
Monotonicity in Service Orchestrations⋆

Anne Bouillard1, Sidney Rosario2, Albert Benveniste2, and Stefan Haar3

1 ENS Cachan, IRISA, Université Européenne de Bretagne, Bruz France
2 IRISA/INRIA, Campus de Beaulieu, Rennes France

3 INRIA Saclay, ENS Cachan, France

Abstract. Web Service orchestrations are compositions of different Web
Services to form a new service. The services called during the orches-
tration guarantee a given Quality of Service (QoS) to the orchestrator,
usually in the form of contracts. These contracts can then be used by
the orchestrator to deduce the contract it can offer to its own clients,
by performing contract composition. An implicit monotonicity assump-
tion in contract based QoS management is: “the better the component
services perform, the better the orchestration’s performance will be”.
In some orchestrations, however, monotonicity can be violated, i.e., the
performance of the orchestration improves when the performance of a
component service degrades. This is highly undesirable since it can render
the process of contract composition inconsistent.
In this paper we formally define monotonicity for orchestrations modelled
by Colored Occurrence Nets (CO-nets) and we characterize the classes
of monotonic orchestrations. Contracts can be formulated as hard, possi-
bly nondeterministic, guarantees, or alternatively as probabilistic guar-
antees. Our work covers both cases. We show that few orchestrations
are indeed monotonic, mostly because of complex interactions between
control, data, and timing. We also provide user guidelines to get rid of
non-monotonicity when designing orchestrations.

1 Introduction

Web Services and their compositions are being widely used to build distributed
applications over the web. Web Service orchestrations are compositions of Web
Services to form an aggregate, and usually more complex, Web Service. Differ-
ent formalisms have been proposed for orchestrating Web Services, the most
popular amongst these is the Business Process Execution Language (BPEL) [3].
Another such formalism is Orc [7], a small and elegant language equipped with
extensive semantics work [6, 12]. Various other models have been used either to
directly model orchestrations, or as a semantic domain for some formalisms; see
for example the Petri Nets based WorkFlow Nets [13].

Though the main focus of the existing models is to capture the functional
aspects of service and their compositions, the non-functional - also called Qual-
ity of Service (QoS) - aspects also need to be considered. The QoS of a service

⋆ This work was partially funded by the ANR national research program DOTS (ANR-
06-SETI-003), DocFlow (ANR-06-MDCA-005) and the project CREATE ActivDoc.

is characterised by different metrics - called QoS parameters - , e.g., latency,
availability, throughput, security, etc. QoS management is usually based on the
notion of a Service Level Agreement (SLA) or contract, which specifies con-
straints on the QoS parameters of the service. A typical service contract could
be : for 95% of the requests, the response time will be less than 5ms. The WSLA
Standard [5] is one such proposition for specifying QoS through SLAs.

In service orchestrations, contracts are agreements made between the or-
chestrator and the different services called by the orchestrator (also called sub-
contractors) which formalise the duties and responsibilities for each of them.
The orchestrator can then compose all the contracts with its sub-contractors, to
help it propose a contract to its own clients. This process is called contract com-
position. In [10] we introduced the notion of probabilistic contracts to formalise
the QoS behaviour of services — the work of [10] focused on latency. We showed
how these contracts can be composed to get the orchestration’s contract. We
also showed that there is room for overbooking the orchestrator’s resources.

Contract based QoS management in orchestrations relies on the implicit as-
sumption that if each of the sub-contractor meets its contract’s objectives, then
so does the orchestrator. Vice-versa, a sub-contractor breaching its contract can
cause the orchestrator to breach the contract with its clients. Thus the whole
philosophy behind contracts is that the better the sub-contractors behave, the
better the overall orchestration will meet its contract. In fact, the authors them-
selves have developed their past work [10] based on this credo . . . until they
discovered that this implicit assumption could easily be falsified. Why so?

S

N T

M

Fig. 1. A non-monotonic orchestration

As an example, consider the orchestration modeled by the Petri net in Fig-
ure 1. Services M and N are first called in parallel. If M responds first, service
S is next called and the response of N is ignored. If N responds first, T is called
and not S. Let δi denote the response time of site i. Assume the following delay
behaviour: δM < δN and δS ≫ δT . Since M responds faster, the end-to-end
orchestration delay is d0 = δM + δS . Now let service M behaves slightly ’badly’,
i.e delay δM increases and becomes slightly greater than δN . Now service T is
called and the new orchestration delay is d1 = δN + δT . But since δS ≫ δT , d1

is in fact lower than d0. This orchestration is non-monotonic since increasing
the latency of one of its components can decrease the end-to-end latency of the
orchestration. So, what is the nature of the difficulty?

“Simple” composed Web services are such that QoS aspects do not interfere
with functional aspects and do not interfere with each other. Their flow of con-
trol is typically rigid and does not involve if-then-else branches. For such cases,
latencies will compose gently and will not cause pathologies as shown above.
However, as evidenced by the rich constructions offered by BPEL, orchestra-
tions and choreographies can have branching based on data and QoS values,
various kinds of exceptions, and timers. With such flexibility, non-monotonicity
such as that exhibited by the example of Figure 1 can very easily occur.

Lack of monotonicity impairs using contracts for the compositional manage-
ment of QoS. Surprisingly enough, this fact does not seem to have been noticed
in the literature.

In this paper we classify orchestrations based on their monotonic character-
istics. We focus on latency, although other aspects of QoS are discussed as well.
Section 2 informally introduces the notion of monotonicity with examples. In
Section 3 we recall the definition of Petri nets and introduce our model, Orch-
Net. A formal definition of monotonicity and a characterisation of monotonic
orchestrations is then given in Section 4. Section 5 extends the notion of mono-
tonicity to nets whose transitions’ delays are probability distributions. Section
6 gives a few ideas to avoid the problem of non-monotonicity and Section 7
concludes. Proofs of non-trivial results are deferred to the appendix.

2 Examples for Non-monotonic Orchestrations

In this section we look at sample orchestrations and illustrate the concept of
(non) monotonicity using them.

The Travel Planner orchestration: The orchestration to the left in Figure 2 is
inspired by [14]. A client calls the Travel Planner orchestration with a city he

attractions

HotelA

search
CarRent

BikeRent

d > ℓ

d ≤ ℓ

attractions

HotelA

search

BikeRent

Fig. 2. The Travel Planner orchestration (left); a simplified version (right)

plans to visit along with the dates of his visit. The orchestration looks for a
hotel in that city (service HotelA) for those dates and parallelly looks for sites
of attractions (service Search Attractions) in the city. Once both these tasks are
completed, it calculates the maximal distance ’d’ between the hotel found and
the attraction sites. If this distance is less than a certain threshold ℓ, a bike

rental service is called to get quotes for a rental bike. If distance d exceeds ℓ,
then Car Rent is called to get quotes for a rental car instead. The orchestration
to the right in Figure 2 is a simplified version of travel planner, in which it is
assumed that all returns from HotelA are closer than ℓ to the attraction site.

This Travel Planner orchestration is monotonic: Increasing (or decreasing)
the response time of any of its component services does result in a corresponding
increase (or decrease) in the end to end latency. Monotonicity holds in this case
because increasing (or decreasing) the response time of the services called first
does not affect the value returned by these services.

The Travel Planner orchestration – A Modified Version The presence of timeouts
and data dependant choices in orchestrations can however complicate things.
Figure 3 (left) is a modified version of the Travel planner example where quotes
for hotels are obtained from two services, HotelA and HotelB. Such an extension
is quite natural in orchestrations, where a pool of services with similar func-
tionality are queried with the same request. The orchestration selects the best
response obtained from the pool, or combines their responses. In this modified
Travel Planner example, of the two hotel offers received, the cheaper one is
taken. Calls to the hotels are guarded by timers: if only one hotel has replied
before a timeout, the response of the other is ignored. The rest of the example
is unchanged.

HotelA

Timer

attractions
search

CarRent

BikeRent

d > ℓ

d ≤ ℓ

Timer

HotelB

attractions
search

Timer

HotelB

HotelA

Timer

BikeRent

CarRent

Fig. 3. The Modified Travel Planner orchestration. By convention, each Timer has
priority over the HotelX service it is in conflict with. Left (a), right (b)

Now look at the following scenario: HotelA returns propositions that are
usually cheaper than those of HotelB and so HotelA’s propositions are chosen.
Let the distance d in this case be greater than ℓ and so service Car Rent is called.
If the performance of HotelA now degrades such that it doesn’t reply before a
timeout, only HotelB ’s response is taken. Say that the maximum distance d in

this case is less than ℓ and so service Bike Rent is called. Now if Car Rent takes
a significantly greater time to respond compared to Bike Rent, it is possible that
the overall latency is shorter in the second case. That is, a degradation in the
performance of a service (HotelA here) leads to an improvement in the overall
performance of the orchestration.

A solution to this is to make the choice in the Travel Planner orchestration
dependent on the orchestration’s client. For e.g, if we alter this orchestration
such that the client specifies in the start of the orchestration whether he wants
to rent a car or a bike, the choice is resolved by the client. The exact execution
path of the orchestration is known at the start, on receiving the client’s request.
This execution path is a partial order, which is monotonic. We could then have
input-dependent contracts, e.g., promising a certain response time for a given
set of input parameters and promising another response behaviour for a different
set of inputs.

The orchestration to the right in Figure 3 assumes that HotelA’s propositions
are all close to the attraction sites, whereas those of HotelB are all far from them.
The net on the left can thus be simplified to the guard-free net of the right.

The examples in figure 3 are non-monotonic due to the presence of choice
followed by paths with different performances. In the sequel, we formally char-
acterize the classes of orchestrations that are monotonic, giving both necessary
and sufficient conditions for it. The formal material for this is introduced next.

3 The Orchestration Model: OrchNets

In this section we present the high level Petri Nets model for orchestrations that
we use for our studies, which we call OrchNets. OrchNets are a special form of
colored occurrence nets (CO-nets).

We have chosen this mathematical model for the following reasons. From the
semantic studies performed for BPEL [9, 2] and Orc [6, 12], we know that we
need to support in an elegant and succinct way the following features: concur-
rency, rich control patterns including preemption, representing data values, and
for some cases even recursion. The first three requirements suggest using colored
Petri nets. The last requirement suggests considering extensions of Petri nets
with dynamicity. However, in our study we will not be interested in the spec-
ification of orchestrations, but rather in their executions. Occurrence nets are
concurrent models of executions of Petri nets. As such, they encompass orches-
trations involving recursion at no additional cost. The executions of Workflow
Nets [13] are also CO-nets.

3.1 Background on Petri nets and Occurrence nets

A Petri net is a tuple N = (P, T ,F ,M0), where: P is a set of places, T is a set
of transitions such that P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) is the flow relation,
M0 : P → N is the initial marking.

The elements in P ∪ T are called the nodes of N and will be denoted by
variables for e.g, x. For a node x ∈ P ∪ T , we call •x = {y | (y, x) ∈ F} the
preset of x, and x• = {y | (x, y) ∈ F} the postset of x. A marking of the net
is a multiset M of places, i.e a map from P to N. A transition t is enabled in
marking M if ∀p ∈ •t,M(p) > 0. This enabled transition can fire resulting in a
new marking M − •t+ t• denoted by M [t〉M ′. A marking M is reachable if there
exists a sequence of transitions t0, t1 . . . tn such that M0[t0〉M1[t1〉 . . . [tn〉M . A
net is safe if for all reachable markings M , M(P) ⊆ {0, 1}.

For a net N = (P, T ,F ,M0) the causality relation < is the transitive closure
of the flow relation F . The reflexive closure of < is denoted by ≤. For a node
x ∈ P ∪T , the set of causes of x is ⌈x⌉ = {y ∈ P ∪T | y ≤ x}. Two nodes x and
y are in conflict - denoted by x#y - if there exist distinct transitions t, t′ ∈ T ,
such that t ≤ x, t′ ≤ y and •t∩ •t′ 6= ∅. Nodes x and y are said to be concurrent
- written as x‖y - if neither (x ≤ y) nor (y ≤ x) nor (x#y). A set of concurrent
places P ⊆ P is called a co-set. A cut is a maximal (for set inclusion) co-set.

A configuration of N is a subnet κ of nodes of N such that:

1. κ is causally closed, i.e, if x < x′ and x′ ∈ κ then x ∈ κ
2. κ is conflict-free, i.e, for all nodes x, x′ ∈ κ,¬(x#x′)

For convenience, we will assume that the maximal nodes (w.r.t the < relation)
in a configuration are places.

A safe net N = (P, T ,F ,M0) is called an occurrence net (O-net) iff

1. ¬(x#x) for every x ∈ P ∪ T .
2. ≤ is a partial order and ⌈t⌉ is finite for any t ∈ T .
3. For each place p ∈ P, |•p| ≤ 1.
4. M0 = {p ∈ P|•p = ∅}, i.e the initial marking is the set of minimal places

with respect to ≤.

Occurrence nets are a good model for representing the possible executions of a
concurrent system. Unfoldings of a safe Petri net, which collect all the possible
executions of the net, are occurrence nets. Unfoldings are defined as follows. For
N and N ′ two safe nets, a map ϕ : P∪T 7→ P ′∪T ′ is called a morphism of N to
N ′ if: 1/ ϕ(P) ⊆ P ′ and ϕ(T) ⊆ T ′, and 2/ for every t ∈ T and t′ = ϕ(t) ∈ T ′,
•t ∪ {t} ∪ t• is in bijection with •t′ ∪ {t′} ∪ t′

•
through ϕ. A branching process

of a safe net N is a pair (U,ϕ) where U is an occurrence net and ϕ : U 7→ N is
a morphism such that 1/ ϕ establishes a bijection between M0 and the minimal
places of U , and 2/ •t = •t′ and ϕ(t) = ϕ(t′) together imply t = t′. Branching
processes are partially ordered (up to isomorphism) by the prefix order and there
exists a unique maximal branching process called the unfolding of N and denoted
by UN . The configurations of UN capture the executions of N , seen as partial
orders of events. For a configuration κ of an occurrence net N , the future of κ
in N , denoted by Nκ is a sub-net of N with the nodes:

Nκ = {x ∈ N \ κ | ∀x′ ∈ κ,¬(x#x′)} ∪ max(κ)

where max(κ) is the set of maximal nodes of κ (which are all places by our
restriction on configurations).

3.2 Orchestration model: OrchNets

We now present the orchestration model that we use for our studies, which we
call OrchNets. OrchNets are occurrence nets in which

tokens are equipped with a special attribute, referred
to as a color, and consisting of a pair (value, date).

(1)

Figure 4 shows an OrchNet with its dates. Each place is labeled with a date

m n

t

E =

8

<

:

case d < d′ then d + τs

case d > d′ then d′ + τt

otherwise nondeterministic.

d1

d2

τn

τ = 0

τtτs

τ = 0

τm

d0 + τm d1 + τn

d′ = max{d2, d1 + τn}d = max{d2, d0 + τm}

s

d0

Fig. 4. An OrchNet showing the dates of its tokens. The delay of a transition is shown
next to it.

which is the date of the token on reaching that place. Transitions are labeled with
latencies. The tokens in the three minimal places are given initial dates (here,
d0, d1, d2). The four named transitions m,n, s and t are labeled with latencies
τm, τn, τs and τt respectively, and the two shaded transitions have zero latency.

The presence of dates in tokens alters the firing semantics. A transition t
is enabled at a date when all places in its preset have tokens. and if its guard
evaluates to true (absence of a guard is interpreted as the guard true). Once
enabled, transition t takes τt additional time to fire. For example, the shaded
transition in the left has all its input tokens at max{d2, d0+τm} and so it fires at
max{d2, d0 +τm}+0 since it has zero latency. If a transition fires at date d, then
the tokens in its postset have the date d. This is shown in the figure, e.g., on the
place following the left shaded transition, which has date max{d2, d0 + τm}.

When transitions are in conflict, (e.g., the two shaded transitions in Figure 4),
the transition that actually occurs is governed by a race policy [4, 8]. If a set of
enabled transitions are in conflict, the one with smallest date of occurrence will
fire, preempting the other transitions in conflict with it. In Figure 4, the left
or the right shaded transition will fire depending on whether d < d′ or d > d′

respectively, with a nondeterministic choice if d = d′. This results in selecting

the left most or right most continuation (firing s or t) accordingly. The resulting
overall latency E of the orchestration is shown at the bottom of the figure.

In addition to dates, tokens in OrchNets can have data attributes, which we
call values. We have not shown this in Figure 4, in order to keep it simple. Values
of tokens in the preset of a transition t can be combined by a value function φt

attached to t. The resulting value is taken by the token in the postset of t. At
this point we are ready to provide the formal definition of OrchNets:

Definition 1 (OrchNet). An OrchNet is a tuple N = (N,Φ, T, Tinit) consist-
ing of

– An occurrence net N with token attributes c = (value, date).
– A family Φ = (φt)t∈T of value functions, whose inputs are the values of the

transition’s input tokens.
– A family T = (τt)t∈T of latency functions, whose inputs are the values of

the transition’s input tokens.
– A family Tinit = (τp)p∈min(P) of initial date functions for the minimal places

of N .

In general, value, latency, and initial date functions can be nondeterministic. We
introduce a global, invisible, daemon variable ω that resolves this nondetermin-
ism and we denote by Ω its domain. That is, for a given value ω of this daemon,
φt(ω), τt(ω), and τp(ω) are all deterministic functions of their respective inputs.

3.3 The semantics of OrchNets

We now explain how the presence of dates attached to tokens affects the se-
mantics of OrchNets by adopting the so-called race policy. We first describe
how a transition t modifies the attributes of tokens. Let the preset of t have n
places whose tokens have (value, date) attributes (v1, d1) . . . (vn, dn). Then all
the tokens in the postset of t have the pair (vt, dt) of value and date, where:

vt = φt(v1 . . . vn)

dt = max{d1 . . . dn} + τt(v1 . . . vn) (2)

The race policy for firing transitions is as follows. In any given marking M , let
T be the set of transitions that are possibly enabled, i.e. ∀t ∈ T , •t is marked
in M and the guard of t (if any) is true. Then the transition t that is actually
enabled, (which really fires) is given by:

t = arg min
t∈T

dt,

where: arg min
x∈X

f(x) = x∗ ∈ X s.t. ∀x′ ∈ X, f(x∗) ≤ f(x′).

If two possibly enabled transitions have the same dt, then the choice of the tran-
sition that actually fires is non-deterministic. The race policy has the effect of fil-
tering out configurations of OrchNets as explained now. Let N = (N,Φ, T, Tinit)

be a finite OrchNet. For a value ω ∈ Ω for the daemon we can calculate the
following dates for every transition t and place p of N :

dp(ω) = τp(ω) if p is minimal, ds(ω) where s = •p otherwise
dt(ω) = max{dx(ω) | x ∈ •t} + τt(ω)(v1, . . . vn)

(3)

where v1, . . . vn are the value components of the tokens in •t as in equation (2).
If κ is a configuration of N , the future N κ is the OrchNet (Nκ, ΦNκ , TNκ , T ′

init)
where ΦNκ and TNκ are the restrictions of Φ and T respectively, to the transitions
of Nκ. T ′

init is the family derived from N according to (3): for any minimal place
p of Nκ, the initialisation function is given by τ ′

p(ω) = dp(ω). For a net N with
the set of transitions TN , set Tmin(N) = {t ∈ TN | ••t ∩ TN = ∅}. Let min(PN)
denote the minimal places of N . Now define κ0(ω) = min(PN) and inductively,

for m > 0 : κm(ω) = κm−1(ω) ∪ {tm} ∪ •tm ∪ tm
• (4)

where tm = arg min
t∈Tmin(Nκ

m−1(ω))
dt(ω)

Since net N is finite, the above inductive definition terminates in finitely many
steps when Nκm(ω) = ∅. Let M(ω) be this number of steps. We thus have

∅ = κ0 ⊂ κ1(ω) · · · ⊂ κM(ω)(ω)

κM(ω)(ω) is a maximal configuration of N that can actually occur according to
the race policy, for a given ω ∈ Ω; such actually occurring configurations are
generically denoted by

κ(N , ω)

For B, a prefix-closed subset of the nodes of N define

Eω(B,N) = max{dx(ω) | x ∈ B} (5)

If B is a configuration, then Eω(B,N) is the time taken for B to execute (latency
of B). The latency of the OrchNet N = (N,Φ, T, Tinit) for a given ω is

Eω(N) = Eω(κ(N , ω),N) (6)

Our design choices for the semantics of OrchNets were inspired by the application
domain, i.e. compositions of web services. They reflect the following facts:

– Since we focus on latency, {value, date} is the only color needed.
– Orchestrations rarely involve decisions on actions based on absolute dates.

Timeouts are an exception, but these can be modelled explicitly, without
using dates in guards of transitions. This justifies the fact that guards only
have token values as inputs, and not their dates.

– The time needed to perform transitions does not depend on the tuple of
dates (d1 . . . dn) when input tokens were created, but it can depend on the
data (v1 . . . vn) and computation φ performed on these. This justifies our
restriction for output arc expressions.

If it is still wished that control explicitly depends on dates, then dates must be
measured and can then be stored as part of the value v.

4 Characterizing monotonicity

In this article, we are interested in the total time taken to execute a web-service
orchestration. As a consequence, we will consider only orchestrations that ter-
minate in a finite time, i.e, only a finite number of values can be returned.

4.1 Defining and characterizing monotonicity

To formalize monotonicity we must specify how latencies and initial dates can
vary. As an example, we may want to constrain some pair of transitions to have
identical latencies. This can be stated by specifying a legal set of families of
latency functions. For example, this legal set may accept any family T = (τt)t∈T

such that two given transitions t and t′ possess equal latencies: ∀ω ⇒ τt(ω) =
τt′(ω). The same technique can be used for initial dates. Thus, the flexibility
in setting latencies or initial dates can be formalized under the notion of pre-
OrchNet we introduce next.

Definition 2 (pre-OrchNet). Call pre-OrchNet a tuple N = (N,Φ, T, Tinit),
where N and Φ are as before, and T and Tinit are sets of families T of latency
functions and of families Tinit of initial date functions. Write N ∈ N if N =
(N,Φ, T, Tinit) for some T ∈ T and Tinit ∈ Tinit.

For two families T and T ′ of latency functions, write

T ≥ T ′

to mean that ∀ω ∈ Ω,∀t ∈ T =⇒ τt(ω) ≥ τ ′
t(ω), and similarly for Tinit ≥ T ′

init.
For N ,N ′ ∈ N, write

N ≥ N ′ and E(N) ≥ E(N ′)

to mean that T ≥ T ′ and Tinit ≥ T ′
init both hold, and Eω(N) ≥ Eω(N ′) holds

for every ω, respectively.

Definition 3 (monotonicity). pre-OrchNet N = (N,Φ, T, Tinit) is called mono-
tonic if, for any two N ,N ′ ∈ N, such that N ≥ N ′, we have E(N) ≥ E(N ′).

Theorem 1 (a global necessary and sufficient condition).

1. The following implies the monotonicity of pre-OrchNet N = (N,Φ, T, Tinit):

∀N ∈ N,∀ω ∈ Ω,∀κ ∈ V (N) =⇒ Eω(κ,N) ≥ Eω(κ(N , ω),N) (7)

where V (N) denotes the set of all maximal configurations of net N and
κ(N , ω) is the maximal configuration of N that actually occurs under the
daemon value ω.

2. Conversely, assume that:
(a) Condition (7) is violated, and
(b) for any two OrchNets N and N ′ s.t. N ∈ N, then N ′ ≥ N ⇒ N ′ ∈ N.

Then N = (N,Φ, T, Tinit) is not monotonic.

Statement 2 expresses that Condition (7) is also necessary provided that it is legal
to increase at will latencies or initial dates. Observe that violating Condition (7)
does not by itself cause non-monotonicity; as a counterexample, consider a case
where T is a singleton for which (7) is violated—it is nevertheless monotonic.

The orchestration in the left of Figure 2 satisfies Theorem 1 trivially, since for
any given ω, there is only one possible maximal configuration. This is because
the value of d is fixed for a ω and only one branch of the two rental services
is enabled. The orchestration in the left of Figure 3 does not fulfill Theorem 1.
Consider an ω for which the actually occurring configuration κ has both the
responses of HotelA and HotelB. Say that d > ℓ for κ and Car Rent is called.
Now consider another configuration κ′ (under the same ω), got by replacing
HotelA by Timer. In this case, the response of Hotel B is used to calculate d,
which may be different from that in configuration κ. This d could be less than ℓ
causing Bike Rent to be called. In this case, the latencies of Car Rent and Bike
Rent can be set such that Eω(κ,N) > Eω(κ′,N), violating Theorem 1.

4.2 A structural condition for the monotonicity of workflow nets

Workflow nets [13] were proposed as a simple model for workflows. These are
Petri nets, with a special minimal place i and a special maximal place o. We
consider the class of workflow nets that are 1-safe and which have no loops.
Further, we require them to be sound [13]. A Workflow net W is sound iff:

1. For every marking M reachable from the initial place i, there is a firing
sequence leading to the final place o.

2. If a marking M marks the final place o, then no other place can in W can
be marked in M

3. There are no dead transitions in W . Starting from the initial place, it is
always possible to fire any transition of W .

Workflow nets will be generically denoted by W . We can equip workflow nets
with the same attributes as occurrence nets, this yields pre-WFnets W = (W,Φ, T, Tinit).
Referring to the end of Section 3.1, unfolding W yields an occurrence net that we
denote by NW with associated morphism ϕW : NW 7→ W . Here the morphism
ϕW maps the two c transitions (and the place in its preset and postset) in the
net on the right to the single c transition (and its preset and postset) in the net
on the left. Observe that W and NW possess identical sets of minimal places.
Morphism ϕW induces a pre-OrchNet

NW = (NW , ΦW , TW , Tinit)

by attaching to each transition t of NW the value and latency functions attached
to ϕW (t) in W.

We shall use the results of the previous section in order to characterize those
pre-WFnets whose unfoldings give monotonic pre-OrchNets. Our characteriza-
tion will be essentially structural in that it does not involve any constraint on

latency functions. Under this restricted discipline, the simple structural condi-
tions we shall formulate will also be almost necessary. For this, we recall a notion
of cluster [8] on nets. For a net N , a cluster is a (non-empty) minimal set c of
places and transitions of N such that ∀t ∈ c, •t ⊆ c and ∀p ∈ c, p• ⊆ c.

Theorem 2 (Sufficient Condition). Let W be a WFnet and NW be its un-
folding. A sufficient condition for the pre-OrchNet NW = (NW , ΦW , TW , Tinit)
to be monotonic is that every cluster c satisfies the following condition:

∀t1, t2 ∈ c, t1 6= t2 =⇒ t1
• = t2

• (8)

Recall that the sufficient condition for monotonicity stated in Theorem 1 is
“almost necessary” in that, if enough flexibility exist in setting latencies and
initial dates, then it is actually necessary. The same holds for the sufficient
condition stated in Theorem 2 if the workflow net is assumed to be live.

Theorem 3 (Necessary Condition). Suppose that the workflow net W is
sound. Assume that W ∈ W and W ′ ≥ W implies W ′ ∈ W, meaning that there
is enough flexibility in setting latencies and initial dates. In addition, assume
that there is at least one W∗ ∈ W such that there is an daemon value ω∗ for
which the latencies of all the transitions are finite. Then the sufficient condition
of Theorem 2 is also necessary for monotonicity.

Observe that the orchestration in the right of figure 2 satisfies Theorem 2,
whereas the orchestration in the right of figure 3 does not.

5 Probabilistic monotonicity

So far we have considered the case where latencies of transitions are nonde-
terministic. In a previous work [10, 11], on the basis of experiments performed
on real Web services, we have advocated the use of probability distributions
when modeling the response time of a Web service. Can we adapt our theory to
encompass probabilistic latencies?

5.1 Probabilistic setting, first attempt

In Definitions 1 and 2, latency and initial date functions were considered non-
deterministic. The first idea is to let them become random instead. This leads
to the following straightforward modification of definitions 1 and 2:

Definition 4 (probabilistic OrchNet and pre-OrchNet, 1). Call proba-
bilistic OrchNet a tuple N = (N,Φ, T, Tinit) where Φ = (φt)t∈T , T = (τt)t∈T ,
and Tinit = (τp)p∈min(P), are independent families of random value functions,
latency functions, and initial date functions, respectively.

Call probabilistic pre-OrchNet a tuple N = (N,Φ, T, Tinit), where N and Φ
are as before, and T and Tinit are sets of families T of random latency functions
and of families Tinit of random initial date functions. Write N ∈ N if N =
(N,Φ, T, Tinit) for some T ∈ T and Tinit ∈ Tinit.

We now equip random latencies and initial dates with a probabilistic ordering.
If τ is a random latency function, its distribution function is defined by

F (x) = P(τ ≤ x)

where x ∈ R+. Consider the following ordering: random latencies τ and τ ′ satisfy

τ ≥s τ ′ if F (x) ≤ F ′(x) holds ∀x ∈ R+, (9)

where F and F ′ are the distribution functions of τ and τ ′, respectively—with
corresponding definition for the probabilistic ordering on initial date functions.
Order (9) is classical in probability theory, where it is referred to as stochastic
dominance or stochastic ordering among random variables [1].

Using order (9), for two families T and T ′ of random latency functions, write

T ≥s T ′

to mean that ∀t ∈ T =⇒ τt ≥s τ ′
t , and similarly for Tinit ≥s T ′

init. For
N ,N ′ ∈ N, write

N ≥s N ′

if T ≥s T ′ and Tinit ≥s T ′
init both hold. Finally, the latency Eω(N) of OrchNet

N is itself seen as a random variable that we denote by E(N), by removing
symbol ω. This allows us to define, for any two N ,N ′ ∈ N,

E(N) ≥s E(N ′)

by requiring that random variables E(N) and E(N ′) are stochastically ordered.

Definition 5 (probabilistic monotonicity, 1). Probabilistic pre-OrchNet N

is called probabilistically monotonic if, for any two N ,N ′ ∈ N, such that N ≥s

N ′, we have E(N) ≥s E(N ′).

It is a classical result on stochastic ordering that, if (X1, . . . ,Xn) and (Y1, . . . , Yn)
are independent families of real-valued random variables such that Xi ≥s Yi

for every 1 ≤ i ≤ n, then, for any increasing function f : R
n → R, then

f(X1, . . . ,Xn) ≥s f(Y1, . . . , Yn). Applying this yields that nondeterministic
monotonicity in the sense of definition 3 implies probabilistic monotonicity in
the sense of to definition 5. Nothing can be said, however, regarding the converse.

In order to derive results in the opposite direction, we shall establish a tighter
link between this probabilistic framework and the nondeterministic framework
of sections 3 and 4.

5.2 Probabilistic setting: second attempt

Let us restart from the nondeterministic setting of sections 3 and 4. Focus on def-
inition 1 of OrchNets. Equipping the set Ω of all possible values for the daemon
with a probability P yields an alternative way to make the latencies and initial
dates random. This suggests the following alternative setting for probabilistic
monotonicity.

Definition 6 (probabilistic OrchNet and pre-OrchNet, 2). Call proba-
bilistic OrchNet a pair (N ,P), where N is an OrchNet according to definition 1
and P is a probability over the domain Ω of all values for the daemon.

Call probabilistic pre-OrchNet a pair (N,P), where N is a pre-OrchNet ac-
cording to definition 2 and P is a probability over the domain Ω of all values for
the daemon.

How can we relate the two definitions 4 and 6? Consider the following assump-
tion, which will be in force in the sequel:

Assumption 1 For any N ∈ N, τt and τp form an independent family of ran-
dom variables, for t ranging over the set of all transitions and p ranging over
the set of all minimal places of the underlying net.

Let us now start from definition 4. For t a generic transition, let (Ωt,Pt) be
the set of possible experiments together with associated probability, for random
latency τt; and similarly for (Ωp,Pp) and τp. Thanks to assumption 1, setting

Ω =
(

∏

t

Ωt

)

×
(

∏

p

Ωp

)

and P =
(

∏

t

Pt

)

×
(

∏

p

Pp

)

, (10)

yields the entities of definition 6. Can we use this correspondence to further relate
probabilistic monotonicity to the notion of monotonicity of sections 3 and 4? In
the nondeterministic framework of section 4, definition 2, we said that

τ ≥ τ ′ if τ(ω) ≥ τ ′(ω) holds ∀ω ∈ Ω, (11)

Clearly, if two random latencies τ and τ ′ satisfy condition (11), then they also
satisfy condition (9). That is, ordering (11) is stronger than stochastic ordering
(9). Unfortunately, the converse is not true in general. For example, condition (9)
may hold while τ and τ ′ are two independent random variables, which prevents
(11) from being satisfied. Nevertheless, the following routine result holds:

Theorem 4. If condition (9) holds for the two distribution functions F and F ′,
then there exists a probability space Ω, a probability P over Ω, and two real
valued random variables τ̂ and τ̂ ′ over Ω, such that:

1. τ̂ and τ̂ ′ possess F and F ′ as respective distribution functions, and
2. condition (11) is satisfied by the pair (τ̂ , τ̂ ′) with probability 1.

Proof. Take Ω = [0, 1] and P the Lebesgue measure. Then, taking, τ̂(ω) =
inf{x ∈ R+|F (x) ≥ ω} and τ̂ ′(ω) = inf{x ∈ R+|F ′(x) ≥ ω} yields the claim.

Theorem 4 allows reducing the stochastic comparison of real valued random
variables to their ordinary comparison as functions defined over the same set of
experiments endowed with a same probability. This applies in particular to each
random latency function and each random initial date function, when considered
in isolation. Thus, when performing construction (10) for two OrchNets N and

N ′, we can take the same pair (Ωt,Pt) to represent both τt and τ ′
t , and similarly

for τp and τ ′
p. Applying (10) implies that both N and N ′ are represented using

the same pair (Ω,P). This leads naturally to definition 6.
In addition, applying theorem 4 to each transition t and each minimal place p

yields that stochastic ordering N ≥s N ′ reduces to ordinary ordering N ≥ N ′.
Observe that this trick does not apply to the overall latencies E(N) and E(N ′) of
the two OrchNets; the reason for this is that the space of experiments for these
two random variables is already fixed (it is Ω) and cannot further be played
with as theorem 4 requires. Thus we can reformulate probabilistic monotonicity
as follows—compare with definition 5:

Definition 7 (probabilistic monotonicity, 2). Probabilistic pre-OrchNet (N,P)
is called probabilistically monotonic if, for any two N ,N ′ ∈ N, such that N ≥
N ′, we have E(N) ≥s E(N ′).

Note the careful use of ≥ and ≥s . The following two results establish a relation
between probabilistic monotonicity and monotonicity:

Theorem 5. If pre-OrchNet N is monotonic, then, probabilistic pre-OrchNet
(N,P) is probabilistically monotonic for any probability P over the set Ω.

This result was already obtained in the first probabilistic setting; it is here a
direct consequence of the fact that τ ≥ τ ′ implies τ ≥s τ ′ if τ and τ ′ are two
random variables defined over the same probability space. The following converse
result completes the landscape and is much less straightforward. It assumes that
it is legal to increase at will latencies or initial dates, see theorem 1:

Theorem 6. Assume condition 2b of theorem 1 is satisfied. Then, if probabilis-
tic pre-OrchNet (N,P) is probabilistically monotonic, then it is also monotonic
with P-probability 1.

6 Getting Rid of Non-Monotonicity

Avoiding Non-Monotonicity. We suggest a few ways in which non-monotonic
orchestrations can be made monotonic. These might serve as guidelines to the
designer of an orchestration, to avoid building non-monotonic orchestrations.

1. Eliminate Choices. We saw that choices in the execution flow can create non-
monotonicity. So if possible, choices in the execution flow should be avoided
while designing orchestrations. This seems very restrictive but is not totally
unrealistic. For example, in the Travel Planner orchestration of figure 3, if
the designer can find a rental service for both, cars and bikes, then the two
mutually exclusive rental calls can be replaced by a call to that single rental
service. This makes the execution flow an event graph and the Travel Planner
orchestration monotonic.

2. Balancing out performance of mutually exclusive branches. One way to make
an orchestration “more monotonic” is to ensure that all its mutually exclusive
branches have similar response times. For e.g., in the Travel Planner example

of figure 3, if the two exclusive services Bike Rent and Car Rent have similar
response times, the orchestration is nearly monotonic.

3. Externalising Choices. Choices are of course integral to many execution flows
and sometimes simply cannot be removed. A possible way out in this case is
to externalise the choice and make them client dependent. This solution has
already been discussed in the modified Travel Planner example of Section 2.

4. If none of the above works, then a brute force alternative consists in perform-
ing the following. Replace the orchestration latency Eω(N) defined in (6) by
the following pessimistic bound for it (see Theorem 1 for the notations):

Fω(N) = max
{

Eω(κ,N) | κ ∈ V (N)
}

(12)

Then for any net N , and any two OrchNets N and N ′ over N , ∀ω

Fω(N) ≥ Eω(N) (13)

N ≥ N ′ ⇒ Fω(N) ≥ Fω(N ′) (14)

holds. Therefore, using the pessimistic bound Fω(N) instead of tight esti-
mate Eω(N) when building the orchestration’s contract with its customer,
is safe in that: 1) by (14), monotonicity of Fω(N) with respect to the under-
lying OrchNet is guaranteed, and 2) by (13), the orchestration will meet its
contract if its sub-contractors do so. In turn, this way of composing contracts
is pessimistic and should therefore be avoided whenever possible.

Where does monotonicity play a role in the orchestration’s life cycle? We use
contracts to abstract the behaviour of the services involved in an orchestration.
The orchestration, trusting these contracts, composes them to derive an estimate
of its own performance, from which a contract between the orchestration and its
customers can be established. Since this relies on trust between the orchestration
and its sub-contractors, these contracts will have to be monitored at run-time to
make sure that the sub-contractors deliver the promised performance. In case of
violation, counter-measures like reconfiguring the orchestration might be taken.
The orchestration’s life cycle thus consists of the following phases [11]:

1. At design time, establish QoS contracts with the customer by composing
QoS contracts from the called services; tune the monitoring algorithms ac-
cordingly; design reconfiguration strategy.

2. At run time, run the orchestration; in parallel, monitor the called services for
possible QoS contract violation; whenever needed, perform reconfiguration.

Monotonicity plays a critical role at design time. The above pessimistic approach
can be used as a backup solution if monotonicity is not satisfied. Monotonicity
is however, not an issue at run time and the orchestration can be taken as such,
with no modification. Monitoring of the called services remains unchanged too.

7 Conclusion

This paper is a contribution to the fundamentals of contract based QoS man-
agement of Web services orchestrations. QoS contracts implicitly assume mono-
tonicity w.r.t. QoS parameters. We focus on one representative QoS parameter,

namely response time. We have shown that monotonicity is easily violated in re-
alistic cases. We have formalized monotonicity and have provided necessary and
sufficient conditions for it. As we have seen, QoS can be very often traded for
Quality of Data: poor quality responses to queries (including exceptions or in-
valid responses) can often be got much faster. This reveals that QoS parameters
should not be considered separately, in isolation. We have provided guidelines
for getting rid of non-monotonicity.

We see one relevant extension of this work: Advanced orchestration languages
like Orc [7] offer a sophisticated form of preemption that are modelled by contex-
tual nets (with read arcs). Our mathematical results do not consider nets with
read arcs. Extending our results to this case would be interesting and useful.

References

1. Gordon Anderson. Nonparametric tests of stochastic dominance in income distri-
butions. Econometrica, 64(5):1183–93, September 1996.

2. Jesús Arias-Fisteus, Luis Sánchez Fernández, and Carlos D. Kloos. Applying model
checking to BPEL4WS business collaborations. In SAC, pages 826–830, 2005.

3. OASIS WSBPEL Technical Committee. Web Services Business Process Execution
Language Version 2.0. OASIS Standard, April 2007.

4. D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte. Modelling

with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., NY, USA, 1994.
5. A. Keller and H. Ludwig. The wsla framework: Specifying and monitoring service

level agreements for web services. J. Network Syst. Manage., 11(1), 2003.
6. David Kitchin, William R. Cook, and Jayadev Misra. A language for task orches-

tration and its semantic properties. In CONCUR, pages 477–491, 2006.
7. Jayadev Misra and William R. Cook. Computation orchestration: A basis for wide-

area computing. Journal of Software and Systems Modeling, May, 2006. Available
for download at http://dx.doi.org/10.1007/s10270-006-0012-1.

8. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of

the IEEE, 77(4):541–580, April 1989.
9. Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel, Marlon

Dumas, and Arthur H. M. ter Hofstede. Formal semantics and analysis of control
flow in ws-bpel. Sci. Comput. Program., 67(2-3):162–198, 2007.

10. Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Probabilistic
QoS and soft contracts for transaction based web services. In ICWS, pages 126–133,
2007.

11. Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Probabilistic
QoS and Soft Contracts for Transaction based Web Services. IEEE Transactions

on Services Computing, 1(4):187–200, 2008.
12. Sidney Rosario, David Kitchin, Albert Benveniste, William R. Cook, Stefan Haar,

and Claude Jard. Event structure semantics of orc. In WS-FM, pages 154–168,
2007.

13. Wil M. P. van der Aalst. Verification of workflow nets. In ICATPN, volume 1248
of Lecture Notes in Computer Science, pages 407–426. Springer, 1997.

14. Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web Services Com-
position. IEEE Trans. Software Eng., 30(5):311–327, 2004.

A Collecting proofs

A.1 Proof of Theorem 1

Proof. We first prove Statement 1. Let N ′ ∈ N be such that N ′ ≥ N . We have:

Eω(κ(N ′, ω),N ′) ≥ Eω(κ(N ′, ω),N) ≥ Eω(κ(N , ω),N)

where the first inequality follows from the fact that κ(N ′, ω) is a conflict free
partial order and N ′ ≥ N , and the second inequality follows from (7) applied
with κ = κ(N ′, ω). This proves Statement 1.

We prove statement 2 by contradiction. Let (N , ω, κ†) be a triple violating
Condition (7), in that

κ† cannot occur, but Eω(κ†,N) < Eω(κ(N , ω),N) nevertheless holds.

Now consider the OrchNet net N ′ = (N,Φ, T ′, Tinit) where the family T ′ is the
same as T except that in ω, ∀t /∈ κ†, τ ′

t(ω) > Eω(κ†,N). Clearly N ′ ≥ N . But
using construction (4), it is easy to verify that κ(N ′, ω) = κ† and thus

Eω(κ(N ′, ω),N ′) = Eω(κ†,N ′) = Eω(κ†,N) < Eω(κ(N , ω),N),

which violates monotonicity.

A.2 Proof of Theorem 2

Proof. Let ϕW be the net morphism mapping NW onto W and let N ∈ N be
any OrchNet. We prove that condition 1 of Theorem 1 holds for N by induction
on the number of transitions in the maximal configuration κ(N , ω) that actually
occurs. The base case is when it has only one transition. Clearly this transi-
tion has the least latency and any other maximal configuration has a greater
execution time.

Induction Hypothesis. Condition 1 of Theorem 1 holds for any maximal occurring
configuration with m − 1 transitions (m > 1). Formally, for a pre-OrchNet N =
(N,Φ, T, Tinit): ∀N ∈ N,∀ω ∈ Ω,∀κ ∈ V (N),

Eω(κ,N) ≥ Eω(κ(N , ω),N) (15)

holds if |{t ∈ κ(N , ω)}| ≤ m − 1.

Induction Argument. Consider the OrchNet N , where the actually occurring con-
figuration κ(N , ω) has m transitions. κ′ is any other maximal configuration of N .
If the transition t in κ(N , ω) with minimal date dt also occurs in κ′ then compar-
ing execution times of κ(N , ω) and κ′ reduces to comparing Eω(κ(N , ω)\{t},N t)
and Eω(κ′ \ {t},N t). Since κ(N , ω) \ {t} is the actually occurring configuration
in the future N t of transition t, using our induction hypothesis, we have

Eω(κ(N , ω) \ {t},N t) ≤ Eω(κ′ \ {t},N t)

and so
Eω(κ(N , ω),N) ≤ Eω(κ′,N)

If t /∈ κ′ for some κ′, then there must exist another transition t′ such that
•t ∩ •t′ 6= ∅. By the definition of clusters, ϕW (t) and ϕW (t′) must belong to
the same cluster c. Hence, t• = t′

•
follows from condition 8 of Theorem 2. The

futures N t and N t′ thus have identical sets of transitions: they only differ in the
initial marking of their places. If Tinit and T ′

init are the initial marking of these
places, Tinit ≤ T ′

init (since dt ≤ dt′ , t• has dates lesser than t′
•
). Hence

Eω(κ(N , ω),N) = Eω(κ(N , ω) \ {t},N t) (16)

and

Eω(κ′,N) = Eω(κ′ \ {t′},N t′) ≥ Eω(κ′ \ {t′},N t) (17)

The inequality holds since N t′ ≥ N t. The induction hypothesis on (16) and (17)
gives Eω(κ(N , ω),N) ≤ Eω(κ′,N). This proves the theorem.

A.3 Proof of Theorem 3

Proof. We will show that when condition (8) of Theorem 2 is not satisfied by
W , the Orchnets in its induced preOrchNet NW can violate condition (7) of
Theorem 1, the necessary condition for monotonicity.

Let cW be any cluster in W that violates the condition 8 of Theorem 2.
Consider the unfolding of W , NW and the associated morphism ϕ : NW 7→ W
as introduced before. Since W is sound, all transitions in cW are reachable from
the initial place i and so there is a cluster c in NW such that ϕ(c) = cW .
There are transitions t1, t2 ∈ c such that •t1 ∩

•t2 6= ∅, •ϕ(t1) ∩
•ϕ(t2) 6= ∅ and

ϕ(t1)
• 6= ϕ(t2)

•
. Call [t] = ⌈t⌉ \ {t} and define K = [t1] ∪ [t2]. We consider the

following two cases:

K is a configuration. If so, consider the OrchNet N ∗ ∈ NW obtained when
transitions of NW (and so W) have latencies as that in W∗. So for the daemon
value ω∗, the quantity Eω∗(K,N ∗) is some finite value n∗. Now, configuration K
can actually occur in a OrchNet N , such that N > N ∗, where N is obtained as
follows (τ and τ∗ denote the latencies of transitions in N and N ∗ respectively):
∀t ∈ K, t′ ∈ NW s.t. •t∩•t′ 6= ∅, set τt′(ω

∗) = n∗+1 and keep the other latencies
unchanged. In this case, for the daemon value ω∗, the latencies of all transitions
of N (and so its overall execution time) is finite. Denote by NK the future of
N once configuration K has actually occurred. Both t1 and t2 are minimal and
enabled in NK .

Since ϕ(t1)
• 6= ϕ(t2)

•
, without loss of generality, we assume that there is a

place p ∈ t1
• such that ϕ(p) ∈ ϕ(t1)

•
but ϕ(p) /∈ ϕ(t2)

•
. Let t∗ be a transition

in NK such that t∗ ∈ p•. Such a transition must exist since p can not be a
maximal place: ϕ(p) can not be a maximal place in W which has a unique
maximal place. Now consider the Orchnet N ′ > N obtained as follows: τ ′

t1
(ω∗) =

τt1(ω
∗), τ ′

t2
(ω∗) = τt1(ω

∗) + 1 and for all other t ∈ c, τ ′
t(ω

∗) = τ ′
t2

(ω∗) + 1. Set
τ ′
t∗(ω

∗) = ∞ and for all other transitions of N ′, the delays are the same as that
in N and thus are finite for ω∗.

t1 has the minimal delay among all transitions in c, and t∗ is in the fu-
ture of t1. So the actually occurring configuration Eω∗(κ(N ′, ω∗),N ′) has an
infinite delay. However any maximal configuration κ which does not include t1
(for eg, when t2 fires instead of t1) will have a finite delay. For such κ we thus
have Eω∗(κ(N ′, ω∗),N ′) > Eω∗(κ,N ′) and so N ′ violates the condition (7) of
Theorem 1.

K is not a configuration. If so, there exist transitions t ∈ [t1]\ [t2], t′ ∈ [t2]\ [t1]
such that •t∩ •t′ 6= ∅, •ϕ(t)∩ •ϕ(t′) 6= ∅ and ϕ(t)

• 6= ϕ(t′)
•
. The final condition

holds since t2 and t1 are not in the causal future of t and t′ respectively. Thus t
and t′ belong to the same cluster, which violates condition 8 of Theorem 2 and we
can apply the same reasoning as in the beginning of the proof. Since [t] is finite
for any transition t, we will eventually end up with K being a configuration.

A.4 Proof of theorem 6

Proof. The proof is by contradiction. Assume that N is not monotonic with
positive P-probability, i.e., :

there exists a pair (N ,N ′) of OrchNets such that
N ≥ N ′ and P {ω ∈ Ω | Eω(N) < Eω(N ′)} > 0.

(18)

To prove the theorem it is enough to prove that (18) implies:

there exists No,N
′
o ∈ N such that No ≥ N ′

o,
but E(No) ≥s E(N ′

o) does not hold
(19)

To this end, set No = N and define N ′
o as follows, where Ωo denotes the set

{ω ∈ Ω | Eω(N) < Eω(N ′)}:

N ′
o(ω) = if ω ∈ Ωo then N ′(ω) else N (ω)

Note that No ≥ N ′
o by construction. Also, N ′

o ≥ N ′, whence N ′
o ∈ N since

condition 2b of theorem 1 is satisfied. On the other hand, we have Eω(No) <
Eω(N ′

o) for ω ∈ Ωo, and Eω(No) = Eω(N ′
o) for ω 6∈ Ωo. By (18), we have

P(Ωo) > 0. Consequently, we get:

[∀ω ∈ Ω ⇒ Eω(No) ≤ Eω(N ′
o)] and [P {ω ∈ Ω | Eω(No) < Eω(N ′

o)} > 0]

which implies that E(No) ≥s E(N ′
o) does not hold.

