P ⊆ P such that

L = {t ∈ R | Pref(t) ⊆ P}.

Example 5. For instance, if Σ = {a, b, c} and I = {(a, b), (b, a)} then the lan-
guage L of traces t ∈ R such that t = ucrcscv with |r|c = |s|c = 0 implies
|r|a + |r|b is different from |s|a + |s|b modulo 2 is a local safety property. In order
to ensure locally this property, the process executing a counts the number of
a’s modulo 2 since the last c and similarly for the process executing b. Now,
whenever a c is about to occur, these numbers are checked by the process in
charge of c and depending on whether the safety property is satisfied or not, the
action c is enabled or not.

A subset K ⊆ R is called coherent if for all r, s ∈ K there is some t ∈ R

such that r and s are prefixes of t. Since R is coherently complete [16], the least
upper bound of any coherent set exists. Hence, K ⊆ R is coherent if and only if
it is bounded from above, i.e., if all elements of K are prefixes of some t ∈ R. In
particular, Pref(t) is coherent for all t ∈ R.

We say that a trace language L is locally closed if it is closed under prime
prefixes and under least upper bounds of coherent subsets: Pref(L) ⊆ L and
⊔K ∈ L for any coherent set K ⊆ L. Note that, if L is locally closed, then it is
also closed under prefixes: it s ≤ t ∈ L then Pref(s) ⊆ Pref(t) ⊆ L and we get
s = ⊔Pref(s) ∈ L.

The local closure L
ℓ

of a language L ⊆ R is the smallest set which is locally

closed and contains L. Note that 1 = ⊔∅ ∈ L
ℓ

for all L ⊆ R. We have

L
ℓ
= {t ∈ R | Pref(t) ⊆ Pref(L)}.

Indeed, we have L ⊆ L′ = {t ∈ R | Pref(t) ⊆ Pref(L)}. Next, L′ is locally
closed since s ≤ t implies Pref(s) ⊆ Pref(t) and t = ⊔X for some X ⊆ L′

implies Pref(t) = Pref(X) ⊆ Pref(L). Finally, assume that L ⊆ K for some
locally closed set K. Let t ∈ L′. We get Pref(t) ⊆ Pref(L) ⊆ Pref(K) ⊆ K and
t = ⊔Pref(t) ∈ K since Pref(t) is coherent. Therefore, L′ ⊆ K.

9

Proposition 6. A trace language L ⊆ R is a local safety property if and only if
it is locally closed.

Proof. Assume that L = {t ∈ R | Pref(t) ⊆ P} for some P ⊆ P. Let s ≤ t ∈ L.
We have Pref(s) ⊆ Pref(t) ⊆ P hence s ∈ L. Let now t = ⊔K for some K ⊆ L

coherent. We have Pref(t) = Pref(K) ⊆ Pref(L) ⊆ P . Hence t ∈ L.

Conversely, assume that L is locally closed. Then, L = L
ℓ

is a local safety
property defined by Pref(L). ⊓⊔

We turn now to the characterization of local safety by means of temporal
logic formulae. A formula in LocTLΣ [EX,U,EY, S] is called a canonical local
safety formula if it can be written as Gψ where ψ ∈ LocTLΣ [EY, S] is a past
formula. We show that local safety properties which are first order definable can
be characterized by canonical local safety formulae.

Theorem 7. A first-order definable real trace language is a local safety prop-
erty if and only if it can be expressed by a canonical local safety formula. More
precisely:

(i) Each language defined by a canonical local safety formula is locally closed.
(ii) The local closure of a first-order definable language can be expressed by a

canonical local safety formula.

Proof. (i) Let L = L(Gψ) where ψ is a past formula. Let t ∈ R with Pref(t) ⊆
Pref(L). For all x ∈ t we have r = ↓x ∈ Pref(t) hence we find s ∈ L such that
r ∈ Pref(s). Since ψ is a past formula, we have t, x |= ψ if and only if r, x |= ψ

if and only if s, x |= ψ, which holds since s ∈ L. Therefore, t |= Gψ and t ∈ L.

Therefore, L = L
ℓ

is locally closed.
(ii) Let L ⊆ R be a first-order definable language. Consider a decomposition

formula δ =
∨

j∈J aj ∧ ψj ∧ ϕj ∧ CO γj for L as given by Theorem 3 and let
ψ =

∨
j∈J aj∧ψj . For all r ∈ P, we have r ∈ Pref(L) if and only if r,max(r) |= ψ.

We show that L
ℓ
= L(Gψ).

First, let t ∈ L(Gψ) \ {1}. Let r = ↓x with x ∈ t be a prime prefix of t. We
have t, x |= ψ and since ψ is a past formula we deduce r,max(r) |= ψ and then

r ∈ Pref(L). Therefore, Pref(t) ⊆ Pref(L) and we obtain t ∈ L
ℓ
.

Conversely, let t ∈ R with Pref(t) ⊆ Pref(L). For all r ∈ Pref(t), we get
r,max(r) |= ψ by Theorem 3(iii). Since ψ is a past formula, we deduce that
t, x |= ψ for all x ∈ t. Therefore, t ∈ L(Gψ). ⊓⊔

Example 8. The language L defined in Example 5 is a local safety property but is
not first-order definable. On the other hand, with the same dependence alphabet,
the language L′ of traces t ∈ R such that t = ucrcv with |r|c = 0 implies |r|a ≤ 2
and |r|b ≤ 2 is a local safety property which is first-order definable. It is defined
by the canonical local safety formula

G
(
c ∧ EY(⊤ S c) −→ ¬EY(a ∧ EY(a ∧ EY a)) ∧ ¬EY(b ∧ EY(b ∧ EY b))

)
.

10

We conclude this section by a comparison between global safety and local
safety. With the global semantics, a partial execution is an arbitrary prefix, not
necessarily a prime. Hence, a trace t ∈ R is globally safe with respect to some set
M ⊆ M if Pref(t) ⊆ M . Moreover, a language L ⊆ R is a global safety property
if L = {t ∈ R | Pref(t) ⊆ M} for some set M ⊆ M. It was shown in [8] that
a language L ⊆ R is a global safety property if and only if it is Scott closed,
i.e., closed under prefixes and under least upper bounds of directed sets. The
Scott closure of a set L ⊆ R is L

σ
= {t ∈ R | Pref(t) ⊆ Pref(L)}. It follows

immediately that L
σ
⊆ L

ℓ
and if L is locally closed then it is also Scott closed.

Therefore, any local safety property is also a global safety property.
The complement of Scott closed sets are called Scott open sets and they form

a topology. In particular, the union of two Scott closed sets is also Scott closed.
But a union of two locally closed sets needs not be locally closed. Indeed, let
Σ = {a, b} with (a, b) ∈ I and consider the set L = a∞ ∪ b∞. This set is Scott-
closed, but its local closure is R. Therefore the global safety property a∞ ∪ b∞

is not necessarily a local safety property: locally safety is a stronger requirement
than global safety.

As another example, let Σ = {a, b, c} with I = {(a, b), (b, a)} and consider
the set L of traces t ∈ R such that t = ucrcv with |r|c = 0 implies |r|a +
|r|b ≤ 3. Then L is a first-order definable global safety property but not a local
safety property. In order to enforce the global safety property L we need a
synchronization between the processes executing a and b, which is not possible
in a distributed system since a and b are independent. In other words, any
asynchronous (cellular) automaton [5, 31] for L has deadlocks : it is not possible
to have a safe (without deadlocks) distributed implementation for L. On the
other hand, any first-order definable local safety property can be implemented
by a deterministic asynchronous cellular automaton without deadlocks.

7 Local liveness property

We turn now our attention to local liveness for distributed systems. A partial
execution is live with respect to a set L of desired behaviors if it can be extended
to some element in L. Again, the difference between local liveness and global
liveness stems from the semantics of partial execution. In our local paradigm, a
partial execution is a prime trace r and it is live with respect to L if r ∈ Pref(L).

Below, we formally define local liveness and we show that it is characterized
by local density. We establish a natural characterization by local temporal logic
formulae using the decomposition formulae introduced in Section 5. Then we
define and characterize strong local liveness where the possibility to extend a
partial execution to a desired one is strongly limited.

A language L ⊆ R is a local liveness property if each partial execution can
be extended to some trace in L, i.e., if Pref(L) = P.

With the global semantics, a partial execution is simply a finite trace and
not necessarily a prime. Hence a language L ⊆ R is a global liveness property if
M = Pref(L). Global liveness implies local liveness since Pref(L) = Pref(L)∩ P.

11

Example 9. Let Σ = {a, b} with (a, b) ∈ I. Then the language L = {aω, bω} is
a local liveness property since we have P = a+ ∪ b+ = Pref(L). But L is not a
global liveness property since Pref(L) = Pref(L) 6= M. On the other hand, the
language L = {(ab)ω} is a global liveness property, hence also a local liveness
property.

Let us call a language L ⊆ R locally dense if all traces are in the local closure

of L, i.e., if L
ℓ
= R.

Proposition 10. A trace language L ⊆ R is a local liveness property if and only
if it is locally dense.

Proof. Assume first that L is a local liveness property and let t ∈ R. We have

Pref(t) ⊆ P = Pref(L), hence t ∈ L
ℓ
. Conversely, assume that L is locally dense.

Let r ∈ P ⊆ L
ℓ
. We have r ∈ Pref(r) ⊆ Pref(L). Hence P = Pref(L). ⊓⊔

It follows by some purely formal argument that every language L ⊆ R is the

intersection of a locally closed language and a locally dense one. Indeed, L
ℓ

is

locally closed, L ∪ R \ L
ℓ

is locally dense and we have

L = L
ℓ
∩ (L ∪ R \ L

ℓ
).

We deduce that every trace language is the intersection of a local safety property
with a local liveness property, which extends a classical result on words.

We turn now to the characterization of first-order definable local liveness
properties by means of local temporal logic formulae. This will be based on the
decomposition formulae introduced in Section 5.

Consider a first-order language L ⊆ R and a decomposition formula

δ =
∨

j∈J

aj ∧ ψj ∧ ϕj ∧ CO γj

for L as given by Theorem 3. In particular, with ψ =
∨

j∈J aj ∧ ψj we have

Pref(L) = {r ∈ P | r,max(r) |= ψ}

and we deduce that a partial execution r ∈ P is live with respect to L if
r,max(r) |= ψ. Note that this can be checked locally by a deterministic dis-
tributed automaton. More precisely, there is a deterministic asynchronous cel-
lular automaton [5, 31] such that whenever executing an event e labeled a, the
local process in charge of a knows whether the partial execution r = ↓e with e

as maximal event is live, i.e., satisfies the past formula ψ.
The second consequence is that the language L is a local liveness property if

and only if the formula ψ is valid, i.e., if for all non empty trace t ∈ R and all
x ∈ t we have t, x |= ψ. Indeed, if ψ is valid then r,max(r) |= ψ for all r ∈ P and
we deduce that Pref(L) = P. Conversely, if L is a local liveness property then

12

for all t ∈ R \ {1} and all x ∈ t we must have ↓x, x |= ψ since ↓x is prime. We
deduce that t, x |= ψ since ψ is a past formula.

This motivates the following definition. A canonical local liveness formula is
an F formula F δ where

δ =
∨

j∈J

aj ∧ ψj ∧ ϕj ∧ CO γj

is a decompotion formula such that ψ =
∨

j∈J aj ∧ψj is valid and aj ∧ϕj ∧CO γj

is satisfiable for all j ∈ J .

Proposition 11. Let F δ be a canonical local liveness formula. Then the lan-
guage L = L(F δ) is a local liveness property.

Proof. We use the notations above for δ and ψ. Let r ∈ P. Since ψ is valid we
have r,max(r) |= aj ∧ψj for some j ∈ J . Now, aj ∧ϕj ∧CO γj is satisfiable and
we find t ∈ R \ {1} and x ∈ t such that t, x |= aj ∧ ϕj ∧ CO γj . For clarity, we
write s and u for the factors of t corresponding to ‖x and ⇑x. Let t′ = r · s · u
and y = max(r) ∈ t′. We know that s |= CO γj and s = ‖y in t′. Since ϕj is
a future formula we deduce from t, x |= aj ∧ ϕj that aju, y |= aj ∧ ϕj and also
t′, y |= aj ∧ ϕj . Finally, ψj being a past formula we get t′, y |= ψj . Therefore,
t′, y |= aj ∧ ψj ∧ ϕj ∧ CO γj and we obtain t′ ∈ L = L(F δ). Hence, r ∈ Pref(L)
and we have shown that P = Pref(L) as desired. ⊓⊔

We have already explained above that, conversely, any first-order definable
local liveness property L ⊆ R\{1} can be described by a canonical local liveness
formula. The following theorem is more precise.

Theorem 12. Let L ⊆ R be a first-order definable real trace language and let

δ =
∨

j∈J

aj ∧ ψj ∧ ϕj ∧ CO γj

be a decomposition formula for L given by Theorem 3. Let ψ =
∨

j∈J aj ∧ ψj.
Then we have

(i) L
ℓ
= L(Gψ).

(ii) If L is a local liveness property, then ψ is valid and L \ {1} = L(F δ) is
defined by a canonical local liveness formula.

(iii) F(¬ψ ∨ δ) is a canonical local liveness formula. Hence L̃ = L(F(¬ψ ∨ δ)) is

a local liveness property. Moreover, L̃ = (L \ {1}) ∪ (R \ L
ℓ
) and L̃ is the

largest set K such that L \ {1} = L
ℓ
∩K.

Proof. (i) This was already shown in the proof of Theorem 7(ii).
(ii) We have seen above that if L is a local liveness property then ψ is valid.

We know that L \ {1} = L(F δ) by Theorem 3(ii).
(iii) Note that ¬ψ =

∨
a∈Σ a ∧ ¬ψ ∧ ⊤ ∧ CO G⊤, therefore, δ′ = ¬ψ ∨ δ is

a decomposition formula. Also, ¬ψ ∨ ψ is valid, hence F δ′ is a canonical local
liveness formula. We deduce that L̃ is a local liveness property by Proposition 11.

13

By Theorem 3 we have L(F δ) = L \ {1}. Next, L(F¬ψ) = R \ L
ℓ

by (i).

Therefore, L̃ = L(F(δ∨¬ψ)) = (L\{1})∪(R\L
ℓ
). It follows that L̃∩L

ℓ
= L\{1}.

Conversely, if L
ℓ
∩K = L \ {1} then K ⊆ (L \ {1}) ∪ (R \ L

ℓ
) = L̃. ⊓⊔

We introduce now a stronger notion of local liveness. We first motivate why
a stronger notion may be interesting. If L is a local liveness property then each
partial execution which is prime, i.e., corresponding to the local view of some
process, may be extended to a behavior in L. But based on its local view a
process does not know whether the current global execution can be extended to
some behavior in L. For instance, if Σ = {a, b} with (a, b) ∈ I, the language
L = {aω, bω} is a local liveness property. Assume that we have two processes,
one executing a and the other executing b. After the execution of ab the local
views of the two processes are a and b respectively. Based on its local view, each
process may think that the current execution is live although it is not possible
to extend it to some trace in L.

Alternatively, we may think that a computation is locally live with respect to
some language L if each process has the possibility to locally initiate a compu-
tation reaching the language L whatever the current local states of concurrent
processes are. This is a much stronger notion of local liveness that can be for-
malized as follows.

A language L ⊆ R is a strong local liveness property (SLLP) if it is a local
liveness property (LLP) such that for all t = raus ∈ R \ {1} with ra ∈ P, a ∈ Σ,
as ∈ R1 and alph(u) ⊆ I(a) we have raus ∈ L if and only if ras ∈ L. Intuitively,
ra is the local view of some process, as is the computation that this process may
initiate in order to reach L and raus is a possible resulting behavior including u
which is the part executed independently by the other processes. The additional
condition makes sure that reaching L does not depend on what the concurrent
processes may have already performed.

Note that if L is a strong local liveness property then it is also a global
liveness property (GLP). Indeed, any nonempty finite trace may be written rau
with ra ∈ P, a ∈ Σ and alph(u) ⊆ I(a). Since L is a local liveness property, we
find vs ∈ R such that ravs ∈ L, alph(v) ⊆ I(a) and as ∈ R1. Since L is a SLLP
we deduce that ras ∈ L and then raus ∈ L. Therefore, any finite trace may be
extended to some trace in L which is the definition of a GLP. But not all GLP
are SLLP. Consider again Σ = {a, b} with (a, b) ∈ I. If L is a SLLP over this
dependence alphabet then L ∩ a∞ 6= ∅. Indeed, a ∈ P and L is a LLP hence we
find us ∈ R with aus ∈ L, as ∈ R1 and alph(u) ⊆ I(a). Since L is a SLLP we
deduce that as ∈ L. But since as ∈ R1 we get alph(as) = {a}. Therefore, the
singleton {(ab)ω} is not a SLLP although it is a GLP. Recall also that any GLP
is also a LLP but not all LLP are GLP:

SLLP (GLP (LLP.

We conclude by giving a temporal logic characterization of first-order defin-
able SLLP.

14

Theorem 13. A language L ⊆ R is a first-order definable strong local liveness
property if and only if there is a decomposition formula

δ =
∨

j∈I

aj ∧ ψj ∧ ϕj

with J finite, ψ =
∨

j∈J aj ∧ ψj valid, and for all j ∈ J , aj ∈ Σ is a letter,
ψj ∈ LocTLΣ(EY, S) is a past formula, ϕj ∈ LocTLΣ(EX,U) is a future formula,
aj ∧ ψj ∧ ϕj is satisfiable and such that

L \ {1} = L(F δ) and L ∪ {1} = L(G δ).

Proof. Assume first that L is a first-order definable SLLP. The proof is similar to
that of Theorem 3. Let h : M(Σ,D) → S be a morphism to some finite aperiodic
monoid S which recognizes L. We define the index set

J = {(a, [r], [s]) | ras ∈ L with ra ∈ P, a ∈ Σ and as ∈ R1}

which is finite since there are finitely many h-equivalence classes. Fix now some
index j = (aj , L

j
p, L

j
f) ∈ J . By Theorem 1 and Corollary 2 we find a future

formula ϕj and a past formula ψj such that

aj · L
j
f ∩ R1 = {s ∈ R1 | s,min(s) |= ϕj}

Lj
p · aj ∩ P = {r ∈ P | r,max(r) |= ψj}.

We claim that the decomposition formula δ =
∨

j∈J aj ∧ ψj ∧ ϕj satisfies the
requirements.

By definition of J each formula aj ∧ψj ∧ϕj is satisfiable. Let now t ∈ R\{1}
and x ∈ t. We write r for the factor ⇓x in t and we let a be the label of x. Then
ra ∈ P. Since L is a LLP we find us ∈ R such that raus ∈ L with alph(u) ⊆ I(a)
and as ∈ R1. We deduce that ras ∈ L since this language is a SLLP. With
j = (a, [r], [s]) ∈ J we obtain ra,max(ra) |= aj ∧ ψj and since ψj is a past
formula it follows t, x |= aj ∧ ψj . Therefore, ψ is valid.

Next, let t ∈ L \ {1} and let x ∈ t. We write r, u and s the factors of t
corresponding to ⇓x, ‖x and ⇑x and let a be the label of x. We have ra ∈ P,
alph(u) ⊆ I(a) and as ∈ R1. Since L is a SLLP and t = raus ∈ L we obtain
ras ∈ L. Hence we can consider the index j = (a, [r], [s]) ∈ J . It is easy to check
that raus, x |= aj ∧ ψj ∧ ϕj . We deduce that t |= G δ and t |= F δ. Therefore,
L \ {1} ⊆ L(F δ) and L ∪ {1} ⊆ L(G δ).

Conversely, assume that t |= F δ or that t 6= 1 and t |= G δ. Let x ∈ t and
j ∈ J be such that t, x |= aj ∧ ψj ∧ ϕj . We write r, u and s for the factors ⇓x,
‖x and ⇑x of t. Since ψj is a past formula and ϕj is a future formula, we deduce
that raj , x |= ψj and ajs, x |= ϕj and λ(x) = aj. Let r′as′ ∈ L with r′a ∈ P,
a = aj and as′ ∈ R1 be such that j = (a, [r′], [s′]). By definition of the formulae
ψj and ϕj we have r ∈ [r′] and s ∈ [s′]. We deduce that ras ∈ [r′as′] and since
r′as′ ∈ L and h recognizes L we obtain ras ∈ L. Finally, since L is a SLLP we
get t = raus ∈ L. Therefore, L \ {1} ⊇ L(F δ) and L ∪ {1} ⊇ L(G δ).

15

We turn now to the proof of the “if” part of Theorem 13. So let δ be a
decomposition formula with the notations and properties stated in the theorem.
Since ⊤ = CO G⊤, the formula F δ is a canonical local liveness formula and we
deduce from Proposition 11 that L \ {1} = L(F δ) is a LLP. Hence, L is also a
LLP.

Let now t = raus ∈ R \ {1} with ra ∈ P, a ∈ Σ, as ∈ R1 and alph(u) ⊆ I(a).
For all j ∈ J we have raus,max(ra) |= aj ∧ψj ∧ϕj if and only if ras,max(ra) |=
aj ∧ ψj ∧ ϕj since ψj is a past formula and ϕj is a future formula. Therefore,
raus ∈ L ⊆ L(G δ) implies ras ∈ L(F δ) ⊆ L and conversely, ras ∈ L ⊆ L(G δ)
implies raus ∈ L(F δ) ⊆ L. ⊓⊔

Remark 14. We have seen two notions of local liveness: LLP and SLLP. We have
chosen LLP as the standard notion since it is equivalent with local density. Note
that, if we wish that every language is the intersection of a local safety property
and a local liveness property then each locally dense language must be called
locally live. Indeed, assume that L = K1 ∩K2 where L is locally dense and K1

is a local safety property. Then R = L
ℓ
⊆ K

ℓ

1 = K1 and we deduce K2 = L.

References

1. B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

2. B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed Com-

puting, 2:117–126, 1987.
3. R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In

Proc. of LICS’95, pages 90–100. IEEE Computer Society Press, 1995.
4. E. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property classes.

In W. Kuich, editor, Proc. of ICALP’92, number 623 in LNCS, pages 474–486.
Springer Verlag, 1992.

5. R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous
cellular automata. Information and Computation, 106:159–202, 1993.

6. V. Diekert and P. Gastin. Local temporal logic is expressively complete for cograph
dependence alphabets. In Proc. of LPAR’01, number 2250 in LNAI, pages 55–69.
Springer Verlag, 2001.

7. V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces.
Journal of Computer and System Sciences, 64:396–418, 2002. A preliminary version
appeared at ICALP’00, LNCS 1853, pages 211-222, Springer Verlag.

8. V. Diekert and P. Gastin. Safety and liveness properties for real traces and a direct
translation from LTL to monoids. In Formal and Natural Computing — Essays

Dedicated to Grzegorz Rozenberg, number 2300 in LNCS, pages 26–38. Springer
Verlag, 2002.

9. V. Diekert and P. Gastin. Pure future local temporal logics are expressively com-
plete for Mazurkiewicz traces. Information and Computation, 204:1597–1619, 2006.
A preliminary version appeared at LATIN’04, LNCS 2976, pages 232–241, Springer
Verlag.

10. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

16

11. W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch

Logiken. Dissertation, Institut für Informatik, Universität Stuttgart, 1994.
12. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical

Computer Science, 154:67–84, 1996.
13. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.

In Proc. of PoPL’80, pages 163–173, 1980.
14. P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable

temporal logics are in PSPACE. In Proc. of CONCUR’03, number 2761 in LNCS,
pages 222–236. Springer Verlag, 2003.

15. P. Gastin and D. Kuske. Uniform satisfiability in PSPACE for local temporal logics
over Mazurkiewicz traces. Fundamenta Informaticae, 80(1-3):169–197, November
2007. A preliminary version appeared at CONCUR’05, LNCS 3653, pages 533–547,
Springer Verlag.

16. P. Gastin and A. Petit. Infinite traces. In V. Diekert and G. Rozenberg, editors,
The Book of Traces, chapter 11, pages 393–486. World Scientific, Singapore, 1995.

17. P.W. Hoogers, H.C.M. Kleijn, and P.S. Thiagarajan. A trace semantics for petri
nets. In W. Kuich, editor, Proc. of ICALP’92, number 623 in LNCS, pages 595–604.
Springer Verlag, 1992.

18. S. Katz and D. Peled. Interleaving set temporal logic. Theoretical Computer

Science, 75:21–43, 1991.
19. Z. Manna and A. Pnueli. The temporal logic of reactive and concurent systems:

Specification. Springer Verlag, 1992.
20. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI

Rep. PB 78, Aarhus University, Aarhus, 1977.
21. A. Mazurkiewicz. Traces, histories, graphs: Instances of a process monoid. In M.P.

Chytil et al., editors, Proc. of MFCS’84, number 176 in LNCS, pages 115–133.
Springer Verlag, 1984.

22. M. Mukund and P.S. Thiagarajan. Linear time temporal logics over Mazurkiewicz
traces. In Proc. of MFCS’96, number 1113 in LNCS, pages 62–92. Springer Verlag,
1996.

23. W. Penczek. On undecidability of temporal logics on trace systems. Information

Processing Letters, 43:147–153, 1992.
24. D. Perrin and J.-E. Pin. Infinite words, volume 141 of Pure and Applied Mathe-

matics. Elsevier, 2004.
25. G. Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, structure and be-

haviour. In Current Trends in Concurrency, number 224 in LNCS, pages 585–668.
Springer Verlag, 1986.

26. B. Rozoy and P.S. Thiagarajan. Event structures and trace monoids. Theoretical

Computer Science, 91(2):285–313, 1991.
27. P.S. Thiagarajan. Elementary net systems. In W. Brauer, editor, Petri nets: central

models and their properties; advances in Petri nets Vol. 1, number 254 in LNCS,
pages 26–59. Springer Verlag, 1986.

28. P.S. Thiagarajan and I. Walukiewicz. An expressively complete linear time tem-
poral logic for Mazurkiewicz traces. In Proc. of LICS’97, pages 183–194, 1997.

29. I. Walukiewicz. Difficult configurations – on the complexity of LTrL. In Proc. of

ICALP’98, number 1443 in LNCS, pages 140–151. Springer Verlag, 1998.
30. G. Winskel. Event structures. In W. Brauer, editor, Petri nets: central models

and their properties; advances in Petri nets Vol. 2, number 255 in LNCS, pages
325–392. Springer Verlag, 1986.

31. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique

Théorique et Applications, 21:99–135, 1987.

17

