
Checking Coverage for Infinite Collections of

Timed Scenarios⋆

S. Akshay1,3, Madhavan Mukund2, and K. Narayan Kumar2

1 LSV, ENS Cachan, France
akshay@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, Chennai, India
{madhavan,kumar}@cmi.ac.in

3 Institute of Mathematical Sciences, Chennai, India

Abstract. We consider message sequence charts enriched with timing
constraints between pairs of events. As in the untimed setting, an infinite
family of time-constrained message sequence charts (TC-MSCs) is gener-
ated using an HMSC—a finite-state automaton whose nodes are labelled
by TC-MSCs. A timed MSC is an MSC in which each event is assigned
an explicit time-stamp. A timed MSC covers a TC-MSC if it satisfies
all the time constraints of the TC-MSC. A natural recognizer for timed
MSCs is a message-passing automaton (MPA) augmented with clocks.
The question we address is the following: given a timed system specified
as a time-constrained HMSC H and an implementation in the form of a
timed MPA A, is every TC-MSC generated by H covered by some timed
MSC recognized by A? We give a complete solution for locally synchro-
nized time-constrained HMSCs, whose underlying behaviour is always
regular. We also describe a restricted solution for the general case.

1 Introduction

In a distributed system, several agents interact with each other to generate a
global behaviour. The interaction between these agents is usually specified in
terms of scenarios, using message sequence charts (MSCs) [7].

We consider scenarios extended with timing constraints, called time-constrained
MSCs (TC-MSCs). In a TC-MSC, we associate lower and upper bounds on the
time interval between certain pairs of events. TC-MSCs are a natural and useful
extension of the untimed notation for scenarios, because protocol specifications
typically include timing requirements for message exchanges, as well as descrip-
tions of how to recover from timeouts.

As an implementation model for timed distributed systems, we use communi-
cating finite-state machines equipped with clocks, called timed message-passing
automata (timed MPAs). Clock constraints are used to guard transitions and
specify location invariants, as in other models of timed automata [3]. Just as the

⋆ Partially supported by Timed-DISCOVERI, a project under the Indo-French Net-
working Programme.

runs of timed automata can be described in terms of timed words, the interac-
tions exhibited by timed MPAs can be described using timed MSCs—MSCs in
which each event is assigned an explicit timestamp.

Scenario specifications are typically incomplete and can be classified into two
categories, positive and negative. Positive scenarios are those that the system
should execute while negative scenarios indicate undesirable behaviours. This
leads to the scenario matching problem: given a distributed system and a set of
positive (negative) scenarios, does the system exhibit (avoid) these scenarios? In
the untimed setting, efficient algorithms for the scenario matching problem have
been identified in [10]. An automated approach is proposed in [5].

The timed analogue of scenario matching is coverage. A timed MSC T covers
a TC-MSC specification M if the timestamps on the events in T satisfy the
constraints specified in M . In general, a TC-MSC is covered by infinitely many
timed MSCs. The coverage problem is to check whether the set of timed MSCs
generated by a timed MPA cover all the TC-MSCs in the specification.

For finite sets of TC-MSCs, this problem reduces to the intersection of timed
regular languages. In this case, checking coverage can be automated using the
modelchecker Uppaal for timed systems, as described in [4].

In this paper, we consider the coverage problem for infinite collections of TC-
MSCs. A standard way to generate an infinite set of MSCs is to use a High-level
Message Sequence Chart (HMSC) [8]. In its most basic form, an HMSC is a
finite directed graph, called a Message Sequence Graph (MSG), with each node
labelled by an MSC. We label nodes in an MSGs with TC-MSCs and add time
constraints across edges, resulting in a structure called a time-constrained MSG
(TC-MSG). A TC-MSG defines a collection of TC-MSCs by concatenating the
TC-MSCs labeling each path from an initial node to a terminal node.

Formally, coverage asks whether for every TC-MSC M generated by a TC-
MSG, there is a timed MSC exhibited by the system that covers M . Since the
set of TC-MSCs generated by a TC-MSG is infinite, it turns out that coverage
can no longer be reduced to a simple intersection of timed regular languages.

We describe an algorithm to solve the coverage problem for locally synchro-
nized TC-MSGs—those for which the underlying behaviour is guaranteed to
be regular [6]. Our approach consists of “guiding” the timed MPA implemen-
tation to follow the TC-MSG specification in such a way that we can reduce
the problem to untimed language inclusion. This allows us to solve the coverage
problem both for positive and negative specifications. For arbitrary TC-MSGs,
a fully general guided simulation can result in non-regular behaviours. However,
we can adapt our approach to solve the coverage problem for TC-MSCs that are
executed node by node in the underlying TC-MSG.

The paper is organized as follows. We begin with some preliminaries about
MSCs and MSGs. In the next section, we describe how to attach timing infor-
mation to scenario specifications. Section 4 formally describes timed message-
passing automata. With this background, we formally describe the coverage
problem in Section 5. Our solution is described in Section 6. We conclude with
a brief discussion.

2

2 Preliminaries on MSCs

2.1 Message sequence charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate
through messages via reliable FIFO channels using a finite set of message types
M. For p ∈ P , let Actp = {p!q(m), p?q(m) | p 6= q ∈ P , m ∈ M} be the set of
communication actions for p. The action p!q(m) is read as p sends the message
m to q and the action p?q(m) is read as p receives the message m from q. We set
Act =

⋃

p∈P Actp. We also denote the set of channels by Ch = {(p, q) | p 6= q}.

Labelled posets An Act-labelled poset is a structure M = (E,≤, λ) where
(E,≤) is a poset and λ : E → Act is a labelling function.

For e ∈ E, let ↓e = {e′ | e′ ≤ e}. For X ⊆ E, ↓X = ∪e∈X↓e. We call X ⊆ E

a prefix of M if X = ↓X . For p ∈ P and a ∈ Act , we set Ep = {e | λ(e) ∈ Actp}
and Ea = {e | λ(e) = a}, respectively.

For each (p, q) ∈ Ch, we define a relation <pq as follows, to captures the fact
that channels are FIFO with respect to each message—if e <pq e′, the message
m read by q at e′ is the one sent by p at e.

e <pq e′
△
= λ(e) = p!q(m), λ(e′) = q?p(m) and |↓e ∩ Ep!q(m)| = |↓e

′ ∩ Eq?p(m)|

Finally, for each p ∈ P , we define the relation ≤pp= (Ep×Ep)∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC (over P) is a finite Act-labelled poset M = (E,≤, λ)
that satisfies the following conditions.

1. Each relation ≤pp is a linear order.
2. If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3. If e <pq e′, then |↓e ∩

(⋃

m∈M Ep!q(m)

)
| = |↓e′ ∩

(⋃

m∈M Eq?p(m)

)
|.

4. The partial order ≤ is the reflexive, transitive closure of the relation
⋃

p,q∈P <pq.

The second condition ensures that every message sent along a channel is
received. The third condition says that every channel is FIFO across all messages.

p q r

e1

e′1

e2

e′2 e3

e′3

m1

m2

m3

Fig. 1. An MSC

In diagrams, the events of an MSC are presented in
visual order. The events of each process are arranged in
a vertical line and messages are displayed as horizontal
or downward-sloping directed edges. Fig. 1 shows an
example with three processes {p, q, r} and six events
{e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to three messages—

m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) =

{λ(π) | π is a linearization of (E,≤)}. For instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is
one linearization of the MSC in Fig. 1.

MSC languages An MSC language is a set of MSCs.
We can also regard an MSC language L as a word language L over Act consisting
of all linearizations of the MSCs in L. For an MSC language L, we set lin(L) =
⋃
{lin(M) |M ∈ L}.

3

Definition 2. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Act.

Let M be an MSC and B ∈ N. We say that w ∈ lin(M) is B-bounded if
for every prefix v of w and for every channel (p, q) ∈ Ch,

∑

m∈M |πp!q(m)(v)| −
∑

m∈M |πq?p(m)(v)| ≤ B, where πΓ (v) denotes the projection of v on Γ ⊆ Act .
This means that along the execution of M described by w, no channel ever
contains more than B-messages. We say that M is (universally) B-bounded if
every w ∈ lin(M) is B-bounded. An MSC language L is B-bounded if every
M ∈ L is B-bounded. Finally, L is bounded if it is B-bounded for some B.

We then have the following result [6].

Theorem 3. If an MSC language L is regular then it is bounded.

2.2 Message sequence graphs

Message sequence graphs (MSGs) are finite directed graphs with designated
initial and terminal vertices. Each vertex in an MSG is labelled by an MSC.
The edges represent (asynchronous) MSC concatenation, in which one MSC is
“pasted” below the other. Formally, MSC concatenation is defined as follows.

Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that
E1 and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields
the MSC M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if e ∈ Ei,
i ∈ {1, 2}, and ≤ = (≤1 ∪ ≤2 ∪

⋃

p∈P E1
p × E2

p)∗.
A Message Sequence Graph is a structure G = (Q,→, Qin, QF , Φ), where Q

is a finite and nonempty set of states, → ⊆ Q × Q, Qin ⊆ Q is a set of initial
states, QF ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such
that (qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦M1 ◦M2 ◦ · · · ◦Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn

is a run if q0 ∈ Qin and qn ∈ QF . The language of MSCs accepted by G is
L(G) = {M(π) | π is a run through G}. We say that an MSC language L is
MSG-definable if there exists and MSG G such that L = L(G).

An example of an MSG is depicted in Fig. 2. The initial state is marked ⇒
and the final state has a double circle. The language L defined by this MSG is
not regular: L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗

such that |πp!q(m)(σ)| = |πr!s(m)(σ)| ≥ 1, which is not a regular string language.

⇒M1 M2

p q r s

M1

m

m

p q r s

M2

m

m

p q

r s

CGM1◦M2

Fig. 2. A message sequence graph

4

In general, it is undecidable whether an MSG describes a regular MSC lan-
guage [6]. However, a sufficient condition for the MSC language of an MSG to
be regular is that the MSG be locally synchronized.

Communication graph For an MSC M = (E,≤, λ), let CGM , the communi-
cation graph of M , be the directed graph (P , 7→) where:

– P is the set of processes of the system.
– (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly con-
nected component and isolated vertices.

Locally synchronized MSGs The MSG G is locally synchronized [9] (or
bounded [2]) if for every loop π = q → q1 → · · · → qn → q, the MSC M(π) is
com-connected. In Fig. 2, CGM1◦M2

is not com-connected, so the MSG is not
locally synchronized. We have the following result for MSGs [2].

Theorem 4. If G is locally synchronized, L(G) is a regular MSC language.

One of the factors contributing to the non-regularity of MSG-definable lan-
guages is that there is, in general, no bound on the asynchrony between processes.
For instance, in Fig. 2, if we traverse the loop k times, we can identify a prefix
of the MSC M1 ◦M2 ◦ · · · ◦M1 ◦M2

︸ ︷︷ ︸

k copies

in which r and s are currently in the final

copy of M2 while p and q are in the first copy of M1, at a distance 2k. In lo-
cally synchronized MSGs, the gap between the first and last processes is always
bounded. To formalize this, we define the active suffix of a path.

Active suffix Let G be an MSG and π = q0q1 . . . qk a path through G. Let X

be a prefix of M(q0)◦M(q1)◦· · ·◦M(qk). For each process p, let ip ∈ {0, 1, . . . , k}
be the node such that the maximum p-event in X lies in M(qip

). By convention,
if X has no p-events, ip = 0. Let imin = minp∈P ip. The active suffix of π is
defined to be the path qimin

qimin+1 . . . qk.
The following two facts about locally synchronized MSGs will be useful. The

first follows from Theorems 3 and 4. The second fact is the key to the proof of
Theorem 4 (see [6], Appendix A).

Corollary 5. Let G be a locally synchronized MSG. Then we can effectively
compute bounds B, K ∈ N such that:

– Every MSC in L(G) is B-bounded.
– For every MSC M ∈ L(G), for every prefix X of M , the length of the active

suffix of X is bounded by K.

3 Adding time to scenarios

3.1 Time-constrained MSCs

A time-constrained MSC is an MSC annotated with time intervals between some
pairs of events. For instance, consider the interaction between a user, an ATM

5

User ATM Server

u1

u2

[0, 4]

a1

a2

a3

a4

s1

s2

[0, 2]

card

card-data

card-OK

pin-request

Fig. 3. A TC-MSC describing interaction with an ATM.

and a server depicted in Fig. 3. This MSC has eight events generated by four
messages, with time constraints between the event pairs (u1, u2) and (s1, s2).
The constraint [0, 2] on (s1, s2) specifies that the server is expected to respond
to a request to authenticate an ATM card within 2 time units. Similarly, the
constraint [0, 4] on (u1, u2) specifies that a user will be asked to enter his PIN
within 4 time units of inserting the card.

For simplicity, we assume that time intervals are bounded by natural num-
bers. For m, n ∈ N, [m, n] is the closed interval {x ∈ R≥0 | m ≤ x ≤ n}, while
(m, n) is the open interval {x ∈ R≥0 | m < x < n}. As usual, we permit half-
open intervals of the form [m, n) and (m, n]. To specify an interval without an
upper bound we write [m,∞) or (m,∞). Let I denote the set of intervals.

Definition 6. Let M = (E,≤, λ) be an MSC. An interval constraint is a tuple
〈(e1, e2), I〉 where e1, e2 ∈ E with e1 ≤pp e2 for some p ∈ P or e1 <pq e2 for
some channel (p, q) ∈ Ch and I ∈ I.

The restrictions on e1 and e2 ensure that an interval constraint is either local
to a process or describes a bound on the delivery time of a single message.

Definition 7. A time-constrained MSC (TC-MSC) is a pair T = (M, EC) where
M = (E,≤, λ) is an MSC and EC ⊆ (E ×E)×I is a set of interval constraints
such that each pair (e1, e2) is mapped to at most one interval.

3.2 Timed MSCs

In a timed MSC, events are explicitly time-stamped so that the ordering on the
time-stamps respects the partial order on the events.

Definition 8. A timed MSC is pair (M, τ) where M = (E,≤, λ) is an MSC
and τ : E → R≥0 assigns a nonnegative time-stamp to each event, such that for
all e1, e2 ∈ E, if e1 ≤ e2 then τ(e1) ≤ τ(e2).

A timed MSC covers a TC-MSC if the time-stamps assigned to events respect
the interval constraints specified in the TC-MSC. Let r ∈ R≥0 and I ∈ I. We
write r |= I to denote that r lies in the interval specified by I.

Definition 9. Let M = (E,≤, λ) be an MSC, T = (M, EC) a TC-MSC and
Mτ = (M, τ) a timed MSC. Mτ is said to cover T if for each 〈(e1, e2), I〉 ∈
EC, τ(e2)− τ(e1) |= I.

6

User ATM Server

(u1, 0)

(u2, 3.9)

(a1, 0)

(a2, 1)

(a3, 3.3)

(a4, 3.3)

(s1, 1)

(s2, 2.3)

card

card-data

card-OK

pin-request

Fig. 4. A timed MSC describing interaction with an ATM.

Fig. 4 shows a timed MSC that covers the TC-MSC in Fig. 3.
Let Mτ = (M, τ) be a timed MSC, where M = (E,≤, λ). A timed lineariza-

tion of Mτ is a sequence (e0, τ(e0))(e1, τ(e1)) · · · (en, τ(en)) where e0e1 . . . em

is a linearization of (E,≤) and τ(e0) ≤ τ(e1) ≤ · · · ≤ τ(en). As is the case with
untimed MSCs, under the FIFO assumption for channels, a timed MSC can be
faithfully reconstructed from any one of its timed linearizations.

3.3 Time-constrained MSGs

A natural way to describe infinite families of TC-MSCs is to label the nodes of
an MSG with TC-MSCs instead of normal MSCs. In addition, we permit local
(process-wise) timing constraints along the edges of the MSG. A constraint for
process p along an edge q −→ q′ specifies a constraint between the final p-event of
M(q) and the initial p-event of M(q′), provided p actively participates in both
these nodes. If p does not participate in either of these nodes, the constraint is
ignored. We can think of each node in a TC-MSG as describing one phase of a
communication protocol, with timing constraints along the edges specifying how
long each process can wait between phases.

Definition 10. A time-constrained MSG (TC-MSG) is a structure G =
(Q,→, Qin, QF , Φ,EdgeC), where

– Q is a finite non-empty set of states with sets of initial and final states Qin

and QF , respectively, and→ ⊆ Q×Q is a transition relation, as in an MSG.
– Φ labels each node with a TC-MSC.
– EdgeC ⊆ Q × Q × P × I describes local constraints on the edges, with the

restriction that (q, q′, p, I) ∈ EdgeC only if q −→ q′ and each triple (q, q′, p)
is mapped to at most one interval.

The definitions of paths and runs are the same for TC-MSGs as for MSGs.
If π = q0q1 . . . qn is a path through G, the TC-MSC generated by π is denoted
M(π). To define M(π), we begin with the TC-MSC M0◦M1◦· · ·◦Mn, where Mi =
Φ(qi) for i ∈ {0, 1, . . . , n}. For each edge qi −→ qi+1, 0 ≤ i < n, if (qi, qi+1, p, I) ∈
EdgeC we add a constraint I between the last p-event in Mi and the first p-event
in Mi+1, provided p participates in both Mi and Mi+1.

The language L(G) of TC-MSCs accepted by G is defined to be the set of
TC-MSCs generated by the runs of G.

7

We define com-connectedness for TC-MSCs based on the communication
graph just as we do for untimed MSCs. From this, we can define locally synchro-
nized TC-MSGs in the same way as we do for MSGs.

4 Timed Message-Passing Automata

Message-passing automata are a natural machine model for recognizing MSCs.
We extend the definition used in [6] to include clocks.

Definition 11. Let C denote a finite-set of real-valued variables called clocks.
A clock constraint is a conjunctive formula of the form x ∼ n or x − y ∼ n for
x, y ∈ C, n ∈ N and ∼ ∈ {≤, <, =, >,≥}. Let Form(C) denote the set of clock
constraints over the set of clocks C.

Clock constraints will be used as guards in timed message-passing automata.

Definition 12. A clock assignment for a set of clocks C is a function v : C →
R≥0 that assigns a nonnegative real value to each clock in C.

A clock assignment v satisfies a clock constraint ϕ, denoted v |= ϕ, if ϕ

evaluates to true when we replace each clock x in ϕ by the value v(x).

Let v : C → R≥0 be a clock assignment. For d ∈ R≥0, v + d denotes the clock
assignment that maps each x ∈ C to v(x) + d. For X ⊆ C, v[X ← 0] is the clock
assignment that agrees with v for x ∈ C \X and maps all clocks in X to 0.

Definition 13. A timed message-passing automaton (timed MPA) over Act
with a set of clocks C is a structure A = ({Ap}p∈P ,Act , C). Each component Ap

is of the form (Sp, S
p
in,→p), where:

– Sp is a finite set of p-local states.
– S

p
in ⊆ Sp, is a set of initial states for p.

– →p ⊆ Sp × Form(C)×Actp × 2C × Sp is the p-local transition relation.

The local transition relation→p specifies how the process p sends and receives
messages. The transition (s, ϕ, p!q(m), X, s′) says that in state s, p can send the
message m to q and move to state s′. This transition is guarded by the clock
constraint ϕ—the transition is enabled only when the current values of all the
clocks satisfy ϕ. The set X specifies the clocks whose values are reset to 0 when
this transition is taken. Similarly, the transition (s, ϕ, p?q(m), X, s′) signifies that
at state s, p can receive the message m from q and move to state s′ provided
the current clock values satisfy ϕ. Once again, all clocks in X are reset to 0.

To simplify the presentation, we have not included location invariants in our
model. Location invariants are clock constraints attached to states that constrain
the duration for which the automaton can remain in each state. Our results
extend smoothly to timed MPAs equipped with location invariants.

Like timed automata, timed MPA can perform two types of moves: moves
where the automaton does not change state and time elapses, and moves where
some local component p changes state instantaneously as permitted by →p.

8

⇒ r1 r2 r3 r4

r!s(m1)

{x}

x > 2.2, r?s(m2)

x ≤ 2,

r?s(m2) r!s(m3)

s2

⇑

s1 s3

s?r(m1)

{y}

y = 1, s!r(m2)
s?r(m3)

T1

r s

0.5

2.0

2.3

0.7

1.7

2.5

m1

m2

m3

T2

r s

0.5

2.8

2.9

4.5

4.8

1.7

2.7

3.0

4.0

5.0

m1

m2

m1

m2

m3

Fig. 5. A timed MPA and some timed MSCs that it recognizes

A global state of A is an element of
∏

p∈P Sp. For a global state s, sp denotes
the pth component of s. A configuration is a triple (s, χ, v) where s is a global
state, χ : Ch → M∗ is the channel state describing the message queue in each
channel c and v : C → R≥0 is a clock assignment. An initial configuration of A
is of the form (sin, χε, v0) where sin ∈

∏

p∈P S
p
in, χε(c) is the empty string ε for

every channel c and v0(x) = 0 for every x ∈ C.
The set of reachable configurations of A, ConfA, is defined inductively, to-

gether with a transition relation =⇒ ⊆ ConfA × (Σ ∪ R≥0)× ConfA.

– Every initial configuration (sin, χε, v0) is in ConfA.

– If (s, χ, v) ∈ ConfA and d ∈ R≥0, then there is a global move (s, χ, v)
d

=⇒
(s, χ, v + d) and (s, χ, v + d) ∈ ConfA.

– If (s, χ, v) ∈ ConfA and (sp, ϕ, p!q(m), X, s′p) ∈ →p such that v satisfies ϕ,

there is a global move (s, χ, v)
p!q(m)
=⇒ (s′, χ′, v[X ← 0]) with (s′, χ′, v[X ←

0]) ∈ ConfA, where, for r 6= p, sr = s′r, χ′((p, q)) = χ((p, q)) · m, and for
c 6= (p, q), χ′(c) = χ(c).

– Similarly, if (s, χ, v) ∈ ConfA and (sp, ϕ, p?q(m), X, s′p) ∈ →p such that v

satisfies ϕ, there is a global move (s, χ, v)
p?q(m)
=⇒ (s′, χ′, v[X ← 0]) with

(s′, χ′, v[X ← 0]) ∈ ConfA, where, for r 6= p, sr = s′r, χ((q, p)) = m ·
χ′((q, p)), and for c 6= (q, p), χ′(c) = χ(c).

Let prf(σ) denote the set of prefixes of a timed word σ = (a1, t1)(a2, t2) . . .

(ak, tk) ∈ (Act × R≥0)
∗. A run of A over σ is a map ρ : prf(σ) → ConfA such

that ρ(ε) is assigned an initial configuration (sin, χε, v0) and for each σ′ ·(ai, ti) ∈

prf(σ), ρ(σ′)
di=⇒

ai=⇒ ρ(σ′ · (ai, ti)) with ti = ti−1 + di and t0 implicitly set to 0.
The run ρ is complete if ρ(σ) = (s, χε, v) is a configuration in which all

channels are empty. When a run on σ is complete, σ is a timed linearization of a
timed MSC. We define L(A) = {σ | A has a complete run over σ}. Thus, L(A)
corresponds to the set of timed linearizations of a collection of timed MSCs. Let
L(A) be the language of timed MSCs corresponding to L(A).

Fig. 5 shows a timed MPA along with two of the timed MSCs that it recog-
nizes. In the timed MSCs, we have only written the time-stamps associated with

9

q1

⇒
r s

m1

[0, 3]

q2

r sm2

m3

q3

r sm2

([0, 2],[1, 1]) ((2, 3],[1, 1])

M1

r s
m1

[0, 3]

m2

m3

[0, 2] [1, 1]

M2

r s
m1

[0, 3]

m2

m1

[0, 3]

m2

m3

(2, 3]

[0, 2]

[1, 1]

[1, 1]
T ′

2

r s

0.5

2.6

2.9

4.5

4.8

1.5

2.5

3.0

4.0

5.0

m1

m2

m1

m2

m3

Fig. 6. The coverage problem

the events and not the event names themselves. In this timed MPA, r sends a
message m1 to s. Process s replies with m2 exactly 1 time unit after it receives
m1. If m2 is received by r within 2 time units of its sending m1, it sends m3 and
quits. Otherwise, if at least 2.2 time units go by before r receives m2, it resends
m1. Note that there is no transition enabled in r for the interval 2 < x ≤ 2.2.

5 The coverage problem

We are interested in the following verification problem for timed scenario speci-
fications. Let G be a TC-MSG and A a timed MPA. The coverage problem for
G and A is to determine whether for each TC-MSC M ∈ L(G), there is a timed
MSC T ∈ L(A) such that T covers M . This is a natural verification problem
when we interpret TC-MSGs as incomplete positive specifications.

For instance, consider the TC-MSG G in Fig. 6. In G, r sends a message m1

to s that could be delayed by upto 3 time units, to which s replies after exactly 1
time unit. If the response m2 from s reaches r within 2 time units from the time
r sent m1, r sends a final message m3 and quits. Otherwise, r resends m1. M1

and M2 (Fig. 6) are TC-MSCs in L(G), generated by paths q1q2 and q1q3q1q2,
respectively. These are covered by the timed MSCs T1 and T2 (Fig. 5) in L(A).

In the untimed case, scenario matching asks whether L(G) ⊆ L(A), where G

is an MSG and A is an MPA. In the timed case, we cannot reduce coverage to
language inclusion of timed MSCs. A TC-MSC M represents an infinite family of
timed MSCs, each of which covers M . However, the implementation need not, in
general, permit all these realizations. For instance, the timed MPA in Fig. 5 will
not exhibit any timed MSC covering M2 from Fig. 6 where the time difference
between the first two p-events is 2.1, such as in the timed MSC T ′

2 in Fig. 6.
Another plausible approach is to treat this as a timed game between Spoiler,

who picks a path in the TC-MSG G, and Duplicator, who picks a timed MSC in

10

L(A) that covers the TC-MSC generated along the path chosen by Spoiler. At
each step, Spoiler adds a node to the path in G. Duplicator has to match this
move by extending the current timed MSC so that it stays in L(A) and covers
the TC-MSC described by the extended path. However, a winning strategy in
this game would have the following property: if two paths π1 and π2 have a
common prefix π, then the timed MSC generated by Duplicator for the prefix π

must be the same for the plays in which Spoiler generates π1 and π2. Notice that
the paths that generate M1 and M2 in Fig. 6 share a common prefix, namely
q1. In any timed MSC that covers M1, message m1 must be delivered within 1
time unit whereas in any timed MSC that covers M2, m1 can only reach after
1 time unit. Hence, any timed MSC that covers M(q1) and can be extended to
cover M1 cannot simultaneously be extended to cover M2. In other words, the
game-theoretic formulation introduces too strict a correlation between the timed
MSCs covering different paths through the TC-MSG.

These observations suggest that traditional approaches for scenario matching
in the untimed case do not generalize to the coverage problem in the timed case.
In the next section, we formulate a solution to the coverage problem for locally
synchronized TC-MSGs.

6 Coverage for locally synchronized TC-MSGs

Theorem 14. Let G be a locally synchronized TC-MSG and A a timed MPA.
The coverage problem for G and A is decidable.

Proof. Our proof strategy is as follows. FromA, we construct a timed automaton
B that simulates the global behaviour of A, restricted to runs that are consistent
with paths through L(G). In addition to the communication actions in Act , the
timed automaton B also has moves labelled by nodes from G, indicating the path
that it is following. As usual, we can use the region construction [1] to obtain an
untimed regular language Untime(L(B)) ⊆ (Act∪Q)∗. It will then turn out that
Untime(L(B)) projected onto Q precisely describes the set of paths through G

that are covered by some timed MSC in L(A).
To check coverage, we just need to verify that the node language of G,

LQ(G) = {q0q1 . . . qn ∈ Q∗ | q0 → q1 → · · · → qn is a run}, is included in
LQ(B) = πQ(Untime(L(B))). This would imply that for every path in π through
G, the TC-MSC M(π) is covered by some timed MSC in L(A).

There is, however, a complication. Some paths in G may define TC-MSCs
that cannot be covered, because of self-contradictory timing constraints. These
paths need not be covered by timed MSCs from L(A). We cannot, therefore,
directly compare LQ(G) with LQ(B). The solution is straightforward: we start
with the trivial automaton AU that recognizes Act∗, which can be regarded as
a degenerate timed automaton with no timing constraints. To AU , we apply the
same construction as we have done for A. The resulting timed automaton BU will
mark out all paths π through G for which M(π) can be covered by some timed
MSC. We can now check whether LQ(BU) = πQ(Untime(L(BU))) is included in
LQ(B). Since both LQ(BU) and LQ(B) are regular languages, the result follows.

11

Constructing B Recall that A = ({Ap}p∈P ,Act , C), where each component
Ap is of the form (Sp, S

p
in,→p), as described in Section 4. The structure of the

TC-MSG is given by G = (Q,→, Qin, QF , Φ,EdgeC), as described in Section 3.
Without loss of generality, we assume that all the events that occur in the TC-
MSCs labelling nodes of G have distinct names, so that when we refer to a
constraint 〈(e, e′), I〉, there is no ambiguity.

Alphabet The alphabet of B is Act ∪Q, where Q is the set of nodes in G.

States A state of B consists of the following components:

– s ∈
∏

p∈P Sp, a global state of A.
– χ : Ch →M∗, the state of the channels.
– η : Act → {0, . . . , B−1}, a function to count occurrences of each action in

Act modulo B.
– π ∈ Q∗, (the active suffix of) a path in G.
– ρ : EM(π) → {0, 1, 2}, a labelling function for the events in the TC-MSC

M(π). (Events labelled 0 are yet to be executed. Events labelled 1 represent
the “active” frontier of events that will be executed next along each process.
Events labelled 2 are those that have already been executed.)

The state space of B is finite because of the bounds B and K that we can
compute for a locally synchronized TC-MSG G (Corollary 5). Since every TC-
MSC in L(G) is B-bounded, the channel state χ is bounded. Moreover, since
the length of the active suffix along any run is at most K, the length of π is
bounded, and hence so is ρ.

An initial state of B is one in which the global state of the timed MPA A
is sin ∈

∏

p∈P S
p
in, all channels are empty, η maps each action to 0, the active

suffix π = q for some initial node q ∈ Qin and ρ maps the minimal events along
each process in M(q) to 1 and all other events to 0.

Clocks of B Interval constraints in G will be monitored using additional clocks
in B. The set of clocks of B consists of all clocks of A along with a clock zlc for
each constraint lc local to a process in G, a clock zEC for each edge constraint
EC in G, and a set of clocks z

mesg
i , 1 ≤ i ≤ B, one for each potentially active

copy of a message constraint mesg in G.
If lc = 〈(e, e′), I〉 is a local constraint on process p, the clock zlc is reset to

zero when B simulates e and is checked against the interval I when B simulates
e′. Each clock zEC is used to check edge constraints in an analogous manner.
For message constraints, we may have multiple copies of the same message in a
channel. We have to maintain and check the constraint independently for each
copy of the message. However, since channels are B-bounded, there can be no
more than B active copies of a message at any point. Thus, we can use the clocks
z
mesg
i in conjunction with the state information η that assigns a number modulo

B to each communication action in order to check message constraints.

Transitions We can now define the transition function for B. Each move of B
consists of one of the following:

12

– Pick a process p and perform a legal move in A that executes the (unique)
p-event ep labelled 1 by ρ. This move is labelled by λ(ep) ∈ Act .

– If there is no active event for some process, extend the active suffix by adding
a node q. This move is labelled q.

Transitions on Act Since B incorporates the global state, the channel state
and the clocks of A, it can faithfully simulate every move of A. We use the
remaining components of the state of B to restrict the moves of A to follow a
path in G.

Formally, we have a move (s, ϕ, α, X, s′) in B, where ϕ is a clock constraint,
α ∈ Act and X is a set of clocks to be reset if the following hold. Let us assume
that α ∈ Actr is an r-action. Then:

– The projection of (s, ϕ, α, X, s′) onto components from A defines a valid
(global) transition of A.

– The action α must match the label of the r-event er currently labelled 1 by
ρ in s.

– If lc = 〈(e, er), I〉 is a local constraint, we must have in ϕ a constraint
checking that zlc satisfies I. For instance, if I = [m, n), we have a constraint
m ≤ zlc ∧ zlc < n in ϕ.

– If EC = 〈(e, er), I〉 is an edge constraint, e is the maximum r-event in M(qi)
and er is the minimum r-event in M(qi+1) for some nodes qi, qi+1 along π,
then we must have in ϕ a constraint checking that zEC satisfies I.

– If α = r?s(m), η(α) = k and there is a message constraint mesg = 〈(es, er), I〉
from the corresponding send event es, we must have in ϕ a constraint check-
ing that z

mesg

(k+1) mod m
satisfies I.

The new state of B, s′, is obtained from s as follows.

– The global state of A is updated according to the transition simulated by B.
– The channel state of A is updated in the obvious way.
– η(α) is updated to (η(α) + 1) mod B.
– ρ(er) is set to 2 and the next r event in M(π), if any, is labelled 1.
– Let π = q0q1 . . . qm. Let imax be the maximum index in the set {i | ∀e ∈

M(qi). ρ(e) = 2}. Update π to qimax
qimax+1 . . . qm. Note that this deletes all

completed nodes from the active suffix except the last one. We need to retain
qimax

in the active suffix to check edge constraints.

Finally, we compute the set X of clocks to be reset on this transition as follows:

– If lc = 〈(er, e
′), I〉 is a local constraint involving er, add zlc to X .

– If er is the maximum r-event in M(q), for each edge q −→ q′ ∈ G, if e′ is the
minimum r-event in M(q′) and EC = 〈(er, e

′), I〉 is an edge constraint, add
zEC to X .
Note that we activate clocks for edge constraints along all possible extensions
of the path when we encounter a maximal event in a node. However, when we

13

reach a minimal event in the next node, we ensure that we only enforce the
constraint for the edge that was actually traversed. Each time we traverse an
edge with constraint EC , the clock zEC will be reset, so there is no danger
when we check an edge constraint that the clock value is stale.

– If α = r!s(m) and there is a message constraint mesg = 〈(er, es), I〉 involving
er, add zEC

η(α) to X .

Transitions on Q If B is in a state s = (s, χ, η, π, ρ) where for some subset
P ⊆ P , for each p ∈ P there is no p-event labelled 1 by ρ, we need to extend
π = q0q1 . . . qm. In such a situation, for each q such that there is an edge qm −→ q

in G, we add a transition s
q
−→ s′ in B where s′ = (s, χ, η, π ·q, ρ′), such that ρ′(e)

agrees with ρ(e) for all e ∈ M(π), ρ′(e) = 1 if e is a minimum p-event in M(q)
for p ∈ P , and ρ′(e) = 0 for all other events e ∈M(q).

Accepting states B A state s = (s, χ, η, π, ρ) of B is accepting if s is an
accepting state of A, χ = χε, the channel state in which there are no messages
in any channel, π = q0q1 . . . qm with qm ∈ QF and ρ(e) = 2 for all e ∈M(π).

From the definition of B, it is routine, though tedious, to prove that B simulates
precisely those runs of A that cover some path in G. Moreover, for each such run,
B records the sequence of nodes in G traversed along the run. Thus LQ(B) =
πQ(Untime(L(B))) is a regular language describing the set of paths in G covered
by runs of A. As described earlier, we can apply the same construction to the
trivial automaton AU recognizing Act∗ to get a timed automaton BU that marks
out all feasible paths in G. It then follows that checking coverage is equivalent
to checking that LQ(BU) ⊆ LQ(B).

From locally synchronized to arbitrary TC-MSGs

If we drop the assumption that the TC-MSG we start with is locally synchro-
nized, the automaton B fails to be finite-state because we cannot guarantee a
bound on either the channel capacities or the length of the active suffix.

However, in such a situation, we can still solve a restricted version of the
problem. For each MSC of the form M = M1 ◦M2 ◦ · · · ◦Mk ∈ L(G) generated
by a path q1q2 . . . qk with Mi = M(qi) for i ∈ {1, 2, . . . , k}, we ask whether there
is a timed MSC T ∈ L(A) such that lin(T) = w1w2 . . . wk where wi ∈ lin(Mi)
for i ∈ {1, 2, . . . , n}. In other words, we restrict our attention to runs of A that
cover G one node at a time.

We can suitably modify the construction of the automaton B to achieve this.
In the new version of B, there is always only one active node, from the way we
have defined the simulation. Channel capacities are bounded by the maximum
capacity exhibited by the individual TC-MSCs labelling the nodes of G. We can
then obtain an analogous result for coverage in terms of LQ(BU) and LQ(B).
Due to lack of space, we omit further details.

14

Negative specifications

For negative specifications, the verification problem is dual—given a TC-MSG
G and a timed MPA A, we want to ensure that there is no timed MSC T ∈ L(A)
that covers any TC-MSC M ∈ L(G). Let us call this problem avoidance.

Unlike coverage, avoidance does reduce directly a problem involving timed
languages. We want lin(L(G)), the set of timed linearizations of L(G), to be
disjoint from L(A) = lin(L(A)), the set of timed linearizations of L(A). However,
there is still the problem of finding an effective presentation of lin(L(G)).

Notice, however, that the construction used to prove Theorem 14 also solves
the avoidance problem. Using the terminology introduced above, avoidance is
equivalent to checking that LQ(BU) ∩ LQ(B) = ∅.

7 Discussion

We have shown how to solve the timed analogue of the scenario matching
problem for specifications consisting of infinite sets of time-constrained MSCs.
Though our result is stated in the context of timed MPAs, our construction
works even if the system is presented as a global timed automaton. Our solution
to the coverage problem for positive specifications also yields a solution to the
avoidance problem for negative specifications. An interesting problem to be tack-
led is realizability for time-constrained MSGs—given a TC-MSG G, construct a
timed MPA A such that L(A) covers L(G).

References

1. R. Alur and D. Dill: A Theory of Timed Automata. Theor. Comput. Sci., 126
(1994) 183–225.

2. R. Alur and M. Yannakakis: Model checking of message sequence charts. Proc.
CONCUR’99, Springer Lecture Notes in Computer Science 1664, (1999) 114–129

3. J. Bengtsson and Wang Yi: Timed Automata: Semantics, Algorithms and Tools,
Lectures on Concurrency and Petri Nets 2003, LNCS 3098, Springer-Verlag (2003)
87–124.

4. P. Chandrasekaran and M. Mukund: Matching Scenarios with Timing Constraints.
Proc. FORMATS 2006, Springer LNCS 4202 (2006) 98–112.

5. D. D’Souza and M. Mukund: Checking consistency of SDL+MSC specifications,
Proc. SPIN Workshop 2003, LNCS 2648, Springer-Verlag (2003) 151–165.

6. J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagarajan:
A Theory of Regular MSC Languages. Inf. Comp., 202(1) (2005) 1–38.

7. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva
(1999).

8. S. Mauw and M.A. Reniers: High-level message sequence charts. Proc. SDL’97,
Elsevier (1997) 291–306.

9. A. Muscholl and D. Peled: Message sequence graphs and decision problems on
Mazurkiewicz traces. Proc. MFCS’99, Springer Lecture Notes in Computer Science
1672, (1999) 81–91

10. A. Muscholl, D. Peled, and Z. Su: Deciding properties for message sequence charts.
Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226–242.

15

