
Realizability of Dynamic MSC Languages★

Benedikt Bollig1 and Löıc Héloüet2

1 LSV, ENS Cachan, CNRS, INRIA, France
2 IRISA, INRIA, Rennes, France

Abstract. We introduce dynamic communicating automata (DCA), an exten-
sion of communicating finite-state machines that allows for dynamic creationof
processes. Their behavior can be described as sets of message sequence charts
(MSCs). We consider the realizability problem for DCA: given a dynamic MSC
grammar (a high-level MSC specification), is there a DCA defining the same set
of MSCs? We show that this problem is decidable in doubly exponential time, and
identify a class of realizable grammars that can be implemented byfiniteDCA.

1 Introduction

Requirements engineering with scenario-based visual languages such as message se-
quence charts (MSCs) is a well established practice in industry. However, the require-
ments phase usually stops when a sufficiently largefinite base of scenarios covering
expected situations of the modeled system has been created.Although more elabo-
rated formalisms have been proposed, such as HMSCs [13], compositional MSCs [8],
or causal MSCs [6], requirements frequently consist in a finite set of finite behaviors
over a finite set of processes. The existing higher-level constructs are often neglected.
A possible reason might be that, in view of their huge expressive power, MSC specifi-
cations are not always implementable. As a part of the effortspent in the requirements
design is lost when designers start implementing a system, scenarios remain confined
to expressions of finite examples, and the higher-level constructs are rarely used. An-
other reason that may prevent designers from using high-level scenarios is that most
models depict the interactions of an a priorifixed set of processes. Nowadays, many
applications rely on threads, and most protocols are designed for an open world, where
all the participating actors are not known in advance. A firststep towards MSCs over an
evolving set of processes was made by Leucker, Madhusudan, and Mukhopadhyay [11].
Their fork-and-join MSC grammarsallow for dynamic creation of processes and have
good properties, such as decidability of MSO model checking. However, it remains un-
clear how to implement fork-and-join MSC grammars. In particular, a corresponding
automata model with a clear behavioral semantics based on MSCs is missing. Dynamic
process creation and its realizability are then two important issues that must be consid-
ered jointly.

This paper introduces dynamic communicating automata (DCA) as a model of pro-
grams with process creation. In a DCA, there are three types of actions: (1) a new
process can be created, (2) a message can be sent to an alreadyexisting process, and

★ Partly supported by the projects ANR-06-SETI-003 DOTS and ARCUSÎle de France-Inde.



(3) a message can be received from an existing process. Processes are identified by
means of process variables, whose values can change dynamically during an execution
of an automaton and be updated when a message is received. A message is sent through
bidirectional unbounded FIFO channels, which are available to any pair of existing pro-
cesses. Our model extends classical communicating finite-state machines [5], which
allow only for actions of the form (2) and (3) and serve as an implementation model for
existing specification languages such as HMSCs or compositional MSCs.

In a second step, we propose dynamic MSC grammars (DMG for short) as a specifi-
cation language. They are inspired by the fork-and-join grammars from [11] but closer
to an implementation. We keep the main idea of [11]: when unfolding a grammar, MSCs
are concatenated on the basis of finitely many process identifiers. While, in [11], the
location of identifiers can be changed by means of a very general and powerful split-
operator, our grammars consider an identifier as a pebble, which can be movedlocally
within one single MSC. In addition to process identifiers, weintroduce a new means of
process identification that allows for a more concise description of some protocols.

Given an implementation model and a specification formalism, the realizability
problem consists in asking whether a given specification comes with a corresponding
implementation. Realizability for MSC languages has been extensively studied in the
setting of a fixed number of processes [2, 12, 1]. In a dynamic framework where DMGs
are seen as specifications and DCA as distributed implementations, we have to consider
a new aspect of realizability, which we callproximity realizability. This notion requires
that two processes know each other at the time of (asynchronous) communication. We
show that proximity realizability can be checked in doubly exponential time. Note that
the representation of the behavior of each process may require infinitely many states
(due to the nature of languages generated by the grammar), and that the notion of prox-
imity realizability does not take into account the structure of processes. The next step
is then to identify a class of DMGs that is realizable in termsof finiteDCA.

The paper is organized as follows: Section 2 introduces MSCs. Sections 3 and 4
present dynamic communicating automata and dynamic MSC grammars, respectively.
In Section 5, we define proximity realizability and show thatthe corresponding decision
problem can be solved in doubly exponential time. Moreover,we present an implemen-
tation of local-choice MSC grammars in terms of finite DCA. Section 6 concludes with
some directions for future work. Missing proofs can be foundin [3].

2 Message Sequence Charts

A message sequence chart (MSC) consists of a number of processes (or threads). Each
processp is represented by a totally ordered set of eventsEp. The total order is given by
a direct successor relation<p. An event is labeled by its type. The minimal element of
each thread is labeled withstart. Subsequent events can then execute send (!), receive
(?), or spawn (spawn) actions. The relation<m associates each send event with a cor-
responding receive event on a different thread. The exchange of messages between two
threads has to conform with a FIFO policy. Similarly,<s relates a spawn evente ∈ Ep

with the (unique) start action of a different threadq ∕= p, meaning thatp has createdq.

Definition 1. AnMSC is a tupleM = (P, (Ep)p∈P , <p, <s, <m, �) where

2



(a) P ⊆ N = {0, 1, . . .} is a nonempty finite set ofprocesses,
(b) theEp are disjoint nonempty finite sets ofevents(we letE :=

∪
p∈P

Ep),
(c) � : E → {!, ?, spawn, start} assigns atypeto each event, and
(d) <p, <s, and<m are binary relations onE.

There are further requirements:≤ := (<p∪<s∪<m)
∗ is a partial order;�−1(start) =

{e ∈ E ∣ there is noe′ ∈ E such thate′ <p e}; <p ⊆
∪

p∈P
(Ep × Ep) and, for every

p ∈ P, <p ∩ (Ep × Ep) is the direct-successor relation of some total order onEp;
(E,≤) has a unique minimal element, denoted bystart(M); <s induces a bijection
between�−1(spawn) and�−1(start) ∖ {start(M)}; <m induces a bijection between
�−1(!) and �−1(?) satisfying the following: fore1, e2 ∈ Ep and e′1, e

′
2 ∈ Eq with

e1 <m e′1 ande2 <m e′2, we have bothp ∕= q ande1 ≤ e2 iff e′1 ≤ e′2 (FIFO).

In Figure 1,M is an MSC with set of processesP = {1, 2, 3, 4}. An MSC can be
seen as one single execution of a distributed system. To generate infinite collections of
MSCs, specification formalisms usually provide a concatenation operator. It will allow
us to append to an MSC a partial MSC, which is a kind of suffix that does not necessarily
have start events on each process. LetM = (P, (Ep)p∈P , <p, <s, <m, �) be an MSC
and letE′ ⊆ E be a nonempty set satisfyingE′ = {e ∈ E ∣ (e, e′) ∈ <m ∪<s ∪ ≤

−1

for somee′ ∈ E′} (i.e.,E′ is an upward-closed set containing onlycompletemessages
and spawning pairs). Then, the restriction ofM toE′ is called apartial MSC(PMSC).
In particular, the new process set is{p ∈ P ∣ E′ ∩ Ep ∕= ∅}. The set of PMSCs is
denoted byℙ, the set of MSCs byM. Consider Figure 1. It depicts the simple MSCIp,
with one event on processp ∈ N. Moreover,M1,M2 ∈ ℙ ∖M.

LetM = (P, (Ep)p∈P , <p, <s, <m, �) be a PMSC. Fore ∈ E, we denote byloc(e)
the unique processp ∈ P such thate ∈ Ep. For everyp ∈ P, there are a unique minimal
and a unique maximal event in(Ep,≤ ∩ (Ep × Ep)), which we denote byminp(M)
andmaxp(M), respectively. We letProc(M) = P. By Free(M), we denote the set of
processesp ∈ P such that�−1(start) ∩ Ep = ∅. Finally,Bound(M) = P ∖Free(M).
Intuitively, free processes of a PMSCM are processes that are not initiated inM . In
Figure 1,Bound(Ip) = {p}, Free(M1) = {1}, andFree(M2) = {1, 2}.

Visually, concatenation of PMSCs corresponds to drawing identical processes one
below the other. Fori = 1, 2, let M i = (Pi, (Ei

p)p∈Pi , <i
p
, <i

s
, <i

m
, �i) be PMSCs.

Consider the structureM = (P, (Ep)p∈P , <p, <s, <m, �) whereEp = E1
p ⊎ E2

p

for all p ∈ P = P1 ∪ P2 (assumingEi
p = ∅ if p ∕∈ Pi) and<p = <1

p
∪ <2

p
∪

{(maxp(M
1),minp(M

2)) ∣ p ∈ P with E1
p ∕= ∅ andE2

p ∕= ∅}. In addition,<m and
� arise as simple unions. IfM is a PMSC, then we setM1 ∘M2 := M . Otherwise,
M1 ∘M2 is undefined (e.g., if somep ∈ P2 has a start event andE1

p ∕= ∅).
In the context of partial orders, it is natural to consider linearizations. We fix the

infinite alphabet� = {!(p, q) , ?(p, q) , spawn(p, q) ∣ p, q ∈ N with p ∕= q}. For a
PMSCM = (P, (Ep)p∈P , <p, <s, <m, �), we let poset(M) := (E′,≤′, �′) where
E′ = E ∖ �−1(start), ≤′ = ≤ ∩ (E′ × E′), and�′ : E′ → � such that, for all
(e, ê) ∈ <s, we have�′(e) = spawn(loc(e), loc(ê)), and, for all(e, ê) ∈ <m, both
�′(e) = !(loc(e), loc(ê)) and�′(ê) = ?(loc(e), loc(ê)). The setLin(poset(M)) of
linearizationsof poset(M) is defined as usual as a subset of�∗.

3



p

startIp

1 2

spawn startM1

1 2

? !M2

M 1 2 3 4

start

spawn start

spawn start

spawn start

? !

? !

? !

? !

Fig. 1. (Partial) message sequence charts

3 Dynamic Communicating Automata

Dynamic communicating automata (DCA) extend classical communicating finite-state
machines [5]. They allow for the dynamic creation of processes, andasynchronous
FIFO communication between them. Note that most of existingdynamic models lack
such asynchronous communication (see [4] for some references). Each processp holds
a set of process variables. Their values represent process identities thatp remembers
at a given time, and they allowp to communicate with them. This model is close to
the threading mechanism in programming languages such as JAVA and Erlang, but also
borrows elements of the routing mechanisms in protocols implemented over partially
connected mesh topologies. Threads will be represented by dynamically created copies
of the same automaton. At creation time, the creating threadwill pass known process
identities to the created thread. A thread can communicate with another one if both
threads know each other, i.e., they have kept their identities in memory. This mecha-
nism is chosen to preserve the partial-order concurrency ofMSCs, which provide the
semantics of DCA.

We introduce DCA with an example. The DCA in Figure 2 comes with sets of pro-
cess variablesX = {x1, x2, x3}, messagesMsg = {m}, statesQ = {s0, . . . , s6}
wheres0 is the initial state, final statesF = {s3, s4, s6}, and transitions, which are
labeled with actions. Each process associates with every variable in X the identity
of an existing process. At the beginning, there is one process, say1. Moreover, all
process variables have value1, i.e., (x1, x2, x3) = (1, 1, 1). When process1 moves
from s0 to s1, it executesx1 ← spawn(s0, (self, self, x3)), which creates a new pro-
cess, say2, starting ins0. In the creating process, we obtainx1 = 2. In process2, on
the other hand, we initially have(x1, x2, x3) = (1, 1, 1). So far, this scenario is cap-
tured by the first three events in the MSCM of Figure 1. Process2 itself might now
spawn a new process3, which, in turn, can create a process4 in which we initially have
(x1, x2, x3) = (3, 3, 1). Now assume that, instead of spawning a new process,4 moves
to states5 so that it sends the message(m, (4, 3, 1)) to process3. Recall that process
3 is in states1 with (x1, x2, x3) = (4, 2, 1). Thus,3 can executex1 ? (m, {x1}), i.e.,
receive(m, (4, 3, 1)) and setx1 to 4. We then have(x1, x2, x3) = (4, 2, 1) on process
3. The DCA accepts, e.g., the behaviorM depicted in Figure 1.

4



s0

s1 s2

s3

s4

s5 s6

x1 ← spawn(s0, (self, self, x3))

x2 ! (m, (self, x2, x3))

x2 ! (m, (x1, x2, x3))

x1 ? (m, ∅)

x1 ? (m, {x1})

x3 ! (m, (x1, x2, x3))

Fig. 2.A dynamic communicating automaton

Definition 2. A dynamic communicating automaton(or simply DCA) is a tupleA =
(X,Msg , Q,�, �, F ) whereX is a set ofprocess variables, Msg is a set ofmessages,
Q is a set ofstates, � ∈ Q is the initial state, F ⊆ Q is the set offinal states, and
� ⊆ Q×ActA ×Q is the set oftransitions. Here,ActA is a set ofactionsof the form
x ← spawn(s, �) (spawn action), x ! (m, �) (send action), x ? (m,Y ) (receive action),
andrn(�) (variable renaming) wherex ∈ X, s ∈ Q, � : (X ⊎ {self})X , � : X → X,
Y ⊆ X, andm ∈ Msg . We say thatA is finite if X, Msg , andQ are finite.

We define the semantics of a DCA as a word language over�. This language is the
set of linearizations of some set of MSCs and therefore yields a natural semantics in
terms of MSCs. LetA = (X,Msg , Q,�, �, F ) be some DCA.

A configurationof A is a quadruple(P, state, proc, ch) whereP ⊆ N is a non-
empty finite set of active processes (or identities),state : P → Q maps each active
process to its current state,proc : P → PX contains the identities that are known
to some process, andch : (P × P) → (Msg × PX)∗ keeps track of the channels
contents. The configurations ofA are collected inConfA. We define a global transition
relation=⇒A ⊆ ConfA × (� ∪ {"}) × ConfA as follows: Fora ∈ � ∪ {"},
c = (P, state, proc, ch) ∈ ConfA, andc′ = (P ′, state ′, proc′, ch ′) ∈ ConfA, we let
(c, a, c′) ∈ =⇒A if there arep ∈ P andp̂ ∈ N with p ∕= p̂ (the process executinga and
the communication partner or spawned process),x ∈ X, s0 ∈ Q, � : (X ⊎ {self})X ,
Y ⊆ X, � : X → X, and(s, b, s′) ∈ � such thatstate(p) = s, and one of the cases in
Figure 3 holds (c andc′ coincide for all values that are not specified below a line).

An initial configurationis of the form({p}, p 7→ �, proc, (p, p) 7→ ") ∈ ConfA for
somep ∈ N whereproc(p)[x] = p for all x ∈ X. A configuration(P, state, proc, ch)
is final if state(p) ∈ F for all p ∈ P, andch(p, q) = " for all (p, q) ∈ P × P. A
run of DCA A on a wordw ∈ �∗ is an alternating sequencec0, a1, c1, . . . , an, cn of
configurationsci ∈ ConfA and lettersai ∈ � ∪ {"} such thatw = a1.a2 . . . an, c0
is an initial configuration and, for everyi ∈ {1, . . . , n}, (ci−1, ai, ci) ∈ =⇒A.3 The
run isacceptingif cn is a final configuration. Theword languageof A, denotedℒ(A),
is the set of wordsw ∈ �∗ such that there is an accepting run ofA onw. Finally, the
(MSC) languageof A is L(A) := {M ∈ M ∣ Lin(poset(M)) ⊆ ℒ(A)}. Figure 2
shows afiniteDCA. It accepts the MSCs that look likeM in Figure 1.

3 Here and elsewhere,u.w denotes the concatenation of wordsu andv. In particular,a." = a.

5



spawn
a = spawn(p, p̂) b = x← spawn(s0, �)

P ′ = P ⊎ {p̂}
state ′(p) = s′

state ′(p̂) = s0

ch ′(q, q′) = "

if p̂ ∈ {q, q′}
proc′(p)[x] = p̂

proc′(p̂)[y] =

(

proc(p)[�[y]] if �[y] ∕= self

p if �[y] = self

for all y ∈ X

send
a = !(p, p̂) b = x ! (m, �) p̂ = proc(p)[x]

state
′(p) = s

′

ch ′(p, p̂) = (m, ).ch(p, p̂)

where ∈ PX with

[y] =

(

proc(p)[�[y]] if �[y] ∕= self

p if �[y] = self

receive
a = ?(p̂, p) b = x ? (m,Y ) p̂ = proc(p)[x]

state
′(p) = s

′ there is ∈ PX such that
»

ch(p̂, p) = ch ′(p̂, p).(m, )
∧ for all y ∈ Y, proc′(p)[y] = [y]

–

renaming
a = " b = rn(�)

state
′(p) = s

′

proc′(p)[y] = proc(p)[�(y)]
for all y ∈ X

Fig. 3. Global transition relation of a DCA

DCA actually generalize the classical setting of communicating finite-state ma-
chines [5]. To simulate them, the starting process spawns the required number of pro-
cesses and broadcasts their identities to any other process.

4 Dynamic MSC Grammars

In this section, we introducedynamic MSC grammars(DMGs). They are inspired by the
grammars from [11], but take into account that we want to implement them in terms of
DCA. We keep the main idea of [11] and use process identifiers to tag active processes
in a given context. Their concrete usage is different, though, and allows us to define
protocols such as the language of the DCA from Figure 2 in a more compact way.

Let us start with an example. Figure 4 depicts a DMG with non-terminalsN =
{S,A,B}, start symbolS, process identifiers� = {�1, �2}, and five rules. Any rule
has a left-hand side (a non-terminal), and a right-hand side(a sequence of non-terminals
and PMSCs). In a derivation, the left-hand side can be replaced with the right-hand
side. This replacement, however, depends on a more subtle structure of a rule. The
bottom left one, for example, is actually of the formA −→f � with � =ℳ1.A.ℳ2,
wheref is a function that maps the first process of�, which is consideredfree, to the
process identifier�2. This indicates where� has to be inserted when replacingA in a
configuration. To illustrate this, consider a derivation asdepicted in Figure 5, which is
a sequence of configurations, each consisting of an upper anda lower part. The upper

6



S −→

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1

spawn start
�2

A

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S −→

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�1

spawn start
�2

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

A

B −→

0

B

B

B

@

�1 �2

? !

1

C

C

C

A

A −→

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�2

spawn start
�2

A

? !

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A −→

0

B

B

B

B

B

B

B

B

B

@

�2

spawn start
�2

? !

1

C

C

C

C

C

C

C

C

C

A

Fig. 4. A dynamic MSC grammar

part is anamedMSC [11], an MSC where some processes are tagged with process
identifiers. The lower part, a sequence of PMSCs and non-terminals, is subject to further
evaluation. In the second configuration, which is of the form(M, A.�) (with named
MSCM), replacingA with � requires a renaming� of processes: the first process of�,
tagged with�2, takes the identity of the second process ofM, which also carries�2. The
other process of� is considered newly created and obtains a fresh identity. Thereafter,
A can be replaced with�� so that we obtain a configuration of the form(M,ℳ.),
ℳ being a PMSC. The next configuration is(M ∘ ℳ, ) where the concatenation
M ∘ ℳ is simply performed on the basis of process names and does notinclude
any further renaming. Process identifiers might migrate, though. Actually,ℳ is a pair
(M,�) whereM is a PMSC and� partially maps process identifiers� to process pairs
(p, q), allowing� to change its location fromp to q during concatenation (cf. the third
configuration in Figure 5, where�2 has moved from the second to the third process).

Let us formalize the components of a DMG. Let� be a nonempty and finite set of
process identifiers. A named MSCover� is a pair(M,�) whereM is an MSC and
� : � → Proc(M). An in-out PMSCover� is a pair(M,�) whereM is a PMSC
and� : � ⇀ Free(M) × Proc(M) is a partial mapping. We denote by nM the set of
named MSCs and by mℙ the set of in-out PMSCs over� (we assume that� is clear
from the context). We letM range over named MSCs andℳ over in-out PMSCs.

A derivation of a DMG is a sequence of configurations(M, �). The named MSC
M represents the scenario that has been executed so far, and� is a sequence of non-
terminals and in-out PMSCs that will be evaluated later, proceeding from left to right.
If � = ℳ. for some in-out PMSCℳ, then the next configuration is(M ∘ ℳ, ).
However, the concatenationM ∘ ℳ is defined only ifM andℳ are compatible.
Formally, we define a partial operation∘ : nM × mℙ ⇀ nM as follows: Let
(M1, �1) ∈ nM and(M2, �2) ∈ mℙ. Then,(M1, �1) ∘ (M2, �2) is defined ifM1 ∘M2

is defined and contained inM, and, for all� ∈ � such that�2(�) = (p, q) is defined, we
have�1(�) = p. If defined, we set(M1, �1)∘(M2, �2) := (M,�) whereM = M1∘M2,
�(�) = �1(�) if �2(�) is undefined, and�(�) = q if �2(�) = (p, q) is defined.

7



0

B

B

B

B

B

B

B

B

B

@

�2

�1

start

S

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

start

spawn start

A

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

start

spawn start

spawn start

? !

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

start

spawn start

spawn start

? !

? !

? !

"

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Fig. 5.A derivation

Consider a configuration(M, A.). Replacing non-terminalA with a sequence�
includes a renaming of processes to make sure that those thatare free in � and carry
identifier� have the same name as an existing process ofM carrying�. I.e., processes
that occur free in� take identities of processes fromM. To be able to distinguish
between free and bound processes in�, we introduce the notion of an expression. Let
N be a set of non-terminals, and� be a set of process identifiers. Anexpressionover
N and� is a sequence� ∈ (mℙ ∪ N )∗ of the formu0.(M1, �1).u1 . . . (Mk, �k).uk,
k ≥ 1 andui ∈ N ∗, such thatM(�) := M1 ∘ . . . ∘Mk ∈ ℙ. We letProc(�) :=
Proc(M(�)), Free(�) := Free(M(�)), andBound(�) := Bound(M(�)).

Definition 3. A dynamic MSC grammar(DMG) is a quadrupleG = (�,N , S,−→)
where� andN and are nonempty finite sets ofprocess identifiersandnon-terminals,
S ∈ N is the start non-terminal, and−→ is a finite set ofrules. A rule is a triple
r = (A,�, f) whereA ∈ N is a non-terminal,� is an expression overN and� with
Free(�) ∕= ∅, andf : Free(�)→ � is injective. We may writer asA −→f �.

In the sequel, let∣G∣ := ∣�∣+
∑

A−→f�
(∣�∣+ ∣M(�)∣) be thesizeof G (∣�∣ denot-

ing the length of� as a word and∣M(�)∣ the number of events ofM(�)). Moreover,
we setProc(G) :=

∪
A−→f�

Proc(�).
A renaming is a bijective mapping� : N → N. For an in-out PMSCℳ =

(M,�) with M = (P, (Ep)p∈P , <p, <s, <m, �), we letℳ� = (M�,��) where
M� = (�(P), (E�−1(p))p∈�(P), <p, <s, <m, �) and��(�) = (�(p), �(q)) if �(�) =
(p, q) is defined; otherwise,��(�) is undefined. For a ruler = (A,�, f) with � =
u0.ℳ1.u1 . . .ℳk.uk, we setr� := (A,��, f�) where�� = u0.ℳ1�.u1 . . .ℳk�.uk

andf�(q) = f(�−1(q)) for q ∈ Free(��).

A configurationof DMG G = (�,N , S,−→) is a pair(M, �) whereM ∈ nM and
� ∈ (mℙ ∪ N )∗. If � = ", then the configuration is said to befinal. Let ConfG be
the set of configurations ofG. A configuration isinitial if it is of the form ((Ip, �), S)
for somep ∈ N, whereIp is depicted in Figure 1 and�(�) = p for all � ∈ �. The
semantics ofG is given as the set of (named) MSCs appearing in final configurations
that can be derived from an initial configuration by means of relations

r
=⇒G ⊆ ConfG×

ConfG (for every ruler) and
e

=⇒G ⊆ ConfG × ConfG.

8



1 2 3

start

spawn start

spawnstart

?!

Fig. 6.not realizable

1 2 3

start

spawn start

spawnstart

?!

?!

Fig. 7.2-realizable

– For configurationsC = (M, A.) andC′ = (M, �.), M = (M,�), andr ∈ −→,
we letC

r
=⇒G C′ if there is a renaming� such thatr� = (A,�, f), �(f(p)) = p

for all p ∈ Free(�), andProc(M) ∩ Bound(�) = ∅.

– For configurationsC = (M,ℳ.) andC′ = (M′, ), we letC
e

=⇒G C
′ if M′ =

M ∘ ℳ (in particular,M ∘ℳ must be defined).

We define=⇒G to be
e

=⇒G ∪
∪

r∈−→

r
=⇒G. The languageof G is the setL(G) :=

{M ∈M ∣ C0 =⇒∗
G ((M,�), ") for some initial configurationC0 and�}.

Let us formalizeG = (�,N , S,−→) from Figure 4. Given the PMSCsM1 andM2

from Figure 1, we letℳ1 = (M1, �1),ℳ2 = (M2, �2), andℳ12 = (M1 ∘M2, �1)
be in-out PMSCs with�1(�1), �2(�1), �2(�2) undefined and�1(�2) = (1, 2). We have

S −→fS ℳ1.A.ℳ2.B S −→fS ℳ12.B B −→fB ℳ2

A −→fA ℳ1.A.ℳ2 A −→fA ℳ12

wherefS(1) = fB(1) = �1 andfA(1) = fB(2) = �2. Recall that=⇒∗
G is illustrated in

Figure 5. In a configuration, the part above a first non-terminal (if there is any) illustrates
a named MSC. Note thatL(G) = L(A) for the DCAA from Figure 2.

5 Realizability of Dynamic MSC Grammars

Definition 4. Let L ⊆ M be an MSC language. We callL (proximity) realizableif
there is a DCAA such thatL = L(A). For B ∈ N, we say thatL is B-realizableif
there is a DCAA = (X,Msg , Q,�, �, F ) such thatL = L(A) and∣X∣ ≤ B.

The MSCM from Figure 1, considered as a singleton set, is3-realizable. It is not2-
realizable. The singleton set from Figure 6 is not realizable, as process 3 receives a
message from an unknown process. Adding a message makes it2-realizable (Figure 7).

Theorem 5. For a DMG G, one can decide in exponential time (wrt.∣G∣) if L(G) is
empty, and in doubly exponential time ifL(G) is realizable.

Proof (sketch).Let G = (�,N , S,−→) be a DMG. To answer the first question, we
build a tree automatonAG that accepts all parse trees that correspond to successful
derivations ofG. Thus, we haveL(AG) = ∅ iff L(G) = ∅. To answer the second
question, we build a tree automatonℬG for those parse trees that give rise to realizable

9



MSCs (considering an MSC as a singleton set). One can show that L(G) is realizable
iff all MSCs inL(G) are realizable. Thus,L(G) is realizable iffL(AG) ∖ L(ℬG) = ∅.

We restrict here to the more involved construction of the tree automatonℬG. To
illustrate the idea ofℬG, we use the DMGG from Figure 4. The left-hand side of Fig-
ure 8 depicts the parse treet of G that corresponds to the derivation from Figure 5.
We, therefore, callt legal. Note that, for technical reasons, the functionf from a rule
A −→f � is located at its non-terminalA. The crucial point of the construction is
to record, during a derivation, only a bounded amount of information on the current
communication structure of the system. A communication structure is a partition of the
set of process identifiers together with a binary relation that provides information on
what processes know of other processes. The right-hand sideof Figure 8 depicts a run
of ℬG on t. States, which are assigned to nodes, are framed by a rectangle. A state is
hence either a pair of communication structures (together with a non-terminal, which
is omitted), or an element from mℙ that occurs inG. Our automaton works bottom-up.
Consider the upper right leaf of the run tree, which is labeled with its stateℳ12. Sup-
pose that, when it comes to executingℳ12, the current communication structureC0

of the system contains two processes carrying�1 and�2, respectively, that know each
other (represented by the two edges). When we applyℳ12, the outcome will be a new
structure,C1, with a newly created process that collects process identifier �2. Hence-
forth, the process carrying�1 is known to that carrying�2, but the converse does not
hold. Names of nodes are omitted; instead, identical nodes are combined by a dotted
line. We conclude that applyingA −→fA ℳ12 has the effect of transformingC0 into
C1. Therefore,(C0, A, C1) is a state that can be assigned to the(A, fA)-labeled node,
as actually done in our example run. It is important here thatthe first structureC0 of
a state(C0, A, C1) is reducedmeaning that it restricts to nodes carrying process iden-
tifiers. The structureC1, however, might keep some unlabeled nodes, but only those
that stem from previously labeled ones. Hence, the set of states ofℬG will be finite,
though exponential in∣G∣. Like elements of mℙ, a triple(C0, A, C1) can be applied to
a communication structure. E.g., the states that label the successors of the root trans-
form D0 into D1. It is crucial here that, at any time, communicating processes know
each other in the current communication structure. Now, we can reduceD1 to D2 by
removing the middle node, as it does not carry a process identifier nor does it arise from
an identifier-carrying node. Thus,(D0, S,D2) is the state assigned to the root. It is fi-
nal, asD0 consists of only one process, which carries all the process identifiers. A final
state at the root ensures that the run tree represents a derivation that starts in the initial
configuration gathering all process identifiers, and ends ina realizable MSC. ⊓⊔

Corollary 6. For every DMGG = (�,N , S,−→), L(G) is realizable iffL(G) is
(∣Proc(G)∣+ a ⋅ ∣�∣)-realizable wherea = max{∣�∣ ∣ A −→f �}.

A realizable DMG is not necessarily implementable as a finiteDCA, as the behavior
of a single process need not be finite-state. We will determine a simple (but non-trivial)
class of DMGs that are finitely realizable. To guarantee finiteness, we restrict to right-
linear rules: a ruleA −→f � is right-linear if � is of the formℳ orℳ.B. Our class is
inspired bylocal-choice HMSCsas introduced in [9]. Local-choice HMSCs are scenario
descriptions over a fixed number of processes in which every choice of the specification

10



S, fS

ℳ1

A, fA

ℳ2

B, fB

ℳ12

ℳ2

�2
�1

�1 �2

�2
�1

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

C0

C1

D0

D1

D0

D2

�2−→

←−

�2−→
←−

←−

Fig. 8. A legal parse tree ofG and a run ofℬG

is taken by a root process for that choice. This root is in charge of executing the minimal
event of every scenario, and the subsequent messages can then be tagged to inform other
processes about the choice. Note that locality allows for a deadlock-free implementation
if the number of processes is fixed [7]. This is not guaranteedin our setting.

To adapt the notion of local-choice to DMGs, we essentially replace “process” in
HMSCs by “process identifier”. I.e., the root process that chooses the next rule to be
applied must come with a process identifier� that isactivein the current rule. So, for a
right-linear ruler = A −→f (M,�).�, we setActive(r) = f(Free(M)) ∪ dom(�).

Definition 7. A DMG (�,N , S,−→) is local if, for every ruler = A −→f �, r is
right-linear andM(�) has a unique minimal element. Moreover, if� = ℳ.B, then
there is� ∈ Active(r) such that, for allB-rules B −→g �, M(�) has a unique
minimal elemente satisfyingg(loc(e)) = �.

Theorem 8. LetG be a local DMG such thatL(G) is realizable. There is a finite DCA
A = (X,Msg , Q,�, �, F ) such thatL(A) = L(G). Hereby,∣X∣ and ∣Msg ∣ are poly-
nomial in∣G∣. Moreover,∣Q∣ and∣ActA∣ are exponential in∣G∣.

Proof (sketch).A state ofAwill locally keep track of the progress that has been made to
implement a rule. The root process may choose the next rule and inform its communica-
tion partners about this choice. The main difficulty in the implementation is the correct
identification of process identities in terms of process variables. We introduce a variable
x� for each� ∈ � and a variablexp for eachp ∈ Proc(G). AsG is right-linear,L(G)
is indeed∣�∣+ ∣Proc(G)∣-realizable. We pursue the following strategy of transmitting

11



process identities: When a processp is about to instantiate a non-terminal with a new
rule r, an arbitrary renaming� is applied. We assume hereby, that the “free processes”
of r are known top, though it is not clear to which variables they belong. Thus,� is
a simple guess, which has to be verified in the following. Indeed, the subsequent ex-
ecution can pass through only if that guess is correct. The reason is that identifiers of
free processes are held in local states and are sent in messages (in terms of events) so
that the receiving process can be sure to receive from the correct process. Yet, we need
to make sure that bound processesq are correctly identified. The idea is to enforce an
update ofxq whenever a message is received from a process that “knows”q. ⊓⊔

6 Future Work

A nice theory of regular sets of MSCs over a fixed number of processes has been estab-
lished [10] (a set of MSCs is regular if its linearization language is regular). We would
like to extend this notion to our setting. Preferably, any regular set of MSCs should have
an implementation in terms of a DCA. Note that, however, the linearizations of a set of
(dynamic) MSCs are words over an infinite alphabet. Another challenge is to extend
the class of DMGs that can be implemented by finite DCA beyond that of right-linear
specifications (and preferably without deadlock). Last, wethink that logics (e.g., MSO
logic) may serve as an alternative specification language for DCA implementations.

References

1. B. Adsul, M. Mukund, K. Narayan Kumar, and Vasumat Narayanan. Causal closure for MSC
languages. InFSTTCS’05, volume 3821 ofLNCS, pages 335–347. Springer, 2005.

2. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs.
Theoretical Computer Science, 331(1):97–114, 2005.

3. B. Bollig and L. H́eloüet. Realizability of dynamic MSC languages. Research report, LSV,
ENS Cachan, 2010. Available athttp://www.lsv.ens-cachan.fr/Publis/.

4. L. Bozzelli, S. La Torre, and A. Peron. Verification of well-formed communicating recursive
state machines.Theoretical Computer Science, 403(2-3):382–405, 2008.

5. D. Brand and P. Zafiropulo. On communicating finite-state machines.JACM, 30(2), 1983.
6. T. Gazagnaire, B. Genest, L. Héloüet, P. S. Thiagarajan, and S. Yang. Causal message

sequence charts.Theor. Comput. Sci., 410(41):4094–4110, 2009.
7. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs: Model-

checking and realizability.Journal on Comp. and System Sciences, 72(4):617–647, 2006.
8. E.L. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts.STTT,

5(1):78–89, 2003.
9. L. Héloüet and C. Jard. Conditions for synthesis of communicating automata fromHMSCs.

In FMICS’00, pages 203–224. Springer, 2000.
10. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, andP. S. Thiagarajan. A theory

of regular MSC languages.Information and Computation, 202(1):1–38, 2005.
11. M. Leucker, P. Madhusudan, and S. Mukhopadhyay. Dynamic message sequence charts. In

FSTTCS’02, volume 2556 ofLNCS, pages 253–264. Springer, 2002.
12. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps.Theoreti-

cal Computer Science, 309(1-3):529–554, 2003.
13. E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequence charts.Com-

puter Networks and ISDN Systems, 28(12):1629–1641, 1996.

12


