
Synthesis Of Optimal-Cost Dynamic Observers
for Fault Diagnosis of Discrete-Event Systems∗

Franck Cassez† Stavros Tripakis‡ Karine Altisen§

Abstract

Fault diagnosis consists in synthesizing a diagnoser that
observes a given plant through a set of observable events,
and identifies faults which are not observable as soon as
possible after their occurrence. Existing literature on this
problem has considered the case ofstaticobservers, where
the set of observable events does not change during exe-
cution of the system. In this paper, we considerdynamic
observers, where the observer can switch sensors on or off,
thus dynamically changing the set of events it wishes to ob-
serve. We define a notion of cost for such dynamic observers
and show that (i) the cost of a given dynamic observer can
be computed and (ii) an optimal dynamic observer can be
synthesized.

Franck Cassez, Stavros Tripakis and Karine Altisen.
Synthesis Of Optimal-Cost Dynamic Observers for Fault Diagnosis of Discrete-Event Systems (Extended version).
In 1st IEEE & IFIP International International Symposium onTheoretical Aspects of Software Engineering (TASE’07),
Shangai, ROC, June 2007. IEEE Computer Society.

1. Introduction

Fault Diagnosis. Discrete-event systems (DES) can be
formalized by using finite automata over a set ofobservable
eventsΣ, plus a set ofunobservableevents [8, 10].

Fault diagnosis consists in observing a DES and detect-
ing whether a fault has occurred or not. We follow the DES
setting of [9] where the behavior of the plant is known and
a model of it is available as a finite-state automaton over
Σ ∪ {ε, f} whereΣ is the set of observable events,ε rep-
resents the unobservable events, andf is a special unob-
servable event that corresponds to the faults. Checkingdi-
agnosability(whether a fault can be detected) for a given
plant and afixedset of observable events can be done in
polynomial time [9, 11, 5]. (Notice that synthesizing a di-

∗Work supported by the project CORTOS, a program of the frenchgov-
ernment.http://www.lsv.ens-cachan.fr/aci-cortos

†CNRS/IRCCyN, 1 rue de la Noë, BP 92101, 44321 Nantes Cedex 3,
France. Email: franck.cassez@cnrs.irccyn.fr

‡Cadence Berkeley Labs, 1995 University Avenue, Berkeley, CA,
94704, USA, and CNRS, Verimag Laboratory, Centre Equation,2, avenue
de Vignate, 38610 Gières, France. Email: tripakis@cadence.com

§INPG and Verimag Laboratory, Centre Equation, 2, avenue de Vig-
nate, 38610 Gières, France.

agnoser involves determinization in general, thus cannot be
done in polynomial time.)

The usual assumption in this setting is that the set of ob-
servable events is fixed (and this in turn determines the set
of unobservable events as well). Observing an event usually
requires some detection mechanism, i.e. , asensorof some
sort. Which sensors to use, how many of them, and where to
place them, are some of the design questions that are often
difficult to answer, especially without knowing what these
sensors are to be used for.

Dynamic Observers. Dynamic sensors’ selectionconsist
in selecting the sensors to switch on after each new obser-
vation, thus dynamically changing the set of events to ob-
serve. A device that chooses the set of events to observe
dynamically is adynamic observer. We are interested in
synthesizing a dynamic observer in the hope that not all the
observable events are always needed to diagnose a DES.

This problem is interesting since observing an event can
be costly in terms of time or energy: computation time must
be spent to read and process the information provided by
the sensor, and power is required to operate the sensor (as
well as to perform the computations). It is then essential
that the sensors used really provide useful information. Itis
also important for the computer to discard any information
given by a sensor that is not really needed. In the case of
a fixed set of observable events, it is not the case that all
sensors always provide useful information and sometimes
energy (sensor operation and computer treatment) is spent
for nothing. For example, to diagnose a fault in the system
described by the automatonB, Figure 1, a diagnoser only
has to watch eventa, andwhena has occurred, to watch
eventb: if the sequencea.b occurs, for sure a fault has oc-
curred and the diagnoser can raise an alarm. It is then not
useful to switch on sensorb before ana has occurred.

Optimal-Cost Dynamic Sensors’ Selection.Given an ob-
server we can define a notion ofcost(i.e. how expensive it
is) to diagnose a DES using this observer. The first problem
we address in this paper is to compute the cost of diagnos-
ing the DES with a given observer. We then focus on a more

challenging problem which is to synthesize an optimal ob-
server, in the sense that the cost of diagnosing a DES with
such an observer is minimal.

Related work. In the case ofstatic observers where the
set of observable events is fixed a priori some papers have
already considered optimization problems. NP-hardness
of finding minimum-cardinality sets of observable events
so that diagnosability holds under the standard, projection-
based setting has been previously reported in [11].

The complexity of finding “optimal” observation masks,
i.e. a set that cannot be reduced, has been considered in [6]
where it was shown that the problem is NP-hard for gen-
eral properties. [6] also shows that finding optimal observa-
tion masks is polynomial for “mask-monotonic” properties
where increasing the set of observable (or distinguishable)
events preserves the property in question. Diagnosability
is a mask-monotonic property. Computing an optimal ob-
servation masks is not the same as finding a minimum-
cardinality mask. We have recently considered this latter
problem in [1] and proved it is NP-complete.

In [4], the authors investigate the problem of computing
a minimal-cost strategy that allows to find a subset of the
set of observable events s.t. the system is diagnosable. It
is assumed that each such subset has a known associated
cost, as well as a known a-priori probability for achieving
diagnosability.

To our knowledge, dynamic observers have not been
considered up to now. Consequently, the problem of syn-
thesizing optimal-cost dynamic observers for diagnosability
purposes, have not been addressed previously in the litera-
ture. In a recent paper [2], we have adressed the problem of
synthesizing dynamic observers. No optimization criterion
is used in this work. The present paper is a follow-up of [2]
and extends it by considering optimization problems. A full
version with proofs is available as a research report [1].

Organisation of the paper. In Section 2 we fix notations
and introduce finite automata with faults to model DES. In
Section 3 we introduce dynamic observers and define the
cost of a dynamic observer. We also show how to compute
it. In Section 4, we address the problem of computing an
optimal observer.

2. Preliminaries

2.1. Words and Languages

Let Σ be a finite alphabet andΣε = Σ ∪ {ε}. Σ∗

is the set of finite words overΣ and containsε which is
also the empty word1. A languageL is any subset of

1We useε both for the unobservable event and the empty word as the
type is always clear from the context.

Σ∗. Σ+ = Σ∗ \ {ε}. Given two wordsρ, ρ′ we de-
noteρ.ρ′ the concatenation ofρ andρ′ (which is defined
in the usual way). |ρ| stands for the length of the word
ρ and |ρ|λ with λ ∈ Σ stands for the number of occur-
rences ofλ in ρ. GivenΣ1 ⊆ Σ, we define theprojection
π/Σ1

: Σ∗ → Σ∗
1 by: π/Σ1

(ε) = ε and fora ∈ Σ, ρ ∈ Σ∗,
π/Σ1

(a.ρ) = a.π/Σ1
(ρ) if a ∈ Σ1 andπ/Σ1

(ρ) otherwise.

2.2. Finite Automata

Let f 6∈ Σε be a fresh letter that corresponds to the fault
action. AnautomatonA is a tuple2 (Q, q0, Σ

ε,f ,→) with Q
a set of states,q0 ∈ Q is the initial state,→⊆ Q×Σε,f ×Q
is the transition relation. IfQ is finite,A is afinite automa-

ton. We writeq
λ
−→ q′ if (q, λ, q′) ∈→ . Forq ∈ Q, en(q) is

the set of actions enabled atq. A run ρ from states in A is a

sequence of transitionss0
λ1−−→ s1

λ2−−→ s2 · · · sn−1
λn−−→ sn

s.t. λi ∈ Σε,f and s0 = s. We let tgt(ρ) = sn. The
set of runs froms in A is denotedRuns(s, A) and we de-
fine Runs(A) = Runs(q0, A). The trace of the run ρ,
denotedtr(ρ), is the word obtained by concatenating the
symbolsλi appearing inρ, for thoseλi different fromε.
Given a setR ⊆ Runs(A), Tr(R) = {tr(ρ) for ρ ∈ R} is
the set of traces of the runs inR. A run ρ is k-faulty if
there is some1 ≤ i ≤ n s.t. λi = f and n − i ≥ k.
Faulty≥k(A) is the set ofk-faulty runs ofA. A run is faulty
if it is k-faulty for somek ∈ N and Faulty(A) denotes
the set of faulty runs. It follows thatFaulty≥k+1(A) ⊆
Faulty≥k(A) ⊆ · · · ⊆ Faulty≥0(A) = Faulty(A). Finally
NonFaulty(A) = Runs(A) \ Faulty(A) is the set onnon-
faulty runs ofA. We letFaultytr

≥k(A) = Tr(Faulty≥k(A))

and NonFaultytr(A) = Tr(NonFaulty(A)) be the sets of
traces of faulty and non-faulty runs.

A word w is acceptedby A if w = tr(ρ) for some
ρ ∈ Runs(A). ThelanguageL(A) of A is the set of words
accepted byA.

We assume that each run ofA of lengthn can be ex-
tended into a run of lengthn + 1. This is required for tech-
nical reasons and can be achieved by addingε loop transi-
tions to each deadlock state ofA. Notice that this transfor-
mation does not change the observations produced by the
plant, thus, any observer synthesized for the transformed
plant also applies to the original one.

2.3. Product of Automata

LetA1 = (Q1, q
1
0 , Σ1,→1) andA2 = (Q2, q

2
0 , Σ2,→2).

The productof A1 andA2 is the automatonA1 × A2 =
(Q, q0, Σ,→) where:

• Q = Q1 × Q2,

2In this paper we only use finite automata that generate prefix-closed
languages, hence we do not need to use a set of final or accepting states.

2

• q0 = (q1
0 , q

2
0),

• Σ = Σ1 ∪ Σ2,

• →⊆ Q × Σ × Q is defined by(q1, q2)
σ
−→ (q′1, q

′
2) if:

– eitherσ ∈ Σi \ Σ3−i andqi
σ
−→i q′i andq′3−i =

q3−i or

– σ ∈ Σ1 ∩ Σ2 andqk
σ
−→k q′k for k = 1, 2.

3. Sensor Minimization & Dynamic Observers

In this section we introducedynamic observers. To il-
lustrate why dynamic observers can be useful consider the
following example.

Example 1 (Dynamic Observation) Assume we want to
detect faults in automatonB of Fig. 1. A static diagnoser
that observesΣ = {a, b} works, however, no proper subset
of Σ can be used to detect faults inB. Thus the minimum
cardinality of the set of observable events for diagnosingB
is 2 i.e. a static observer will have to monitor two events
during the execution of the DES. If we want to use a mask,
the minimum-cardinality for a mask is2 as well. This means
that an observer will have to be receptive to at least two in-
puts at each point in time to detect a fault inB. One can
think of being receptive as switching on a device to sense
an event. This consumes energy. We can be more efficient
using a dynamic observer, that only turns on sensors when
needed, thus saving energy. In the case ofB, this can be
done as follows: in the beginning we only switch on thea-
sensor; once ana occurs thea-sensor is switched off and
the b-sensor is switched on. Compared to the previous di-
agnosers we use twice as less energy.

•

• • •

•• ε

εf
a b

b a

Figure 1. The automaton B

3.1. Dynamic Observers

We now formalize the above notion of dynamic obser-
vation. The choice of the events to observe can depend on
the choices the observer has made before and on the ob-
servations it has made. Moreover an observer may have
unboundedmemory.

Definition 1 (Observer) An observer Obsover Σ is a
deterministic labeled automatonObs = (S, s0, Σ, δ, L),
whereS is a (possibly infinite) set of states,s0 ∈ S is the
initial state,Σ is the set of observable events,δ : S×Σ → S
is the transition function (a total function), andL : S → 2Σ

is a labeling function that specifies the set of events that the
observer wishes to observe when it is at states. We require
for any states and anya ∈ Σ, if a 6∈ L(s) thenδ(s, a) = s:
this means the observer does not change its state when an
event it chose not to observe occurs. We use the notation
δ(s0, w) to denote the states reached by reading the word
w andL(δ(s0, w)) for the set of eventsobs observes after
w. �

An observer implicitly defines atransducerthat consumes
an input eventa ∈ Σ and, depending on the current state
s, either outputsa (whena ∈ L(s)) and moves to a new
stateδ(s, a), or outputs nothing orε, (whena 6∈ L(s)) and
remains in the same state waiting for a new event. Thus,
an observer defines a mapping Obs fromΣ∗ to Σ∗ (we use
the same name “Obs” for the automaton and the mapping).
Given a runρ, Obs(π/Σ(tr(ρ))) is the output of the trans-
ducer onρ. It is called theobservationof ρ by Obs. We next
provide an example of a particular case of observer which
can be represented by a finite-state machine.

0

L(0) = {a}

1

L(1) = {b}

2

L(2) = ∅

a

b

b

a a

b

Figure 2. A Finite-State Observer Obs

Example 2 Let Obs be the observer of Fig. 2. Obs
maps the following inputs as follows: Obs(baab) =
ab, Obs(bababbaab) = ab, Obs(bbbbba) = a and
Obs(bbaaa) = a. If Obs operates on the DESB of Fig 1 and
B generatesf.a.b, Obs will have as inputπ/Σ(f.a.b) = a.b
with Σ = {a, b}. Consequently the observation of Obs is
Obs(π/Σ(f.a.b)) = a.b.

3.2. Fault Diagnosis with Dynamic Diagnosers

Definition 2 ((Obs, k)-diagnoser) Let Obsbe an observer
overΣ. D : Σ∗ → {0, 1} is an(Obs, k)-diagnoserfor A if
(i) ∀ρ ∈ NonFaulty(A), D(Obs(π/Σ(tr(ρ)))) = 0 and (ii)
∀ρ ∈ Faulty≥k(A), D(Obs(π/Σ(tr(ρ)))) = 1. �

A is (Obs, k)-diagnosable if there is an(Obs, k)-diagnoser
for A. A is Obs-diagnosable if there is somek such thatA
is (Obs, k)-diagnosable.

If a diagnoser always selectsΣ as the set of observable
events, it is a static observer and(Obs, k)-diagnosability

3

amounts to the standard(Σ, k)-diagnosis problem [9]. In
this caseA is (Σ, k)-diagnosable iffπ/Σ(Faultytr

≥k(A)) ∩

π/Σ(NonFaultytr(A)) = ∅.
As for Σ-diagnosability, we have the following equiva-

lence for dynamic observers:A is (Obs, k)-diagnosable iff
Obs(π/Σ(Faultytr

≥k(A))) ∩ Obs(π/Σ(NonFaultytr(A))) =
∅. This follows directly from definition 2.

If an observer is given as a finite state automaton we can
state the following problem:

Problem 1 (Finite-State Obs-Diagnosability)
INPUT: A, Obsa finite-state observer.
PROBLEM:

(A) IsA Obs-diagnosable ?

(B) If the answer to (A) is “yes”, compute the minimumk
such thatA is (Obs, k)-diagnosable.

As proved in [1] Problem 1 can be solved in polynomial
time. To solve it we build aproductautomaton3 A ⊗ Obs
such that: A is (Obs, k)-diagnosable ⇐⇒ A ⊗ Obs
is (Σ, k)-diagnosable. As(Σ, k)-diagnosability can be
checked in polynomial time andA ⊗ Obs has polynomial
size in the size ofA and Obs the result follows.

The automatonA⊗Obs= (Q×S, (q0, s0), Σ
ε,f ,→) is

defined as follows:

1. (q, s)
β
−→ (q′, s′) iff ∃λ ∈ Σ s.t. q

λ
−→ q′, s′ = δ(s, λ)

andβ = λ if λ ∈ L(s), β = ε otherwise;

2. (q, s)
λ
−→ (q′, s) iff ∃λ ∈ {ε, f} s.t. q

λ
−→ q′.

Example 3 LetA be the DES given in Fig. 3 andObsthe
observer of Fig. 2. The productA⊗ Obsis given in Fig. 4.
Using an algorithm for checkingΣ-diagnosability ofA ⊗
Obs we obtain that it is(Σ, 2)-diagnosable (and2 is the
minimum value). HenceA is (Obs, 2)-diagnosable with2
the minimum value.

•

• • •

•

ε

ε

f
a b

a

b

Figure 3. The automaton A

We are going to define a notion of cost for observers.
This notion is inspired byweighted automata.

3We use⊗ to clearly distinguish this product from the synchronous
product×.

•

• • •

•

•

ε

ε

ε

f a b

a

ε

Figure 4. The automaton A⊗ Obs

3.3. Weighted Automata

The notion of cost for automata has already been defined
and algorithms to compute some optimal values related to
this model are described in many papers. We recall here the
results of [7] which will be used later.

Definition 3 (Weighted Automaton) A weighted automa-
ton is a pair (A, w) s.t. A = (Q, q0, Σ, δ) is a finite au-
tomaton andw : Q → N associates a weight with each
state. �

Definition 4 (Mean Cost) Let ρ = q0
a2−→ q1

a1−→ · · ·
an−−→

qn be a run ofA. Themean costof ρ is

µ(ρ) =
1

n + 1
· Σn

i=0w(qi) .

�

We remind that the length ofρ = q0
a1−→ q1

a2−→ · · ·
an−−→ qn

is |ρ| = n. We assume thatA is complete w.r.t.Σ (andΣ 6=
∅) and thus contains at least one run for any arbitrary length
n. Let Runsn(A) be the set of runs of lengthn in Runs(A).
The maximum mean-weightof runs of lengthn for A is
ν(A, n) = max{µ(ρ) for ρ ∈ Runsn(A)}. Themaximum
mean weightof A is ν(A) = lim supn→∞ ν(A, n). Ac-
tually the valueν(A) can be computed using Karp’s maxi-
mum mean-weight cycle algorithm [7] on weighted graphs.
If c = s0

a1−→ s1
a2−→ · · ·

an−−→ sn is a cycle ofA i.e.s0 = sn,
the mean weightof c is µ(c) = 1

n+1 · Σn
i=0w(si). The

maximum mean-weight cycleof A is the valueν∗(A) =
max{µ(c) for c a cycle ofA}. K As stated in [12], for
weighted automata,ν(A) = lim supn→∞ ν(A, n) =
limn→∞ ν(A, n) = ν∗(A). Karp’s maximum mean-weight
cycle algorithm [7] on weighted graphs is explained in Ap-
pendix A.

3.4. Cost of a Dynamic Observer

Let Obs = (S, s0, Σ, δ, L) be an observer andA =
(Q, q0, Σ

ε,f ,→). We would like to define a notion ofcost
for observers in order to select an optimal one among all
of those which are valid, i.e. s.t.A is (Obs, k)-diagnosable.
Intuitively this notion of cost should capture the fact thatthe
more events we observe at each time, the more expensive it
is.

4

Definition of Cost. There is not one way of defining a no-
tion of cost for observers and we first discuss two different
notions:

• the first one is to define the cost of a wordw generated
by the DES w.r.t. to Obs(w):

Cost1(w) =
Σi=n

i=0 |L(δ(s0, Obs(w)(i)))|

n + 1

with n = |Obs(w)|. Using the observer of Fig. 5, we
obtain thatCost1(bn.a) = 1+0

2 = 1
2 . And this regard-

less of the value ofn.

• the second one is to define the cost ofw w.r.t. to w
itself:

Cost2(w) =
Σi=n

i=0 |L(δ(s0, w(i)))|

n + 1

with n = |w|. Using the observer of Fig. 5, we obtain
Cost2(bn.a) = n+1+0

n+2 = n+1
n+2 . And by simple arith-

metic, it is true thatCost2(bn.a) < Cost2(bn+1.a).

The example of Fig. 5 shows that the two notions are differ-
ent. In the sequel we will use the second oneCost2 because
Cost2 also captures the notion of thetimewe have been ob-
serving a set of events. Indeed, if the wordbn+1 occurs, we
have been observing the setL(0) n + 1 times in a logical
time. It is natural that this is more expensive than observing
L(0) n times. ThusCost2 is more satisfying than abstract-
ing away the length of the input word as inCost1.

0

L(0) = {a}

1
L(1) = ∅

a

b a

a

Figure 5. The Finite-State Observer Obs

Cost of an Observer. We now show how to define and
compute the cost of an observer Obs operating on a DES
A.

Given a runρ ∈ Runs(A), the observer only processes
π/Σ(tr(ρ)) (ε andf -transitions are not processed). To have
a consistent notion of costs that takes into account the log-
ical time elapsed from the beginning, we need to take into
account one way or another the number ofstepsof ρ even
if some of them are non observable. A simple way to do
this is to consider thatε andf are now observable events,
let’s sayu, but that the observer never chooses to observe
them. Indeed we assume we have already checked thatA is
(Obs, k)-diagnosable, and the problem is now to compute
the cost of the observer we have used.

Definition 5 (Cost of a Run) Given a run ρ =
q0

a1−→ q1 · · · qn−1
an−−→ qn ∈ Runs(A), let

wi = Obs(π/Σ(tr(ρ(i)))), 0 ≤ i ≤ n. The cost of
ρ ∈ Runs(A) is defined by:

Cost2(ρ, A, Obs) =
1

n + 1
·

n
∑

i=0

|L(δ(s0, wi)|.

�

We recall thatRunsn(A) is the set of runs of length
n in Runs(A). The cost of the runs of lengthn of A
is Cost2(n, A, Obs) = max{Cost2(ρ, A, Obs) for ρ ∈
Runsn(A)}. The cost of the pair (Obs, A) is
Cost2(A, Obs) = lim supn→∞ Cost2(n, A, ρ). Notice
that Cost2(n, A, Obs) is defined for eachn because we
have assumedA generates runs of arbitrary large length.

To computeCost2(n, A, Obs) we consider thatε andf
are now observable events, let’s sayu, but that the observer
never chooses to observe them.

Let Obs+ = (S, s0, Σ
u, δ′, L) whereδ′ is δ augmented

with u-transitions that loop on each states ∈ S. Let A+

beA whereε andf transitions are renamedu. Let A+ ×
Obs+ be the synchronized product ofA+ and Obs+. A+ ×
Obs+ = (Z, z0, Σ

u, ∆) is complete w.r.t.Σu and we let
w(q, s) = |L(s)| so that(A+ × Obs+, w) is a weighted
automaton.

Theorem 1 Cost2(A, Obs) = ν∗(A+ × Obs+).

Proof: The proof follows easily from the definitions. Let
ρ be a run ofA. There exists a ruñρ in A+ × Obs+ s.t.
Cost2(ρ, A, Obs) = µ(ρ̃). ρ̃ is obtained fromρ by replacing
ε andf transitions by someu transitions. Conversely for
any runρ̃ in A+ × Obs+ there is a runρ in A s.t. µ(ρ̃) =
Cost2(ρ, A, Obs).

We can compute the cost of a given pair(A, Obs): this
can be done using Karp’s maximum mean weight cycle al-
gorithm [7] on weighted graphs. This algorithm is polyno-
mial in the size of the weighted graph and thus we have:

Theorem 2 Computing the cost of(A, Obs) is in P.

Proof: The size ofA+ ×Obs+ is polynomial in the size of
A and Obs.

Notice that instead of the values|L(s)| we could use any
mapping from states of Obs toZ and consider that the cost
of observing{a, b} is less than observinga.

Example 4 We give the results for the computation of the
cost of two observers for the DESA given in Fig. 3. LetO1

be the most powerful observer that observes{a, b} at each
step, andO2 be the observer given in Fig. 2.

The automataA+×O+
1 andA+×O+

2 are given in Fig. 6
and Fig. 7. The weight function is pictured above each state.

5

Notice that to computeν∗(A+ × O+
i) we do not need the

labels of the transitions as we are dealing with weighted
graphs: if two transitions(s, a, s′) and(s, b, s′) are inA+×
O+

i we only need one of them. For instance in Fig. 3 one of
the transitions(0, a, 4) and(0, b, 4) is redundant. We apply
the algorithm of Appendix A. The valuesDk(v) andmin(v)
for each statev ofA+×O+

i are given in Table 1 and Table 2.
The maximum mean-weight valueν∗ is the maximum value
maxv min(v) for v ranging over the set of states ofA+ ×
O+

i . We obtain Cost2(A, O1) = 2 and Cost2(A, O2) = 1.

0
w = 2

1
w = 2

2
w = 2

3
w = 2

4

w = 2

u

a b

a

b
u

u

Figure 6. A+ × O+
1

0
w = 1

1
w = 1

2
w = 1

3
w = 0

4
w = 1

5
w = 1

u

a b

a

b

u

u

u

Figure 7. A+ × O+
2

0 1 2 3 4

D0 1 −∞ −∞ −∞ −∞
D1 −∞ 4 −∞ −∞ 4
D2 −∞ −∞ 6 −∞ 6
D3 −∞ −∞ −∞ 8 8
D4 −∞ −∞ −∞ 10 10

min −∞ −∞ −∞ 2 2

Table 1. Iterations for A+ ⊗ O+
1

4. Optimal Dynamic Diagnosers

In this section, we focus on the problem of computing a
best observer in the sense that diagnosing the DES with it
has minimal cost. We address the following problem:

Problem 2 (Bounded Cost Observer)
INPUT: A, k ∈ N andc ∈ N.
PROBLEM:

0 1 2 3 4 5

D0 1 −∞ −∞ −∞ −∞ −∞
D1 −∞ 2 −∞ −∞ 2 2
D2 −∞ −∞ 3 −∞ 3 3
D3 −∞ −∞ −∞ 4 4 4
D4 −∞ −∞ −∞ 4 5 5

D5 −∞ −∞ −∞ 4 6 6

min −∞ −∞ −∞ 0 1 1

Table 2. Iterations for A+ ⊗ O+
2

(A). Is there an observerObss.t.A is (Obs,k)-diagnosable
and Cost2(Obs) ≤ c ?

(B). If the answer to (A) is “yes”, compute a witness opti-
mal observerObswith Cost2(Obs) ≤ c.

Before dealing with Problem 2 we recall some results
from [1].

4.1. Most Permissive Observer

For an observerO = (S, s0, Σ, δ, L) and w ∈ Σ∗

we let L(w) be the setL(δ(s0, w)): this is the set of
eventsO chooses to observe on inputw. Given a word
ρ ∈ π/Σ(L(A)), we recall thatO(ρ) is the observa-
tion of ρ by O. AssumeO(ρ) = a0 · · · ak. Let ρ =
L(ε).ε.L(a0).a0. · · ·L(O(ρ)(k)).ak i.e. ρ contains the his-
tory of whatO has chosen to observe at each step and the
events that occurred after each choice.

Let O : (2Σ × Σε)+ → 22Σ

. O is the most permissive
observer for(A, k) if the following holds:

O = (S, s0, Σ, δ, L)
is an observer and

A is (O, k)-diagnosable
⇐⇒

∀w ∈ Σ∗

L(δ(s0, w)) ∈ O(w)

The definition of the most permissive observer states that:

• any good observer Obs (one such thatA is (Obs, k)-
diagnosable) must choose a set of observable events in
O(w) on inputw;

• if an observer chooses its set of observable events in
O(w) on inputw, then it is a good observer.

Theorem 6 of [1] establishes that there is a most permis-
sive observerFA in caseA is (Σ, k)-diagnosable and it can
be computed in exponential time in the size ofA and k,
doubly exponential time in|Σ|, and has size exponential
in A andk, and doubly exponential in|Σ|. Moreover the
most permissive observerFA can be represented by a finite
state machineSFA

= ({0, 2 · · · , l}∪({1, 3, · · · , 2l′+1}×
2Σ), 0, Σ ∪ 2Σ, δ) which has the following properties:

6

• even states are states where the observer chooses a set
of events to observe;

• odd states(2i + 1, X) are states where the observer
waits for an observable event inX to occur;

• if δ(2i, X) = (2i′ + 1, X) with X ∈ 2Σ, it means that
from an even state2i, the automatonSFA

can select
a setX of events to observe. The successor state is
an odd state together with the setX of events that are
being observed;

• if δ((2i + 1, X), a) = 2i′ with a ∈ X , it means that
from (2i + 1, X), SFA

is waiting for an observable
event to occur. When some occurs it switches to an
even state.

By definition of FA, any observerO s.t. A is (O, k)-
diagnosable must select a set of observable events in
FA(tr(w)) after having observedw ∈ π/Σ(L(A)).

Example 5 For the automatonA of Fig. 3, we obtain the
most permissive observerFA of Fig. 8. For odd states we
have not mentionned the componentX that has last been
picked up by the observer.X is the label of the unique in-
coming transition. In the even states, the observer chooses
what to observe and in the odd states it moves according
to what it observes. When the system starts, it can choose
either{a, b} or {a}. Once ana has been observed it can
choose any subset containingb. When ab has been ob-
served the observer can choose to observe the empty set.

We point out that from an odd state(2i + 1, X), outgo-
ing transitions are labeled by elements ofX . This does not
mean that the DES under observation cannot do other ac-
tions from state2i + 1: it might be able to do so but there
are unobservable for the observer.

4.2. Optimal Dynamic Observers

To compute an optimal observer, we use a result by
Zwick and Paterson [12] onweighted graph games(see Ap-
pendix B for Zwick and Paterson algorithm). These are
graphs(V, E) with the set of nodes partitioned into two
sets: V1 for Player 1 andV2 for Player 2. In aVi state it
is Player i’s turn to play. There is aweight function that
associates with each edgee the weightw(e). The players
build pathse1. · · · .en by choosing an edge when it is their
turn to play. The goal of the game is for Player 1 to maxi-
mize the valuelim infn→∞

1
n

∑n
i=1 w(ei) and for Player 2

to minimizelim supn→∞
1
n

∑n
i=1 w(ei). One of the results

by Zwick and Paterson [12] is that:

• there is a valueν ∈ Q, called thevalue of the
game s.t. Player 1 has a strategy to ensure that
lim infn→∞

1
n

∑n
i=1 w(ei) ≥ ν and Player 2 has a

strategy to ensure thatlim supn→∞
1
n

∑n
i=1 w(ei) ≤

ν; this value can be computed inO(|V |3 × |E| × W)
whereW is the range of the weight function (assum-
ing the weights are in the interval[−W..W]). Note that
deciding whether this value satisfiesν ⊲⊳ c for ⊲⊳∈ {=
, <, >} for c ∈ Q can be done inO(|V |2 × |E| ×W).

• there are optimal memoryless strategies for both
players that can be computed inO(|V |4 × |E| ×
log(|E|/|V |) × W).

To solve the Problem 2, we use the most permissive ob-
server we computed in section 4.1. GivenA andFA, we
build a weighted graph gameG(A,FA) s.t. the value of
the game is the optimal cost for the set of all observers.
Moreover an optimal observer can be obtained by taking an
optimal memoryless strategy inG(A,FA).

To build G(A,FA) we use the same idea as in sec-
tion 3.4: we replaceε andf transitions inA by u obtaining
A+. We also modifyFA to obtain a weighted graph game
(F+

A , w) by adding transitions so that each state2k + 1 is
complete w.r.t.Σu. This is done as follows:

• from each(2i + 1, X) state, create a new even state
i.e. pick some2i′ that has not already been used. Add
transitions((2i + 1, X), σ, 2i′) for eachσ ∈ Σu \
en(2i + 1, X). Add also a transition(2i′, X, (2i +
1, X)). This step means that if aA produces an event
and it is not observable,F+

A just reads the event and
makes the same choice again.

• the weight of a transition(2i, X, (2i′ + 1, X)) is |X |.

The automatonF+
A obtained fromFA is depicted on Fig. 9.

The gameG(A,FA) is thenA+ × F+
A . This way we can

obtain a weighted graph gameWG(A,FA) by abstracting
away the labels of the transitions. Notice that it still en-
ables us to convert any strategy inWG(A,FA) to a strat-
egy inFA. A strategy inWG(A,FA) will define an edge
(2i, (2i′ + 1, X)) to take. As the target vertex contains the
set of events we chose to observe we can define a corre-
sponding strategy inFA.

By construction ofG(A,FA) and the definition of the
value of a weighted graph game, the value of the game is the
optimal cost for the set of all observersO s.t. A is (O, k)-
diagnosable.

AssumeA hasn states andm transitions. From [1] we
know thatFA has at mostO(2n2

× 2k × 22|Σ|

) states and
O(2n2

× 2k × 22|Σ|

× n2 × k × m) transitions. Hence

G(A,FA) has at mostO(n × 2n2

× 2k × 22|Σ|

) vertices
andO(m × 2n2

× 2k × 22|Σ|

edges. To make the game
complete we may add at most half the number of states and
henceWG(A,FA) has the same size. We thus obtain the
following results:

7

0

1

15

2 3

13

4

5

9

7

11

{a, b}

{a}
a

ba

{b}

{a, b}
b

b

∅

{a}

{b}

{a, b}

Figure 8. Most Permissive Observer for the Automaton A of Fig. 3

0

1

15

2 3

13

4

5

9

7

11

{a, b}

{a}
a

b

a

{b}

{a, b}
b

b

∅

{a}

{b}

{a, b}

6

u, b {a}

10

u, a {a, b}

12

u, a, b {a, b}

8

u{a, b}

18

u, a, b∅

16

u, a, b{b}

14

u, a, b {a}

20

u, a{a}

Figure 9. The Automaton F+
A

8

Theorem 3 Problem 2 can be solved in timeO(|Σ| × m ×

2n2

× 2k × 22|Σ|

).

We can even solve the optimal cost computation problem:

Problem 3 (Optimal Cost Observer)
INPUT: A, k ∈ N.
PROBLEM: Compute the least valuem s.t. there ex-
ists an observerObs s.t. A is (Obs,k)-diagnosable and
Cost2(Obs) ≤ m.

Theorem 4 Problem 3 can be solved in timeO(|Σ| × m ×

2n2

× 2k × 22|Σ|

).

A consequence of Theorem 3 is that the cost of the optimal
observer is a rational number (see Appendix B).

Example 6 For the exampleA of Fig. 4 andF+
A of Fig. 9,

using Zwick and Paterson’s algorithm (Appendix B) we ob-
tain that the optimal cost is1 and the optimal strategy is to
use the observerObsof Fig. 2.

5. Conclusion & Future Work

In this paper we have addressed sensor optimization
problems in the context of fault diagnosis, using dynamic
observers. We have defined a suitable notion of cost for
such observers. Then we have proved that, given such ob-
server, we could compute the cost of diagnosing a DES.
This is done by reducing this problem to the computation of
a maximum mean-weight cycle in a weighted graph. Hence
we can solve it in polynomial time. We have also solved
the optimal observer synthesis problem i.e. compute an ob-
server of optimal cost by reducing it to an optimization on
weighted graph game.

Further work will include:

• finding the exact complexity class of Problems 2 and 3;

• dealing with more realistic examples. This requires
an implementation of our algorithms and of the algo-
rithms described in Appendix A and B.

References

[1] Franck Cassez, Stavros Tripakis, and Karine Altisen.
Sensor minimization problems with static or dynamic
observers for fault diagnosis. Technical Report RI-
2007-1, IRCCyN/CNRS, 1 rue de la Noë, BP 92101,
44321 Nantes Cedes, France, January 2007. Available
athttp://www.irccyn.fr/franck.

[2] Franck Cassez, Stavros Tripakis, and Karine Altisen.
Sensor minimization problems with static or dynamic

observers for fault diagnosis. In7th International
Conference on Application of Concurrency to System
Design (ACSD’07), Bratislava, Slovak Republic, July
2007. IEEE Computer Society.

[3] Ali Dasdan, Sandy S. Irani, and Rajesh K. Gupta. Ef-
ficient algorithms for optimum cycle mean and opti-
mum cost to time ratio problems. InAnnual ACM
IEEE Design Automation Conference, pages 37–42,
New Orleans, Louisiana, United States, 1999. ACM
Press New York, NY, USA. ISBN:1-58133-109-7.

[4] Rami Debouk, Stéphane Lafortune, and Demosthe-
nis Teneketzis. On an optimization problem in sen-
sor selection.Discrete Event Dynamic Systems, 4(12),
November 2004.

[5] Shengbing Jiang, Zhongdong Huang, Vigyan Chan-
dra, and Ratnesh Kumar. A polynomial algorithm
for testing diagnosability of discrete event systems.
IEEE Transactions on Automatic Control, 46(8), Au-
gust 2001.

[6] Shengbing Jiang, Ratnesh Kumar, and Humberto E.
Garcia. Optimal sensor selection for discrete event
systems with partial observation.IEEE Transactions
on Automatic Control, 48(3):369–381, March 2003.

[7] Richard M. Karp. A characterization of the mini-
mum mean cycle in a digraph.Discrete Mathematics,
23:309–311, 1978.

[8] Peter Ramadge and W. Murray Wonham. Supervisory
control of a class of discrete event processes.SIAM J.
Control Optim., 25(1), January 1987.

[9] Meera Sampath, Raja Sengupta, Stephane Lafortune,
Kasim Sinnamohideen, and Demosthenis C. Teneket-
zis. Diagnosability of discrete event systems.IEEE
Transactions on Automatic Control, 40(9), September
1995.

[10] John N. Tsitsiklis. On the control of discrete event
dynamical systems.Mathematics of Control, Signals
and Systems, 2(2), 1989.

[11] Tae-Sic Yoo and Stéphane Lafortune. On the com-
putational complexity of some problems arising in
partially-observed discrete event systems. InAmeri-
can Control Conference (ACC’01), 2001. Arlington,
VA.

[12] Uri Zwick and Michael S. Paterson. The complexity of
mean payoff games on graphs.Theoretical Computer
Science, 158(1–2):343–359, 1996.

9

A. Karp’s Maximum Mean Cycle Algorithm

In this section, we recall Karp’s maximum mean cycle
algorithm [7]. The original algorithm works for weighted
graph where the weights are on the edges. We give a version
where weights are on vertices.

Definition 6 (Weighted Graph) A weighted directed
graphis a pair (G, w) s.t. G = (V, E) is a directed graph
and w : V → R. We assume that each vertexv ∈ V is
reachable from a uniquesourcevertexs0. �

Definition 7 (Mean Weight of a Cycle) Let c = (v1, v2,
· · · , vk) be a sequence of vertices s.t. each(vi, vi+1) ∈
E, 1 ≤ i ≤ k − 1 which is a cycle i.e.v1 = vk. Themean
weightof c is µ(c) = 1

k · Σk
i=1w(vi). �

Let ν∗ = maxc µ(c) wherec ranges over all directed cycles
in G. A cyclec with µ(c) = ν∗ is amaximum mean-weight
cycle.

Let D(v) be the weight of a most expensive path from
s0 to v andDk(v) be the weight of a most expensive path
which has exactlyk edges (if there is no such pathDk(v) =
−∞).

Assume|V | = n. Karp’s algorithm is based on the fact
that

ν∗ = max
v∈V

min
0≤k≤n−1

Dn(v) − Dk(v)

n − k

The valuesDk(v) can be computed iteratively:

D0(s0) = w(s0) (1)

D0(v) = −∞ for v 6= s0 (2)

Dk+1(v) = max
(u,v)∈E

{Dk(u) + w(v)} (3)

Thus for each vertex we can computemin(v) =

min0≤k≤n−1
Dn(v)−Dk(v)

n−k and then compute the value
maxv∈V min(v) to obtain ν∗. This algorithm runs in
O(n.m) where|V | = n and|E| = m. Improvements [3]
can be made to this algorithm still the worst case run-time
is O(n.m).

B. Zwick and Paterson’s Algorithm

In this section we give an overview of some results
of [12]. AssumeG = (V, E) is a weighted graph as in
definition 6 except that the weight function is defined on
edges:w : E → {−W, · · · , 0, · · · , W} assigns an integral
weight to each edge ofG with W ∈ N. We assume each
vertex has at least one outgoing transition.

Definition 8 (Weighted Graph Game) A weighted graph
gameG = (V, E) is a bipartite weighted graph with
V = V1 ∪ V2 and E = E1 ∪ E2, E1 ⊆ V1 × V2 and
E2 ⊆ E2 × E1. We assume the initial vertexv0 of G be-
longs toV1. �

VerticesVi are Player i’s vertex. A weighted graph game
is a turn based game in which the turn alternates between
Player 1 and Player 2. The game starts at a vertexv0 ∈ V1.
Player 1 chooses an edgee1 = (v0, v1) and then Player 2
chooses an edgee2 = (v1, v2) and so on and they build
an infinite sequence of edges. Player 1 wants to maximise
lim infn→∞

1
n ·

∑n
i=1 w(ei) and Player 2 wants to minimize

lim supn→∞
1
n ·

∑n
i=1 w(ei).

One of the result of [12] is that there is a rational value
ν ∈ Q s.t. Player 1 has a strategy to ensurelim infn→∞

1
n ·

∑n
i=1 w(ei) ≥ ν and Player 2 has a strategy to ensure that

lim supn→∞
1
n ·

∑n
i=1 w(ei) ≤ ν. ν is called the value of

the game.
Let n = |V |. To computeν, proceed as follows ([12]):

1. Letν0(v) = 0 for v ∈ V . Forv ∈ V andk ≥ 1, νk(v)
is defined by:

νk(v) =

{

max(v,w)∈E{w(v, w) + νk−1(w)} if v ∈ V1

min(v,w)∈E{w(v, w) + νk−1(w)} if v ∈ V2

This is the equivalent of theDk(v) values for Karp’s
algorithm using a min max strategy depending on
which player is playing;

2. for eachv ∈ V , computeν′(v) = νk(v)/k for k =
4 · n3 · W .

3. for each vertex, the value of the game fromv is the
only rational number with a denominator at mostn that
lies in the interval]ν′(v) − α, ν′(v) + α[with α =

1
2n(n−1) .

The value of the game isν = ν(v0) wherev0 is the initial
vertex.

To compute an optimal strategy for Player 1, proceed as
follows:

1. compute the valuesν(v) for eachv ∈ V ;

2. if all the vertices ofV1 have outgoing degree1, there
is a unique strategy and it is positional and optimal;

3. otherwise, take a vertexv ∈ V1 with outgoing degree
d ≥ 2. Remove⌈d

2⌉ edges fromv leaving at least one.
Recompute the valuemv for eachv. If mv = ν(v),
there is an optimal positional strategy which uses the
remaining edges fromv. Otherwise there is a posi-
tional strategy that uses one of the removed edges.

We can iterate the previous scheme to find an optimal strat-
egy for Player 1.

10

