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Abstract. In this paper, a timed modal logic Lc is presented for the specification
and verification of real-time systems. Several important results for Lc are discussed.
First we address the model checking problem and we show that it is an EXPTIME-
complete problem. Secondly we consider expressiveness and we explain how to
express strong timed bisimilarity and how to build characteristic formulas for timed
automata. We also propose a compositional algorithm for Lc model checking. Finally
we consider several control problems for which Lc can be used to check controllability.
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1. Introduction

Model checking is widely used for the design and debugging of critical
reactive systems [18, 17]. In the last fifteen years, it has been extended
to real-time systems, where quantitative information about time is re-
quired. To express quantitative requirements of systems, we can use
timed logics to write timed specifications.

Timed models. Real-time model checking has been mostly studied and
developed in the framework of Alur and Dill’s Timed Automata [5, 7],
i.e., automata extended with dense-time clocks that evolve syn-
chronously with time. The behavior of a real-time system can be
modeled as a parallel composition of timed automata. There now exists
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a large body of theoretical knowledge and practical experience for this
class of systems.

Timed specifications. Temporal and modal logics provide a funda-
mental framework for formally specifying systems and reasoning about
them [18, 28]. For example, a property like

“Any problem is followed by an alarm.” (1)

can be easily expressed with temporal/modal logics like CTL, LTL,
µ-calculus. In the context of real-time systems, Property (1) can be
better formulated as a timed property like:

“Any problem is followed by an alarm within 10 time units.” (2)

In order to express such timing requirements, we can extend the classi-
cal temporal or modal logics. A first possibility is to use timed temporal
modalities [9]. For example, with the timed version of CTL, namely
TCTL, one can specify property (2) as follows:

AG
(

problem ⇒ AF≤10 alarm
)

using a subscript for the temporal operators.
A more expressive method [14] consists in adding clocks — a.k.a.

freeze variables — in the specification language [10, 14]. In this frame-
work, a formula clock x can be reset (with the in operator) and
compared against some constant later on. For example, the previous
property can be equivalently written as follows with explicit formula
clocks:

AG
(

problem ⇒ x in AF(x ≤ 10 ∧ alarm)
)

Such timing extensions carry over modal logics with fixpoint operators,
and the point of this paper is to study such a logic called Lc.

Outline. The logic Lc is an extension of the timed modal logic Lν intro-
duced in [24, 21]. Those logics are natural extensions of classical modal
logics for finite labeled transition systems w.r.t. the following aspects: 1)
fixpoint operators allow to express a wide range of properties; 2) timed
modalities ( [δ〉w and [δ〉s in the sequel), allow existential/universal
quantification over time delays; 3) formula clocks can be used in the
formula to define quantitative time properties.

We address several issues related to the above-mentioned logics:
complexity of model-checking, expressive power, and application to
control problems. This paper is based on earlier results published in
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the following papers [4, 21, 24, 23, 13]. Some results of section 5 are
new, and they extend the previous results of [13] on Ldet

ν to the logic
Ldet

c (see section 2.3).

2. Timed Automata and the Modal Logic Lc

We first recall the definition of timed automata proposed by Alur and
Dill in [6] and then we introduce the timed modal logic Lc.

2.1. Notations

Let Act be a finite set of actions, and let N, Q+ and R+ denote the
sets of natural, non-negative rational and non-negative real numbers,
respectively. Let X be a set of clocks. A clock valuation for X is a
function from X to R+, the set of valuations is denoted RX

+ . Given a
valuation v ∈ RX

+ and t ∈ R+, v+t is a valuation s.t. (v+t)(x) = v(x)+t
for any x ∈ X. Let r ⊆ X, v[r ← 0] is the valuation defined by
v[r ← 0](x) = 0 for any x ∈ r and v[r ← 0](x) = v(x) otherwise.

We denote by C(X) the set of clock constraints defined as the boolean
combinations of atomic constraints of the form x ∼ p or x−y ∼ p, with
x, y ∈ X, p ∈ N, and ∼ ∈ {<,≤, >,≥,=}. Given g ∈ C(X) and v ∈ RX

+ ,
we write v |= g when v satisfies g. We write C!(X) for the subset of
C(X) which consist of the conjunctions of constraints of the form x ≤ p
or x < p, with p ∈ N.

2.2. Networks of Timed Automata

DEFINITION 1. A timed automaton is a tuple A = (L, "0,Act,
X, Inv, T ) where L is a finite set of locations, "0 ∈ L is the initial
location, X is a finite set of clocks, Inv : L → C!(X) is a function that
assigns an invariant to each location, and T ⊆ L×C(X)×Act×2X×L
is a finite set of edges. A quintuple (", g, a, r, "′) ∈ T represents an edge
from location " to location "′ with action a, g is the guard and r is a
set of clocks to be reset to 0. In the sequel, we also use the notation
"

g,a,r
−−−→ "′ for an egde.

A guard is used to specify when a transition can be performed. An
invariant is used to avoid excessive time delays in a location and thus
it may enforce action transitions to be performed.

The semantics of a timed automaton s traditionally given by a timed
transition system. A timed transition system (TTS for short) is a tuple
S = (Q, q0,Act,→S) where Q is a set of states, q0 ∈ Q is the initial
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state, and →S ⊆ Q × (Act ∪ R+) × Q is a set of transitions (again we
write q

e
−−→S q′ when (q, e, q′) ∈→S). The transitions labeled by a ∈ Act

(resp. t ∈ R+) are called action (resp. delay) transitions. We make the
following common assumptions about delay transitions in TTSs:

− 0-delay: q
0

−−−→S q′ if and only if q = q′,

− Time additivity: if q
t

−−−→S q′ and q′
t′

−−−→S q′′ with t, t′ ∈ R+, then

q
t+t′

−−−−−→S q′′,

− Time continuity: if q
t

−−−→S q′, then ∀t′, t′′ ∈ R+ with t = t′ + t′′,

there exists q′′ such that q
t′

−−−→S q′′
t′′

−−−→S q′,

− Time determinism: if q
t

−−−→S q′ and q
t
−→S q′′ with t ∈ R+, then

q′ = q′′.

Standard notions of finite or infinite runs apply to TTS.

Given a timed automaton A = (L, "0,Act,X, Inv, T ), we define its
semantics as the TTS SA = (L×RX

+ , ("0, v0),Act,→SA) where v0(x) =
0 for all x ∈ X and →SA consists of:

1. action transitions: (", v)
a
−−→SA ("′, v′) if there exists an edge

"
g,a,r
−−−−→ "′ in T s.t. v |= g, v′ = v[r ← 0] and v′ |= Inv("′);

2. delay transitions: (", v)
t
−→SA (", v′) if t ∈ R+, v′ = v + t and1

v′ |= Inv(").

A state (or configuration) of a timed automaton A is a pair (", v),
where " is a location — or control state — and v is a clock valuation
for X. Note that there are infinitely (and uncountably) many states
in a timed automaton. However, a key point (for decidability) is the
synchronous time elapsing: all clocks increase at the same speed.

The size of A, denoted |A|, is

|L| + |X| +
∑

(",g,a,r,"′)∈T

|g| +
∑

"

|Inv(")|

where the size of a constraint is its length (constants are encoded in
binary).

REMARK 1. We have restricted the clock constraints to use constants
in the set N. Constants in Q+ could be used, but in this case an “equiv-
alent” timed automaton with constants in N can be obtained by scaling
the rational constraints (and properties when a timed logic is involved),
see [7, Lemma 4.1].

1 Due to the definition of invariants, this entails v+ t′ |= Inv(!) for any 0 ≤ t′ ≤ t.
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We model real-time systems as parallel compositions of timed au-
tomata with n-ary synchronization functions. Let A1, . . . ,An be n
timed automata with Ai = (Li, "i,0,Act,Xi, Invi, Ti) and Xi ∩ Xj =
∅ for i 0= j. A synchronization function σ is a partial function
(Act∪ {•})× . . .× (Act∪ {•}) → Act, where • denotes a distinguished
no–action symbol. This is a synchronization function with renaming
of synchronized actions. We write (A1| . . . |An)σ for the parallel com-
position of A1, . . . ,An w.r.t. synchronization function σ. A network
configuration is a pair (", v) where " = ("1, . . . , "n) is a vector of loca-
tions and v is a valuation for X =

⋃

1≤i≤n
Xi, i.e. the global set of clocks

of the network.
The semantics of (A1| . . . |An)σ can be defined as a TTS whose states

are the configurations of the network and the transitions are given by
the two following rules:

(", v)
t
−→ (", v + t) iff ∀i ∈ {1, . . . , n}, ("i, vi)

t
−→ ("i, vi + t)

(", v)
b
−−→ ("′, v′) iff σ(a1, . . . , an) = b and ∀i ∈ {1, . . . , n},

{

ai ∈ Act implies ("i, vi)
ai−−→ ("′i, v

′
i)

ai = • implies ("′i = "i ∧ v′i = vi)

where ui denotes the restriction of u to the set of clocks Xi.
Note that the parallel composition does not add expressive power to

timed automata: from any parallel composition of timed automata, one
can build an equivalent (i.e. strongly bisimilar, see Section 4.1) timed
automaton. Hence, in the following, unless specified, we will consider
single timed automata.

2.3. The Timed Modal Logic Lc

2.3.1. Syntax of Lc

We define Lc, a timed modal µ-calculus that extends the logic Lν [24]
with “until”-style modalities.

DEFINITION 2. Let K be a finite set of clocks (disjoint from X), and
Id be a countably infinite set of identifiers (ranged over by X,Y ). The
set Lc of formulas over Act, K and Id is generated by the following
grammar:

Lc 1 ϕ,ψ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | r in ϕ | g |

[a] ϕ | 〈a〉 ϕ | ϕ [δ〉w ψ | ϕ [δ〉s ψ | Z

where a ∈ Act, g ∈ C(K), r ⊆ K and Z ∈ Id.
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The meaning of the identifiers in Id is specified by a declaration D
assigning an Lc formula to every identifier in order to define properties
with maximal fixpoints. A declaration D is of the form Zi = D(Z)
where Z = (Z1, · · · , Zn) and D(Z) is a formula over identifiers in Z.

2.3.2. Semantics of Lc

Let A = (L, "0,Act,X, Inv, T ) be a timed automaton, and assume that
the TTS SA = (L× RX

+ , ("0, v0),Act,→SA) gives its semantics.
We interpret Lc formulas over extended states of the form (", v, u)

where (", v) is a configuration of A and u is a valuation for the formula
clocks in K. The formal semantics of Lc formulas interpreted over TTS
SA is given by the satisfaction relation |= defined as the largest relation
satisfying the implications in Table I (it can alternatively be defined
with ⇔ in place of ⇒ and largest relation).

The intuition for the various operators are as follows. The modality
〈a〉 (resp. [a]) corresponds to existential (resp. universal) quantification
over action transitions. The modalities [δ〉w and [δ〉s correspond to
“weak until” and “strong until” over delay transitions: the time domain
is dense, there is thus no notion of next state via these transitions. A
configuration satisfies ϕ [δ〉s ψ when there exists a future configuration
satisfying ψ s.t. ϕ holds for all the intermediary configurations. For
[δ〉w , it is not required to reach a configuration where ψ is true. An
extended state satisfies an identifier Z if it belongs to the maximal
fixpoint of the equation Z = D(Z). Finally the formula clocks are used
to measure time elapsing in properties.

The timed automaton A satisfies ϕ if ("0, v0, u0) |= ϕ where u0(x) =
0 for all x ∈ K.

We can easily define the standard modalities corresponding to
existential and universal quantifications over delay transitions:

〈δ〉 ϕ
def
= tt [δ〉s ϕ (3a)

[δ] ϕ
def
= ϕ [δ〉w ff (3b)

Moreover we also have the following equivalences:

ϕ [δ〉s ψ ≡ ϕ [δ〉w ψ ∧ 〈δ〉 ψ (4a)

ϕ [δ〉w ψ ≡ ϕ [δ〉s ψ ∨ [δ] ϕ (4b)

2.3.3. Other timed modal logics
The timed modal logic Lν [24] is the restriction of Lc where the modal-
ities [δ〉w and [δ〉s are not used, and instead, only [δ] and 〈δ〉 can be
used. Several restrictions of Lν , namely Ls (“Logic for Safety”), SBLL
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Table I. Satisfaction implications for Lc

(!, v, u) |= tt ⇒ tt

(!, v, u) |= ff ⇒ ff

(!, v, u) |= g ⇒ u |= g

(!, v, u) |= ϕ1 ∨ ϕ2, ⇒ (!, v, u) |= ϕ1 or (!, v, u) |= ϕ2

(!, v, u) |= ϕ1 ∧ ϕ2, ⇒ (!, v, u) |= ϕ1 and (!, v, u) |= ϕ2

(!, v, u) |= r in ϕ ⇒ (!, v, u[r ← 0]) |= ϕ

(!, v, u) |= [a] ϕ ⇒ for all (!, v)
a

−−→SA
(!′, v′), (!′, v′, u) |= ϕ

(!, v, u) |= 〈a〉 ϕ ⇒ there is some (!, v)
a

−−→SA
(!′, v′), s.t. (!′, v′, u) |= ϕ

(!, v, u) |= ϕ [δ〉s ψ ⇒ there is some t ∈ R+ s.t. (!, v)
t
−→SA

(!, v + t),

(!, v + t, u + t) |= ψ, and for every 0 ≤ t′ < t, (!, v + t′, u + t′) |= ϕ

(!, v, u) |= ϕ [δ〉w ψ ⇒ for all t ∈ R+ s.t. (!, v)
t
−→SA

(!, v + t),

(!, v + t, u + t) |= ϕ or (!, v, u) |= ϕ [δ〉s ψ

(!, v, u) |= Z ⇒ (!, v, u) |= D(Z)

(Safety and Bounded Liveness Logic”) and L∀S , have been considered
in [25, 2, 1, 4].

In [19] a timed µ-calculus (Tµ) with minimal and maximal fixpoints
has been defined. It contains a modality ! whose semantics is close to
the one of [δ〉s (the main difference between ! and [δ〉s is that ! may
include an action transition after the delay).

2.3.4. Examples of Lc properties
We can use Lc formulas to express classical temporal (and timed)
properties:

− The formula

z in 〈δ〉 (z < 10 ∧ (〈a〉 tt ∨ 〈b〉 tt))

specifies that an a-action or a b-action is enabled before 10 time
units has elapsed.

− We can express that some formula ϕ holds at any reachable state
(“ALWAYSϕ”, corresponding to the AGϕ formula of CTL). This
can be defined by the following equation:

Z
def
= ϕ ∧

∧

a∈Act

[a] Z ∧ [δ] Z.

− Given two subsets of events Act1 and Act2, we can state that any
event in Act1 is followed by an event in Act2 within less than ∆
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time units (fixing some ∆ ∈ N):

Z1
def
=





∧

a∈Act1

[a] (y in Z2)



 ∧





∧

a∈Act\Act1

[a] Z1



 ∧ [δ] Z1

Z2
def
= (y < ∆) ∧





∧

a∈Act2

[a] Z1



 ∧





∧

a∈Act\Act2

[a] Z2



 ∧ [δ] Z2.

− To express that some property ϕ will hold during at least ∆ time
units, whatever the transitions performed (ϕ UpTo ∆), we can use
the Lc formula z in Z1 with:

Z1
def
= (z > ∆) ∨



ϕ ∧
∧

a∈Act

[a] Z1 ∧ [δ] Z1



 .

− We can express the weak until property EϕWψ: there exists a path
such that either ϕ holds until ψ, or the path is infinite (i.e., with an
infinite number of action transitions) and satisfies ϕ everywhere.
This property can be defined by the following equation:

Z
def
= ϕ [δ〉s



ψ ∨
∨

a∈Act

〈a〉 Z



.

3. Model Checking and Satisfiability for the Logic Lc

3.1. Reachability and Model Checking for TCTL

Automatic verification of timed systems modelled as (networks of)
timed automata is possible despite the uncountable number of states
associated with the semantics of a timed automaton. Given a timed
automaton A and a property ϕ, the decision procedure for the problem
A |= ϕ is based on the well-known region abstraction (see [5] for a
description of the algorithm for TCTL, a standard branching-time logic
for real-time systems).

Indeed, it is possible to partition the uncountable set of valuations
over X ∪K into a finite number of regions, s.t. two extended configura-
tions (", v, u) and (", v′, u′), where uv and u′v′ are in the same region,
satisfy the same subformulas of ϕ. Let cmax be the maximal constant
occurring in the guards and invariants of the timed automaton A and
in the formula ϕ. The regions can be defined as the equivalence classes
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induced by the equivalence relation over valuations defined as follows:
two valuations w,w′ ∈ RX∪K

+ are in the same region iff they satisfy the
same clock constraints from the set Ccmax(X ∪K) containing C(X ∪K)
expressions whose integral constants belong to {0, . . . , cmax}. Due to
this bound on the constants, the number of equivalence classes is clearly
finite.

Using the regions, we can define a symbolic semantics for A which
is a finite transition system, called the region graph, whose states are
pairs (", γ) where " is a location of A and γ a region. Formulas in Lc

can then be interpreted over the states of the region graph (as it is
done for Lν in [24]).

The region graph technique provides decidability results for many
verification problems over timed systems by reducing them to similar
problems on finite graphs. Note however that the number of regions is
exponential in the number of clocks and the maximal constant, it is

more precisely in O(|X ∪ K|! · c|X∪K|
max ). Consequently, the size of the

region graph is in O((|L| + |T |) · |X ∪K|! · c|X∪K|
max ).

THEOREM 1 ([7]). The reachability and TCTL model checking prob-
lems are PSPACE-complete for timed automata.

REMARK 2. In practice, the region graph is not built, and tools like
Uppaal [26] or Kronos [32], build a coarser graph, yet sufficient for
verifying basic properties. The practical algorithms also use efficient
data-structure based on the DBMs (Difference Bound Matrices) that
allow to handle convex sets of valuations. Moreover several heuristics
have been developed to improve the efficiency of the algorithms (on-the-
fly algorithms, active clock reduction, etc.).

3.2. Model Checking Lc

The results in [4] obtained for model checking Lν extend to Lc and
thus:

THEOREM 2. The model checking problem for Lc is EXPTIME-com-
plete. The specification and program complexities are also EXPTIME-
complete.

PROOF 1 (Sketch). The EXPTIME membership comes from the fact
that applying standard verification algorithms for modal logics over the
region graph can be done in time linear in the size of the formula and
in the size of the region graph (considering [δ〉w and [δ〉s instead
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of classical 〈δ〉 and [δ] does not change anything). This provides an
algorithm which is exponential in the size of the timed automaton and
in the size of the formula2.

The EXPTIME-hardness comes from EXPTIME-hardness of Lν
(proved in [4]) which is a sublogic of Lc. We just sketch the proof
(See [4] for the details) which consists in reducing the acceptance of
a word w by a linear (space) bounded alternating Turing machine M
to a model checking problem for Lν. We assume (w.l.o.g.) that there is
a strict alternation of existential and universal states in M and that the
initial state is existential. First one can build a timed automaton AM,w

that represents the behavior of the non-alternating version of M over
the word w (clocks are used to encode the contents of the |w| cells of the
tape): any action transition corresponds to a step of M and between
two actions one requires a strictly positive delay. We distinguish three
labels for actions of M: Init corresponds to the writing of w on the
tape at the beginning of the computation, a labels any step of M and
Accepting labels accepting states of M. Secondly one can use the Lν
formula Φna

def
= [δ] [Init] Y with:

Y
def
= [Accepting] ff ∧ [δ] [a] (〈δ〉 〈a〉 Y ).

It can be proved that the formula Φna holds for the initial state of AM,w

iff M does not accept w.

The main difference with reachability or TCTL model checking for
TA (PSPACE-complete problems) is the ability for Lc to simulate the
alternating behavior of M.

From the previous construction, one can easily deduce that the pro-
gram complexity is also EXPTIME-hard since the formula used in the
reduction does not depend on M and w.

Finally the specification complexity comes from the ability of Lν
(and Lc) to encode the behavior of a timed automaton. The previous
reduction could have been done for a simple automaton with no clock
and no edge and with a more complex formula. This can be obtained
as a direct consequence of the properties of Lc presented in the next
section. "

3.3. Satisfiability of Lc

The satisfiability problem for Lc asks the following: given an Lc formula
Φ, does there exist a timed automaton A s.t. A |= Φ?

2 Notice that the region graph is exponential in the number of automata and
formula clocks.
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The status of the satisfiability problem is still unknown for both Lc

and Lν [24]. Note that for many of the timed branching-time temporal
logics (like TCTL, Tµ) the satisfiability problem is undecidable [5, 8,
19]. For the timed linear-time temporal logics like MTL, satisfiability
is undecidable for the (standard) interval-based semantics [19], but is
decidable (though non primitive recursive) for the pointwise semantics
over finite timed words [30].

Finally, satisfiability under bounded resources (automata with a
fixed number of clocks and values of the constants) is decidable for
Lν [24] and this algorithm can easily be extended to Lc.

4. Expressiveness of Lc

We consider several expressiveness properties of Lν and Lc: strong
timed bisimilarity and characteristic formulas are investigated in Sec-
tions 4.1 and 4.3; Compositionality is presented in Section 4.2 and is an
interesting property of Lc, which enables one to check an Lc property
by computing a quotient formula; Finally, in Section 4.4, we compare
the relative expressive power of Lc and Lν .

4.1. Strong Timed Bisimilarity

The standard notion of bisimulation [29, 31] can be naturally extended
to timed systems. In the context of timed systems, several bisimula-
tion relations are of interest, like the time-abstract bisimulation or the
strong timed bisimulation, and in this paper we focus on the latter.

Let SA = (QA, qA
0 ,Act,→SA

) and SB = (QB , qB
0 ,Act,→SB

) be two
TTSs over the same set of actions Act. Let ∼ be a symmetric relation
over QA×QB∪QB×QA. We say that this is a strong timed bisimulation
whenever the following transfer property holds: if qA ∼ qB, then

1. for every qA
a
−−→SA

q′A with a ∈ Act, there exists qB
a
−−→SB

q′B such
that q′A ∼ q′B,

2. for every qA
t
−→SA

q′A with t ∈ R+, there exists qB
t
−→SB

q′B such
that q′A ∼ q′B.

The two TTSs SA and SB are said strongly timed bisimilar whenever
there exists a strong timed bisimulation relation ∼ such that further-
more qA

0 ∼ qB
0 . Two timed automata A1 and A2 are strongly timed

bisimilar if their corresponding TTSs are strongly timed bisimilar. In
that case, we write A1

∼= A2.
In the following, we show that Lν can express strong timed

bisimilarity of timed automata.
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Let Ai = (Li, "i,0,Act,Xi, Invi, Ti) for i = 1, 2 be two timed au-
tomata. Define Act1,2 = {ai | a ∈ Act, i = 1, 2}. Let σ be the binary
synchronization function defined as follows: for every a ∈ Act, we
have σ(a, •) = a1 and σ(•, a) = a2. With σ, the action transitions
of the timed automata are not synchronized in (A1|A2)σ and they are
renamed with a letter from Act1,2 containing the number of the timed
automaton that is making the product transition. Note however that
the delay transitions are still synchronized: all clocks of the composition
evolve synchronously with time.

Now assume A1 and A2 have no invariant i.e., for every location
", Invi(") = tt (true). Let Z be defined by the following declaration
(fixpoint equation):

Z
def
=

∧

a∈Act

(

[a1] 〈a2〉 Z ∧ [a2] 〈a1〉 Z
)

∧ [δ] Z. (Bisim)

Checking whether A1 and A2 are strongly timed bisimilar can be done
using formula (Bisim):

THEOREM 3 ([22]). A1
∼= A2 iff (A1|A2)σ |= Z.

Note that the definition of Z is precisely the definition of the strong
timed bisimilarity. Moreover all these results can be easily extended to
deal with parallel compositions of timed automata.

When the automata have invariants, the parallel composition
(A1|A2)σ may restrict some behaviors of A1 and/or A2: from a con-

figuration (("1, "2), v1v2) of (A1|A2)σ, a delay transition
t
−→ is enabled

iff it is enabled by both automata. If "1 has an invariant, the parallel
composition does not contain delays that violate this invariant even if
such delays exist in A2: hence the product (A1|A2)σ and Z cannot be
used as before. To overcome this problem, we define two new timed
automata A′

i = ((Li, "i,0,Act∪ {InvFail},Xi, Inv′i, T
′
i )) where InvFail is a

fresh action, Inv′i assigns true to every location, and the set of edges T ′
i

is defined as follows:

− violation of invariant: for every location " ∈ Li, there is an edge
(",¬Invi("), InvFail, ∅, ") in T ′

i ;

− strengthened edges: every edge (", g, a, r, "′) in Ti is replaced by a
stronger edge (", g ∧ Invi(") ∧ (Invi("′)[r ← 0]), r, "′) in T ′

i , where
g[r ← 0] denotes the constraint g in which every occurrence of the
clocks in r are replaced by the constant 0.

The first type of edges, labelled with the distinguished InvFail action,
allows a timed automaton to fire an edge even if the original invariant
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is false. The second type of edges corresponds to regular action steps:
we add the requirement that in the guard, the current invariant has to
be satisfied, and also that the invariant of the target location has to be
satisfied by the valuation after the reset (we restrict to transitions that
can effectively be taken). Using this construction, we have the following
result:

THEOREM 4. A1
∼= A2 iff (A′

1|A
′
2)σ |= Z ′ with

Z ′ def
=

∧

a∈Act∪{InvFail}

(

[a1] 〈a2〉 Z ′ ∧ [a2] 〈a1〉 Z ′
)

∧ [δ] Z ′. (Bisim’ )

PROOF 2. A configuration (", v) of Ai is said correct whenever v |=
Invi("). Let ∼ be the largest strong timed bisimulation relation between
A1 and A2. Consider two correct configurations ("1, v1) and ("2, v2) of
A1 and A2 respectively. We prove that the following equivalence holds:

("1, v1) ∼ ("2, v2) ⇔ (("1, "2), v1v2)(A′
1|A

′
2)σ

|= Z ′.

Proof of ⇒. For k ∈ N, we write ("1, v1) ∼k ("2, v2) to state that
these configurations are strongly timed bisimilar up to depth k ( i.e., for
at least k action or delay transitions). We have ("1, v1) ∼0 ("2, v2) for
correct configurations.

Now let Z0 be tt and let Zk+1 be the formula:

∧

a∈Act∪{InvFail}

(

[a1] 〈a2〉 Zk ∧ [a2] 〈a1〉 Zk
)

∧ [δ] Zk.

We can prove by induction over k that ("1, v1) ∼k ("2, v2) implies
(("1, "2), v1v2)(A′

1|A
′
2)σ

|= Zk. This is trivial for the basic case (k = 0),
we now focus on the induction step (from k to k + 1).

In the following we remove the subscript “(A′
1|A

′
2)σ” to configura-

tions, and we thus implicitly assume that configurations refer to those
of the parallel composition (A′

1|A
′
2)σ.

Assume ("1, v1) ∼k+1 ("2, v2). Consider the subformula [a1] 〈a2〉 Zk

and assume (("1, "2), v1v2)
a1−−−→ (("′1, "2), v

′
1v2). As ("1, v1) is a correct

configuration, we have that v1 |= Inv1("1) and ("1, v1)
a
−−→ ("′1, v

′
1)

in A1 with v′1 |= Inv1("′1). As ("1, v1) ∼k+1 ("2, v2), there exists
("2, v2)

a
−−→ ("′2, v

′
2) in A2 such that ("′1, v

′
1) ∼k ("′2, v

′
2). Invariants in

A2 are properly satisfied (v2 |= Inv2("2) because ("2, v2) is a correct
configuration, and v′2 |= Inv2("′2) because it results from a move in
A2), and there exists thus a move (("′1, "2), v

′
1v2)

a2−−−→ ("′1, "
′
2), v

′
1v

′
2) in

(A′
1|A

′
2)σ. By induction hypothesis we deduce that (("′1, "

′
2), v

′
1v

′
2) |= Zk.

The same reasoning can be applied to the subformulas [a2] 〈a1〉 Zk.
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Now consider the subformula [δ] Zk and a delay transition

(("1, "2), v1v2)
t
−−→ (("1, "2), (v1v2) + t). We have to distinguish between

several cases:

− there is no InvFaili-transition enabled from the new configura-
tion.3 Thus the two invariants are satisfied while delaying, and

there exist delay steps ("1, v1)
t
−−→ ("1, v1 + t) and ("2, v2)

t
−−→

("2, v2 + t) in the original automata A1 and A2 respectively. Then,
("1, v1 + t) ∼k ("2, v2 + t) ensures (by induction hypothesis) that
(("1, "2), (v1v2) + t) |= Zk.

− there is an InvFail1-transition and an InvFail2-transition enabled
from the new configuration. By construction of the A′

i’s, only ac-
tions InvFaili will be enabled afterwards, and they will be enabled
with no constraint. Thus clearly, Zk holds.

− the last case, InvFail1 is enabled and InvFail2 is not enabled (or
the converse) cannot occur because this would mean that A2 can
perform a delay transition which is not possible from A1 and this
is a contradiction with ("1, v1) ∼k+1 ("2, v2).

This clearly entails (("1, "2), v1v2) |= Zk+1.
We now notice that ("1, v1) ∼ ("2, v2) iff for every k ∈ N,

("1, v1) ∼k ("2, v2). Applying the previous equivalence, we have that
("1, v1) ∼ ("2, v2) iff (("1, "2), v1v2) |= Z ′.

Proof of ⇐. We show that the following relation R over the correct
configurations of A1 and A2 is a strong timed bisimulation. The relation
R is defined as follows: ("1, v1)R("2, v2) iff (("1, "2), v1v2)(A′

1|A
′
2)σ

|= Z ′.
We show that it satisfies the transfer property.

Assume ("1, v1)R("2, v2) and consider a transition ("1, v1)
a
−−→

("′1, v
′
1) in A1. As (("1, "2), v1v2) |= [a1] 〈a2〉Z ′, there exists a transition

(("′1, "2), v
′
1v2)

a2−−−→ (("′1, "
′
2), v

′
1v

′
2) and this last configuration satisfies

Z ′. This ensures ("′1, v
′
1)R("′2, v

′
2). The same holds for a transition from

("2, v2).

Consider a transition ("1, v1)
t
−−→ ("1, v1 + t) in A1. We know that

we have (("1, "2), (v1v2) + t) |= Z ′. Thus the configuration satisfies
[InvFail2] 〈InvFail1〉 Z: as the invariant Inv1("1) is satisfied by v1 + t,
we can deduce that there is no enabled transition labeled with InvFail2
and then v2 |= Inv2("2). Thus the delay transition ("2, v2)

t
−−→ ("2, v2+t)

is enabled in A2. Moreover the new configuration of the parallel com-
position satisfies Z ′, and then ("1, v1 + t)R("2, v2 + t). Hence R is a
strongly timed bisimulation relation. "

3 Note that in that case no action InvFaili has been enabled while delaying. This
is due to the form of the invariants, which are supposed to be constraints in C!(X).
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4.2. Compositionality

Compositional model checking [11] is suitable for verifying Lc proper-
ties: given a parallel composition (A1| . . . |An)σ and some Lc formula Φ,
one can build a quotient formula Φ/A1 such that (A1| . . . |An)σ |= Φ
iff (A2| . . . |An)σ |= Φ/A1. The formula Φ/A1 integrates the initial
property and the pertinent part w.r.t. Φ of the behavior of A1. By
repeatedly quotienting components from the network into the formula,
we will finally be left with the verification problem: check whether
nil |= Φ/A1/ . . . /An where nil is a timed automaton unable to perform
any action transition (it can just let time elapse).

Table II presents the definition4 of the quotient formulas for
Lc [21, 23, 13] for a network of two timed automata A1 and A2. Note
that the quotient is defined for a formula ϕ, a location " of a timed
automaton, and a synchronization function σ. In the definition, we
assume 〈•〉 ϕ = [•] ϕ = ϕ. Note also that the clocks of the quotiented
automaton becomes formula clocks in the quotient formula. We use
ϕ/A to denote the quotiented formula ϕ/"0 where "0 is the initial loca-
tion of A. Finally any fixpoint variable of Φ gives rise to |L| variables
in Φ/A. The following theorem extends the result for Lν [23] to Lc:

THEOREM 5. Given two timed automata A1 and A2, a synchroniza-
tion function σ and an Lc formula ϕ, we have the following property
for any configuration (("1, "2), v1v2) of (A1|A2)f and u ∈ RK

+ :

(("1, "2), v1v2, u) |= ϕ iff ("2, v2, uv1) |= ϕ/"1.

PROOF 3. To prove this result we first show that the property holds
for any formula without any fixpoint variable. In this case the proof
is done by structural induction over the formula. The basic cases are
straightforward and we just consider the modalities 〈a〉 and [δ〉w :

− Assume Ψ
def
= 〈a〉 ϕ and (("1, "2), v1v2, u) |= Ψ. Then there exist

b, c ∈ Act such that σ(b, c) = a and ("1, v1)
b
−−→ ("′1, v

′
1) — and

thus there is a transition 5 "1
g,b,r
−−−−→ "′1 such that v1 |= g, v′1 =

v1[r ← 0] and v′1 |= Inv("′1) — and ("2, v2)
c
−−→ ("′2, v

′
2) such that

f(b, c) = a and (("′1, "
′
2), v

′
1v

′
2, u) |= ψ. By induction hypothesis, we

have ("′2, v
′
2, uv′1) |= ψ/"′1. Then ("2, v2, uv1) |= g ∧ 〈c〉 (r in ψ/"′1).

Moreover, since v1[r ← 0] |= Inv("′1), we have ("2, v2, uv1) |= g ∧
〈c〉 (r in (Inv("′1) ∧ ψ/"′1)).

4 In this table ! is a location of A1 and σ is the synchronisation function.
5 NB: we assume there exists a transition !1

tt,•,∅
−−−−−→ !1 for each location !1.
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Table II. Quotient construction for two timed automata A1 and A2.

(ϕ1 ∧ ϕ2)/! = (ϕ1/!) ∧ (ϕ2/!) Z/! = Z" where Z" is an identifier

(ϕ1 ∨ ϕ2)/! = (ϕ1/!) ∨ (ϕ2/!)

(

〈a〉 ϕ
)

/! =
∨

"
g,b,r

−−−−→"′ in A1 s.t.σ(b,c)=a

g ∧ 〈c〉
(

r in (Inv(!′) ∧ ϕ/!′)
)

(

[a] ϕ
)

/! =
∧

"
g,b,r

−−−−→"′s.t.σ(b,c)=a

g ⇒ [c]
(

r in (Inv(!′) ⇒ ϕ/!′)
)

(

ϕ1 [δ〉w ϕ2

)

/! =
(

Inv(!) ⇒ (ϕ1/!)
)

[δ〉w
(

Inv(!) ∧ (ϕ2/!)
)

(

ϕ1 [δ〉s ϕ2

)

/! =
(

Inv(!) ⇒ (ϕ1/!)
)

[δ〉s
(

Inv(!) ∧ (ϕ2/!)
)

(x + c &' y + d)/! = (x + c &' y + d) (x in ϕ)/! = x in
(

ϕ/!
)

Assume ("2, v2, uv1) |= g ∧ 〈c〉 (r in (Inv("′1) ∧ ψ/"′1)). We have
v1 |= g and v1[r ← 0] |= Inv("′1). Moreover there exists ("2, v2)

c
−−→

("′2, v
′
2) such that ("′2, v

′
2, uv1[r ← 0]) |= ψ/"′1. By induction hy-

pothesis, we get that (("′1, "
′
2), v1[r ← 0]v′2, u) |= ψ. Clearly we have

(("1, "2), v1v2, u) |= 〈a〉 ϕ.

− Assume Ψ
def
= ϕ1 [δ〉w ϕ2 and (("1, "2), v1v2, u) |= Ψ. First assume

that we have (("1, "2), (v1v2) + d, u + d) |= ϕ1 for every d such that
v1 + d |= Inv("1) and v2 + d |= Inv("2).6 By induction hypothesis,
we also have ("2, v2 + d, (uv1) + d) |= ϕ1/"1 for any such d. And
then we have ("2, v2 + d, (uv1) + d) |= Inv("1) ⇒ ϕ1/"1 for any d
such that v2 +d |= Inv("2). Thus ("2, v2, uv1) |= Ψ/"1. Now assume
that there exists a d such that v1 + d |= Inv("1), v2 + d |= Inv("2),
(("1, "2), (v1v2) + d, u + d) |= ϕ2, and for every d′ < d, we have
(("1, "2), (v1v2) + d′, u + d′) |= ϕ1. Clearly we also have ("2, v2 +
d′, (uv1) + d′) |= Inv("1) ⇒ ϕ1/"1 and ("2, v2 + d, (uv1) + d) |=
Inv("1) ∧ ϕ2/"1 and we can deduce ("2, v2, uv1) |= Ψ/"1.

Now assume ("2, v2, uv1) |= (Inv("1) ⇒ ϕ1/"1)[δ〉w (Inv("1)∧ϕ2/"1).
Then, there two cases:

6 Note that it implies in particular that it is possible to delay for d units of time
from ((!1, !2), v1v2) in (A1|A2)f .
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• either: for any delay s.t. v2 + d |= Inv("2), we have ("2, v2 +
d, uv1 + d) |= Inv("1) ⇒ ϕ1/"1, and this entails that after any
delay satisfying Inv("1) ∧ Inv("2), we have ϕ1/"1. By i.h., we
have (("1, "2), v1v2, u) |= [δ] ϕ1 and then (("1, "2), v1v2, u) |=
[δ] ϕ1 [δ〉w ϕ2.

• or: there is a delay d s.t. (1) v2 + d |= Inv("2), (2) ("2, v2 +
d, uv1 + d) |= Inv("1) ∧ ϕ2

ell1 and (3) for any d′ < d, we have ("2, v2 + d′, uv1 + d′) |=
Inv("1) ⇒ ϕ2/"1. As v1+d |= Inv("1), we have v1+d′ |= Inv("1)
for any d′ < d. By i.h., we can deduce (("1, "2), v1v2, u) |=
ϕ1 [δ〉w ϕ2.

Now consider a formula Φ with a set of fixpoint variables Z1, . . . , Zn

and a declaration D assigning a definition D(Zj) to every Zj. We now
consider the unfolding of the variables Zj ’s.

Let Z(0)
i be the formula tt and, given k ∈ N, let Z(k+1)

i be the formula

D(Zi)[Zj ← Z(k)
j ]j=1...n, that is the formula D(Zi) where any occurrence

of the variable Zj is replaced by Z(k)
j for j = 1, . . . , n. Finally we use

Φ(k) to denote the formula Φ[Zj ← Z(k)
j ] for j = 1, . . . , n.

Thus Φ(k) is a variable-free formula and corresponds to the k-th un-
folding of formula Φ. Consider a configuration s of a timed automaton,
and assume s 0|= Φ, this implies that there exists some k such that
s 0|= Φ(k).

Moreover one can easily show that (Φ(k))/" is syntactically similar
to (Φ/")(k). From this observation one can prove that the result holds
for the full logic. Indeed assume (("1, "2), v1, v2, u) 0|= Φ, then there
exist k such that (("1, "2), v1, v2, u) 0|= Φ(k). From the first part of the
proof, we deduce that we have ("2, v2, uv1) 0|= (Φ(k))/"1. Thus we have
("2, v2, uv1) 0|= (Φ/"1)(k) and then ("2, v2, uv1) 0|= Φ/"1. The converse is
obtained in a similar way. "

This technique avoids the construction of the exponentially large
product corresponding to the parallel composition (A1| . . . |An)σ. How-
ever it is fair noticing that this complexity is somehow transferred to
the formula: the size of the quotient formula Φ/A1 is in O(|Φ| · |A1|).
Hence, in order to be used in practice, the compositional method needs
to be coupled with reductions (and heuristics therefor): after every
quotienting operation, we apply reduction rules in order to keep the
size of the formula as small as possible (see [23] for a description of
some of these reductions).
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The tool CMC (Compositional Model Checker)7 implements this
method for the verification of Lc properties for timed automata. This
technique has also been extended to linear hybrid systems [16].

4.3. Characteristic Formulas for Timed Automata

Given a timed automaton A = (L, "0,Act,X, Inv, T ), it is possible to
build an Lν formula ΦA that precisely characterizes the behavior of A in
the following sense: a timed automaton will be strongly timed bisimilar
to A iff it satisfies ΦA. This construction can be done directly from
the definition of A [24, 3] or it can be seen as a consequence of (1) the
ability to express strong timed bisimilarity and (2) Lc be compositional.
Indeed consider the variable Z ′ defined by Equation (Bisim’ ), page 13

to express strong timed bisimilarity; then the formula Z ′"0 defined as
the quotient8 Z ′/"0 satisfies the following property for every timed
automaton B:

A ∼= B iff B′ |= Z ′"0

where B′ is the timed automaton without invariant described in
Section 4.1.

Thus, the timed modal logic Lν (and its superset Lc) is expressive
enough to express characteristic formulas for timed automata.

4.4. Comparing Lν and Lc

Two formulas ϕ and ψ are equivalent over timed automata whenever
for every timed automaton A, A |= ϕ ⇔ A |= ψ. A formula ϕ can
be expressed in a logic L (over timed automata) whenever there exists
a formula ψ ∈ L equivalent to ϕ. A logic L is at least as expressive as
a logic L′ whenever every formula ϕ′ can be expressed in L. A logic
L is strictly more expressive than a logic L′ whenever it is at least as
expressive as L′, and there exists moreover some formula ϕ ∈ L that
cannot be expressed in L′. Two logics L and L′ are equally expressive
(or have the same expressiveness) whenever L is at least as expressive
as L′ and L′ is at least as expressive as L.

The operator [δ〉w has been added to Lν [13] in order to express
controllability (see the next section, where we will see that the modal-
ities 〈δ〉 and [δ] are respectively too weak or too strong for specifying
some natural control properties).

The expressiveness gap between Lc and Lν is for instance witnessed
by the classical CTL-like formula EϕWψ, which expresses that “there

7 Cf. http://www.lsv.ens-cachan.fr/~fl/cmcweb.html.
8 With a declaration assigning a definition to every new identifier Z".
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exists a path along which either ϕ always holds, or ψ holds at some
point and before that point ϕ holds” (W stands for the weak-until
operator). In classical (discrete) Kripke structures, this property can be

expressed as the greatest fixpoint of the equation Y
def
= ψ ∨ (ϕ∧EX Y ),

where EX denotes the next-state operator. In our timed framework,
this operator makes no sense because time-elapsing is continuous. And
actually, it is the case that the property EϕWψ cannot be expressed in
Lν . Indeed from a current state, we need to express that there is a way
of letting time elapse such that all visited states satisfy ϕ, until a state
where an action can be performed and so on. The formula 〈δ〉 ξ allows
us to specify that after some delay, the property ξ holds, but there is no
requirement on the intermediary states. And the formula [δ] ξ requires
that any state reachable via a delay transition has to satisfy ξ. This
is not sufficient to express EϕWψ, and this is precisely the role of the
new modalities [δ〉w and [δ〉s , as already mentioned in Section 2.

Formally:

THEOREM 6 ([13]). Lc is strictly more expressive than Lν over timed
automata.

This result is based on the following technical lemma. Let Φ be the
Lc-formula ([a] ff) [δ〉w (〈b〉 tt).

LEMMA 1 ([13]). Formula Φ cannot be expressed in Lν (over timed
automata).

The full proof of this lemma is given in Appendix A, but we give general
ideas below.

PROOF 4 (Idea). The difficulty in the proof is that it is not possible to
find two timed automata A and B such that A |= Φ, B 0|= Φ and A |=
ψ ⇔ B |= ψ for every ψ ∈ Lν. Indeed as we have seen in Section 4.3,
Lν formulas allow us to distinguish between two timed automata that
are not bisimilar and if A |= Φ and B 0|= Φ, then A 0∼= B.

This is a classical problem in temporal logic [18] where one shows
that two temporal logics may have different expressive powers yet have
the same distinguishing power. This is why proving that a logic is more
expressive than another one can be a rather involved task.

The general idea of the proof is to build two families of timed au-
tomata (Ai)i≥1 and (A′

i)i≥1 such that for every integer i, Ai |= Φ
whereas A′

i 0|= Φ. We then prove that if Φ could be expressed equivalently
as formula Ψ ∈ Lν (over timed automata), then there would exist some
integer i ≥ 1 such that A′

i |= Ψ, which is a contradiction. "
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5. From Controllability to Model Checking

The main motivation for adding the operator [δ〉w to Lν was to express
controllability properties. The control problem asks the following:

“Given a plant P and a control objective Φ, is there a
controller C such that the supervised system C(P) satisfies Φ?”

The control problem is more general than the verification problem.
The plant P is a (timed) automaton describing the system and its
environment, and has two types of actions: controllable actions and
uncontrollable actions. The controller can only act on controllable ac-
tions in order to restrict the behavior of P and enforce the property Φ.
Moreover the supervised system C(P) can be seen as a simple synchro-
nization function on controllable actions between the two automata (or
TTS) that represent C and P.

In the sequel, we will consider two different kinds of controllers:
the sampling controllers (performing an action every ∆ time units, ∆
being fixed), or the more general case of continuous controllers that
can react in dense-time, the only constraint being that at least ∆ time
units elapse between two controllable actions.

In the remainder of this section, we show that when the control
objective belongs to a deterministic fragment of Lc, it is possible to
reduce the control problem (the existence of a controller) to a model
checking problem. More precisely, given P a timed automaton and Φ a
formula in the deterministic fragment of Lc, the existence of a controller
C such that C(P) |= Φ can be reduced to the model checking problem
(P|A∆)σ |= Φ′, where A∆ is a simple timed automaton describing
the type of the controller (sampling, or continuous), σ synchronizes
controllable actions and Φ′ is an Lc formula that can be constructed
automatically from Φ.

Note that if Φ′ holds in (P|A∆)σ, we know that there exists a con-
troller. However this controller is a TTS and it may be not definable
as a timed automaton. Synthesizing a timed automaton C which is a
controller is closely related to the satisfiability problem for Lν , and the
control problem is an open problem when the control objective is in Lν
and C is required be a timed automaton.

5.1. Plants, Controllers, Controlled Plants

DEFINITION 3 (Plant). A plant is a timed automaton P =
(L, "0,Act,X, Inv, T ) such that:

1. Act is partitioned into controllable actions (Actc) and uncontrollable
actions (Actu);
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2. it is deterministic w.r.t. every a ∈ Actc, i.e. for two distinct tran-
sitions "

g1,a,r1−−−−→ "1 and "
g2,a,r2−−−−→ "2 with a ∈ Actc, the constraint

g1 ∧ g2 is not satisfiable;

3. in every state (", v) the timed automaton P can let time elapse or
do an uncontrollable action.

A controller [27] for a plant, is a function that during the evolution
of the system constantly gives information as to what should be done in
order to ensure a control objective Φ. In a given state the controller can
either i) enforce some particular controllable action or ii) do nothing
at this point, just wait, which will be denoted by the special symbol
λ. Of course a controller cannot prevent uncontrollable actions from
occurring. Nevertheless, we assume that the controller can disable a
controllable action at any time, and this will not block the plant due
to the point 3 in the definition of a plant

Let S = (Q, q0,Act,→S) be a TTS. Given a run ρ = s0
e1−−→S

s1
e2−−→S · · ·

en−−→ sn · · · in a TTS S (NB: ei ∈ Act ∪ R+), we de-
note by first(ρ) = s0. If ρ is finite, last(ρ) denotes the last state of ρ.
Runs(q, S) (resp. RunsF (q, S)) is the set of runs (resp. finite runs) in
S starting from state q and Runs(S) = Runs(q0, S) (resp. RunsF (S) =
RunsF (q0, S)) is the set of runs (resp. finite runs) starting from the
initial state q0. We use s

e
−−→S as a shorthand for “∃s′ s.t. s

e
−−→S s′”

and extend this notation to finite runs ρ
e
−−→S whenever last(ρ)

e
−−→S .

Finally, given a plant P, we use SP to denote the TTS corresponding
to the semantics of P.

DEFINITION 4 (Controller). Let P = (L, "0,Act,X, Inv, T ) be a plant.
A controller over P is a function f from RunsF (SP) to Actc ∪ {λ} that
satisfies:9 ∀ρ ∈ RunsF (SP), f(ρ) ∈ {ac | ρ

ac−−→SP} ∪ {λ}.

The purpose of a controller f for a plant P is to restrict the set of
behaviors in SP in order to ensure that some property holds. Super-
vising (or closing) the plant P with f produces a set of runs (or TTS)
corresponding to the controlled plant, as defined below.

DEFINITION 5 (Controlled plant). Let P = (L, "0,Act,X, Inv, T ) be
a plant, q ∈ SP and f a controller for P. The controlled plant f(SP , q)
is the reachable part of the TTS (RunsF (q, SP), q,Act,→P,f,q) defined
as follows: if ρ ∈ RunsF (SP , q), then there will be a transition

ρ
e
−−→P,f,q (ρ

e
−−→P q′)

whenever one of the three following conditions is satisfied:

9 In game theory, a controller is called a strategy.
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1. e ∈ Actu,

2. e ∈ Actc and e = f(ρ),

3. e ∈ R+ and for all 0 ≤ e′ < e, f(ρ
e′
−−→P) = λ.

We note f(P) the plant P controlled by f from the initial state of P.

Note that to define a controller f , it is sufficient to define f for every
reachable run of f(P) (for unreachable runs, one can always assume
that the value returned by f is λ).

5.2. Control Problem

The ∆-dense-time control problem asks for the existence of a controller
for a system such that at least ∆ ≥ 0 time units elapse between two con-
secutive controllable actions. Such a controller is called a ∆-controller,
it can prevent time elapsing and enforce a controllable action to happen
at any point in time if the time elapsed since the last controllable
move is more than ∆ time units. If ∆ = 0, the ∆-controllers can be
arbitrarily fast, they can make two consecutive actions separated by
arbitrary small delays (even 0-delay). If ∆ > 0, the ∆-controllers are
forced to be strongly non-zeno. Strong non-zenoness means that two
discrete control actions are separated by at least ∆ time units. We
note Contr∆(P) the set of ∆-controllers for a plant P.

DEFINITION 6 (∆-dense-time control problem). Let P = (L, "0,Act,
X, Inv, T ) be a plant, ϕ ∈ Lc a control objective, and ∆ ∈ Q+. The
∆-dense-time control problem (∆-CP for short) asks the following:

Is there a controller f ∈ Contr∆(P) such that f(P) |= ϕ? (∆-CP)

To solve the ∆-dense-time control problem, we consider the self-loop
automaton A∆ with transitions labeled by “z ≥ ∆, a, z := 0” for
every controllable action a ∈ Actc. The automaton A∆ is somehow
the most general ∆-controller. Given a plant P, we note P∆ the par-
allel composition (P|A∆)σ where σ synchronizes controllable actions
(and does not synchronize uncontrollable actions).10 The new plant
P∆ contains all the possible ∆-controllers. Our aim is to reduce the
∆-CP to a model checking problem for P∆, and then, applying the
compositionality property of the logic (see section 4.2), to reduce it to
a model checking problem for P.

10 Formally, σ(a, a) = a if a ∈ Actc and σ(u, •) = u if u ∈ Actu.
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5.3. Ldet
c : A Deterministic Fragment of Lc

In the following we will restrict the possible control objectives to prop-
erties expressed in a subset Ldet

c of Lc. Indeed, a control objective of
Lc like ϕ1 ∧ ϕ2 intuitively requires to find a controller that ensures
both ϕ1 and ϕ2. In an inductive construction, this amounts to build a
controller that ensures ϕ1 ∧ ϕ2 from two controllers: one that ensures
ϕ1 and another one that ensures ϕ2. This means that we must be
able to merge controllers in a suitable manner. The definition of Ldet

c

will syntactically ensure that the conjunctions of Ldet
c formulas can be

merged safely, i.e., that they are in some sense deterministic.
The idea will be to prefix the subformulas ϕis appearing in some

conjunction ϕ1 ∧ ϕ2 with a modal operator involving different actions.
Then the existence of a controller for ϕ1 and another one for ϕ2 will
entail the existence of a controller for ϕ1 ∧ ϕ2.

We first define basic terms Bν by the following grammar:

α ::= tt | ff | x +, c | r in 〈a〉 ϕ | r in [a] ϕ |
r in ϕ [δ〉w ϕ′ | r in ϕ [δ〉s ϕ′

with x ∈ K, r ⊆ K, c ∈ Q+ and a ∈ Act and ϕ,ϕ′ ∈ Ldet
c (Ldet

c is defined
hereafter). A set of basic terms A = {α1,α2, · · · ,αn} is deterministic if
for all σ ∈ Act there is at most one i s.t. αi = r in 〈σ〉ϕ or αi = r in [σ]ϕ
and there is at most one i s.t. αi contains [δ〉w or [δ〉s . We then define
inductively Ldet

c as the deterministic fragment of Lc as follows:

Ldet
c 1 ϕ,ψ ::= X | ϕ ∨ ψ |

∧

α∈A

α

with X ∈ Id and A a (finite) deterministic set of basic terms. With this
restriction on the conjunctions, if there are controllers fα for all α ∈ A,
we will be able to merge them to obtain a controller for

∧

α∈A α.

REMARK 3. In the untimed case [12] for the µ-calculus control prob-
lem, some kind of “deterministic” form is also used when considering
satisfiability problems: this is the so-called disjunctive normal form.
This is not a restriction as all formulas of the µ-calculus can be rewrit-
ten in a disjunctive normal form [20]. We do not know yet if this
is possible for the timed case, but we conjecture it is not possible in
general.
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5.4. From Controllability to Model Checking

In this section, we prove that for any control objective defined as a Ldet
c

formula ϕ, we can build an Lc formula ϕ that holds for P∆ iff there
exists a ∆-controller which supervises plant P in order to satisfy ϕ.

Let ϕ be an Ldet
c formula and γ ∈ Actc ∪ {λ}. We construct the

formula ϕ γ using the inductive translation of Table III. Intuitively, if
a ∈ Actc, formula ϕ a will hold when there is a controller which ensures
ϕ and which starts by enforcing controllable action a whereas formula
ϕ λ will hold when there is a controller which ensures ϕ and which
starts by delaying. We use the shortcut ϕ to express that nothing is
required for the strategy, which will correspond to

∨

γ∈Actc∪{λ}
ϕ γ . We

also use 〈λ〉 tt as a shortcut for
∧

a∈Actc

[a] ff.

If we restrict the logic to Ldet
ν which is the subset of Ldet

c that does
not contain the modalities [δ〉w and [δ〉s , we still need the operator [δ〉w
to encode the formula [δ] ϕ

γ
. Using the equivalence of equation (3b)

page 6, we obtain:

[δ] ϕ
γ

= ϕ [δ〉w ff
γ

=











ϕ γ if γ ∈ Actc,

ϕ γ [δ〉w

(

∨

a∈Actc

ϕ a

)

otherwise
(5)

The translation rule introduces the superscript a in the disjunctive
right argument of [δ〉w . This just means that we can actually prevent
time from elapsing at some point, if we perform a controllable action.
On the other hand the formula 〈δ〉

γ
does not make use of any [δ〉w or

[δ〉s . Using the equivalence of equation (3a) page 6, we obtain:

〈δ〉 ϕ
γ

= tt [δ〉s ϕ
γ

=

{

ϕ γ if γ ∈ Actc,

〈δ〉 ϕ otherwise
(6)

because tt
λ [δ〉s ϕ = 〈δ〉 ϕ .

We can now state our main theorem about controllability:

THEOREM 7 ([13]). Given P a plant, ϕ ∈ Ldet
c a control objective,

∆ ∈ Q+, we have:

(

∃f ∈ Contr∆(P) such that f(P) |= ϕ
)

⇔ P∆ |= ϕ (7)

The proof of Theorem 7 is done by induction on the structure of the
formula (see Appendix B).
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Table III. Definition of ϕ γ , ϕ ∈ Ldet
c and γ ∈ Actc ∪ {λ}

∧

α∈A

α
γ

def
=

∧

α∈A

α γ
∨

α∈A

α
γ

def
=

∨

α∈A

α γ

x ∼ c γ def
= x ∼ c ∧ 〈γ〉 tt r in ϕ

γ def
= r in ϕ γ

〈a〉 ϕ
γ def

=

{

ff if γ, a ∈ Actc ∧ γ .= a
〈a〉 ϕ ∧ 〈γ〉 tt if a ∈ Actu

〈a〉 ϕ otherwise

[ac] ϕ
γ def

=

{

〈γ〉 tt if ac .= γ
〈ac〉 ϕ if ac = γ

[au] ϕ
γ def

= [au] ϕ ∧ 〈γ〉 tt

ϕ [δ〉w ψ
γ def

=

{

ϕ γ ∨ ψ
γ

if γ ∈ Actc

ϕ λ [δ〉w
(

∨

ac∈Actc
(ϕ ac ∨ ψ

ac
)
)

if γ = λ

ϕ [δ〉s ψ
γ def

=

{

ψ
γ

if γ ∈ Actc

ϕ λ [δ〉s ψ if γ = λ
X

γ def
= Xγ ∧ 〈γ〉 tt

This theorem reduces the control problem for properties expressed
in Ldet

c to a model checking problem for properties expressed in Lc.
Note however that this theorem does not provide a method to syn-
thesize controllers. We would obtain a synthesis algorithm (due to the
compositional property of Lc) if we had a constructive algorithm for
solving satisfiability for Lc, but this problem as explained before is
still open. Thus we only have results for the synthesis problem under
the assumption of bounded resources (clocks and constants) for the
controller.

Finally note also that as Lc is compositional, verifying P∆ |= ϕ
reduces to checking P |= ϕ /A∆ where A∆ is the self-loop automaton
describing the most permissive controller mentioned before.

5.5. Other Control Problems

We can use the same approach to deal with other kind of control
problems, for instance the known-switch condition dense-time control
(KSC) [15] or the sampling control.

The KSC problem corresponds to the control of the time-abstract
model of a game: intuitively this assumes that time elapsing is not
controllable. A controller can thus choose to do a controllable action
a ∈ Actc or to do nothing (λ), but in the latter case the controller does
not control the duration of the next continuous move.
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The sampling control problem is a version of the control problem
where the controller can perform a controllable action only at dates
k.∆ for k ∈ N and ∆ ∈ Q+. ∆ is the sampling rate of the controller.

For these two control problems, we can modify slightly the definition
of the ϕ and the automaton A∆ in order to reduce controllability to a
model checking problem.

6. Conclusion

In this paper we have presented a set of results about the timed modal
logic Lc. The expressiveness results show the ability of this logic to
state precisely properties of timed systems. Moreover we have seen that
these characteristics allow the use of compositional methods for model
checking Lc specifications over timed automata. The control problem
for timed automata can also be reduced to a model checking problem
when the control objective is expressed in a (deterministic) fragment
of Lc. All these results emphasize the interest of timed modal logics for
the specification, verification and control of real-time systems.

Acknowledgments. Special thanks to Luca Aceto, Béatrice Bérard
and Kim Guldstrand Larsen for all the discussions about timed
automata and timed modal logics.
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Appendix

A. Proof of Lemma 1

Consider the Lc-formula Φ
def
= ([a] ff) [δ〉w (〈b〉 tt), and assume that

there exists some Lν formula Ψ equivalent to Ψ over timed automata.
Of course, a declaration D may be associated with Ψ to assign an Lν

formula to every identifier in Ψ. In the following, all the transformations
we make over Ψ are also done over the formulas occurring in D.
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The two families of models. For each i ≥ 1, we define two timed
automata Ai and A′

i as follows:

Ai "i "

x ≥ 1
22i , a

1
∨

j=i

1
22j ≤ x < 1

22j−1 , b

A′
i "′i "

x ≥ 1
22i+1 , a

1
∨

j=i

1
22j ≤ x < 1

22j−1 , b

We assume that every location has an invariant x < 1. The behaviors
of automata Ai and A′

i can be represented by (and infered from) the
following picture.

A1
a

b

A′
1

a

b

A2
a

b b

A′
2

a

b b
...

It is easy to verify that for each i ≥ 0,

{

Ai |= Φ
A′

i 0|= Φ

Eliminating constants from formula Ψ and building Ψ1. Given
p ∈ Q>0, a timed automaton A (resp. an Lc formula ϕ), we use A[p]

(resp. ϕ[p]) to denote the timed automaton A (resp. the Lc formula ϕ)
where every constant c occurring in the guard and invariant (resp. in
the clocks constraints) is replaced by the product c · p.

As Φ is an untimed formula and Ψ is equivalent to Φ, we have the
following lemma:

LEMMA 2. For every p ∈ Q>0, for every TA A, we have: A |= Ψ iff
A |= Ψ[p].

PROOF 5. As Φ is an untimed formula, we have A |= Φ iff A[ 1
p
] |= Φ

and thus A[ 1
p
] |= Ψ (by def. of Ψ). Then we deduce that A |= Ψ[p]

(because A |= ϕ iff A[p′] |= ϕ[p′] for any A, ϕ and p′). "
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We thus assume that Ψ has only constants strictly larger than 1 or
equal to 0. Now note that time in Ai’s and A′

i’s is bounded by 1,11 and
that we have the following result for 1-bounded timed automata:

LEMMA 3. Given an Lc formula ϕ where the constants occurring in
the constraints are either 0 or strictly greater than 1, and a 1-bounded
timed automaton A, we have: A |= ϕ⇔ A |= ϕ′ where ϕ′ is the formula
ϕ where every atomic constraint x +, c with c > 0 is replaced by the
truth value of the test 1 +, c.

We use the previous result to build a new formula denoted Ψ1 which
does not contain constraints involving positive constants. Note that
Ψ1 is a priori not equivalent to Ψ over all timed automata, but it
is equivalent to Ψ at least over 1-bounded timed automata, and in
particular over all automata Ai’s and A′

i’s.
Formula Ψ1 can be generated by the following grammar:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | x in ϕ | x +, 0

| [c] ϕ | 〈c〉 ϕ | [δ] ϕ | 〈δ〉 ϕ | X (8)

Eliminating clock subformulas. The only time information in for-
mula Ψ1 is given by formulas of the form “x ∼ 0” and “x in ·”. We
want to get rid off this information. For each C ⊆ K and every formula
ϕ generated by the grammar (8), we define inductively new formulas
{ϕ}(C) as follows:

{α}(C) = α if α ∈ {tt, ff}
{ϕ1 opϕ2}(C) = {ϕ1}(C) op {ϕ2}(C) if op ∈ {∧,∨}
{x in ϕ}(C) = x in {ϕ}(C∪{x})

{[c] ϕ}(C) = [c] {ϕ}(C)

{〈c〉 ϕ}(C) = 〈c〉 {ϕ}(C)

{[δ] ϕ}(C) = {ϕ}(C) ∧ [δ]+ {ϕ}(∅)

{〈δ〉 ϕ}(C) = {ϕ}(C) ∧ 〈δ〉+ {ϕ}(∅)

{X}(C) = XC

{x > 0}(C) =
{

tt if x 0∈ C
ff if x ∈ C

{x = 0}(C) =
{

tt if x ∈ C
ff if x 0∈ C

where the modality 〈δ〉+ (resp. [δ]+ ) corresponds the existential
(resp. universal) quantification over positive (and not as previously
nonnegative) delay.

11 We call such an automaton 1-bounded.
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Intuitively the formula {ϕ}(C) is a simplification of ϕ when we as-
sume that the value of every clock in C is 0 and the value of every clock
in K\C is positive.

LEMMA 4. For every timed automaton A, for every formula ϕ gen-
erated by the grammar (8), for every extended configuration (", uv) of
A, we have:

(", uv) |= ϕ ⇔ (", uv) |= {ϕ}(C)

where C = {x ∈ K | v(x) = 0}. In particular, in the initial
configuration (all clocks set to 0), we have:

("0, u0v0) |= ϕ ⇔ ("0, u0v0) |= {ϕ}(K)

The new formula {Ψ1}(K) has no more clock constraints. We can
thus erase all operators “x in ·” because clocks are no more used.
We get a new formula Ψ2 (without clocks) which is generated by the
grammar

ϕ ::= tt | ff | ϕ∧ϕ | ϕ∨ϕ | [c]ϕ | 〈c〉ϕ | [δ]+ ϕ | 〈δ〉+ ϕ | X (9)

and such that Ψ2 is equivalent to Φ over 1-bounded timed automata.

Region abstraction. The regions12 for automaton Ai in state "i
correspond to the following set of intervals (denoted Ri) :

[

0,
1

22i

[

,
[

1

22i
,

1

22i−1

[

, . . . ,
[

1

2
, 1

[

whereas the regions for automaton A′
i in state "′i are based on the

following set of intervals (denoted R′
i):

[

0,
1

22i+1

[

,
[

1

22i+1
,

1

22i

[

, . . . ,
[

1

2
, 1

[

We use rk, ρk and ρ′k to denote the following intervals:



































rk =
[

1

2k
,

1

2k−1

[

ρk =
[

0,
1

22k

[

ρ′k =
[

0,
1

22k+1

[

12 Following the definition in [7].
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An immediate successor (by time elapsing) operator Succ can be defined
in a natural way: Succ("i, ρi) = ("i, r2i), Succ("i, r2i) = ("i, r2i−1), . . .
and Succ("i, r1) is undefined.

Moreover note that for these automata, only one region is useful
in state ", namely (", [0, 1[). The interesting parts of these automata
are thus locations "i and "′i because no action nor delays increasing
clock x above 1 are allowed from ". We focus on those two locations,
and first notice that all regions are right-open. In the following figure,
we represent the time evolution and part of the region automaton in
locations "i and "′i.

Ri in "i • × . . . • ×

ρi r2i r2i−1 r2 r1

R′
i in "′i × • × . . . • ×

ρ′i r2i+1 r2i r2i−1 r2 r1

In the previous figure, the labelling “•” means that both a and b
can be done (leading to state ") whereas the labelling “×” means that
only action a can be done (also leading to state "). Finally no labelling
means that no action can be done. We will notice something stronger
in that states ("i, rj) and ("′i, rj) (when j ≥ 2i) do abstract states that
satisfy the same formulas generated by grammar (9). More precisely:

LEMMA 5. Let ψ be a formula generated by grammar (9) and j ≥ 1.

− Given two valuations u and v in rj, for every i such that 2i ≥ j
and for every k such that 2k + 1 ≥ j, we have:

("i, u) |= ψ ⇔ ("i, v) |= ψ ⇔ ("′k, u) |= ψ ⇔ ("′k, v) |= ψ

− For all valuations u and v in ρj , we have:

("j , u) |= ψ ⇔ ("j , v) |= ψ

− For all valuations u and v in ρ′j , we have:

("′j , u) |= ψ ⇔ ("′j , v) |= ψ

The proof is a direct consequence of the properties of the region
abstraction.

Atomic propositions. Now we are going to replace every subfor-
mulas [c] ϕ or 〈c〉 ϕ with c ∈ Act by tt, ff, 〈c〉 tt or [c] ff.
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If c 0∈ {a, b}, then 〈c〉ϕ (resp. [c]ϕ ) is clearly equivalent to ff (resp.
tt) when it is interpreted over a state of Ai or A′

i.
Now assume c ∈ {a, b} and consider a formula ψ of the form 〈c〉 ϕ

or [c] ϕ. As there is only one region in ", we have:

[[ϕ]] ∩ {(", u) | u ∈ [0, 1[} =
{

{(", u) | u ∈ [0, 1[}
or ∅

Thus ϕ is equivalent to tt or ff over the region associated with ", and
this Boolean value depends only on " and not on the region of "i or "′i
where ψ is interpreted. Thus we can replace [c] ϕ (resp. 〈c〉 ϕ) by tt

13

or [c] ff (resp. 〈e〉 tt or ff) depending on the truth value of ϕ in ".
From these remarks we can define a new formula Ψ3 equivalent to Ψ2

over the states of Ai and A′
i (i.e., ∀u ∈ [0; 1[, we have ("i, u) |= Ψ2 iff

("′i, u) |= Ψ3) and generated by the following grammar (with c ∈ {a, b}):

ϕ ::= tt | ff | [c]ff | 〈c〉tt | ϕ∧ϕ | ϕ∨ϕ | [δ]+ϕ | 〈δ〉+ϕ | X (10)

Untiming the formula. We will now build a new formula Ψ4 using
new modalities (G+ and F+), which will be interpreted over regions of
Ai and A′

i. Furthermore Ψ3 and Ψ4 will be equivalent over Ai and A′
i

in the following sense: for every i ≥ 1, we will have that ("i, ρi) |= Ψ4

iff ("i, u0) |= Ψ3, and ("′i, ρ
′
i) |= Ψ4 iff ("′i, u0) |= Ψ3, where u0 is the

valuation setting each clock to 0.
We define a new logic by the grammar:

ϕ ::= tt | ff | [c] ff | 〈c〉 tt | ϕ ∧ ϕ | ϕ ∨ ϕ | G+ϕ | F+ϕ | X (11)

This logic is interpreted over states of the region automaton (i.e., pairs
(l, r) where l is a location of a timed automaton and r is a region). The
semantics (denoted 8) corresponds to the standard symbolic semantics
of Lν over regions (see [24]) except for the new modalities, which is
defined as follows:

(l, r) 8 F+ϕ
def
⇔ ∃r′ ∈ Succ+(r) such that (l, r′) 8 ϕ

(l, r) 8 G+ϕ
def
⇔ ∀r′ ∈ Succ+(r) we have (l, r′) 8 ϕ

Note that as every interval of Ri and R′
i is right-open, when [δ]+ ψ

holds at a state within a region ("i, r) or ("′i, r), this region has to
contain valuations satisfying ψ, and this makes a difference with the
new modality G+ that only deals with regions in the future. The same
difference occurs for 〈δ〉+ and F+. Then we define Ψ4 as the formula

13 Note that[c] tt ≡ tt.
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Ψ3 where every subformula [δ]+ ψ is replaced by ψ ∧ G+ψ and every
subformula 〈δ〉+ ψ is replaced by ψ ∨ F+ψ. It is then easy to prove the
following lemma:

LEMMA 6. Given i ≥ 1, for every region r ∈ Ri and for every u ∈ r,

("i, u) |= Ψ3 ⇔ ("i, r) 8 Ψ4.

For every r ∈ R′
i and for every u ∈ r,

("′i, u) |= Ψ3 ⇔ ("′i, r) 8 Ψ4.

The new formula Ψ4 is now an untimed formula interpreted over a
discrete structure (the region automaton). Moreover, Ψ4 is equivalent
to Ψ3 (and hence to Φ) over Ai and A′

i.

Gluing everything. The formula Ψ4 (and its declaration D4)
can be written in normal form as a system of equations (Xi =
fi(X1, ...,Xn))1≤i≤n with Ψ4 = X1. We assume that each formula

fi(X1, ...,Xn) is a Boolean combination bi of subformulas αj
i (which

can be either some formula F+βj
i , or G+βj

i , or some atomic-like formula

〈a〉 tt, [a] ff, tt or ff, or some fix-point variable Xj
i ):















X1
def
= b1(α1

1, ...,α
k1
1 )

...

Xn
def
= bn(α1

n, ...,αkn
n )

Without loss of generality we can assume that no subformula αj
i is

a fix-point variable Xk. Indeed assume that we have αj
i = Xk (with

i 0= k), then the new formula obtained by replacing Xk by its definition
formula is equivalent to the previous formula. And if we have αj

i = Xi,
then the new formula obtained by replacing this variable Xi by tt

is equivalent to the initial formula. Thus, each αj
i is either a “basic”

formula tt, ff, 〈c〉 , [c] ff or X, or a formula F+ϕ or a formula Gϕ.
From the structure of the region automata of Ai and A′

i, we have
the following lemma:

LEMMA 7. Let ϕ be a formula generated by the grammar (11). For
every i ≥ 1, we have the following implications:

− ("i, ρi) 8 F+ϕ implies ("′i, ρ
′
i) 8 F+ϕ

− ("i, ρi) 0 8 G+ϕ implies ("′i, ρ
′
i) 0 8 G+ϕ

− ("i, ρi) 8 G+ϕ implies ("′i−1, ρ
′
i−1) 8 G+ϕ
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− ("i, ρi) 0 8 F+ϕ implies ("′i−1, ρ
′
i−1) 0 8 F+ϕ

− ("′i, ρ
′
i) 8 F+ϕ implies ("′i+1, ρ

′
i+1) 8 F+ϕ

We are now in a position where we can finish the proof and show
that Ψ4 as previously described (and hence Ψ) cannot exist.

As X1 holds at any ("i, ρi) (because Ψ4 is equivalent to Φ over Ai),
there exists a sequence (γj)1≤j≤k1 ∈ {tt, ff}k1 such that (1) b1(α1

1 ←

γ1, ...,α
k1
1 ← γk1) is true, and (2) there is an infinite sequence of indexes

I such that for every i ∈ I, for every 1 ≤ j ≤ k1, γj = tt iff ("i, ρi) |=

αj
1.

14

Let αF be the set {αi
1 | γi = tt and αi

1 = F+βi
1}, α¬F be the set

{αi
1 | γi = ff and αi

1 = F+βi
1}, αG be the set {αi

1 | γi = tt and αi
1 =

G+βi
1}, and α¬G be the set {αi

1 | γi = ff and αi
1 = G+βi

1}.
From the two first implications of Lemma 7, for every i ∈ I, ("′i, ρ

′
i) |=

∧

αF∧
∧

α¬G. Given i0 ∈ I, we also have that for every i ≥ i0, ("′i, ρ
′
i) |=

∧

αF ∧
∧

α¬G (because the future of ("′i+1, ρ
′
i+1) contains the future of

("′i, ρ
′
i)). From the third and fourth implications, we get that for every

i ∈ I, we have that ("′i−1, ρ
′
i−1) |=

∧

αG ∧
∧

α¬F. Thus we can easily
find some i such that ("′i, ρ

′
i) |=

∧

αF ∧
∧

α¬G ∧
∧

αG ∧
∧

α¬F and thus
("′i, ρ

′
i) |= Ψ4 (because the other “basic” subformulas can be easily

treated) and then ("′i, ρ
′
i) |= Φ which contradicts the fact that A′

i 0|= Φ.
We conclude that there is no formula Ψ in Lν which is equivalent to

the formula Φ = ([a] ff) [δ〉w (〈b〉 tt). "

B. Proof of Theorem 7

Before proving Theorem 7 we introduce some new notations.

Let S = (Q, q0,Act,−→S) be an acyclic TTS. Here we assume that
S is an unfolding of a TTS. This assumption could also be done –
with no change – to define the semantics of the TAs or to interpret the
Lc formulas: this point of view corresponds to the (infinite) execution
tree of the system. And this assumption allows us to see f(S, q) as a
sub-TTS (i.e., sub-tree) of S for any controller f .

For q ∈ Q and ∆ ∈ Q+ we define:

− Sq
∆ to be the sub-TTS of S rooted at q such that two consecutive

controllable actions (in Actc) are separated by a time amount t
such that t ≥ ∆;

− S∆ stands for Sq0
∆ ;

14 There is a way to witness X1 be true which appears infinitely often.
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− for τ ≤ ∆, Sq
∆,τ is the sub-TTS of Sq

∆ where no controllable action
occurs before τ time units from the root q;

− Contr(Sq
∆,τ , q) is the set of controllers for TTS Sq

∆,τ from state q;

Contr(Sq0
∆,0, q0) thus denotes the set of controllers that can let at

least ∆ time units between two consecutive controllable actions.

If S is the semantics of a plant P = (L, "0,Act,X, Inv, T ), the TTS
Sq0

∆ can be effectively constructed using a parallel composition with a
self-loop automaton A∆ with a fresh clock x enforcing a delay larger
than or equal to ∆ (e.g. by x ≥ ∆) between two controllable actions.
We denote P∆ the synchronized product (P|A∆)σ where σ(a, a) = a if
a ∈ Actc and σ(u, •) = u if u ∈ Actu.

Theorem 7 will be a consequence of the following lemma:

LEMMA 8. For any γ ∈ Actc ∪ {λ}, any state q ∈ Q and any Ldet
c

formula Φ, we have:
(

∃f ∈ Contr(Sq
∆,τ , q) s.t. f(S, q), (q, v) |= Φ∧〈γ〉tt

)

⇔Sq
∆,τ , (q, v) |= Φ

γ

Note how this lemma interprets for formulas Φ :
(

∃f ∈ Contr(Sq
∆,τ , q) s.t. f(S, q), (q, v) |= Φ

)

⇔
(

Sq
∆,τ , (q, v) |= Φ

)

PROOF 6. First we assume that the result holds for the fixpoint
variables and we show the lemma by structural induction over Ldet

c

formulas. The cases Φ
def
= x ∼ c or Φ

def
= r in ϕ are obvious. We

prove the lemma for the discrete modalities [au] , 〈au〉 , 〈ac〉 and [ac]
(assuming ac ∈ Actc and au ∈ Actu). Because of the dualities of the
operators [δ] , 〈δ〉 , [δ〉w and [δ〉s (equations (3a)–(4b)), we only prove
the lemma on a complete pair of timed operators, namely for [δ〉s and
[δ] .

− Φ
def
= [au] ϕ:

⇒ Assume there exists f ∈ Contr(Sq
∆,τ , q) such that

f(S, q), (q, v) |= [au] ϕ ∧ 〈γ〉 tt. Then for any q
au−−−→ q′

in f(S, q), we have f(S, q), (q′, v) |= ϕ. Then there exists
f ′ ∈ Contr(Sq

∆,τ , q
′) such that f ′(S, q′), (q′, v) |= ϕ and the

induction hypothesis provides: Sq′

∆,τ , (q
′, v) |= ϕ . Since the

strategies cannot block the uncontrollable actions, any action
au ∈ Actu that can be performed from (q, v) in Sq

∆,τ , can also

be performed in f(S, q) and then Sq
∆,τ , (q, v) |= [au]ϕ . More-

over f(S, q), (q, v) |= 〈γ〉 tt which implies that Sq
∆,τ , (q, v) |=

〈γ〉 tt, and thus Sq
∆,τ , (q, v) |= [au] ϕ

γ
.
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⇐ Assume Sq
∆,τ , (q, v) |= [au] ϕ ∧ 〈γ〉 tt. For any transition

Sq
∆,τ , q

au−−−→ s′ with au ∈ Actu, we have Sq
∆,τ , (q

′, v) |= ϕ .
By induction hypothesis, we know that there exists fau ∈
Contr(Sq

∆,τ , q
′) such that fau(S, q′), (q′, v) |= ϕ. Let f be the

strategy defined by: f(q
au−−−→ ρ)

def
= fau(ρ) for any ρ starting

in state q′ and f(q) = γ if γ ∈ Actc (note that in that case, it
is possible to do a γ because Sq

∆,τ , (q, v) |= 〈γ〉tt), or f(q) = λ
otherwise.

− Φ
def
= 〈au〉 ϕ:

⇒ Assume there exists f ∈ Contr(Sq
∆,τ , q) such that

f(S, q), (q, v) |= 〈au〉 ϕ ∧ 〈γ〉 tt. Then there exists s
au−−−→ s′

in f(S, q) with f(S, q), (q′, v) |= ϕ. Therefore there is f ′ ∈
Contr(Sq

∆,τ , q
′) such that f ′(S, q′), (q′, v) |= ϕ and the induc-

tion hypothesis entails: Sq′

∆,τ , (q
′, v) |= ϕ . Sq

∆,τ contains the

behaviors of f(S, q), then Sq
∆,τ , (q, v) |= 〈au〉 ϕ . Moreover,

f(S, q), (q, v) |= 〈γ〉 tt, thus Sq
∆,τ , (q, v) |= 〈au〉 ϕ ∧ 〈γ〉 tt,

and thus Sq
∆,τ , (q, v) |= 〈au〉 ϕ

γ
.

⇐ Assume Sq
∆,τ , (q, v) |= 〈au〉 ϕ ∧ 〈γ〉 tt. There is a transition

Sq
∆,τ , q

au−−−→ q′ such that Sq
∆,τ , (q

′, v) |= ϕ . By induction

hypothesis, we know that there exists fau ∈ Contr(Sq
∆,τ , q

′)
such that fau(S, q′), (q′, v) |= ϕ. Let f be the strategy defined

by: f(q
au−−−→ ρ)

def
= fau(ρ) for any ρ starting in state q′ and

f(q) = γ if γ ∈ Actc, or f(q) = λ otherwise.

− Φ
def
= 〈ac〉 ϕ:

⇒ There exists f ∈ Contr(Sq
∆,τ , q) such that f(S, q), (q, v) |=

〈ac〉 ϕ ∧ 〈γ〉 tt. Then clearly γ is ac: otherwise this would
entail that f is not deterministic and requires two different
controllable actions from the state (q, v). There exists f(S, q) :
q

ac−−→ q′ such that f(S, q′), (q′, v) |= ϕ. Moreover defining

f ′ ∈ Contr(Sq
∆,∆, q′) by f ′(ρ)

def
= f(q

ac−−→ ρ) for any ρ starting
in q′, we get that f ′(S, q′), (q′, v) |= ϕ. By induction hypothesis

we have Sq′

∆,∆, (q′, v) |= ϕ . Sq
∆,τ contains the behaviors of

f(S, q), then Sq
∆,τ , (q, v) |= 〈ac〉 ϕ and thus Sq

∆,τ , (q, v) |=

〈ac〉 ϕ
γ
.

⇐ The only possible case is γ = ac and Sq
∆,τ , (q, v) |= 〈ac〉 ϕ .

There is a transition Sq
∆,τ , q

ac−−→ s′ such that Sq′

∆,∆, (q′, v) |=
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ϕ . By induction hypothesis we know that there exists f ′ ∈
Contr(Sq

∆,∆, q′) such that f ′(S, q′), (q′, v) |= ϕ. Let f be the

strategy defined by: f(q
ac−−→ ρ)

def
= f ′(ρ) for any ρ run

starting in q′ and f(q) = ac. f is a ∆-strategy and be-
longs to Contr(Sq

∆,τ , q) — note that in this case τ = 0 —,
and f(S, q), (q, v) |= 〈ac〉 ϕ and then 〈ac〉 tt also holds for
f(S, q), (q, v).

− Φ
def
= [ac] ϕ:

⇒ If ac 0= γ the result is obvious. Now assume ac = γ, then
there exists f ∈ Contr(Sq

∆,τ , q) such that f(S, q), (q, v) |=

[ac] ϕ ∧ 〈ac〉 tt. The same proof as above (for Φ
def
= 〈ac〉 ϕ)

gives Sq
∆,τ , (q, v) |= 〈ac〉 ϕ , i.e. Sq

∆,τ , (q, v) |= [ac] ϕ
γ

because

Sq
∆,τ is deterministic.

⇐ First assume γ ∈ Actc \ {ac} or γ = λ. Then Sq
∆,τ , (q, v) |=

〈γ〉 tt we define the strategy f to be f(q) = γ. This allows us
to have f(S, q), (q, v) |= [ac]ϕ∧〈γ〉tt (as ac is disabled by f).
Finally assume γ = ac. Then we have Sq

∆,τ , (q, v) |= 〈ac〉 ϕ .

There exists Sq
∆,τ , q

ac−−→ s′ such that Sq′

∆,∆, (q′, v) |= ϕ . By

induction hypothesis, there exists f ∈ Contr(Sq
∆,∆, q′) such

that f ′(S, q′), (q′, v) |= ϕ. Let f be the strategy defined by
f(q) = ac and f(q

ac−−→ ρ) = f ′(ρ) for any ρ run starting
in state q′. We have f ∈ Contr(Sq

∆,τ , q) and f(S, q), (q, v) |=
[ac] ϕ ∧ 〈γ〉 tt.

− Φ
def
= ϕ [δ〉s ψ:

⇒ First assume γ = λ. This implies that there exists f ∈
Contr(Sq

∆,τ , q) such that f(S, q), (q, v) |= (ϕ [δ〉s ψ) ∧ 〈λ〉 tt.

Hence there is a time step f(S, q), s
t
−−→ qt (with t ∈ R+) such

that f(S, q), (qt, v + t) |= ψ and for all t′ < t f(S, q), (qt′ , v +
t′) |= ϕ. In any of the states (qt′ , v + t′) with t′ < t the strat-
egy is “delay” and thus they all satisfy 〈λ〉 tt. By induction

hypothesis, this implies that all the states Sqt′

∆,τ−t′ , (q
t′ , v + t′)

satisfy ϕ λ.
Now the strategy in qt is either “delay” or do a controllable
action; hence (qt, v + t) |= 〈λ〉 tt ∨ (

∨

ac∈Actc
〈ac〉 tt). As

(qt, v + t) satisfies ψ and one the 〈γ〉 tt for γ ∈ Actc ∪ {λ},
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by induction hypothesis, we obtain15: Sqt

∆,τ−t, (q
t, v + t) |= ψ

γ

for some γ ∈ Actc ∪ {λ}, and thus (qt, v + t) |= ψ . Finally
Sq

∆,τ , (q, v) |= ϕ λ [δ〉w ψ which is exactly the definition of

ϕ [δ〉s ψ
λ
.

Now assume γ = ac. There exists f ∈ Contr(Sq
∆,τ , q) such that

f(GS, q), (q, v) |= (ϕ [δ〉s ψ)∧ 〈ac〉 tt. This means that f(q) =
ac and then no delay is allowed by the strategy. This implies
that ψ must hold in (q, v). Hence f(S, q), (q, v) |= ψ ∧ 〈ac〉 tt.
By induction hypothesis we have: Sq

∆,τ , (q, v) |= ψ
ac and as

ϕ [δ〉s ψ
ac

= ψ
ac we are done.

⇐ Assume Sq
∆,τ , (q, v) |= ϕ [δ〉s ψ

γ
and γ = λ. By definition

of ϕ [δ〉s ψ
γ

this means that Sq
∆,τ , (q, v) |= ϕ λ [δ〉s ψ .

This means that there exists some t ≥ 0 such that
Sq

∆,τ , q
t
−−→ qt and Sq

∆,τ−t, (q
t, v + t) |= ψ and for all

t′ < t, Sq
∆,τ−t′ , (q

t′ , v + t′) |= ϕ λ. By induction hypothesis

this means there exists ft ∈ Contr(Sq
∆,τ−t, q

t) such that

ft(S, qt), (qt, v + t) |= ψ ∧ 〈γ〉 tt for γ ∈ Actc ∪ {λ}
and there exists ft′ ∈ Contr(Sq

∆,τ−t, q
t′) such that

ft′(S, qt′), (qt′ , v + t′) |= ϕ ∧ 〈λ〉 tt. Let f be the strategy

defined by: f(q
t′
−−→ qt′) = λ for any t′ < t, f(q

t
−−→ qt) = γ

if f(q
t
−−→ qt) = γ. Then f(S, q), (q, v) |= ϕ [δ〉s ψ ∧ 〈λ〉 tt.

Assume γ ∈ Actc. If Sq
∆,τ , (q, v) |= ϕ [δ〉s ψ

γ
. By defini-

tion of ϕ [δ〉s ψ
γ

this means that Sq
∆,τ , (q, v) |= ψ

γ
and by

induction hypothesis this implies there exists a strategy f
such that f(S, q), (q, v) |= ψ ∧ 〈γ〉 tt. Thus f(S, q), (q, v) |=
ϕ [δ〉s ψ ∧ 〈γ〉 tt

− Φ
def
= [δ] ϕ:

⇒ First assume γ ∈ Actc and there exists f ∈ Contr(Sq
∆,τ , q)

such that f(S, q), (q, v) |= [δ] ϕ ∧ 〈γ〉 tt. This implies
f(S, q), (q, v) |= ϕ ∧ 〈γ〉 tt and by induction hypothesis we
have: Sq

∆,τ , (q, v) |= ϕ γ which is by equation (5) [δ] ϕ
γ
.

Assume γ = λ and there exists f ∈ Contr(Sq
∆,τ , q) such that

f(S, q), (q, v) |= [δ] ϕ, i.e., for any transition f(S, q), q
t
−−→ qt

(with t ∈ R+), we have f(S, q), (qt, v+t) |= ϕ. We distinguish
two cases:

15 In the sequel we assume τ − t stands for max(0, τ − t).
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∗ either the strategy is to delay for ever in Sq
∆,τ from

q. In this case we have f(S, q), (qt, v + t) |= [δ] ϕ ∧
〈λ〉 tt for every t ≥ 0. This implies by induction hy-
pothesis Sq

∆,τ−t(q
t, v + t) |= ϕ λ for every t ≥ 0 and

thus Sq
∆,τ , (q, v) |= ϕ λ [δ〉w ψ for any ψ and hence

Sq
∆,τ , (q, v) |= [δ] ϕ λ. This in turn implies ϕ λ [δ〉w ψ′ for

any ψ′.

∗ or there is some t ≥ 0 such that f(q
t
−−→ qt) = ac.

We then have f(S, q), (qt′ , v + t′) |= ϕ ∧ 〈λ〉 tt for any
t′ < t and f(S, q), (qt, v + t) |= ϕ ∧ 〈ac〉 tt. By induc-

tion hypothesis we obtain Sqt′

∆,τ−t′ , (q
t′ , v + t′) |= ϕ λ for

any t′ < t and Sq
∆,0, (q

t, v + t) |= ϕ ac . This implies

Sq
∆,τ , (q, v) |= ϕ λ [δ〉wϕ ac which is by equation (5) [δ] ϕ

λ
.

⇐ Assume γ ∈ Actc. Then Sq
∆,τ , (q, v) |= ϕ γ entails that there

exists some f ∈ Contr(Sq
∆,τ , q) such that f(S, q), (q, v) |=

ϕ ∧ 〈γ〉 tt. This means that f(q) = γ and that no delay
is indeed allowed by the strategy f . Then we clearly have
f(S, q), (q, v) |= [δ] ϕ ∧ 〈γ〉 tt.
Assume γ = λ and Sq

∆,τ , (q, v) |= ϕ λ [δ〉w ϕ ac for some
ac ∈ Actc. We distinguish two cases:

∗ Sq
∆,τ , (q, v) |= [δ] ϕ λ. Then for any t ∈ R+, we have that

Sq
∆,τ : q

t
−−→ qt implies Sq

∆,τ , (q
t, v + t) |= ϕ λ and then

by induction hypothesis there exists ft ∈ Contr(Sq
∆,τ−t, q

t)

such that ft(S, qt), (qt, v+t) |= ϕ and ft(qt) = λ. Let f be

the strategy defined by f(q
t
−−→ qt) = λ and f(q

t
−−→ ρ) =

ft(ρ) for any run ρ starting in state qt. Clearly f belongs
to Contr(Sq

∆,τ , q). And we have f(S, q), (q, v) |= [δ] ϕ.

∗ There exists t ∈ R+ such that Sq
∆,τ : q

t
−−→ qt and

Sq
∆,τ−t, (q

t, v + t) |= ϕ ac for some ac ∈ Actc. By in-

duction hypothesis there exists ft ∈ Contr(Sq
∆,τ−t, q

t)

such that ft(S, qt), (qt, v + t) |= ϕ ∧ 〈ac〉 tt. Clearly
ft(qt) = ac and ft forbids time elapsing from qt. Moreover
the induction hypothesis applied to states qt′ with t′ < t
gives that there exists ft′ ∈ Contr(Sq

∆,τ−t, q
t′) such that

ft′(S, qt′), (qt′ , v + t′) |= ϕ and ft′(qt′) = λ. Let f be the

strategy defined by: f(q
t′
−−→ qt′) = λ for any t′ < t,

f(q
t
−−→ qt) = ac and f(q

t′′
−−→ ρ) = ft′′(ρ) for t′′ ≤ t.

This strategy allows us to deduce f(S, q), (q, v) |= [δ] ϕ.
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− Φ
def
=

∨

i ϕi: Direct.

− Φ
def
=

∧

i ϕi:

⇒ Assume there exists f ∈ Contr(Sq
∆,τ , q) such that

f(S, q), (q, v) |=
∧

i αi ∧ 〈γ〉 tt. Then we have f(S, q), (q, v) |=
αi ∧ 〈γ〉 tt for any i. By h.i. we have Sq

∆,τ , (q, v) |= αi
γ for

any i, and then Sq
∆,τ , (q, v) |=

∧

i αi
γ.

⇐ Assume Sq
∆,τ , (q, v) |=

∧

i ϕ
γ. Then by induction hypothe-

sis we have that there exists some fi ∈ Contr(Sq
∆,τ , q) such

that fi(S, q), (q, v) |= αi ∧ 〈γ〉 tt. It remains to construct a
strategy f by collecting the strategies fi’s. This is possible
because ϕ belongs to Ldet

c , indeed any term αi is prefixed by
a modality with a different label of Act ∪ {δ} and then the
union of the strategies fi’s provides a strategy f that belongs
to Contr(Sq

∆,τ , q). This gives the result.

Then this entails that the Lemma holds for any Ldet
c formula without

fixpoint. But this clearly entails that it also holds for full Ldet
c . Indeed

consider two states q and q′ which satisfy the same formulas without
fixpoint. If q does not belong to the greatest fixpoint of a an equation

Z
def
= ΨZ, then it entails that this state does not satisfy some unfolding

of the formula ΨZ (with where the first occurrences of Z have been
replaced by tt), then this formula does not hold for the state q′. "
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