
Efficient On-the-Fly Algorithms for Partially

Observable Timed Games⋆

Franck Cassez

CNRS/IRCCyN
1 rue de la Noë

BP 92101
44321 Nantes Cedex 3, France

franck.cassez@cnrs.irccyn.fr

http://www.irccyn.fr/franck

Abstract. In this paper, we review some recent results on the efficient
synthesis of controllers for timed systems. We first recall the basics of
controller synthesis for timed games and then present an efficient on-
the-fly algorithm for reachability games and its extension to partially
observable timed games.

The material of this paper is based on two recent articles [13,14] that in-
troduced truly on-the-fly algorithms for the synthesis of controllers for timed
games. These results were obtained together with Alexandre David, Emmanuel
Fleury and Kim G. Larsen (Aalborg University, Denmark), Didier Lime (IRC-
CyN, France) and Jean-François Raskin (ULB, Brussels, Belgium).

1 Introduction

The control problem (CP) for discrete event systems was first studied by Ra-
madge & Wonham in [24]. The CP is the following: “Given a finite-state model
of a plant P (open system) with controllable and uncontrollable discrete actions
and a control objective Φ, does there exist a controller f such that the plant
supervised by f (closed system) satisfies Φ?”

The dense-time version of the CP with an untimed control objective has been
investigated and solved in [23]. In this seminal paper, Maler et al. consider a plant
P given by a timed game automaton which is a standard timed automaton [4]
with its set of discrete actions partitioned into controllable and uncontrollable
actions. They give an algorithm to decide whether a controller exists or not, and
show that if one such controller exists, a witness can be effectively computed.
In [28], Wong-Toi has given a semi-algorithm to solve the CP when the plant is
defined by an extended class of timed game which is a hybrid (game) automaton.

⋆ Work supported by the French National Research Agency ANR-06-SETI-DOTS and
by the Fonds National de la Recherche Scientifique, Belgium.

http://www.irccyn.fr/franck

The algorithms for computing controllers for timed games are based on back-
wards fix-point computations of the set of winning states [23,7,17]. For timed
game automata, they were implemented in the tool Kronos [2] at the end of
90’s but lack efficiency because they require the computation of the complete set
of winning states. Moreover the backward computation may sometimes not ter-
minate or be very expensive for some extended classes of timed game automata,
for instance if integer assignments of the form i := j + k are allowed on discrete
transitions.

In the last ten years, a lot of progress has been made in the design of efficient
tools for the analysis (model-checking) of timed systems. Tools like Kronos [12]
or Uppaal [21] have become very efficient and widely used to check properties
of timed automata but still no real efficient counterpart had been designed for
timed games.

One of the reason may be that on-the-fly algorithms have been absolutely
crucial to the success of these model-checking tools. Both reachability, safety as
well as general liveness properties of such timed models may be decided using
on-the-fly algorithms i.e. by exploring the reachable state-space in a symbolic
forward manner with the possibility of early termination. Timed automata tech-
nology has also been successfully applied to optimal scheduling problems with
on-the-fly algorithms which quickly lead to near-optimal (time- or cost-wise)
schedules [6,5,18,25,1].

Regarding timed games, in [27,3], Altisen and Tripakis have proposed a par-
tially on-the-fly method for solving timed games. However, this method involves
an extremely expensive preprocessing step in which the quotient graph of the
timed game w.r.t. time-abstracted bisimulation1 needs to be built. Once obtained
this quotient graph may be used with any on-the-fly game-solving algorithms for
untimed systems.

In a recent paper [13], we have proposed an efficient, truly on-the-fly al-
gorithm for the computation of winning states for (reachability) timed game
automata. Our algorithm is a symbolic extension of the on-the-fly algorithm
suggested by Liu & Smolka in [22] for linear-time model-checking of finite-state
systems. Being on-the-fly, this symbolic algorithm may terminate before having
explored the entire state-space, i.e. as soon as a winning strategy has been iden-
tified. Also the individual steps of the algorithm are carried out efficiently by
the use of so-called zones as the underlying data structure.

This algorithm has been implemented in Uppaal-TiGA [8] which is an ex-
tension of the tool Uppaal [21]. Some recent experiments with Uppaal-TiGA

are reported in [13] and show promising results. More recently in [14], we have
extended this algorithm to deal with partially observable timed games and im-
plemented it in a prototype based on Uppaal-TiGA.

In this paper we focus on reachability timed games and present the on-the-fly
algorithms of [13,14] and conclude with some current research directions.

1 A time-abstracted bisimulation is a binary relation on states preserving discrete
states and abstracted delay-transitions.

The plan of the paper is the following: in Section 2 we recall the basics of
timed game automata and the backwards algorithms used to compute safety
and reachability games. In Section 3 we present the efficient truly on-the-fly
algorithm for reachability games that was introduced in [13] and implemented
in Uppaal-TiGA. In Section 4 we show how it can be adapted [14] to compute
winning states for timed games under partial observation. Finally in Section 5
we give some current research directions.

2 Backward Algorithms for Solving Timed Games

Timed Game Automata (TGA) were introduced in [23] for solving control prob-
lems on timed systems. This section recalls the basic results for the controller
synthesis for TGA. For a more complete survey the reader is referred to [10].

2.1 Notations

Let X be a finite set of real-valued variables called clocks. R≥0 stands for the set
of non-negative reals. We note C(X) the set of constraints ϕ generated by the
grammar: ϕ ::= x ∼ k | x−y ∼ k | ϕ∧ϕ where k ∈ Z, x, y ∈ X and ∼∈ {<,≤, =
, >,≥}. B(X) is the subset of C(X) that uses only rectangular constraints of the
form x ∼ k. A valuation v of the variables in X is a mapping v : X → R≥0. We
let RX

≥0 be the set of valuations of the clocks in X . We write 0 for the valuation
that assigns 0 to each clock. For Y ⊆ X , we denote by v[Y] the valuation
assigning 0 (resp. v(x)) to any x ∈ Y (resp. x ∈ X \ Y). We denote v + δ for
δ ∈ R≥0 the valuation s.t. for all x ∈ X , (v + δ)(x) = v(x) + δ. For g ∈ C(X)
and v ∈ RX

≥0, we write v |= g if v satisfies g and [[g]] denotes the set of valuations

{v ∈ RX
≥0 | v |= g}. A zone Z is a subset of RX

≥0 s.t. [[g]]= Z for some g ∈ C(X).

2.2 Timed Automata & Simulation Graph

Definition 1 (Timed Automaton [4]). A Timed Automaton (TA) is a tuple
A = (L, ℓ0, Act, X, E, Inv) where L is a finite set of locations, ℓ0 ∈ L is the
initial location, Act is the set of actions, X is a finite set of real-valued clocks,
E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions, Inv : L → B(X)
associates with each location its invariant.

A state of a TA is a pair (ℓ, v) ∈ L × RX
≥0 that consists of a location and a

valuation of the clocks. From a state (ℓ, v) ∈ L × RX
≥0 s.t. v |= Inv(ℓ), a TA

can either let time progress or do a discrete transition. This is defined by the
transition relation −→⊆ (L × R≥0) × Act ∪ R≥0 × (L × R≥0) built as follows:

– for a ∈ Act, (ℓ, v)
a

−−→ (ℓ′, v′) if there exists a transition ℓ
g,a,Y

−−−−−→ ℓ′ in E s.t.
v |= g, v′ = v[Y] and v′ |= Inv(ℓ′);

– for δ ≥ 0, (ℓ, v)
δ

−−→ (ℓ, v′) if v′ = v + δ and v, v′ ∈[[Inv(ℓ)]].

Thus the semantics of a TA is the labeled transition system SA = (Q, q0, Act ×
R≥0,−→) where Q = L × RX

≥0, q0 = (ℓ0,0) and the set of labels is Act ∪ R≥0.
A run of a timed automaton A is a (finite or infinite) sequence of alternating
time and discrete transitions in SA. We use Runs((ℓ, v), A) for the set of runs
that start in (ℓ, v). We write Runs(A) for Runs((ℓ0,0), A). If ρ is a finite run we
denote last(ρ) the last state of the run. An example of a timed automaton is
given in Figure 1 where [x ≤ 4] denotes the invariant of location ℓ4.

ℓ1

ℓ2

ℓ3

ℓ4
[x ≤ 4]

Goal

ℓ5

x ≤ 1;c1

x > 1;u1

x < 1
u2

x := 0

x ≥ 2;c2

x < 1
u3

c3

x ≤ 1;c4

Fig. 1. A Timed Game Automaton

The analysis of TA is based on the exploration of a graph, the simulation
graph, where the nodes are symbolic states. A symbolic state is a pair (ℓ, Z)
where ℓ ∈ L and Z is a zone of RX

≥0. Let S ⊆ Q and a ∈ Act we define the
a-successors and a-predecessors of S respectively by:

Posta(S) = {(ℓ′, v′) | ∃(ℓ, v) ∈ S, (ℓ, v)
a

−−→ (ℓ′, v′)}

Preda(S) = {(ℓ, v) | ∃(ℓ′, v′) ∈ S, (ℓ, v)
a

−−→ (ℓ′, v′)}.

The set of timed successors, Sր, of S is defined by:

Sր = {(ℓ, v + d) | (ℓ, v) ∈ S∩ [[Inv(ℓ)]], (ℓ, v + d) ∈[[Inv(ℓ)]], d ∈ R≥0}.

Let =⇒ be the relation defined on symbolic states by: (ℓ, Z)
a

=⇒ (ℓ′, Z ′) if
(ℓ, g, a, Y, ℓ′) ∈ E and Z ′ = ((Z∩ [[g]])[Y])ր. The simulation graph SG(A) of
A is given by the labeled transition system (Z(Q), S0, Act, =⇒), where Z(Q) is
the set of zones of Q, S0 = (({(ℓ0,0)}ր)∩ [[Inv(ℓ0)]] and =⇒ defined as above.
If A is bounded, i.e. all the clocks are bounded, the number of symbolic states
is finite and SG(A) is finite as well. Otherwise, a finite simulation graph that
preserves for instance reachability property can be constructed for any TA. In
this case, we can either transform the given TA into an equivalent one in which

all location-invariants insist on an upper bound on all clocks or, alternatively,
we can apply standard extrapolation w.r.t. maximal constant occurring in the
TA (which is correct up to time-abstracted bisimulation).

2.3 Safety and Reachability Games

Definition 2 (Timed Game Automaton [23]). A Timed Game Automa-
ton (TGA) G is a timed automaton with its set of actions Act partitioned into
controllable (Actc) and uncontrollable (Actu) actions.

The automaton in Figure 1 is also a TGA: controllable actions are depicted with
plain arrows and uncontrollable ones with dashed arrows.

Given a TGA G and a set2 of states K ⊆ L × RX
≥0 the reachability control

problem consists in finding a strategy f s.t. G supervised by f enforces G to
enter a state in K. The safety control problem is the dual asking for the strategy
to constantly avoid K. By “a reachability game (G, K)” (resp. safety) we refer
to the reachability (resp. safety) control problem for G and K.

Let (G, K) be a reachability (resp. safety) game. Assume that all the states

reachable from (l, v) ∈ K are also in K. A finite or infinite run ρ = (ℓ0, v0)
e0−→

(ℓ1, v1)
e1−→ · · ·

en−→ (ℓn+1, vn+1) · · · in Runs(G) is winning if there is some k ≥ 0
s.t. (ℓk, vk) ∈ K (resp. for all k ≥ 0, (ℓk, vk) ∈ K). We rule out runs with an
infinite number of consecutive time transitions of duration 0. The set of winning
runs in G from (ℓ, v) is denoted WinRuns((ℓ, v), G).

The formal definition of the control problems is based on the definitions of
strategies and outcomes. A strategy [23] is a function that during the course
of the game constantly gives information as to what the controller should do
in order to win the game. In a given situation, the strategy could suggest the
controller to either i) “do a particular controllable action” or ii) “do nothing at
this point in time, just wait” which will be denoted by the special symbol λ.

Let G = (L, ℓ0, Act, X, E, Inv) be a TGA and SG = (Q, q0,→) its semantics.

Definition 3 (Strategy). A strategy f over G is a partial function from the
finite runs of Runs(G) to Actc ∪ {λ} s.t. for every finite run ρ

– if f(ρ) ∈ Actc then last(ρ)
f(ρ)
−−−→ (ℓ′, v′) for some (ℓ′, v′) and

– if f(ρ) = λ then last(ρ)
δ
−→ (ℓ′, v′) for some δ > 0 and (ℓ′, v′).

We denote Strat(G) the set of strategies over G. A strategy f is state-based
if ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) = f(ρ′). State-based
strategies are also called memoryless strategies in game theory [17,26].

The restricted behavior of a TGA G controlled with some strategy f is defined
by the notion of outcome [17].

2 For real computation we shall require that K is defined as a finite union of symbolic
states.

Definition 4 (Outcome). Let f be a strategy over G. The (set of) outcomes
Outcome(q, f) of f from q in SG is the subset of Runs(q, G) defined inductively
by:

– q ∈ Outcome(q, f),

– if ρ ∈ Outcome(q, f) then ρ′ = ρ
e

−−→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q, G)
and one of the following three conditions hold:
1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e, ∃q′′ ∈ Q s.t. last(ρ)
e′

−−→ q′′∧f(ρ
e′

−−→ q′′) = λ.
– for an infinite run ρ, ρ ∈ Outcome(q, f) if all the finite prefixes of ρ are in

Outcome(q, f).

We assume that uncontrollable actions can only spoil the game and the
controller has to do some controllable action to win [7,23,18]. In other words,
an uncontrollable action cannot be forced to happen in G. Thus, a run may
end in a state where only uncontrollable actions can be taken. For reachabil-
ity games we assume w.l.o.g. that the goal is a particular location Goal i.e.
K = {(Goal, v) | v ∈ RX

≥0} as depicted on Figure 1. For safety games we have to

avoid a particular location Bad i.e. K = {(Bad, v) | v ∈ RX
≥0}.

In the sequel we focus on reachability games. A maximal run ρ is either an
infinite run (supposing no infinite sequence of delay transitions of duration 0) or

a finite run ρ that satisfies either i) last(ρ) ∈ K or ii) if ρ
a

−−→ then a ∈ Actu i.e.
the only possible discrete actions from last(ρ) (if any) are uncontrollable actions.
A strategy f is winning from q if all maximal runs in Outcome(q, f) are in
WinRuns(q, G). A state q in a TGA G is winning if there exists a winning strat-
egy f from q in G. We denote by W(G) the set of winning states in G and
WinStrat(q, G) the set of winning strategies from q over G.

2.4 Backward Algorithms for Solving Timed Games

Let G = (L, ℓ0, Act, X, E, Inv) be a TGA. For timed games, the computation of
the winning set of states is based on the definition of a controllable predecessors
operator [17,23]. The controllable and uncontrollable discrete predecessors of S ⊆
Q are defined by cPred(S) =

⋃

c∈Actc

Predc(S) and uPred(S) =
⋃

u∈Actu

Predu(S).
A notion of safe timed predecessors of a set S w.r.t. a set U is also needed.
Intuitively a state q is in Predt(S, U) if from q we can reach q′ ∈ S by time
elapsing and along the path from q to q′ we avoid U . This operator is formally
defined by:

Predt(S, U)={q∈Q | ∃δ ∈ R≥0 s.t. q
δ
−→ q′, q′ ∈ S and Post[0,δ](q) ⊆ U} (1)

where Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] s.t. q
t

−−→ q′} and U = Q \ U . The
controllable predecessors operator π is formally defined as follows (Figure 2):

π(S) = Predt

(

S ∪ cPred(S), uPred(S)
)

(2)

s s′st S

S

u ×

t δ − t c

Fig. 2. π(S)

Note that according to this definition, even forced uncontrollable actions (e.g.
by an invariant) are not bound to happen and cannot help to win. A controllable
action must be taken to reach a winning state and uncontrollable actions can
only spoil the game.

If S is a finite union of symbolic states, then π(S) is again a finite union of
symbolic states and π(S) is effectively computable. Assume (G, K) is a reacha-
bility game. In this case the least fix-point of S = K ∪ π(S) can be computed
by the iterative process given by W 0 = K and Wn+1 = Wn ∪ π(Wn). This
computation will converge after finitely many steps for TGA [23] and the we de-
note W ∗ the fix-point. As it is proved in [23], W ∗ = W(G). Note that W ∗ is the
maximal (complete) set of winning states of G i.e. a state is winning iff it is in
W ∗. Thus there is a winning strategy in G iff (ℓ0,0) ∈ W ∗. Altogether this gives
a symbolic algorithm for solving reachability games. For safety games, it suffices
to take the greatest fix-point W ∗ of S = K ∩ π(S) and again W ∗ = W(G).

Another important result for reachability and safety TGA is that memoryless
strategies are sufficient to win [7,23]. This makes it possible to compute a most
permissive state-based strategy. Extracting strategies can be done using the set
of winning states W ∗ (see [9] for reachability games).

For the example of Figure 1, the set of symbolic winning states is given by:
W = {(ℓ1, x ≤ 1), (ℓ2, x ≤ 2), (ℓ3, x ≤ 1), (ℓ4, x ≤ 1), (Goal, x ≥ 0)}.

A winning strategy would consist in taking c1 immediately in all states (ℓ1, x)
with x ≤ 1; taking c2 immediately in all states (ℓ2, x) with x ≤ 2; taking c3

immediately in all states (ℓ3, x) and delaying in all states (ℓ4, x) with x < 1 until
the value of x is 1 at which point the edge c4 is taken.

3 On-the-Fly Algorithm for Reachability Games

For finite-state systems, on-the-fly model-checking algorithms has been an ac-
tive and successful research area since the end of the 80’s, with the algorithm
proposed by Liu & Smolka [22] being particularly elegant (and optimal).

In [13], we have proposed a version of this algorithm for timed games. In the
sequel we first present the on-the-fly algorithm for reachability untimed games
and then show how to design a symbolic version for timed games.

3.1 On-the-Fly Algorithm for Discrete Games

Untimed games are a restricted class of timed games with only finitely many
states Q and with only discrete actions, i.e. the set of labels in the semantics of

the game is Act. Hence (memoryless) strategies amounts to choosing a control-
lable action given the current state, i.e. f : Q −→ Actc. For (untimed) reachability
games we assume a designated location Goal and the purpose of the analysis is
to decide the existence of a strategy f where all runs contains Goal.

The on-the-fly algorithm, OTFUR, we have proposed in [13] is given in Fig. 3.
The idea for this algorithm is the following: we assume that some variables
store two sets of transitions: ToExplore store the transitions that have explored
and ToBackPropagate store the transitions the target states of which has been
declared winning. Another variable, Passed, stores the set of states that have
already been encountered. Each encountered state q ∈ Passed has a status,
Win[q] which is either winning (1) or unknown (0). We also use a variable
Depend[q] that stores for each q, the set of explored transitions t s.t. q is a
target of t. The initial values of the variables are set by lines 2 to 6.

To perform a step of the on-the-fly algorithm OTFUR, we pick transition a
(q, α, q′) in ToExplore ∪ToBackPropagate (line 10) and process it as follows:

– if the target state q′ is encountered for the first time (q′ 6∈ Passed), we
update Passed, Depend and Win[q′] (lines 14–16). We also initialize some
counters (lines 12 and 13) c(q′) and u(q′) which have the following meaning:
at each time, c(q′) represents the number of controllable transitions that can
be taken to reach a winning state from q′ and u(s) represents the number of
uncontrollable hazardous transitions from q′ i.e. those for which we do not
know yet if they lead to a winning state. When q′ is first encountered u(q′)
is simply the number of outgoing uncontrollable transitions from q′. Finally
(lines 17 to 20), depending on the status of q′ we add the outgoing transitions
to ToExplore or just schedule the current transition for back propagation if
q′ is winning.

– in case q′ ∈ Passed, it means that either its status has been changed recently
(and we just popped a transition from ToBackPropagate) or that a new
transition leading to q′ has been chosen (from ToExplore). We thus check
whether the status of q′ is winning and if yes, we update some information
on q: lines 24 and 25 updates the counters c(q) or u(q) depending on the
type of the transition being processed (controllable or not). The state q can
be declared winning (line 27) if at least one controllable transition leads to
a winning state (c(q) ≥ 1) and all outgoing uncontrollable transitions lead
to a winning state as well (u(q) = 0). In this case the transitions leading
to q (Depend[q]) are scheduled for back propagation (line 29). Otherwise we
have just picked a new transition leading to q′ and we only update Depend[q′]
(line 31).

The correctness proof of this algorithm is given by the following theorem:

Theorem 1 ([13]). Upon termination of OTFUR on a given untimed game G

the following holds:

1. If q ∈ Passed and Win[q] = 1 then q ∈ W(G);
2. If (ToExplore ∪ ToBackPropagate) = ∅ and Win[q] = 0 then q 6∈ W(G).

1: Initialization

2: Passed← {q0};

3: ToExplore← {(q0, α, q′) |α ∈ Act, q
α
−→ q′};

4: ToBackPropagate ← ∅;
5: Win[q0]← (q0 = Goal ? 1 : 0); // set status to 1 if q0 is Goal

6: Depend[q0]← ∅;
7: Main

8: while ((ToExplore ∪ ToBackPropagate 6= ∅)) ∧Win[q0] 6= 1)) do

9: // pick a transition from ToExplore or ToBackPropagate
10: e = (q, α, q′)← pop(ToExplore) or pop(ToBackPropagate);
11: if q′ 6∈ Passed then

12: c(q′) = 0;

13: u(q′) = |{(q′
a
−→ q′′, a ∈ Actu}|;

14: Passed← Passed∪ {q′};
15: Depend[q′]← {(q, α, q′)};
16: Win[q′]← (q′ = Goal ? 1 : 0);
17: if Win[q′] = 0 then

18: ToExplore← ToExplore ∪ {(q′, α, q′′) | q′
α
−→ q′′};

19: else

20: ToBackPropagate ← ToBackPropagate ∪ {e};
21: else

22: if Win[q′] = 1 then

23: // update the counters of the state q

24: if α ∈ Actc then c(q)← c(q) + 1;
25: else u(q)← u(q)− 1;
26: // re-evaluate the status of the state q

27: Win[q]← (c(q) ≥ 1) ∧ (u(q) = 0);
28: if Win[q] then

29: ToBackPropagate ← ToBackPropagate ∪Depend[q];
30: else // Win[q′] = 0
31: Depend[q′]← Depend[q′] ∪ {e};
32: endif

33: endif

34: endwhile

Fig. 3. OTFUR: On-The-Fly Algorithm for Untimed Reachability Games

In addition to being on-the-fly and correct, this algorithm terminates and is
optimal in that it has linear time complexity in the size of the underlying untimed
game: it is easy to see that each edge e = (q, α, q′) will be added to ToExplore
at most once and to ToBackPropagate at most once as well, the first time q is
encountered (and added to Passed) and the second time when Win[q′] changes
winning status from 0 to 1. Notice that to obtain an algorithm running in linear
time in the size of G (i.e. |Q|+ |E|) it is important that the reevaluation of the
winning status of a state q is performed using the two variables c(q) and u(q).

3.2 On-the-Fly Algorithm for Timed Games

We can extend algorithm OTFUR to the timed case using a zone-based forward
and on-the-fly algorithm for solving timed reachability games. The algorithm,
SOTFTR, is given in Fig. 4 and may be viewed as an interleaved combination
of forward computation of the simulation graph of the timed game automaton
together with back-propagation of information of winning states. As in the un-
timed case the algorithm is based on two sets, ToExplore and ToBackPropagate,
of symbolic edges in the simulation-graph, and a passed-list, Passed, contain-
ing all the symbolic states of the simulation-graph encountered so far by the
algorithm. The crucial point of our symbolic extension is that the winning sta-
tus of an individual symbolic state is no more 0 or 1 but is now the subset

Win[S] ⊆ S (union of zones) of the symbolic state S which is currently known
to be winning. The set Depend[S] indicates the set of edges (or predecessors
of S) which must be reevaluated (i.e. added to ToBackPropagate) when new
information about Win[S] is obtained, i.e. when Win[S] (Win∗. Whenever a
symbolic edge e = (S, α, S′) is considered with S′ ∈ Passed, the edge e is added
to the dependency set of S′ so that that possible future information about ad-
ditional winning states within S′ may also be back-propagated to S. In Table 1,
we illustrate the forward exploration and backwards propagation steps of the
algorithm.

The correctness of the symbolic on-the-fly algorithm SOTFTR is given by
the theorem:

Theorem 2 ([13]). Upon termination of the algorithm SOTFTR on a given
timed game automaton G the following holds:

1. If (ℓ, v) ∈ Win[S] for some S ∈ Passed then (ℓ, v) ∈ W(G);
2. If ToExplore ∪ ToBackPropagate = ∅, (ℓ, v) ∈ S \ Win[S] for some S ∈

Passed then (ℓ, v) 6∈ W(G).

Termination of the algorithm SOTFTR is guaranteed by the finiteness of the
number of symbolic states of SG(A). Moreover, each edge (S, α, T) will be
present in the ToExplore and ToBackPropagate at most 1 + |T | times, where
|T | is the number of regions of T : (S, α, T) will be in ToExplore the first time
that S is encountered and subsequently in ToBackPropagate each time the set
Win[T] increases. Now, any given region may be contained in several symbolic
states of the simulation graph (due to overlap). Thus the SOTFTR algorithm

1: Initialization

2: Passed← {S0} where S0 = {(ℓ0,0)}ր;

3: ToExplore← {(S0, α, S′) |S′ = Postα(S0)
ր};

4: ToBackPropagate ← ∅;

5: Win[S0]← S0 ∩ ({Goal} × RX

≥0);
6: Depend[S0]← ∅;
7: Main

8: while ((ToExplore ∪ ToBackPropagate 6= ∅) ∧ (ℓ0,0) 6∈6= Win[S0])) do

9: // pick a transition from ToExplore or ToBackPropagate
10: e = (S, α, S′)← pop(ToExplore) or pop(ToBackPropagate);
11: if S′ 6∈ Passed then

12: Passed← Passed∪ {S′};
13: Depend[S′]← {(S, α, S′)};

14: Win[S′]← S′ ∩ ({Goal} × RX

≥0);
15: if Win[S′] (S′

then

16: ToExplore← ToExplore ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
17: if Win[S′] 6= ∅ then

18: ToBackPropagate ← ToBackPropagate ∪ {e};
19: else

20: // If T 6∈ Passed, we assume Win[T] = ∅
21: Good←Win[S] ∪

S

S
c−→T

Predc(Win[T]);

22: Bad←
S

S
u−→T

Predu(T \Win[T])) ∩ S;

23: Win∗ ← Predt(Good, Bad);
24: if (Win[S] (Win∗) then

25: Waiting ←Waiting ∪Depend[S];
26: Win[S]← Win∗;
27: Depend[S′]← Depend[S′] ∪ {e};
28: endif

29: endwhile

Fig. 4. SOTFTR: Symbolic On-The-Fly Algo. for Timed Reachability Games

Steps ToExplore ∪ ToBackPropagate Passed Depend Win

S S′

0 - - (S0, u1, S1), (S0, u2, S2), (S0, c1, S3) S0 - (S0, ∅)

1 S0 S3

(S0, u1, S1), (S0, u2, S2)
+ (S3, c1, S4), (S3, u3, S2)

S3 S3 7→ (S0, c1, S3) (S3, ∅)

2 S3 S4

(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S3, c2, S4)

S4 S4 7→ (S3, c2, S4) (S4, S4)

3 S3 S4

(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S0, c1, S3)

- - (S3, x ≥ 1)

4 S0 S3 (S0, u1, S1), (S0, u2, S2), (S3, u3, S2) S4 S3 7→ (S0, c1, S3) (S0, x = 1)

5 S3 S2

(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

S2 S2 7→ (S3, u3, S2) (S2, ∅)

6 S2 S5

(S0, u1, S1), (S0, u2, S2)
+ (S5, c4, S3)

S5 S5 7→ (S2, c3, S2) (S5, ∅)

7 S5 S3

(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

- S3 7→
(S2, c3, S2)
(S5, c4, S3)

(S5, x ≤ 1)

8 S2 S5

(S0, u1, S1), (S0, u2, S2)
+ (S3, u3, S2)

- S5 7→ (S2, c3, S2) (S2, x ≤ 1)

9 S3 S2

(S0, u1, S1), (S0, u2, S2)
+ (S0, c1, S3), (S5, c4, S3)

- - (S3, S3)

10 S0 S2 (S0, u1, S1), (S0, c1, S3), (S5, c4, S3) - S2 7→
(S3, u3, S2)
(S0, u2, S2)

(S0, x ≤ 1)

11 S5 S3 (S0, u1, S1), (S0, c1, S3) - - -
12 S0 S3 (S0, u1, S1) - - -
13 S0 S1 ∅ S1 S1 7→ (S0, u1, S1) (S1, ∅)

At step n, (S, α, S′) is the transition popped at step n + 1;
At step n, +(S, α, S′) the transition added to ToBackPropagate or ToExplore at step n;
Symbolic States: S0 = (ℓ1, x ≥ 0),S1 = (ℓ5, x > 1), S2 = (ℓ3, x ≥ 0), S3 = (ℓ2, x ≥ 0),
S4 = (Goal, x ≥ 2), S5 = (ℓ4, x ≥ 0)

Table 1. Running SOTFTG

is not linear in the region-graph and hence not theoretically optimal, as an al-
gorithm with linear worst-case time-complexity could be obtained by applying
the untimed algorithm directly to the region-graph. However, this is only a the-
oretical result and it turns out that the implementation of the algorithm in
Uppaal-TiGA is very efficient.

We can optimize (space-wise) the previous algorithm. When we explore the
automaton forward, we check if any newly generated symbolic state S′ belongs
Passed. As an optimization we may instead use the classical inclusion check:
∃S′′ ∈ Passed s.t. S′ ⊆ S′′, in which case, S′ is discarded and we update
Depend[S′′] instead. Indeed, new information learned for S′′ can be new infor-
mation on S′ but not necessarily. This introduces an overhead (time-wise) in the
sense that we may back-propagate irrelevant information. On the other hand,
back-propagating only the relevant information would be unnecessarily complex
and would void most of the memory gain introduced by the use of inclusion. In
practice, the reduction of the number of forward steps obtained by the inclusion
check pays off for large systems and is a little overhead otherwise, as shown in
our experiments. It is also possible to propagate information about losing states:
in the case of reachability games, if a state is a deadlock state and is not win-
ning, for sure it is losing. This can also speed-up the algorithm. For the example
of Figure 1, we can propagate the information that (ℓ5, x > 1) is losing which

entails (ℓ1, x > 1) is losing as well. Then it only remains to obtain the status of
(ℓ1, x ≤ 1) to determine if the game is winning or not.

4 On-the-Fly Algorithm for Partially Observable Games

4.1 Partial Observability

In the previous sections we have assumed that the controller has perfect infor-
mation about the system: at any time, the controller will know precisely in what
state the system is. In general however — e.g. due to limited sensors — a con-
troller will only have imperfect (or partial) information about the state of the
environment. For instance some uncontrollable actions may be unobservable. In
the discrete case it is well known how to handle partial observability of actions
as it roughly amounts to determinize a finite state system.

However for the timed case under partial observability of events, it has been
shown in [11] that the controller synthesis problem is in general undecidable.
Fixing the resources of the controller (i.e. a maximum number of clocks and
maximum allowed constants in guards) regains decidability [11], a result which
also follows from the quotient and model construction results of [19,20].

Another line of work [16,29] recently revisited partial observability for finite
state systems. This time, the partial observability amounts to imperfect infor-
mation on the state of the system. Only a finite number of possible observations

can be made on the system configurations and this provides the sole basis for
the strategy of the controller. The framework of [16,29] is essentially turn-based.
Moreover, the controller can make an observation after each discrete transition.
It could be that it makes the same observation several times in a row, being able
to count the number of steps that have been taken by the system.

If we want to extend this work to timed systems, we need to add some more
constraints. In particular, the strategy of the controller will have to be stuttering

invariant, i.e. the strategy cannot be affected by a sequence of environment or
time steps unless changes in the observations occur. In this sense the strategy is
“triggered” by the changes of observations.

On

x ≤ 10

Sensor

x ≤ 0

Sensed

x ≤ 10

Paint

x ≤ 10

Piston

x ≤ 10

End

Off

x ≥ 8

x := 0

x ≥ 0
x ≥ 8

x := 0

x ≥ 8

x := 0

x ≥ 8

kick?

Fig. 5. Timed Game with Imperfect Information.

To illustrate the concepts of imperfect information and stuttering invariance
consider the timed game automaton in Figure 5 modelling a production system

for painting a box moving on a conveyor belt. The various locations indicate
the position of the box in the system: in Sensor a sensor is assumed to reveal
the presence of the box, in Sensed the box is moving along the belt towards the
painting area, in Paint the actual painting of the box takes place, in Piston the
box may be kick?’ed off the belt leading to Off; if the box is not kicked off it
ends in End. All phases are assumed to last between 8 and 10 seconds, except
for the phase Sensor, which is instantaneous. The uncontrollability of this timing
uncertainty is indicated by the dashed transitions between phases. The controller
should now issue a single kick?’command at the appropriate moment in order
to guarantee that the box will — regardless of the above timing uncertainty —
be kicked off the belt. However the controller has imperfect information of the
position of the box in the system. In particular, the controller cannot directly
observe whether the box is in the Sensed, Paint or in the Piston phase nor can
the value of the clock x be observed. Still equipping the controller with its own
clock y – which it may reset and test (against a finite number of predicates) –
it might be possible to synthesize a control strategy despite having only partial
information: in fact it may be deduced that the box will definitely be in the
Piston area within 20-24 seconds after being sensed. In contrast, an increased
timing uncertainty where a phase may last between 6 and 10 seconds will make
a single-kick? strategy impossible.

4.2 Observation-Based Stuttering Invariant Strategies

In the untimed setting of [16,29], each state change produces a new observation.
For instance, if a run of the system is

ρ = l0
a0−−→ l1

a1−−→ l2 · · ·
an−−→ ln+1

we make the observation Obs(ρ) = Obs(l0)Obs(l1) · · ·Obs(ln+1) where Obs is a
mapping from states to a finite set of observations. In the previous example,
even if Sensed, Paint and Piston produce the same observation, say O1, we could
deduce where the box is by counting the number of O1.

Also, if each state change produces a new observation in the untimed setting,
it cannot be a realistic assumption in the timed setting: time is continuous and
the state of the system continuously changes.

A more realistic assumption about the system under observation is that the
controller can only see changes of observations. In the previous piston example,
assume the system makes the following steps:

(On, x = 0)
8
−→ (On, x = 8) −→ (Sensor, x = 0) −→ (Sensed, x = 0) · · ·

· · ·
9
−→ (Sensed, x = 9) −→ (Paint, x = 0)

The sequence of observations the controller makes is: On Sensor O1 if Obs(On) =
On, Obs(Sensor) = Sensor and Obs(Sensed) = Obs(Paint) = O1.

This is why in [14] we consider stuttering-free observations. We assume we
are given a finite set of observations O = {o1, o2, · · · , ok} and a mapping Obs :

L × RX
≥0 → O (i.e. from the state space of the timed game automaton to O).

Given a run of timed game automaton

ρ = (l0, v0)
e0−−→ (l1, v1)

e1−−→ (l2, v2) · · ·
en−−→ (ln+1, vn+1) · · ·

we can define the observation of ρ by the sequence:

Obs(ρ) = Obs(l0, v0)Obs(l1, v1) · · ·Obs(ln+1, vn+1) · · ·

The stuttering-free observation of ρ is Obs
∗(ρ) and is obtained from Obs(ρ) by

collapsing successive identical observations o1o1 · · · o1 into one o1. In this setting
the controller has to make a decision on what to do after a finite run ρ, according
to the stuttering-free observation of ρ. Let f be a strategy in Strat(G). f is
(observation based) stuttering invariant if for all ρ, ρ′, finite runs in Runs(G), if
Obs

∗(ρ) = Obs
∗(ρ′) then f(ρ) = f(ρ′).

The control problem under partial observation thus becomes: given a reach-
ability game (G, K), is there an observation based stuttering invariant strategy
to win (G, K)?

This raises an issue about the shapes of observations in timed systems: as-
sume for the piston game, we define two observations o1 = (On, x ≤ 3) and

o2 = (On, x > 3). Given any finite run (On, x = 0)
r
−→ (On, x = r) with r ≤ 10

there is one stuttering-free observation: either o1 if r ≤ 3 or o1o2 if r > 3. Still
we would like our controller to be able to determine its strategy right after each
change of observations, i.e. the controller continuously monitors the observa-
tions and can detect rising edges of each new observation. This implies that a
first instant exists where a change of observations occurs. To ensure this we can
impose syntactic constraints on the shape of the zones that define observations.
They must be conjunctions of constraints of the form k1 ≤ x < k2 where x is a
clock and k1, k2 ∈ N.

4.3 Playing with Stuttering Invariant Strategies

The controller has to play according to (observation based) stuttering invariant
strategies (OBSI strategies for short). Initially and whenever the current obser-
vation of the system state changes, the controller either proposes a controllable
action c ∈ Actc, or the special action λ (do nothing i.e. delay). When the con-
troller proposes c ∈ Actc, this intuitively means that he wants to play the action
c as soon as this action is enabled in the system. When he proposes λ, this means
that he does not want to play any discrete actions until the next change of ob-
servation, he is simply waiting for the next observation. Thus, in the two cases,
the controller sticks to his choice until the observation of the system changes: in
this sense he is playing with an observation based stuttering invariant strategy.
Once the controller has committed to a choice, the environment decides of the
evolution of the system until the next observation. The game can be thought of
to be a two-player game with the following rules:

1. if the choice of the controller is a discrete action c ∈ Actc, the environment
can choose to play, as long as the observation does not change, either (i)
discrete actions in u ∈ Actu ∪ {c} or (ii) let time elapse as long as c is
not enabled. Thus it can produce sequences of discrete and time steps that
respect the (i) and (ii) with action c being urgent,

2. if the choice of the controller is the special action λ the environment can
choose to play, as long as the observation does not change, any of its discrete
actions in Actu or let time pass; it can produce sequences of discrete and time
steps respecting the previous constraints;

3. the turn is back to the controller as soon as the next observation is reached.
We have imposes special shape of constraints to ensure that a next first new
observation always exists.

The previous scheme formalizes the intuition of observation based stuttering
invariant strategies.

To solve the control problem for G under partial observation given by a finite
set O, we reduce it to a control problem on a new game G′ under full observation.

4.4 An Efficient Algorithm for Partially Observable Timed Games

The reduction we have proposed in [14] follows the idea of knowledge based subset
construction for discrete games introduced in [16,29].

Let G = (L, ℓ0, Act, X, E, Inv) be a TGA, and Obs : L × RX
≥0 → O be an

observation map. Let K be particular location such that (G, K) is a reachability
game and there is an observation o s.t. Obs(s) = o ⇐⇒ s ∈ K i.e. the controller
can observe if the system is in a winning state. We use Obs(K) for this particular
observation. From G we build a finite discrete game G̃ the states of which are
unions of pairs of symbolic states (l, Z) (ℓ ∈ L and Z is a zone). Moreover, we
require that each state of G̃ contains pairs (l, Z) that have the same observation.

Each set of states S of G̃ corresponds to a set of points where, in the course
of the game G, the controller can choose a new action because a new observation
has just been seen. The controller can choose either to do a c ∈ Actc or to let
time pass (λ). Once the controller has made a choice, it cannot do anything
until a new observation occurs. Given a state (l, v) ∈ S and a choice a of the
controller, we can define the tree Tree((l, v), a) of possible runs starting in (l, v):
this tree is just the unfolding of the game where we keep only the branches with
actions in Actu ∪ {a} (see Figure 6, left). In this section, we assume that every
finite run can be extended in an infinite run. Then on each infinite branch of
this tree,

1. either there is a state with an observation o′ different from Obs(l, v). In this
case we can define the first (time-wise) state with a new observation. Such an
example is depicted on Figure 6 (left): from (l, v), there is a first state with
a new observation in o1 and in o2. Because we require that our observations
have special shapes, this first state always exists.

2. or all the states have the same observation on the branch: this is depicted
by the infinite path starting from (l′, v′).

•
(l, v) •

(l′, v′)

• •o1 o2

S, Obs(S) = o

Tree((l, v), a)

S

S1

Obs = o1

S2

Obs = o2

Sk

Obs = ok

Bad

a a a a

Fig. 6. From G to G̃

We denote Nexta(l, v) the set of first (time-wise) states with a new observation
that can be reached from (l, v) if the controller plays a. If there is an infinite
run from (l′, v′) on which all the states have the same observation, we say that
(l′, v′) is a sink state for a.

We can now define the game G̃ as follows (Figure 6, right):

– the initial state of G̃ is {(ℓ0,0)};
– let S be a state of G̃ with an observation different from Obs(K) (not win-

ning). Let a ∈ Actc ∪ {λ}. If there is a state (l′, v′) which is a sink state for
a, we add a transition (S, a, Bad) in G̃.

– for each oi ∈ O with oi 6= Obs(S), if3 Nexta(S) ∩ oi 6= ∅ we add a transition
(S, a, Si) with Si = Nexta(S) ∩ oi, in G̃.

Given a state S of G̃, we let Enabled(S) be the set of actions a s.t. (S, a, S′) for
some S′. A state S of G̃ is winning if its observation is Obs(K). We let K̃ be the
set of winning states of G̃. Notice that G̃ contains only controllable actions. Still
G̃ is non-deterministic and thus it can be considered to be a two-player game:
from S, the controller chooses an action and the environment chooses the next
state among the successors of S by a. This construction of G̃ has the following
property:

Theorem 3 ([14]). The controller has a observation-based stuttering invariant
strategy in (G, K) iff there is a winning strategy in (G̃, K̃).

We can prove that (G̃, K̃) is finite and furthermore solving (G, K) amounts
to solving a finite non-deterministic game. As we have an efficient algorithm,
OTFUR (Fig. 3) to solve this type of games we can solve (G, K). To obtain an
efficient algorithm written for (G, K) we simply have to use the Next operator

3 We let Nexta(S) = ∪s∈SNexta(s).

to compute the transition relation “as needed” in OFTUR. Moreover, in case a
state (l, v) ∈ S is a sink state for a and Obs(l, v) = Obs(S) 6= Obs(K), there is a
transition (S, a, Bad) in G̃. We assume that Obs(Bad) = Bad and this observation
in not winning so that if the controller plays a from S, then he looses which is
consistent as there is a infinite run in G which does not encounter any state with
the goal observation. In the version of OFTUR for partially observable timed
games it is even more important to propagate backwards the information on
losing states like Bad.

The version of the efficient algorithm OTFUR (Fig. 3) for discrete game can
be adapted to deal with partially observable games: we obtain a new algorithm
OTFPOR given in Fig. 7. In this version, Sinka(S) 6= ∅ stands for “there exists
some (l, v) ∈ S s.t. (l, v) is a sink state for a”.

Lines 13 to 22 consist in determining the status of the new symbolic state
W ′ and push it into ToExplore or ToBackPropagate. Lines 24 and 28 are rather
expensive as we have to compute all the symbolic successors of W to determine
its new status.

5 Conclusion & Future Work

In [13] we have proposed an efficient for the analysis of reachability timed games.
It has been implemented in the tool Uppaal-TiGA [8]. Recently in [14] we have
proposed a version of this algorithm for partially observable timed games which
is currently being implemented.

There are various directions in which this work can be extended:

– for finite state games, we can generalize our results for reachability games
to safety games or more general games with Büchi objectives for instance.
This can lead to efficient on-the-fly algorithm for finite games. Also we would
like to study particular versions of Büchi objectives, e.g. with one repeated
location as we may obtain more efficient algorithms for this case;

– for timed games, we can write a dual algorithm for safety objectives. Even
in this case this is not always satisfactory as the controller could win with
a so-called zeno strategy i.e. a strategy with which he keeps the game in
a good state by playing infinitely many discrete controllable actions in a
finite amount of time [15]. It is thus of great importance to ensure that the
controller can win in a fair way. This can be encoded by a control objective
which is a strengthened by a Büchi objective: we add a particular clock which
is reset when it hits the value 1, and the Büchi objective is to hit 1 infinitely
often which ensures time divergence. This Büchi objective can be encoded
by a single location being forced infinitely often. If we can design an efficient
algorithm for a single repeated state in the finite state case, we may be able
to obtain efficient algorithms for synthesizing non-zeno controllers for safety
timed systems.

These new efficient algorithms are going to be implemented in the tool Uppaal-

TiGA and it is expected that new useful practical results will be obtained for
real case-studies.

1: Initialization

2: Passed← {{s0}} // with s0 = (l0, 0);
3: ToExplore← {({s0}, α, W ′) |α ∈ Actc ∪ {λ}, o ∈ O, o 6= Obs(s0), W ′ =

Nextα({s0}) ∩ o ∧W ′ 6= ∅};
4: ToBackPropagate ← ∅;

5: Win[{s0}]← ({s0} ∈ K̃ ? 1 : 0);

6: Losing[{s0}]← ({s0} 6∈ K̃∧(ToExplore = ∅∨∀α ∈ Actc∪{λ}, Sinkα(s0) 6= ∅) ? 1 : 0);
7: Depend[{s0}]← ∅;
8: Main

9: while ((ToExplore∪ToBackPropagate 6= ∅))∧Win[{s0}] 6= 1∧Losing[{s0}] 6= 1)) do

10: // pick a transition from ToExplore or ToBackPropagate
11: e = (W, α, W ′)← pop(ToExplore) or pop(ToBackPropagate);
12: if W ′ 6∈ Passed then

13: Passed← Passed ∪ {W ′};
14: Depend[W ′]← {(W,α, W ′)};

15: Win[W ′]← (W ′ ∈ K̃ ? 1 : 0);

16: Losing[W ′]← (W ′ 6∈ K̃ ∧ Sinkα(W ′) 6= ∅ ? 1 : 0);
17: if (Losing[W ′] 6= 1) then

18: NewTrans← {(W ′, α, W ′′) |α ∈ Σ, o ∈ O, W ′ = Nextα(W)∩o∧W ′ 6= ∅};
19: if NewTrans = ∅ ∧Win[W ′] = 0 then Losing[W ′]← 1;
20: ToExplore← ToExplore ∪NewTrans;
21: if (Win[W ′] ∨ Losing[W ′]) then

22: ToBackPropagate ← ToBackPropagate ∪ {e};
23: else

24: Win∗ ←
W

c∈Enabled(W)

V

W
c−→W ′′

Win[W ′′] ;

25: if Win∗
then

26: ToBackPropagate ← ToBackPropagate ∪Depend[W];
27: Win[W]← 1;
28: Losing∗ ←

V

c∈Enabled(W)

W

W
c−→W ′′

Losing[W ′′] ;

29: if Losing∗
then

30: ToBackPropagate ← ToBackPropagate ∪Depend[W];
31: Losing[W]← 1;
32: if (Win[W ′] = 0 ∧ Losing[W ′] = 0) then

33: Depend[W ′]← Depend[W ′] ∪ {e};
34: endif

35: endwhile

Fig. 7. OTFPOR: On-The-Fly Algorithm for Partially Observable Reachability

Acknowledgements

The author wishes to thank Didier Lime and Jean-François Raskin for their
careful reading and useful comments on preliminary versions of this paper.

References

1. Y. Abdeddäım, E. Asarin, and O. Maler. Scheduling with timed automata. Theor.
Comput. Sci., 354(2):272–300, 2006.

2. K. Altisen, G. Gossler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A frame-
work for scheduler synthesis. In IEEE Real-Time Systems Symposium, pages 154–
163, 1999.

3. K. Altisen and S. Tripakis. Tools for controller synthesis of timed systems. In
Proc. 2nd Workshop on Real-Time Tools (RT-TOOLS’02), 2002. Proc. published
as Technical Report 2002-025, Uppsala University, Sweden.

4. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
(TCS), 126(2):183–235, 1994.

5. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Proc. 4th International Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of LNCS, pages 49–62. Springer, 2001.

6. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed
automata. In Proc. 2nd International Workshop on Hybrid Systems: Computation
and Control (HSCC’99), volume 1569 of LNCS, pages 19–30. Springer, 1999.

7. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symposium on System Structure and Control, pages
469–474. Elsevier Science, 1998.

8. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime. Uppaal-
tiga: Time for playing games! In Proceedings of 19th International Conference on
Computer Aided Verification (CAV’07), volume 4590 of LNCS, pages 121–125,
Berlin, Germany, 2007. Springer.

9. P. Bouyer, F. Cassez, E. Fleury, and K. Larsen. Optimal Strategies in Priced Timed
Game Automata. BRICS Reports Series RS-04-0, BRICS, Denmark, Aalborg,
Denmark, Feb. 2004. ISSN 0909-0878.

10. P. Bouyer and F. Chevalier. On the control of timed and hybrid systems. EATCS
Bulletin, 89:79–96, June 2006.

11. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In W. A. Hunt, Jr and F. Somenzi, editors, Proceedings of the 15th
International Conference on Computer Aided Verification (CAV’03), volume 2725
of LNCS, pages 180–192, Boulder, Colorado, USA, July 2003. Springer.

12. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
Model-Checking Tool for Real-Time Systems. In Proc. 10th Conf. on Computer
Aided Verification (CAV’98), volume 1427 of LNCS, pages 546–550. Springer, 1998.

13. F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly al-
gorithms for the analysis of timed games. In M. Abadi and L. de Alfaro, editors,
Proceedings of the 16th International Conference on Concurrency Theory (CON-
CUR’05), volume 3653 of LNCS, pages 66–80, San Francisco, CA, USA, Aug. 2005.
Springer.

14. F. Cassez, A. David, K. Larsen, D. Lime, and J.-F. Raskin. Timed Control with Ob-
servation Based and Stuttering Invariant Strategies. In Proc. of the 5th Int. Symp.
on Automated Technology for Verif ication and Analysis (ATVA’2007), LNCS,
Tokyo, Oct. 2007. Springer-Verlag. Forthcoming.

15. F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control problems
for timed and hybrid systems. In Proc. 5th International Workshop on Hybrid
Systems: Computation and Control (HSCC’02), volume 2289 of LNCS, pages 134–
148. Springer, 2002.

16. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games with imperfect information, . In CSL, pages 287–302, 2006.

17. L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-
state games. In Proc. 12th International Conference on Concurrency Theory
(CONCUR’01), volume 2154 of LNCS, pages 536–550. Springer, 2001.

18. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and control
for acyclic weighted timed automata. In Proc. 2nd IFIP International Conference
on Theoretical Computer Science (TCS 2002), volume 223 of IFIP Conference
Proceedings, pages 485–497. Kluwer, 2002.

19. F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-checking
of real-time systems. In S. Budkowski, A. R. Cavalli, and E. Najm, editors, Pro-
ceedings of IFIP TC6 WG6.1 Joint Int. Conf. FORTE’XI and PSTV’XVIII, vol-
ume 135 of IFIP Conference Proceedings, pages 439–456, Paris, France, Nov. 1998.
Kluwer Academic Publishers.

20. F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic –
and back. In Proc. 20th International Symposium on Mathematical Foundations
of Computer Science (MFCS’95), volume 969 of LNCS, pages 529–539. Springer,
1995.

21. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Journal of Software
Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

22. X. Liu and S. Smolka. Simple Linear-Time Algorithm for Minimal Fixed Points. In
Proc. 26th Conf. on Automata, Languages and Programming (ICALP’98), volume
1443 of LNCS, pages 53–66. Springer, 1998.

23. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In Proc. 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’95), volume 900 of LNCS, pages 229–242. Springer, 1995.

24. P. Ramadge and W. Wonham. The control of discrete event systems. Proc. of the
IEEE, 77(1):81–98, 1989.

25. J. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal scheduling
using priced timed automata. In Proc. 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’04), volume
2988 of LNCS, pages 220–235. Springer, 2004.

26. W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’95), volume 900
of LNCS, pages 1–13. Springer, 1995. Invited talk.

27. S. Tripakis and K. Altisen. On-the-Fly Controller Synthesis for Discrete and Timed
Systems. In Proc. of World Congress on Formal Methods (FM’99), volume 1708
of LNCS, pages 233–252. Springer, 1999.

28. H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc.
36th IEEE Conference on Decision and Control, pages 4607–4612. IEEE Computer
Society Press, 1997.

29. M. D. Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of
imperfect information. In HSCC, pages 153–168, 2006.

	Efficient On-the-Fly Algorithms for Partially Observable Timed Games

