
Patricia Bouyer, Serge Haddad and
Pierre-Alain Reynier

Timed Petri Nets and Timed Automata:
On the Discriminating Power of Zeno

Sequences

Research Report LSV-06-06

February 2006

Timed Petri Nets and Timed Automata: On the
Discriminating Power of Zeno Sequences

Patricia Bouyer1, Serge Haddad2, Pierre-Alain Reynier1

1 LSV, CNRS & ENS Cachan, France
2 LAMSADE, CNRS & Université Paris-Dauphine, France

{bouyer,reynier}@lsv.ens-cachan.fr, haddad@lamsade.dauphine.fr

Abstract. Timed Petri nets and timed automata are two standard models for the
analysis of real-time systems. In this paper, we prove that they are incompara-
ble for the timed language equivalence. Thus we propose an extension of timed
Petri nets with read-arcs (RA-TdPN), whose coverability problem is decidable.
We also show that this model unifies timed Petri nets and timed automata. Then,
we establish numerous expressiveness results and prove that zeno behaviours dis-
criminate between several sub-classes of RA-TdPNs. This has surprising conse-
quences on timed automata, for instance on the power of non-deterministic clock
resets.

1 Introduction

Timed automata (TA) [3] are a well-accepted model for representing and analyzing
real-time systems: they extend finite automata with clock variables which give timing
constraints on the behaviour of the system. Another prominent formalism for the design
and analysis of discrete-event systems is the model of Petri nets (PN) [6]. Thus, in order
to model concurrent systems with constraints on time, several timed extensions of PNs
have been proposed as a possible alternative to TA.

Time Petri nets (TPN), introduced in the 70’s, associate with each transition a time
interval [4]. A transition can be fired if its enabling duration lies in its interval and time
can elapse only if it does not disable some transition: firing of an enabled transition
may depend on other enabled transitions even if they do not share any input or output
place, which restricts a lot applicability of partial order methods in this model. More-
over, with this “urgency” requirement, all significant problems become undecidable for
unbounded TPNs.

Timed Petri nets (TdPN), also called timed-arc Petri nets, associate with each arc
an interval (or a bag of intervals) [14]. In TdPNs, each token has an age. This age is
initially set to a value belonging to the interval of the arc which has produced it or
set to zero if it belongs to the initial marking. Afterwards, ages of tokens evolve syn-
chronously with time. A transition may be fired if tokens with age belonging to the
intervals of its input arcs may be found in the current configuration. Note that “old” to-
kens may die (i.e. they cannot be used anymore for firing a transition but they remain in
the place), and that conditions for firing transitions are thus local and do not depend on
the global configuration of the system, like in PNs. This “lazy” behaviour has important

consequences. Whereas the reachability problem is undecidable for TdPNs [14], the
coverability problem [2] and some significant other ones are decidable [1]. Furthermore,
TdPNs cannot be transformed into equivalent TA (for the language equivalence), since
the untimed languages of the latter model are regular. However the question whether
(bounded) TdPNs are more expressive than TA w.r.t. language equivalence was not
known.

Our contributions. In this paper, we answer negatively this question, and propose an
extension of TdPNs with read-arcs, yielding the model of read-arc timed Petri nets
(RA-TdPN). This feature has already been introduced in the untimed framework [11]
in order to define a more refined concurrent semantics for nets. However, in the untimed
framework, for the interleaving semantics, they do not add any expressive power as
they can be replaced by two arcs which check that a token is in the place and replace
it immediately. First, we investigate the decidability of the coverability problem for the
RA-TdPN model, and we prove that it remains decidable.

We then focus on the expressiveness of read-arcs, and prove quite surprising results.
Indeed, we show that read-arcs add expressiveness to the model of TdPNs when consid-
ering languages of (possibly zeno) infinite timed words. On the contrary, we also prove
that when considering languages of finite or non-zeno infinite timed words, read-arcs
can be simulated and thus don’t add any expressiveness to TdPNs.

Furthermore we investigate the relative expressiveness of several subclasses of RA-
TdPNs, depending on the following restrictions: boundedness of the nets, integrality of
constants appearing on the arcs, resets labelling post-arcs. We give a complete picture
of their relative expressive power, and distinguish between three timed language equiv-
alences (equivalence over finite words, or infinite words, or non-zeno infinite words)
which, as before, lead to different results.

We finally establish that timed automata and bounded RA-TdPNs are language
equivalent. From this result and former ones, we deduce several worthwhile expres-
siveness results, for instance we prove that non-determinism in clock resets adds ex-
pressive power to timed automata with integral constants over (possibly zeno) infinite
timed words, which contrasts with the finite or non-zeno infinite timed words case [5].
If rational constants are allowed, this is no more the case: it should be emphasized that
this latter result implies that the granularity of the automaton has to be refined if we
want to remove non-deterministic updates while preserving expressiveness.

2 Read-Arc Timed Petri Nets

Preliminaries. If A is a set, A∗ denotes the set of all finite words over A whereas Aω

denotes the set of infinite words over A. An interval I of R≥0 is a Q≥0- (resp. N-)
interval if its left endpoint belongs to Q≥0 (resp. N) and its right endpoint belongs to
Q≥0 ∪ {∞} (resp. N ∪ {∞}). We denote by I (resp. IN) the set of Q≥0- (resp. N-)
intervals of R≥0.

Bags. Given a set E , Bag(E) denotes the set of mappings f from E to N s.t. the set
dom(f) = {x ∈ E | f(x) 6= 0} is finite. We note size(f) =

∑

x∈E f(x). Let x, y ∈
Bag(E), then y ≤ x iff ∀e ∈ E , y(e) ≤ x(e). If y ≤ x, then x− y ∈ Bag(E) is defined

2

by: ∀e ∈ E , (x − y)(e) = x(e) − y(e). For d ∈ R≥0 and x ∈ Bag(R≥0) x + d ∈
Bag(R≥0) is defined by ∀τ < d, (x+ d)(τ) = 0 and ∀τ ≥ d, (x+ d)(τ) = x(τ − d).
Let x ∈ Bag(E1 × E2). The bags πi(x) ∈ Bag(Ei) for i = 1, 2 are defined by: for all
e1 ∈ E1, π1(x)(e1) =

∑

e2∈E2
x(e1, e2), and similarly for π2.

Timed words and timed languages. Let Σ be a fixed finite alphabet s.t. ε 6∈ Σ (ε is the
silent action), we note Σε = Σ ∪ {ε}. A timed word w over Σε (resp. Σ) is a finite
or infinite sequence w = (a0, τ0)(a1, τ1) . . . (an, τn) . . . s.t. for every i ≥ 0, ai ∈ Σε
(resp. ai ∈ Σ), τi ∈ R≥0 and τi+1 ≥ τi. The value τk gives the date at which action ak
occurs. We write Duration(w) = supk τk for the duration of the timed word w. Since ε
is a silent action, it can be removed in timed words overΣε, and it naturally gives timed
words over Σ. An infinite timed word w over Σ is said zeno whenever Duration(w) is
finite. We denote by T W∗(Σ) (resp. T Wω(Σ), T Wωnz) the set of finite (resp. infinite,
non-zeno infinite) timed words overΣ. A timed language over finite (resp. infinite, non-
zeno infinite) words is a subset of T W∗(Σ) (resp. T Wω(Σ), T Wωnz(Σ)).

2.1 The Model of RA-TdPNs.

The qualitative component of a RA-TdPN is a Petri net extended with read-arcs. A
read-arc checks for the presence of tokens in a place without consuming them. The
quantitative part of a RA-TdPN is described by timing constraints on arcs. Roughly
speaking, when firing a transition, tokens are consumed whose ages satisfy the timing
constraints specified on the input arcs, and it is checked whether the constraints speci-
fied by the read-arcs are satisfied. Tokens are then produced according to the constraints
specified on the output arcs.

Definition 1. A timed Petri net with read-arcs (RA-TdPN for short) N is a tuple
(P,m0, T,Pre,Post,Read, λ,Acc) where:

– P is a finite set of places;
– m0 ∈ Bag(P) denotes the initial marking of places;
– T is a finite set of transitions with P ∩ T = ∅;
– Pre, the backward incidence mapping, is a mapping from T to Bag(I)P ;
– Post, the forward incidence mapping, is a mapping from T to Bag(I)P ;
– Read, the read incidence mapping, is a mapping from T to Bag(I)P ;
– λ : P → Σε is a labelling function;
– Acc is an accepting condition defined as a finite set of formulas generated by the

grammar “Acc ::=
∑n

i=1 pi ./ k | Acc ∧ Acc” where pi ∈ P , k ∈ N and
./∈ {≤,≥}.

Since Bag(I)P is isomorphic to Bag(P × I), Pre(t), Post(t) and Read(t) may
be also considered as bags. Given a place p and a transition t, if the bag Pre(t)(p) (resp.
Post(t)(p), Read(t)(p)) is non null then it defines a pre-arc (resp. post-arc, read-arc)
of t connected to p.

A configuration ν of a RA-TdPN is an item of Bag(R≥0)
P (or equivalently Bag(P×

R≥0)). Intuitively, a configuration is a marking extended with age information for the
tokens. We will write (p, x) for a token which is in place p and whose age is x. A con-
figuration is then a finite sum of such pairs. Then a token (p, x) belongs to configuration

3

ν whenever (p, x) ≤ ν (in terms of bags). The initial configuration ν0 ∈ Bag(RP≥0) is
defined as ∀p ∈ P , ν0(p) = m0(p) · 0 (there are m0(p) tokens of age 0 in place p).

We now describe the semantics of a RA-TdPN in terms of a transition system.

Definition 2 (Semantics of a RA-TdPN). Let N = (P,m0, T,Pre,Post,Read, λ,
Acc) be an RA-TdPN. Its semantics is the transition system (Q,Σε,→) where Q =
Bag(R≥0)

P , and → is defined by:

– For d ∈ R≥0, ν
d
−→ ν + d where the configuration ν + d is defined by (ν + d)(p) =

ν(p) + d for every p ∈ P .
– A transition t is firable from ν if for all p ∈ P , there exist x(p), y(p) ∈ Bag(R≥0×
I) such that







π1(x(p)) + π1(y(p)) ≤ ν(p),
π2(x(p)) = Pre(t)(p) and π2(y(p)) = Read(t)(p),
∀(τ, I) ∈ dom(x(p)) ∪ dom(y(p)), τ ∈ I.

Let z(p) ∈ Bag(R≥0×I) be such that
{
π2(z(p)) = Post(t)(p),
∀(τ, I) ∈ dom(z(p)), τ ∈ I.

Define for every p ∈ P , ν ′(p) = ν(p)− x(p) + z(p). Then ν
λ(t)
−−→ ν ′.

A path in the RA-TdPN N is a sequence ν0
d1−→ ν ′1

t1−→ ν1
d2−→ ν ′2

t2−→ ν2 . . . in
the above transition system. A timed transition sequence is a (finite or infinite) timed
word over alphabet T , the set of transitions ofN . A firing sequence is a timed transition

sequence (t1, τ1)(t2, τ2) . . . such that ν0
τ1−→ ν ′1

t1−→ ν1
τ2−τ1−−−−→ ν ′2

t2−→ ν2 . . . is a path. If
(p, x) ≤ ν is a token of a configuration ν, it is a dead token whenever for every interval
I labelling a pre- or a read-arc of p, x is above I .

Petri nets can be considered as language acceptors. The timed word which is read

along a path ν0
d1−→ ν ′1

t1−→ ν1
d2−→ ν ′2

t2−→ ν2 . . . is the projection over Σ of the timed
word (λ(t1), d1)(λ(t2), d1 + d2) . . .

If ν is a configuration ofN , we say that ν satisfies the accepting condition
∑n
i=1 pi ./

k whenever
∑n
i=1 size(ν(pi)) ./ k, and the satisfaction relation for conjunctions of ac-

cepting conditions is defined in a natural way. A finite path in N is accepting if it ends
in a configuration satisfying one of the formulas of Acc. An infinite path is accepting
if every formula of Acc is satisfied infinitely often along the path (Acc is then viewed
as a generalized Büchi condition). We note L∗(N) (resp. Lω(N), Lωnz(N) the set of
finite (resp. infinite, non-zeno infinite) timed words accepted by N .

Two RA-TdPNs N and N ′ are ∗-equivalent (resp. ω-equivalent, ωnz-equivalent)
wheneverL∗(N) = L∗(N ′) (resp.Lω(N) = Lω(N ′),Lωnz(N) = Lωnz(N ′)). These
equivalences naturally extend to subclasses of RA-TdPNs. In the following, we will
use notations like “{∗, ω, ωnz}-equivalence” to mean the three equivalences altogether.
Idem for “{∗, ωnz}-equivalence” and other combinations.

Notations. Read-arcs are represented by undirected arcs. We use shortcuts to represent
bags: for all I ∈ I, I holds for the bag 1 · I , [a] is for the interval [a, a]. We may write
intervals as constraints, eg “≤ a” is for the interval [0, a]. A bag n represents the bag
n · R≥0, and no bag on an arc means that this arc is labelled by the bag 1 · R≥0.

Example 1. An example of RA-TdPN is depicted on the next figure. This net models
an information provided by a server and asynchronously consulted by clients (transition

4

“read”). Since the information may be obsolete with validity duration “val”, the server
periodically refreshes the value, but the frequency of this refresh may vary depending
on the workload of the server (transition “refresh”). The admission control ensures that
at least one time unit elapses between two client arrivals (transition “entry”). Note the
interest of the read-arc between “cache” and “read”: when transition “read” is fired the
age of the token of place “cache” is not reinitialized.

• •

input

entry

client

read

cache

server

refresh

≥ 1[0]

[0]

[0] ≤ val

[0]

[0] [min,max]

Subclasses of RA-TdPNs. We define several natural subclasses of RA-TdPNs.

Definition 3. Let N = (P,m0, T,Pre,Post,Read, λ,Acc) be an RA-TdPN. It is

– a timed Petri net (TdPN for short)3if for all t ∈ T , size(Read(t)) = 0,
– integral if all intervals appearing in bags of N are in IN,
– 0-reset if for all t ∈ T , for all p ∈ P , I 6= [0, 0] ⇒ I 6∈ dom(Post(t)(p)),
– k-bounded if all configurations ν appearing along a firing sequence of N are such

that for every place p ∈ P , size(ν(p)) ≤ k,
– bounded if there exists k ∈ N such that N is k-bounded,
– safe if it is 1-bounded.

2.2 The Coverability Problem.

Let N be an RA-TdPN with initial configuration ν0. Let N be a finite set of configura-
tions of N where all ages of tokens are rational. We note N ↑ the upward closure of N ,
i.e. the set {ν | ∃ν ′ ∈ N, ν ′ ≤ ν}.

The coverability problem for N and set of configurations N asks whether there
exists a path in N from ν0 to some ν ∈ N↑. We obtain the following result.

Theorem 1. The coverability problem is decidable for RA-TdPNs.

In order to solve the coverability problem, we introduce the notion of region for a
net. A region is a classical object used in the framework of timed automata for repre-
senting an infinite set of configurations [3], that we can extend to RA-TdPNs. Such a
construction has been done for example in [10] for TdPNs, and has been used recently
in several other contexts [12, 13, 9].

3 This is the standard model, as defined in [14].

5

Regions of RA-TdPNs. Let N = (P,m0, T,Pre,Post,Read, λ,Acc) be a net where
the bounds of intervals are in N ∪ {∞}. Let N be a finite set of markings with integral
ages. There is no loss of generality in assuming that bounds of the net and that values
of ages are integers (otherwise we will refine the granularity of the regions). Note max
the maximal integer appearing in the bounds of intervals of the net and in the ages of
the tokens in the configurations of N .

Definition 4. A region R for N is a sequence a0a1 . . . ana∞ where n ∈ N, for all
0 ≤ i ≤ n, ai ∈ Bag(P × {0, 1, . . . ,max}) with size(ai) 6= 0 if i 6= 0, and a∞ ∈
Bag(P × {∞}).

We first informally explain the semantics of a region. Given the bag of tokens defin-
ing a configuration, we partition it as follows. We put in a∞ all the tokens whose ages
are strictly greater than max and forget their ages. We then put in a0 the tokens with
integral ages and indicate the age. Finally, we order the remaining tokens depending on
the fractional part of their ages in a1, . . . , an and we forget their fractional part. Hence
n is the number of different fractional values.

We now define more formally the semantics of the regions. Let φ be the mapping
from R≥0 to {0, 1, . . . ,max,∞} defined by: if x > max then φ(x) = ∞ else φ(x) =
bxc. We extend φ to P ×R≥0 by φ((p, x)) = (p, φ(x)) and to Bag(P × R≥0) by
linearity.

Let R = a0a1 . . . ana∞ be a region then [R] is a set of configurations ν such that
there exist ν1, ν2, . . . , νn, ν∞ belonging to Bag(P × R≥0) with:

– ν = a0 + ν1 + ν2 + . . .+ νn + ν∞,
– ∀1 ≤ i ≤ n, φ(νi) = ai, and φ(ν∞) = a∞,
– ∀1 ≤ i ≤ n, ∀(p, x) + (q, y) ≤ νi, 0 < x− bxc = y − byc,
– ∀1 ≤ i < j ≤ n, ∀(p, x) ≤ νi, (q, y) ≤ νj , x− bxc < y − byc.

Note that every configuration ν belongs to a single region, we note it R(ν), and that
if ν ∈ N , then [Rν] = {ν}. The original coverability problem thus reduces to the cov-
erability problem for finitely many regions, which reduces to solving the coverability
problem for a single region Rf .

Lemma 1. The region partitioning is a time-abstract bisimulation.

Decidability of the coverability problem. We can now prove Theorem 1

Proof. We first notice that, given two regionsR = a0a1 . . . ana∞ andR′ = a′0a
′
1 . . . a

′
ma

′
∞,

one can check whether [R]↑ ⊆ [R′]↑: the necessary and sufficient conditions are a0 ≥
a′0, a∞ ≥ a′∞ and the existence of a strictly increasing mapping ψ from {1, . . . , n′}
into {1, . . . , n} such that for every 1 ≤ i ≤ n′, aψ(i) ≥ a′i.

We define a preorder between regions by R ≤ R′ iff [R′]↑ ⊆ [R]↑. Then, using
Higman’s lemma [7], we can show that this is a well quasi-order, i.e. for every infinite
sequence of regions {Ri}i∈N there exist i < j such that Ri ≤ Rj .

The algorithm for solving the coverability problem then consists in computing it-
eratively the predecessors (by time elapsing steps and by discrete steps) of [Rf]

↑, in

6

proving that it is a finite union of upward closures of regions, and in stopping the explo-
ration when a region is computed which is larger (for the preorder ≤) than an already
computed region. The termination criterium is correct as all configurations reachable
from [R′]↑ is also reachable from [R]↑ whenever R ≤ R′. The above computation
always terminate because “≤” is a well quasi-order.

It remains to explain how we compute time and discrete predecessors of the upward
closure of a region R = a0a1 . . . ana∞.
Time predecessors. If a0 contains a token (p, 0), there is no time predecessor of [R]↑.

Otherwise we choose which tokens will first reach (in the past) their integral part. It
could be the tokens of a1, a bag of tokens b∞ ≤ a∞ or both. We only illustrate this last
case.

The above-mentioned time predecessor is [R′]↑ where R′ = a′0a
′
1 . . . a

′
n′a

′
∞ is

obtained as follows (we assume that n ≥ 1, the other case is similar).

– a′∞ = a∞ − b∞,
– a′0 = a1 + c∞ where c∞ is obtained from b∞ by setting the age of each token to

max,
– ∀1 ≤ i ≤ n− 1, a′i = ai+1,
– if size(a0) = 0, then n′ = n − 1, otherwise n′ = n and a′n = b0, where b0 is

obtained from a0 by decrementing by 1 the (integral) age of each token.

Discrete predecessors. We pick a transition t. Note that given an interval I of the net and
a token (p, x) belonging to some ai for i ∈ {0, 1, . . . , n,∞}, we can compute whether,
given a configuration belonging to that region, the corresponding token belongs to I .
By property of the regions, this is independent of the choice of the configuration. We
then write (i, x) � I .

We choose bags of tokens posti, read+
i ∈ Bag(P ×{0, 1, . . . ,max}×I) for every

i ∈ {0, 1, . . . , n} and post∞, read+
∞ ∈ Bag(P × I) s.t.

– for all (p, x, I) ≤ posti + read+
i , (i, x) � I ,

– for all i ∈ {0, 1, . . . , n,∞}, π1,2(posti) + π1,2(read+
i) ≤ ai, where π1,2 projects

bags onto their two first components.
–

∑

i π1,3(posti) ≤ Post(t),
–

∑

i π1,3(read+
i) ≤ Read(t).

We build an intermediate region R′ = a′0a
′
1 . . . a

′
n′a

′
∞ by substracting π1,2(posti)

from ai for every i and deleting the item in resulting sequence if its size is null (for
1 ≤ i ≤ n). Finally, a region R′′ = a′′0a

′′
1 . . . a

′′
n′′a

′′
∞ is a predecessor if there exist bags

of tokens prei, read−i ∈ Bag(P × {0, 1, . . . ,max} × I) for every i ∈ {0, 1, . . . , n′′},
pre∞, read−∞ ∈ Bag(P×{∞}×I) and a strictly increasing mappingψ from {1, . . . , n′}
into {1, . . . , n′′} s.t.

– for all (p, x, I) ≤ prei + read−i , (i, x) � I ,
– a′′0 = a′0 + π1,2(pre0) + π1,2(read−0),
a′′∞ = a′∞ + π1,2(pre∞) + π1,2(read−∞),
for every i ∈ {1, . . . , n′′}, if there exists j s.t.ψ(j) = i then a′′i = a′j+π1,2(prei)+
π1,2(read−i), otherwise a′′i = π1,2(prei) + π1,2(read−i),

7

–
∑

i π1,3(prei) = Pre(t),
–

∑

i π1,3(read−i) +
∑

i π1,3(read+
i) = Read(t).

We have thus described an algorithm for deciding the coverability problem of RA-
TdPNs. ut

3 Relative Expressiveness of Subclasses of RA-TdPNs

In this section, we thoroughly study the relative expressiveness of subclasses of RA-
TdPNs, by distinguishing whether they are bounded, integral, 0-reset, or whether they
can be expressed without read-arcs. Surprisingly the results depend on the language
equivalence we consider, and whereas finite timed words and non-zeno infinite timed
words do not distinguish between (integral, bounded) 0-reset TdPNs and (integral,
bounded) RA-TdPNs, zeno infinite timed words lead to a lattice of strict inclusions
that will be summarized in Subsection 3.5.

3.1 Two Discriminating Timed Languages

We design two timed languages which distinguish between several subclasses of RA-
TdPNs. Notice that these two languages are zeno. This remark will be important later
on in this section.
The timed language L1. The RA-TdPN N1 of Figure 1(a) (with a single accepting
Büchi condition p ≥ 1) is a 0-reset, integral and bounded RA-TdPN which recognizes
the timed language L1 = {(a, τ1) . . . (a, τn) . . . | 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . ≤ 1}. Note
that this timed language is also recognized by the TA A1 of Figure 1(b) (see Section 4
for a formal definition of TA).

•p

a
[0, 1]

Acc = (p ≥ 1)

(a) A RA-TdPN N1 recognizing L1

x ≤ 1, a

(b) A TA A1 recognizing L1

Fig. 1. A language L1 not recognized by any TdPN

Lemma 2. The timed language L1 is recognized by no TdPN.

Proof. Assume that there is a TdPNN which recognizes L1 = {(a, τ1) . . . (a, τn) . . . |
0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . ≤ 1}. Let us denote d the lcm of denominators constants
appearing in the intervals of N . Pick an infinite word w = (a, τ1)(a, τ2) . . . (a, τn) . . .
such that every i ≥ 1, 1− 1/2d < τi < τi+1 < 1. The word w is accepted by N1, there
is thus an infinite firing sequence σ = σ1(t1, τ1)σ2(t2, τ2) . . . σn(tn, τn) . . . over Σε

8

which is an accepting run of N and where all transitions of σi are labelled by ε whereas
the transitions ti are labelled by a.

The set Tok of tokens part of the initial marking or produced along the sequence
σ1 is finite. Hence, there is an integer n such that tokens in Tok are not used for firing
transitions in the sequence (tn−1, τn−1)σn(tn, τn) . . . Since τn−1 < τn, there is a suffix
(t′0, τ

′)(t′1, τn) . . . (t
′
k, τn)(tn, τn) of the timed transition sequence (tn−1, τn−1)σn(tn, τn)

with τ ′ < τn (k may be equal to 0). We note σ′ the finite prefix of σ up to (t′0, τ
′). We

will prove that the infinite sequence σ′′ = σ′(t′1, τn+1/2d) . . . (t′k, τn+1/2d)(tn, τn+
1/2d)(σn+1 +1/2d)(tn+1, τn+1 +1/2d) . . . is a firing sequence of N (σn+1 +1/2d is
the timed transition sequence obtained from σn+1 by delaying firings of transitions by
1/2d time units). To that aim, we will analyse the age of tokens used for firing a transi-
tion of (t′1, τn) . . . (t

′
k, τn)(tn, τn)σn+1(tn+1, τn+1) . . . in the original timed transition

sequence σ, and we will show that (when necessary) we can modify the initial age of
these tokens in order for the timed transition sequence σ′′ to be firable.

We pick a token in place p which, along σ, is produced by transition t and used
for firing transition t′ (which is some of the ti’s (for i ≥ 1) or a transition appearing
in some of the σi’s (for i ≥ 2)). Because of our choice of n, t occurs at date τ with
τ ≥ τ1. If t is a transition of (t′1, τn) . . . (t

′
k, τn)(tn, τn)σn+1(tn+1, τn+1) . . ., then we

do not modify its initial age along σ′′ since t and t′ will be separated by the same delay
along σ and along σ′′, and the token p can be used similarly in σ and in σ′′.

Otherwise τ ≤ τ ′ < τn. We set v = τn − τ : then 0 < v < 1/2d. Let us call
I− the interval of Post(t)(p) associated with the production of the token and I+ the
interval of Pre(t′)(p) associated with the consumption of the token. We first notice that
I− and I+ cannot be both singletons: assume I− = [h/d, h/d] and I+ = [k/d, k/d]
with h, k ∈ N, then k/d = h/d+ v, which is impossible since 0 < v < 1/2d.

– We assume I− = [h/d, h/d] and I+ = (k/d, k′/d) with k < k′ (the brackets
defining I+ are either “strict” or “non-strict”). The age of the token when it is
consumed by transition t′ is h/d+ v ∈ I+, thus h < k′ and h/d+ v + 1/2d ∈ I+

(since 0 < v < 1/2d). In this case, we do not change the initial age of the token for
firing the timed transition sequence σ′′.

– We assume I− = (h/d, h′/d) and I+ = [k/d, k/d] with h < h′. The age of
the token when transition t′ is fired along σ is k/d − v ∈ I−. Thus, h < k and
k/d − v − 1/2d ∈ I− since 0 < v < 1/2d. For firing the sequence σ′′, we thus
change the initial age of the token down to k/d− v − 1/2d.

– We assume I− = (h/d, h′/d) and I+ = (k/d, k′/d) with h < h′ and k < k′. We
note α the initial age of the token when transition t is fired: α + v(≤ k′/d) is its
age when the token is consumed for firing transition t′. If α+v < k′/d−1/2d, we
do not modify its initial age. Assume that α ≥ k′/d− 1/2d− v: then (k′− 1)/d <
α < k′/d, and thus h ≤ k′ − 1 < h′. Choose as new initial age (k′ − 1)/d+ 1/4d
for the token: then (k′ − 1)/d+ 1/4d ∈ I− and (k′ − 1)/d+ 1/4d+ v ∈ I+.

With these new initial ages for the tokens, the timed transition sequence σ ′′ is firable,
and accepts the timed word (a, τ1) . . . (a, τn−1)(a, τn + 1/2d)(a, τn+1 + 1/2d)
Moreover, the markings along the run accepting the initial word and the above word are
the same, they are thus both accepted by N . However this timed word should not be

9

accepted by N as it is not accepted by N1. Thus, as τn+1/2d > 1, there is no classical
TdPN which recognizes L1. ut

The timed language L2. The RA-TdPN N2 of Figure 2(a) is an integral bounded RA-
TdPN which recognizes the timed language L2 = {(a, 0)(b, τ1) . . . (b, τn) . . . | ∃τ <
1 s.t. 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . < τ}. Note, and that will be used in Section 4,
that the timed language L2 is also recognized by the TA of Figure 2(b) (which uses a
non-deterministic reset of clock x in the intervals]0, 1[).

•

p q

a b
[0]]0, 1[]0, 1[

Acc = (q ≥ 1)

(a) A RA-TdPN N2 recognizing L2

x = 0, a

x :∈]0, 1[

x < 1, b

(b) A TA A2 recognizing L2

Fig. 2. A language L2 not recognized by any 0-reset integral RA-TdPN

Lemma 3. The timed language L2 is recognized by no 0-reset integral RA-TdPN.

Proof. Assume that the timed language L2 is recognized by the 0-reset integral RA-
TdPN N . Pick a word w = (a, 0)(b, τ1) · · · (b, τi) . . . of L2, with 0 < τ1 ≤ τ2 ≤ . . . ≤
τi ≤ . . . < τ and limi→∞ τi = τ . We note σ an accepting firing sequence in N for w.

We write σ = σ1dσ2 where σ1 is an instantaneous firing sequence and 0 < d. We
claim that σ′ = σ1(d+ 1− τ)σ′2 where σ′2 is obtained from σ2 by delaying 1− τ , is a
firing sequence ofN . Let us select an occurrence of a transition t fired in σ2 and a token
read or consumed by t corresponding to an interval I . If the token has been produced by
a transition fired in σ2, then it has the same age in σ′2. If the token is an initial token or
has been produced by σ1, then its age x is such that 0 < d ≤ x < τ < 1, thus]0, 1[⊆ I
(because the net N is integral and 0-reset). The age of this token when it is checked for
firing t in σ′2 is x+ 1 − τ and satisfies 0 < x+ 1 − τ < 1. Thus the same occurrence
of t is firable in σ′2.

Since the untimed firing sequences of σ and σ′ are equal, σ′ is an accepting se-
quence. The timed word which is read on σ′ is w′ = (a, 0)(b, τ1 +1−τ) . . . (b, τi+1−
τ) . . . with limi→∞ τi + 1 − τ = 1. Thus, w′ /∈ L2, which contradicts the assumption
that it is accepted by N , and thus by N2. ut

3.2 Normalization of RA-TdPNs

We present a transformation of RA-TdPNs which preserves both languages over finite
and (zeno or non-zeno) infinite words, as well as boundedness and integrality of the
nets. This construction transforms the net by imposing strong syntactical conditions
on places, which will simplify further studies of RA-TdPNs. This transformation is
somehow close to one-dimensional regions of [8], and records ages of tokens and how
time elapses.

10

Proposition 1. For any RA-TdPN N , we can effectively construct a RA-TdPN N ′

which is {∗, ωnz , ω}-equivalent to N , and in which all places are configured as one
of the five patterns depicted in Figure 3, which reads as: “there is an a such that the
place is connected to at most one post-arc, at most one pre-arc and possibly several
read-arcs, with bags as specified on the figure”. Moreover the construction preserves
boundedness and integrality properties.

n · [0]

n′ · [0]

n′′ · [0]
p

t′

t t′′

(a) The pattern P1

[0]

n′·]0, a[

n′′·]0, a[
p

t′

t t′′

(b) The pattern P2

[0]

n′·]0, a[

[a]
p

t′

t t′′

(c) The pattern P3

n·]0, a[

n′·]0, a[

n′′·]0, a[
p

t′

t t′′

(d) The pattern P4

n·]0, a[

n′·]0, a[

[a]
p

t′

t t′′

(e) The pattern P5

Fig. 3. The five normalized patterns for an RA-TdPN.

In order to avoid difficulties with the initial marking, we first perform a straight-
forward transformation of the net. We add a place pinit with initially one token in it
and a transition tinit labelled by ε, whose single pre-arc labelled by [0] is connected
to pinit and whose post-arcs correspond to the initial marking, i.e. for all p ∈ P ,
Post(t)(p) = m0(p) · [0]. All other places are initially unmarked. Finally we add
pinit = 0 to the acceptance conditions. It is trivial that this transformation does not
modify all accepted languages. In the sequel, we assume that the net has been trans-
formed in such a way and we apply the next transformations on every place except
pinit.

For proving Proposition 1 we proceed in three steps, and successively construct a
net which satisfies syntactical restrictions (1), (2) and (3) below:

(1) For every place, there exists a finite set of pairwise disjoint intervals {Ik}1≤k≤K

such that every arc connected to this place has a bag of the form
∑

1≤k≤K nk · Ik.
Moreover, any Ik is either [a] or]a, b[with a ∈ Q≥0 and b ∈ Q>0 ∪ {∞}.

(2) For every place,
– either every arc connected to the place has a bag of the form n · [0],
– or there exists a ∈ Q>0∪{∞} such that read- (resp. post-, pre-)arcs have bags

of the form n·]0, a[(resp. or [0], or [a]).

11

(3) Every place is configured as one of the five patterns depicted on Figure 3.

In all following lemmas, the equivalence mentioned is the {∗, ω, ωnz}-equivalence,
which means that the constructions are correct for finite and infinite timed words. Let
us fix an RA-TdPN N .

Lemma 4. We can build a RA-TdPN N1, equivalent to N , and satisfying restric-
tion (1).

Proof. Let p be a place of N . We first define the set SIp = {Ik}1≤k≤K . We con-
sider the finite bounds of intervals which occur in the bag of some arc connected
to p, say {a1, . . . , am} with i < j ⇒ ai < aj . The set SIp is then defined by
{[a1, a1],]a1, a2[, . . . ,]am−1, am[, [am, am],]am,∞[}. W.l.o.g. we assume that a1 =
0. Moreover, to ease the presentation, we define am+1 = ∞ and set am+1 − am = ∞.
Note that for every interval Ik ∈ SIp and for every interval I which occurs in the bag
of some arc connected to p, we have either I ∩ Ik = ∅ or I ∩ Ik = Ik.

We will iteratively apply the following transformation to the transitions connected
to p. Let us pick a transition t connected to p by an arc whose associated bag is x =
∑

1≤k′≤K′ nk′ · Jk′ . We will duplicate the transition t with the same arcs and the same
bags except the one which is concerned by the transformation. We note such a transition
tφ, where φ is a mapping from {1, . . . ,K} × {1, . . . ,K ′} to N such that Ik ∩ Jk′ =
∅ ⇒ φ(k, k′) = 0 and

∑

1≤k≤K φ(k, k′) = nk′ . The modified bag is defined by:

xφ =
∑

1≤k′≤K′

∑

1≤k≤K φ(k, k′) · Ik ∩ Jk′

=
∑

1≤k′≤K′

∑

1≤k≤K φ(k, k′) · Ik
=

∑

1≤k≤K(
∑

1≤k′≤K′ φ(k, k′)) · Ik.

This transformation is valid. Indeed given any choice of an item b ∈ Bag(R≥0 × I)
with π2(b) = x there exists a mapping φ and an item b′ ∈ Bag(R≥0 × I) such that
π1(b

′) = π1(b) and π2(b
′) = xφ. More precisely, we associate with a token (d, Jk′) ≤ b

a token (d, Ik) such that d ∈ Ik. Conversely, given an item b′ ∈ Bag(R≥0 × I) with
π2(b

′) = xφ, we pick φ(k, k′) tokens {(di, Ik)}1≤i≤φ(k,k′) and substitute to them the
tokens {(di, Jk′)}1≤i≤φ(k,k′). In this way, we obtain a bag b ∈ Bag(R≥0 × I) with
π2(b) = x and π1(b) = π1(b

′).
The resulting RA-TdPN is denoted N1. ut

Lemma 5. We can build a RA-TdPN N2, equivalent to N1, and satisfying restric-
tions (1) and (2).

Proof. We iteratively do the following transformation for every place of N1. Let p be a
place of N1 and assume that {[a1, a1],]a1, a2[, . . . ,]am−1, am[, [am, am],]am, am+1[}
is the set of pairwise disjoint intervals required by restriction (1).

We substitute to p a set of places {pa1
, pa1,a2

, . . . , pam−1,am
, pam

, pam,am+1
}. We

thus need to modify the accepting condition Acc1 of N1: the accepting condition Acc2

of N2 is obtained by replacing any occurrence of p in Acc1 by the term
∑m
i=1(pai

+
pai,ai+1

). Besides, in the transformed net, a token with age d in place pai
or pai,ai+1

will correspond to a token with age d+ ai in place p.

12

In order to pick (i.e. produce, consume or read) a token with age ai in place p, one
must pick a token with age 0 in the new place pai

. In order to pick a token with age
d ∈]ai, ai+1[in place p, one must pick a token with age d ∈]0, ai+1 − ai[in the new
place pai,ai+1

.

Thus we transform an arc connected to pwith bag x = n1·[a1, a1]+n1,2·]a1, a2[+ · · ·+
nm−1,m·]am−1, am[+nm ·[am, am]+nm,m+1·]am, am+1[to arcs connected to the new
places such that the bag corresponding to pai

is ni · [0, 0], and the bag corresponding to
pai,ai+1

is ni,i+1·]0, ai+1 − ai[.

Finally, we add transitions to “transfer” tokens from one of the new places to another
one when their age increases: ta1,a2

, ta2
, . . . , tam

, tam,am+1
. A transition tai

consumes
a token with age ai − ai−1 in pai−1,ai

and produces a token with age 0 in place pai
. A

transition tai,ai+1
consumes a token with age 0 in pai

and produces a token with age 0
in place pai,ai+1

. All these transitions are labelled by ε. The initial configuration of the
new net is the same as the original one except that ν ′0(pa1

) = ν0(p) and ν ′0(p
′) = 0 if

p′ is a new place different from pa1
.

Let N2 be the transformed net and ν ′ be a configuration of N2. We associate to ν ′ a
configuration ν = f(ν ′) of N1 defined by:







f(p′, d) = (p′, d) if p′ 6= p place of N1

f(pai
, d) = (p, ai + d) for every pai

f(pai,ai+1
, d) = (p, ai + d) for every pai,ai+1

which we extend on bags by linearity. Note that f(ν ′0) = ν0. Straightforwardly, time
elapsing commutes with this mapping. Moreover, firing any new transition does not
modify the image of a configuration and finally the transformation of the arcs ensures
that firing an existing transition is also possible in the original net and that this firing
commutes with the mapping. Finally, we verify easily that the image by this mapping of
a configuration satisfying Acc1

4 is a configuration satisfying Acc2. An accepting firing
sequence of N2 leads thus by this mapping to an accepting firing sequence of N1.

Conversely, assume that σ is an accepting firing sequence of N1. First, we split time
elapsing steps in such a way that if at some instant a token corresponding to the se-
quence reaches the age ai, this instant is associated with an intermediate configuration.
In order to build the corresponding sequence σ′ of N2, we will add firings of the new
transitions at this instant some them just after the last time elapsing and some others
just before the next time elapsing. The first set of firings will correspond to transitions
tai+1

and will transfer all tokens in place pai,ai+1
with age ai+1−ai to place pai+1

. The
second set of firings will correspond to transitions tai,ai+1

and will transfer all tokens
in place pai

with age 0 in place pai,ai+1
. With these enforced transition firings, tokens

are always in the appropriate place for simulating a transition firing in σ. ut

Example 2. We illustrate the above construction on the following net:

4 A configuration ν satisfies an acceptance condition Acc whenever the number of tokens in the
places satisfies the constraint of Acc.

13

5 · [0] + 2·]0, 2[

2 · [0]+]0, 2[

3 · [2]+]2,∞[
p

Read

Post Pre

The new (part of) net which is constructed is the following:

p0 p0,2 p2 p2,∞

Read

Pre

t0,2 t2 t2,∞

Post
5 · [0] [0] [0] [2] [0] [0] [0]]0,∞[

3 · [0]

2·]0, 2[

2 · [0]

]0, 2[

We consider an execution in the initial net, and will give the corresponding execu-
tion in the constructed net. We consider the following execution in the initial net:

Post
−−→

wait 0.5
−−−−→

Post
−−→

Post
−−→

Read
−−→

wait 1
−−−→

Pre
−−→

0 (×5) 0.5 (×5) 0 (×5) 0 (×10) 0 (×10) 1 (×10) 1 (×10)

1 1.5 0.5 (×5) 0.5 (×5) 0.5 (×5) 1.5 (×5) 1.5 (×5)

1.2 1.7 1 (×2) 1 (×4) 1 (×4) 2 (×4) 2 (×2)

1.5 1.5 1.5 2.5 2.7
1.7 1.7 1.7 2.7

In the above sequence, a bag is represented vertically, for example the first bag means
that there are 6 tokens in place p, five of age 0, one of age 1 and one of age 1.2. The
corresponding sequence of transitions in the constructed net is:

Post, t0,2, (wait 0.5),Post,Post,Read, t0,2, t0,2, (wait 0.5), t2, t2,∞, (wait 0.5), t2, t2,Pre

Lemma 6. We can build an RA-TdPN N3, equivalent to N2, and satisfying restric-
tions (1), (2), and (3).

Proof. To prove this lemma, we need first to explain how we can transform the widgets
built in the proof of the previous lemma into equivalent other widgets where all places
will have the shape of one of the five patterns of Figure 3. In RA-TdPN N2,

– places pai
are connected to (possibly) several post-arcs labelled by bags n · [0],

(possibly) several read-arcs labelled by bags n′ · [0] and (possibly) several pre-arcs
labelled by bags n′′ · [0].

14

– places pai,ai+1
(with ai+1 < ∞) are connected to one post-arc whose bag is [0],

(possibly) several post-arc labelled by bags n·]0, ai+1−ai[, (possibly) several read-
arcs labelled by bags n′·]0, ai+1 − ai[, one pre-arc labelled by a bag [ai+1 − ai],
and (possibly) several pre-arcs labelled by bags n′′·]0, ai+1 − ai[.

– place pam,∞ is connected to one post-arc whose bag is [0], (possibly) several post-
arc labelled by bags n·]0,+∞[, (possibly) several read-arcs labelled by bags n′·]0,+∞[,
and (possibly) several pre-arcs labelled by bags n′′·]0,+∞[.

We will apply successively the following transformations to the different places:

– duplicate the place for each connected post-arc, and duplicate all transitions con-
nected with read- and pre-arcs as depicted on the next picture (transition t can be a
pre- or a read-arc):

k1 · I1

k2 · I2

n · I

k1 · I1

k2 · I2

m · I

(n−m) · I

p

p1

p2

t t(m)

Thus, each post- and read-transition is duplicated, one copy for everym ≤ n if n ·I
is the bag labelling the arc between p and t.

– duplicate the place for each connected pre-arc, and duplicate all transitions con-
nected with read- and post-arcs as depicted on the next picture (transition t can be
a post- or a read-arc):

k1 · I1

k2 · I2

n · I
t1

t2

k1 · I1

k2 · I2

m · I

(n−m) · I

p

p1

p2

t t(m)

t1

t2

Thus, each pre- and read-transition is duplicated, one copy for every m ≤ n if n · I
is the bag labelling the arc between p and t.

We modify accordingly the accepting conditions by replacing occurrences of p by the
sum p1 + p2 if we have duplicated the place p into the two places p1 and p2. It is
straightforward to prove that these constructions do not change the accepted languages.
There is only one point that needs to be detailed. In the last transformation, given an
occurrence of t in a sequence σ ofN , we obtain the corresponding σ′ ofN ′ by choosing
the appropriate t(m) which depends on σ. Indeed, we count m1 the number of tokens
produced by t that will be consumed by t1 and m2 the number of tokens produced by
t that will be consumed by t2. Note that m1 +m2 ≤ n, so we can choose any m such
that m1 ≤ m ≤ n−m2.

The places of the resulting net satisfy the property that they are connected to at
most one post-arc and one pre-arc. Moreover, because of the form of the intervals in
the former construction, this means that every place is of the form of one of the five
patterns of Figure 3 (with possibly several read-arcs connected to the place). ut

15

Note that all transformations we have presented in the subsection preserve both
boundedness and integrality properties of the nets. This concludes the proof of Propo-
sition 1.

3.3 Removing the Read-Arcs

In this subsection, we study the role of read-arcs in RA-TdPNs. Thanks to Lemma 2
(language L1), we already know that read-arcs add expressive power to TdPNs for the
ω-equivalence. We then prove that read-arcs do not add expressiveness to the model
of TdPNs when considering finite or infinite non-zeno timed words. We present two
different constructions: the first one is correct only for finite timed words, whereas the
second one, which extends the first one, is correct for non-zeno infinite timed words.
In both correction proofs, we need to assume that places connected to read-arcs do not
occur in the acceptance condition. This can be done without loss of generality, as stated
by the following lemma.

Lemma 7. Given a RA-TdPNN , we can build a RA-TdPNN ′ {∗, ω, ωnz}-equivalent
toN such that no place connected to a read-arc does occur in the acceptance condition.

Proof. We iteratively apply the following transformation to every place ofN connected
to a read-arc and occurring in the acceptance condition. Let p be such a place. The net
N ′ is obtained by adding to N a new place p′ such that for every t ∈ T , Post(t)(p′) =
Post(t)(p), Pre(t)(p′) = Pre(t)(p), Read(t)(p′) = 0. We assume in addition that
ν0(p

′) = ν0(p), and we set the acceptance condition of N ′ to the one of N where place
p is replaced by place p′.

We claim that N ′ is equivalent to N . First note that given any reachable configura-
tion of N ′, p and p′ contain the same number of tokens, but not necessarily the same
(i.e. with the same age) tokens (because pre-arcs may choose different tokens).

Let σ′ be a firing sequence of N ′ yielding an accepting configuration. Then σ, ob-
tained from σ′ by deleting the tokens of p′ in the bags x, y, z associated with the firing
of a transition, is also a sequence of N . Indeed as N is a subnet of N ′ obtained by
deleting places, all behaviours of the latter net are behaviours of the former one. Fur-
thermore, due to the previous observation about markings of p and p′, the configuration
reached after the firing sequence σ satisfies the acceptance condition of N .

Let σ be a firing sequence of N yielding an accepting configuration. Then we build
σ′ a firing sequence of N ′ from σ by consuming and producing in place p′, the same
tokens consumed and produced in p by the sequence σ. The final configuration of σ ′

has the same tokens in p and p′ and thus satisfies the acceptance condition of N ′. ut

Case of finite words. We state the following result.

Theorem 2. LetN be an RA-TdPN, then we can effectively build a TdPNN ′, which is
∗-equivalent toN . Note that the construction preserves the boundedness and integrality
properties of the nets.

16

Proof. To prove this result, we first normalize the net. We then distinguish the five
possible patterns of Figure 3 for a place p, and show that in every case, we can remove
the read-arcs connected to place p.

PatternP1. The construction is presented on Figure 4. This is the simplest case. Indeed,
the simulation is the same as in the untimed case. It is easy to verify that the firing
sequences of the two nets are exactly the same, and thus the two nets are equivalent.

n · [0]

n′ · [0]n′ · [0]

n′′ · [0]
p

t′

t t′′

Fig. 4. Removing read-arcs in pattern P1

Pattern P2. The construction is presented on Figure 5. We also modify the accepting

t′

t

t′′

p3

p1

p2
t1, ε

t2, ε
[0]

[0]

> 0 [0]

n′n′ · [0]

n′′

]0, a[

n′′·]0, a[

Fig. 5. Removing read-arcs in pattern P2

condition of N by adding the following constraint: p1 + p2 + p3 ≤ 0. Before proving
the equivalence between the two nets, we do preliminary remarks on several invariants
of the net N ′. Every configuration ν appearing on an accepting firing sequence of N ′

satisfies the following properties:

(i) size(ν(p1)) = size(ν(p2)) + size(ν(p3))

17

(ii) size(ν(p2)) ≥ size(ν(p1)|=0)
where ν(p1)|=0 is the bag of tokens in place p1 whose age is equal to 0

(iii) size(ν(p1)) = size(ν(p1)|<a)
where ν(p1)|<a is the bag of tokens in place p1 whose age is strictly less than a

The two first properties are simple invariants obtained by comparing producing and
consuming arcs connected to places p1, p2 and p3.

The last property relies on the accepting property of the sequence. Indeed, this im-
plies that every token produced in place p1 has to be consumed by one of the two
transitions t′′ and t2. The timing requirements (]0, a[) of arcs connected to place p1 of
transitions t′′ and t2 then implies that these tokens cannot get older than age a.

We first consider an accepting firing sequence σ of N , and build a corresponding
accepting firing sequence σ′ of N ′. We do two kinds of modifications to this sequence.
First, we move tokens from place p2 to place p3 with the silent transition t1 as soon
as we need them for transition t′ or t′′ (if a token is never used, we move it when its
age is equal to a

2 if a < ∞ or to 1 otherwise). Secondly, we empty places p1 and p3

using the silent transition t2 as soon as the tokens are no more used until the end of the
sequence. In this way, we consume every dead token of place p of net N . It is possible
to decide whether a token will still be used or not because we consider finite firing
sequences. The silent transitions we have inserted allow to verify that we can fire the
corresponding discrete transitions in the net N ′.

Conversely, we consider an accepting firing sequence σ′ of N ′. We build a firing
sequence σ ofN obtained from σ′ by erasing silent transitions t1 and t2. We now verify
that transitions t′ and t′′ are still firable in σ. First note that the producing arcs imply
the following inequality between two configurations ν and ν ′ obtained respectively after
the same prefix of σ and σ′:

ν(p) ≥ ν ′(p1)

This implies that every firable occurrence of the transition t′′ in σ′ is still firable in σ.
To prove the same property for t′, we will use the preliminary remarks. Suppose that
t′ is firable in ν ′. Then, there are at least n′ tokens in place p3. Properties (i), (ii) and
(iii) together imply that there are at least n′ tokens of age belonging to]0, a[in place
p1. The previous inequality between ν(p) and ν ′(p1) finally implies that the transition
t′′ is also firable in N . This concludes the proof for pattern P2.

Pattern P3. The construction is presented on Figure 6. We also modify the accepting
condition of N by adding the following constraint:

∑6
i=1 pi ≤ 0. Before proving the

equivalence between the two nets, we do preliminary remarks on several invariants of
the net N ′. Every configuration ν appearing on an accepting firing sequence of N ′

satisfies the following properties:

(i) size(ν(p1)|=0) + size(ν(p2)|=0) + size(ν(p4)|=0) = size(ν(p3)|=0)
(ii) size(ν(p2)|=a) ≤ size(ν(p6)|>0)

(iii) size(ν(p2)|>0) + size(ν(p4)|>0) = size(ν(p3)|>0) + size(ν(p5)) + size(ν(p6))
(iv) size(ν(p2)|]0,a[) + size(ν(p4)|>0) ≥ size(ν(p3)|>0) + size(ν(p5))

18

t′

t

t′′

p1

p2

p3

p4

p5

p6

t1, ε

t2, ε

t3, ε

t4, ε

t5, ε

[0]

[0]

[0]

[0]

> 0

[0]

[0]

[0]

[0]

[a]

]0, a[

> 0

n′n′ · [0]

Fig. 6. Removing read-arcs in pattern P3

The first property is an invariant obtained by comparing producing and consuming
arcs connected to the different places.

The second property relies on the accepting condition. Since a token with age a
in place p2 has to be consumed in zero time by transition t′′, this transition has to be
enabled, and thus we obtain the inequality (ii).

The third property is obtained from the first one by letting time elapse, using the
fact that the acceptance condition implies that size(ν(p1)>0) = 0.

Finally, the fourth property can be obtained from properties (ii) and (iii) by sub-
traction.

We first consider an accepting firing sequence σ of N , and build a corresponding
accepting firing sequence σ′ of N ′.

At each time a token is produced by the transition t, we move the corresponding
token of place p1. If this token will be consumed by the transition t′′, then we use the
silent transition t1 to move it to the place p2. Otherwise, we move it with t2 to the place
p4.

Moreover, we also move the copy of the token of place p3 to place p5 with the silent
transition t3 as soon as we need it for transition t′ (if a token is never checked by t′,
we move it when its age is equal to a

2). This instant must appear after a strictly positive
delay of time since the interval of t′ is]0, a[, which ensures that the transition t3 is
firable.

Finally, as soon as a token of place p5 is no more used until the end of the sequence
by the transition t′, we have to consume it using t4 or t5. Two cases are possible:

– either the corresponding token of σ is consumed by t′′, and then we move it to
p6 using t4. Note that since the last read appears strictly before its age equals a,
the age of the produced token in p6 will be strictly positive when the age of the

19

corresponding token of place p2 will reach a, and thus the transition t′′ will be
firable.

– or the token is never consumed by t′′, and then we consume it immediately by t5,
which is possible since the last occurrence of t′ appears strictly before a.

Note that the previous modifications are possible if we have done the same choices
for the copies of the token placed in p1 and p3. In this way, we consume every dead
token of place p of the net N . This implies that the corresponding firing sequence will
be accepting.

Note that once again, it is possible to decide whether a token will still be used or
not because we consider finite firing sequences.

Finally, it can be checked that the silent transitions we have inserted lead to a firable
sequence of the net N ′.

Conversely, we consider an accepting firing sequence σ′ of N ′. We build a firing
sequence σ ofN obtained from σ′ by erasing silent transitions t1 and t2. We now verify
that transitions t′ and t′′ are still firable in σ. First note that the producing arcs imply
the following inequality between two configurations ν and ν ′ obtained respectively after
the same prefix of σ and σ′:

ν(p) ≥ ν ′(p1) + ν′(p2) + ν′(p4)

In particular, we have ν(p) ≥ ν ′(p2). This implies that every firable occurrence of the
transition t′′ in σ′ is still firable in σ. To prove the same property for t′, we will use the
preliminary remarks. Suppose that t′ is fireable in ν ′. Then there are at least n′ tokens
in place p5. Using inequality (iv), and the fact that the age of every token in place p4 is
strictly less than a (since we consider an accepting sequence), we get:

size(ν(p2)|]0,a[) + size(ν(p4)|]0,a[) ≥ n′

This implies, using the previous inequality on ν, that there at least n′ tokens in place p
of age belonging to the interval]0, a[in the configuration ν. This proves that t′ is firable
in ν and concludes the proof for pattern P3.

Pattern P4. The construction is presented on Figure 7. We also modify the accepting
condition of N by adding the following constraint: p1 + p2 ≤ 0. This pattern is treated
similarly as the pattern P2. Indeed, the pre- and read-arcs are the same. The only mod-
ification then comes from the post-arc. In this pattern, tokens are produced with initial
age belonging to the interval]0, a[, whereas they were produced with initial age 0 in
pattern P2. The construction is simpler here since we do not need to let some time
elapse before allowing the transition t′ (corresponding to the read-arcs) to use produced
tokens.

The correctness proof for this pattern can thus easily be derived from the one for
pattern P2.

Pattern P5. The construction is presented on Figure 8. We also modify the accepting
condition of N by adding the following constraint:

∑5
i=1 pi ≤ 0. Similarly as above,

pattern P5 is treated in the same way than the pattern P3 since pre- and read-arcs are

20

t′

t

t′′

p2

p1

t1, εn · [0]

n·]0, a[

n′n′ · [0]

n′′

]0, a[

n′′·]0, a[

Fig. 7. Removing read-arcs in pattern P4

t′

t

t′′

p1

p2

p3

p4

p5

t1, ε

t2, ε t3, ε

t4, ε

n · [0]

n · [0]

[0]

[0]

]0, a[

]0, a[[0]

[a]

]0, a[

> 0

n′n′ · [0]

Fig. 8. Removing read-arcs in pattern P5

21

the same and the only modification comes from the post-arc: production in the interval
[0, 0] has been replaced by a production in the interval]0, a[.

We do two main modifications to the case of pattern P3.
First, we let the choice of the initial age of the produced tokens to the transitions

t1 and t2. Since there is no timed copy of the token, the choice of an initial age arises
no difficulties. Recall that the choice of firing t1 or t2 corresponds as previously to the
distinction between tokens that will be eventually consumed by the transition t′′ before
the end of the firing sequence, and the tokens that will not.

Second, since produced tokens have initial age belonging to the interval]0, a[, these
tokens can immediately be used by the transition t′, and thus, as in the previous case,
we do not need to let some time elapse before moving tokens in the place p4.

Finally, we claim that the correctness proof for this pattern can thus easily be derived
from this of pattern P3. ut

Example 3. We illustrate the construction on the RA-TdPN N1 of Figure 1(a). It is
correct for finite timed words only. Indeed, to simulate a finite word, we can do as
many a’s as required, and then fire the silent transition, which empties both places p1

and p2, thus satisfying the acceptance condition. The date of this last firing ensures the
satisfaction of the timing requirements. This simulation does not hold for infinite words
since we can not add the silent transition after an infinite number of a’s.

•

ε

p2

p1

a

[0]

[0]

[0]
[0, 1]p1 + p2 ≤ 0

Case of infinite non-zeno words. The previous construction cannot be applied to lan-
guages of infinite words. Indeed, it relies on the following idea. The acceptance condi-
tion requires that one empties the places at the end of the sequence in the simulating net
in order to check whether the tokens has been appropriately checked.

In the case of infinite timed words, a similar Büchi condition would “eliminate”
words accepted by a sequence of the original net in which a place always contains
tokens that will be checked in the future. However in the divergent case, we will first
apply a transformation of the net that will not change the language, in such a way that
in the new net, every infinite non-zeno timed word will be accepted by an appropriate
generalized Büchi condition.

Theorem 3. Let N be an RA-TdPN, then we can effectively build a TdPN N ′, which
is ωnz-equivalent to N . Note that the construction preserves the boundedness and the
integrality of the nets.

Proof. We assume that N is normalized and that no place connected to a read-arc oc-
curs in the acceptance conditions.

22

First we transform N yielding another RA-TdPN N ∗ as follows. We duplicate
every place p connected to a read-arc by an arc labelled with]0, a[and a finite, into
two places podd and peven. Then we iterate the following transformation for every place
p and every arc connected to p. Let t be the transition connected by this arc to p and
n · I be the bag labelling it. Then we substitute to t a set of transitions {t(k)}0≤k≤n

such that the arcs of these transitions are identical to those of t except the one under
examination. We add to transition t(k) two arcs (of the same kind as the original one),
one labelled by k · I connected to podd and one labelled by (n − k) · I connected to
peven. Note that an original transition may be duplicated several times. The label of the
duplicated transitions is the one of the original one.

It is clear that N and N ∗ are equivalent for all the language equivalences and in
particular for the ωnz-equivalence. However N ∗ satisfies an additional property we
will now explain. Select any integer strictly greater than every finite interval bound
occurring in N ∗ and call it max. Given a sequence σ and a token initially present or
produced by the sequence, we say that a token is useless in some configuration reached
by σ, if it will be no more “used” in the sequence by a read-arc or a pre-arc connected
to the place which contains it.

Let w be an infinite non-zeno timed word accepted by a firing sequence σ of N then
we build a firing sequence σ∗ of N ∗ whose label is w and such that:

– at any time (2k) · max with k ∈ N, there is a configuration such that every place
peven contains only useless tokens,

– at any time (2k + 1) · max with k ∈ N, there is a configuration such that every
place podd contains only useless tokens.

Note that, due to the divergence of σ, a token produced in place p (defined as before)
will either become useless or be consumed in some configuration. If this configuration
occurs in some interval [(2k + 1) ·max, (2k + 2) ·max[we say that this token is even
otherwise we say that it is odd. We build σ∗ by appropriately replacing a transition by
one of its duplicate depending on where to check, to consume or to produce the tokens
in an odd or even place. In the case of a token production, we put an odd token into the
corresponding odd place and vice versa.

Now take the last configuration of σ∗ reached at time (2k + 1) · max and suppose
that place podd contains a token which it is not useless then it will become useless during
the interval](2k+1) ·max, (2k+2) ·max[. So it is an even token and should have been
produced in peven. The proof for the last configuration of σ∗ reached at time (2k) ·max
is similar.

We now apply the transformation of theorem 2 to N ∗ yielding N ′. In the transfor-
mation of patterns 2, 3, 4, 5 when a is finite we memorize the character of the new
places. For instance, in the pattern P4, a place podd is replaced by two places podd,1 and
podd,2. Then we add to the generalized Büchi condition of N ′ two new conditions: the
sum of tokens in odd (resp. even) places must be infinitely often 0.

Let w be a non zeno infinite timed word of N (and of N ∗). Now take a sequence
σ∗ of N ∗ accepting w with the additional property. Simulate the sequence in N ′ as for
theorem 2 except that tokens not consumed by σ∗ are consumed by the “emptying” tran-
sitions of N ′ as soon as they become useless. Due to the property of σ∗, this simulating
sequence fulfills the new conditions added to the generalized Büchi condition.

23

Conversely let σ′ be an infinite non zeno sequence ofN ′ and suppose that it “cheats”.
Then some tokens in odd or even places will never be consumed in σ ′ and σ′ is not
accepting. Thus for an accepting sequence σ′ of N ′, we apply exactly the same trans-
formations as those performed in theorem 2 in order to obtain an accepting sequence of
N ∗. ut

Remark 1. Note the importance of the generalized Büchi condition since nothing en-
sures that odd and even places will be infinitely often simultaneously empty.

3.4 Removing General Resets

In this subsection, we study the role of general resets in RA-TdPNs. Thanks to Lemma 3
(language L2), we know that the class of integral RA-TdPNs is strictly more expressive
than the class of 0-reset integral RA-TdPNs for the ω-equivalence. We then prove two
results, which show that this is the combination of the presence of read-arcs together
with the integrality property which explains the expressiveness gap between 0-reset nets
and nets with general resets. Indeed, we design a first construction which holds if there
is no read-arc, and which preserves integrality of the net. Then we design a second
construction, which holds even for nets with read-arcs, but which does not preserve the
integrality of the nets.

Theorem 4. For every TdPN N , we can effectively build a 0-reset TdPN N ′ which
is {∗, ω, ωnz}-equivalent to N . Moreover, this construction preserves the boundedness
and integrality properties of the net.

This result is not difficult and consists in shifting intervals of pre-arcs connected to
a place, depending on the intervals which label post-arcs connected to this place.

Proof. Let N be a TdPN. Thanks to Proposition 1, we can assume that every place p
of N satisfies one of the five patterns of Figure 3, in which there is no read-arc.

Only patterns P4 and P5 have general resets, we thus only describe a construction
for these two cases. The constructions are depicted on Figure 9, and it is straightforward
to prove their correctness. Indeed, in the case of pattern P4, if, in the initial net, a token
enters place pwith age x ∈]0, a[and leaves place pwith age y ∈]0, a[, then in the second
net, it will enter place pwith age 0, and leave place pwith age y−x ∈ [0, a[. Conversely,
if a token arrives in place p (with age 0) in the second net, and leaves the place with age
x ∈ [0, a[, then it will arrive in place p (in the first net) with age a−x

2 ∈]0, a[if a < ∞
(with age 1 otherwise) and it will leave place p at age a− a−x

2 ∈]0, a[if a <∞ (at age
1 + x otherwise). Dead tokens in the first net correspond to dead tokens in the second
net. The case of pattern P5 is similar. ut

The second result is much more involved, and requires to refine the granularity of
the net we build. However, it is correct for the whole class of RA-TdPNs.

Theorem 5. For every RA-TdPN N , we can build a 0-reset RA-TdPN N ′ which is
{∗, ωnz , ω}-equivalent to N . The construction preserves the boundedness of the net,
but not its integrality.

24

n·]0, a[n′′·]0, a[

n · [0] n′′ · [0, a[

p

t t′′

p

t t′′

(a) Case of pattern P4

n·]0, a[[a]

n · [0]]0, a[

p

t t′′

p

t t′′

(b) Case of pattern P5

Fig. 9. Removing general resets in TdPNs.

Proof. First, it it worth noticing that in the case of finite words, and non-zeno infinite
words, this result is a corollary of previous results (Theorems 2, 3 and 4). This proof,
though correct for all finite and infinite timed words, is thus only necessary to deal with
zeno infinite timed words.

Let N be a RA-TdPN which we assume satisfies Proposition 1. The only places of
N which are connected to non 0-reset post-arcs are those which satisfy pattern P4 or
pattern P5 (Figures 3(d) and 3(e)).

Case of pattern P4. The construction for this case is depicted on Figure 10. We denote
N ′ the resulting net. We prove now the equivalence of the two nets.

n · [0] [0, a

2
[[0] (n′′ − n′′1) · [0, a

2
[

n′′1 · [0, a

2
[

n′1 · [0, a

2
[(n′ − n′1) · [0, a

2
[

p1 p2

t′(n′1)

t t′′(n′′1)

t1, ε

Fig. 10. 0-reset equivalent for pattern P4

First, let σ be an (infinite) accepting firing sequence of N . We obtain a sequence σ ′

of N ′ with same timed word as follows.
Let us pick a token of p with initial age δ. Two cases are possible:

– First case: this token will not be consumed by t′′. If δ ≥ a
2 then we let it definitively

in p1. Otherwise (δ < a
2), after passing a

2 − δ time, we transfer it to p2 using the
silent transition t1. Note that the token in N ′ is at least as long available in p1 or in
p2 as it is in N .

– Second case: this token will be consumed by t′′ when its age is δ′. If 0 < δ′ −
δ(< a), then we transfer it to p2 after passing time δ′−δ

2 . Otherwise, the token is

25

immediately consumed and no time elapses: we thus do not transfer the token. Note
again that the token in N ′ is at least as long available in p1 or in p2 as it is in N .

Now the sequence σ′ is obtained from σ by inserting the occurrences of the transfer
transition and by substituting to t′ (resp. t′′) the appropriate t′(n′1) (resp. t′′(n′′1)) de-
pending on the locations of the tokens of p in N ′ used by the firing of t′ (resp. in t′′)
N .

Conversely, let σ′ be an (infinite) accepting firing sequence of N ′. We obtain a
sequence σ of N with same timed word as follows.

We simply delete the occurrences of the transfer transition and we substitute to
t′(k′1) (resp. t′′(k′′1)) the transition t′ (resp. t′′). It remains to define the initial age of a
token produced in p. If this token corresponds to a token in N ′ which is not transfered
to p2, its initial age is a

2 . If the token is transfered to p2 when its age is δ, then in N , its
initial age is a

2 − δ. Due to this choice, the token is at least as long available as it is in
in p1 or in p2 of N ′, and thus every firable transition of σ′ will be firable in σ.

This concludes the case of pattern P4.

Case of pattern P5. The construction for this second case is depicted on Figure 11.
We again denote by N ′ the resulting RA-TdPN. Before showing the validity of the
construction, we give some explanations about N ′. First, place ready is connected to
any transition of N by a Read-Arc whose bag is [0, 0]. Second, we denote by K the
largest constant n′ appearing on a bag n′·]0, a[of a Read-Arc and, for any integer k
such that 0 ≤ k ≤ K, we define a place q(k) and two silent transitions in(k) and
out(k). The lower part of the net is used to control the behaviours of the upper part of
the net. Any behaviour of N ′ must then be an iteration of the following sequence:

– First, exactly one of the transitions in(k) is fired, thus putting in zero time a token
in some place q(k) and in the place ready.

– Then the net fires the transitions of N , including t, t′, t′′, (or more precisely their
versions in N ′) in 0 time. Simultaneously, the token of the lower part of the net has
moved to place wait.

– After that some time elapses, enabling the firing of the silent transition out(k),
which picks the token of the place q(k) and puts a token in place tr.

– The upper part of the net can then transfer in 0 time some tokens from p1 to p2

using the silent transition t1.
– Finally, the silent transition tsel is fired in 0 time and puts back the token of the

lower part in place sel.

We can now prove that the two nets are equivalent.

First, let σ be an (infinite) accepting firing sequence of N . We obtain a sequence σ ′

of N ′ with same timed word as follows.
First, we describe how we transfer tokens from p1 to p2. Note that this is done in

the same way than for the case of P4. Let us pick a token of p with initial age δ. Two
cases are possible:

– First case: this token will not be consumed by t′′. If δ ≥ a
2 , then we let it definitively

in p1. Otherwise (δ < a
2), after passing a

2 − δ time we transfer it to p2. Note that
the token in N ′ is at least as long available in p1 or in p2 as it is in N .

26

n · [0]]0, a
2
[[0]

[0]

[0, a

2
]

k · [0, a

2
[

n′1 · [0, a

2
[(n′ − n′1) · [0, a

2
[

[0]

[0][0]

[0] [0]

p1 p2

t′(n′1, k)

t t′′(k)t1, ε

tr

q(k)

ready

•

> 0

> 0

[0]

[0]

[0] [0]

[0]

[0]

[0]

[0]

[0]

[0]

[0][0]

sel

ready

q(0)

q(K)

tr

wait

tend, ε

tsel, ε

in(0), ε

in(K), ε

out(0), ε

out(K), ε

Fig. 11. 0-reset equivalent for pattern P5.

– Second case: this token will be consumed by t′′ (necessarily when its age is a). We
then transfer it to p2 after passing time a−δ

2 . Note again that the token in N ′ is at
least as long available in p1 or in p2 as it is in N .

We then insert the occurrences of the transfer transition t1 described above just before
any transition which occurs at the same time.

Let us now consider a maximal instantaneous firing sequence ρ, i.e. a maximal
subsequence of σ of time length equal to 0. We can consider the set of the constants
n′ − n′1 such that there exists a Read Arc used in ρ whose bag connected to the place
p2 is equal to (n′ − n′1) · [0,

a
2 [. We denote by k the maximum value of this set (0 if

this set is empty). In such a subsequence ρ, we substitute to t′ the appropriate t′(n′1, k)
depending on the locations of the tokens of p in N ′ used by the firing of t′, and we
substitute to t′′ the transition t′′(k).

27

Finally we decompose the sequence between time elapsing and instantaneous firing
sequences. For each instantaneous firing sequence we apply the substitutions described
above.

We claim that we obtain in this way a firing sequence of N ′ with same timed word.
The only point to be detailed is the validity of a t′′(k) firing in N ′ since there is an
additional read-arc. However, this firing takes place in a maximal instantaneous firing
subsequence where k tokens have been read in p2 with an age belonging to [0, a/2[.
These tokens correspond in N to tokens in p whose age was strictly less than a during
this subsequence. So they cannot be consumed by this subsequence and thus are present
when firing t′′(k).

Conversely, let σ′ be an (infinite) accepting firing sequence of N ′. We obtain a
sequence σ of N with same timed word as follows. First we remark that each time a
transition t′′(k) is fired in σ′, we can consume the oldest token in p2 with age less or
equal than a

2 without modifying the firability of the sequence (since tokens in p2 are
checked for downwards closed intervals). Thus we assume this behaviour.

We simply delete the occurrences of the transfer transition and the cycle transitions
(i.e. those occurring in the lower net) and we substitute to t′(n′1, k) (resp. t′′(k)) the
transition t′ (resp. t′′). It remains to define the initial age of a token produced in p. If
this token corresponds to a token in N ′ which is not transfered to p2, its initial age is a

2 .
If the token is transfered to p2 when its age is δ and not consumed by some t′′(k), then
in N , its initial age is a

2 −δ. At last, if the token is transfered to p2 when its age is δ and
consumed by some transition t′′(k) when its age is δ′, then its initial age is a − δ − δ′

(note that this last choice implies that the transition t′′ will also be firable in N).
Finally, we need to verify that these definitions of the initial ages of the tokens in N

are compatible with the firing of the transitions t′. Let us consider an occurrence in σ
of a Read-Arc with bag n′·]0, a[. To be firable, this Read-Arc requires the presence of
n′ tokens in p with age less than a. This checking corresponds in N ′ to the firing of a
transition t′(n′1, k) with n′ − n′1 ≤ k in some instantaneous firing sequence ρ. The n′1
tokens in p1 used by this firing have, by construction, an age less than a (note that these
tokens will be possibly transfered to p2 after a time elapsing). Now take the n′ − n′1
youngest tokens in p2 at the beginning of ρ. We will prove that they all have an age in
N strictly less than a. First, note that none of them can be consumed by a transition t′′

during ρ since a firing of t′′ requires at least k ≥ n′ − n′1 tokens in addition to the one
to be consumed, and since we have assumed above that transitions t′′(k) consume the
oldest tokens. Now, let us consider one of these tokens. Two cases are possible: either
it is consumed later (i.e. in another instantaneous firing sequence) by a transition t′′(k),
and then its age in N is necessarily less than a. Or this token is never consumed, and
then if its age in N ′ is equal to some δ′ < a/2, we have defined above its age in N as
a/2 + δ′, which satisfies a/2 + δ′ < a.

This concludes the proof of the second case. ut

3.5 Summary of Our Expressiveness Results

Case of finite and infinite non-zeno words. Applying the results of the two previous
subsections, we get equality of all subclasses of RA-TdPNs mentioned on the following

28

picture, for the {∗, ωnz}-equivalence. Note that this picture is correct for the general
classes, for the restriction to integral nets, and also for the restriction to bounded nets.

RA-TdPN = TdPN = 0-reset TdPN
︸ ︷︷ ︸

Theo. 4
︸ ︷︷ ︸

Theo. 2,3

Case of infinite words. The picture in the case of infinite words is much different.
Indeed the hierarchy in the previous case collapses, whereas we get here the lattice
below. Plain arcs represent strict inclusion, and dashed arcs indicate that the classes
are incomparable. We also write on the arc the reason for this inclusion (“integral”
is to indicate that we restrict to the integral nets which immediately restrict the class;
“lang. Li” means that we use the language Li of Subsection 3.1 for proving the strict
inclusion). Finally note that this picture holds for both bounded and general nets.

RA-TdPN = 0-reset RA-TdPN

integral RA-TdPN

0-reset integral RA-TdPN

TdPN = 0-reset TdPN

integral TdPN = 0-reset integral TdPN
︸ ︷︷ ︸

Theo. 4

︷ ︸︸ ︷

Theo. 5

︸ ︷︷ ︸

Theo. 4

(

integral

(lang. L2

)

lang. L1

)

lang. L1 (

integral

4 Application to Timed Automata

First defined in [3], the model of timed automata (TA) associates with a finite automaton
a finite set of non negative real-valued variables called clocks.

4.1 Introduction of Timed Automata

Let X be a finite set of variables, which we call clocks. We write C(X) for the set
of constraints over X , which consist of conjunctions of atomic formulas of the form

29

x ./ h for x ∈ X , h ∈ Q≥0 and ./∈ {<,≤,=,≥, >}. The model we will define here
is a slight extension of the classical model of [3] and a subclass of updatable timed
automata [5].

Definition 5 (Timed Automaton (TA)). A timed automaton A over Σε is a tuple
(L, `0, X,Σε, E,A) where L is a finite set of locations, `0 ∈ L is the initial loca-
tion, X is a finite set of clocks, E ⊆ L × C(X) × Σε × (X ↪→ I) × L is a finite set
of edges, and A is an accepting condition given as a finite set of subsets of L An edge
e = 〈`, γ, a, µ, `′〉 ∈ E represents a transition from location ` to location `′ labelled by
a with constraint γ and update partially defined function µ called a reset.

A valuation v is a mapping in RX≥0. If µ : X ↪→ I is a partially defined function, if
v is a valuation, µ(v) is the set of valuations v′ such that v′(x) ∈ µ(x) if µ is defined
in x, and v′(x) = v(x) otherwise. Constraints of C(X) are interpreted over valuations,
and the relation v |= γ is defined inductively by v |= (x ./ h) when v(x) ./ h, and
v |= (γ1 ∧ γ2) whenever v |= γ1 and v |= γ2.

The semantics of timed automata is defined as a timed transition system.

Definition 6 (Semantics of a TA). The semantics of a TA A = (L, `0, X,Σε, E) is a
TTS SA = (Q, q0,→) where Q = L× (R≤0)

X , q0 = (`0,0) and → is defined by:

– either a delay move (`, v)
d
−→ (`, v + d),

– or a discrete move (`, v)
e
−→ (`′, v′) iff there exists some e = (`, γ, a, µ, `′) ∈ E s.t.

v |= γ and v′ ∈ µ(v).

We recover classical timed automata by restricting the resets to partial functions µ
assigning only the interval [0], but we will call them here 0-reset timed automata. If all
constants appearing in guards and updates are integers, we say that the timed automaton
is integral.

As for RA-TdPNs, we define the various timed languages accepted by a TA A:
L∗(A), Lω(A), and Lωnz(A). We extend the ∗-(resp. ω-, ωnz-)equivalences to TA and
to comparisons between subclasses of RA-TdPNs and subclasses of TA.

Examples of TA have already been given in this paper: see Figures 1(b) and 2(b).

4.2 TA and Bounded RA-TdPNs.

The following theorem relates TA and bounded RA-TdPNs.

Theorem 6. Bounded RA-TdPNs and TA are {∗, ωnz , ω}-equivalent.

Proof. From bounded RA-TdPNs to TA. Let N be a bounded RA-TdPN, and assume
that the net is bounded by k. We will build a TA A equivalent to N . The construction
is made in two steps. We first construct an equivalent (structurally) safe RA-TdPN N ′,
and we then build an equivalent timed automaton A.

Every place p of N is replaced by 2k places {p0
i , p

1
i | 1 ≤ i ≤ k} in N ′. The two

places p0
i and p1

i will be mutually exclusive, and the (at most) k tokens in place p in N
will be spread in the places p1

i ’s. The intuition of the construction is to use the places p1
i

to simulate one of the at most k tokens of place p. To ensure that these places are safe,

30

we use the complementary places p0
i . We make these two places (p0

i and p1
i) mutually

exclusive by imposing, when producing (resp. consuming) a token in p1
i , to consume

(resp. produce) a token in place p0
i . We now describe formally the construction.

Let t be a transition of N . Transition t will be simulated by several sequences of
transitions. Pre(t)(p) (resp. Post(t)(p), Read(t)(p)) is a bag in Bag(I), whose size
is denoted by s(t)(p) (resp. s′(t)(p), s′′(t)(p)). We order the tokens in these bags and
assume that Pre(t)(p) = I1 + . . . + Is(t)(p), Post(t)(p) = I ′1 + . . . + I ′s′(t)(p) and
Read(t)(p) = I ′′1 + . . .+ I ′′s′′(t)(p). We add four new places in N ′ which will be used

as intermediate places for simulating t: q0t , q1t , q′t
0 and q′t

1. The simulation of t proceeds
in three steps. First, we consume the tokens as required by the Pre Arcs. Second, we
proceed the Read Arcs. Third, we produce the tokens as required by the Post Arcs.

Simulation of a pre-arc. Let p be a place such that s(t)(p) > 0. We fix an injective
function ιt(p) defined from {1, . . . , s(t)(p)} onto Nk = {1, . . . , k}. This function de-
fines in which places the Pre Arc between t and p will consume the s(t)(p) tokens. We
then add a transition tιt such that ∀1 ≤ i ≤ s(t)(p),







Pre(tιt)(p
1
ιt(p)(i)

) = Ii, (consumes the tokens chosen by ιt(p))

Post(tιt)(p
0
ιt(p)(i)

) = [0], (produces the corresponding tokens)

size(Read(tιt)) = 0, (reads nothing)

Post(tιt)(q
1
t) = [0], (goes to the read step of the simulation of t)

Pre(tιt)(q
0
t) = R≥0 (consumes the corresponding token)

Simulation of a read-arc. Let p be a place such that s′(t)(p) > 0. We fix an
injective function ι′t(p) defined from {1, . . . , s′(t)(p)} onto Nk = {1, . . . , k}. This
function defines in which places the Read Arc between t and p will read the s′(t)(p)
tokens. We then add a transition tι′

t
such that ∀1 ≤ j ≤ s′(t)(p),







Pre(tι′
t
)(q1t) = [0] (starts the simulation of the read-arcs)

Post(tι′
t
)(q0t) = [0] (puts the corresponding token back)

Read(tι′
t
)(p1

ι′
t
(p)(j)) = I ′j , (reads the tokens chosen by ι′t(p))

Post(tι′
t
)(q′t

1
) = [0], (goes to the simulation of the post-arcs)

Pre(tι′
t
)(q′t

0
) = R≥0 (consumes the corresponding token)

Simulation of a post-arc. Let p be a place such that s′′(t)(p) > 0. We fix an
injective function ι′′t (p) defined from {1, . . . , s′′(t)(p)} onto Nk = {1, . . . , k}. This
function defines in which places the Post Arc between t and p will produce the s′′(t)(p)
tokens. We then add a transition tι′′

t
such that ∀1 ≤ k ≤ s′′(t)(p),







Pre(tι′′
t
)(q′t

1) = [0], (starts the simulation of the post-arcs)

Post(tι′′
t
)(q′t

0
) = R≥0 (puts the corresponding token back)

size(Read(tι′′
t
)) = 0, (reads nothing)

Post(tι′′
t
)(p1

ι′′
t
(p)(k)) = I ′′k , (produces the tokens chosen by ι′′t (p))

Pre(tι′′
t
)(p0

ιt(p)(k)
) = R≥0, (consumes the corresponding tokens)

31

Label of transitions. The two first transitions tιt and tι′
t

are labelled by ε. The third
one, tι′′

t
, is labelled by the label of t.

Initial marking The initial marking is extended by the following affectations.m0(q
0
t) =

1, m0(q
′
t
0
) = 1, m0(q

1
t) = 0 and m0(q

′
t
1

= 0).
Finally, the acceptance condition is transformed in a natural way: every occurrence

of a place p in the acceptance condition is replaced by the term
∑k
i=1(p

0
i + p1

i), and we
add to the acceptance condition, for any transition t, the constraints q1

t = 0 and q′t
1

= 0.
The construction is illustrated on Figure 12.

p0
ιt(p)(i)

p1
ιt(p)(i)

q0
t

q1
t

q′t
0

q′t
1

p0
ι′′
t
(p)(k)

p1
ι′′
t
(p)(k)

p1
ι′
t
(p)(j)

tιt
tι′

t
tι′′

t

Ii

[0]

[0]

R≥0

[0]

R≥0[0]

[0] [0]

[0]

I ′′k

R≥0

I ′j

Fig. 12. Simulating a bounded RA-TdPN using a safe RA-TdPN

The correctness of this construction relies on the fact that a configuration with n
tokens in place p is encoded by a configuration where n places p1

i contains 1 token
whereas for the k−n other i’s, there is 1 token in place p0

i . Then transition t is simulated
by selecting correctly the tokens needed by the pre-arc in the places p1

i , removing them,
then reading correctly the read-arc (by selecting as many tokens as necessary in the cor-
responding places) and then creating tokens by the post-arc in (and only in) the places
p1
i which do not have a token. The other side of the proof is similar, we just remove the

intermediary steps. This construction is correct for the {∗, ω, ωnz}-equivalence.

We now present the construction which transforms a safe RA-TdPN into a TA. Let
N = (P,m0, T,Pre,Post,Read, λ,Acc) be a safe RA-TdPN. We will define a TA
A = (L, `0, X,Σε, E,A) equivalent to N . By abuse of notation, given a transition t of
N , we simply write in this construction Pre(t) for the set of places p ∈ P such that
size(Pre(t)(p)) > 0 (and similarly for Post and Read). Note that since N is safe,
we can assume that for any transition t ∈ T , we have Pre(t) ∩ Read(t) = ∅ and
Read(t) ∩ Post(t) = ∅ (otherwise the transition will never be firable).

We define A as follows:

– L = 2P ,
– `0 = dom(m0), (there is exactly one token per initially marked place)
– X = P , (xp denotes the clock corresponding to the place p)

– there is a transition `
γ,a,µ
−−−→ `′ whenever there exists a transition t in N such that:

32

• Pre(t) ∪ Read(t) ⊆ `,
• Post(t) ∩ (` \ Pre(t)) = ∅,
• `′ = (` \ Pre(t)) ∪ Post(t),
• γ is the conjunction of all xp ∈ Ip such that (p, Ip) ∈ Pre(t) ∪ Read(t),
• a is the label of transition t in N ,
• µ resets clock xp in interval Ip if (p, Ip) ∈ Post(t).

– if Acc = {f1, . . . , fk}, A is defined as the set of formulas {A1, . . . , Ak} where for

every 1 ≤ i ≤ k, Ak = {Q ⊆ 2P | (
∧

q∈Q

q = 1 ∧
∧

q/∈Q

q = 0) ⇒ fi}.

Note that since a place contains at most one token, one clock is enough to encode the
behaviour of a place. It is then routine to verify that this construction is correct.

From TA to bounded RA-TdPNs. LetA = (L, `0, X,Σε, E, F) be a TA. We construct
the RA-TdPN N = (P,m0, T,Pre,Post,Read, λ,Acc) as follows.

– P = L ∪X ,
– m0 = `0 +

∑

x∈X x

– T = E,
– for all e = `

g,a,µ
−−−→ `′ in E,

• if x is such that µ(x) is defined, Post(e)(x) = µ(x), Pre(e)(x) = g|x, where
g|x is the interval of x imposed by constraint g,

• if x is such that µ(x) is not defined, Read(e)(x) = g|x,
• Pre(e)(`) = R≥0, Post(e)(`′) = [0],
• λ(e) = a,

– Acc = {(f = 1), f ∈ F},

The net N that we have constructed is strongly bisimilar to the original timed au-
tomaton. Indeed, we consider the relation R defined by

(`, v)Rν iff







size(ν(`)) > 0

size(ν(`′)) = 0 ∀`′ 6= `

ν(x) = v(x) ∀x ∈ X,

where (`, v) ∈ L×RX≥0 is a configuration ofA, and ν ∈ Bag(R≥0)
P is a configuration

of N . It is straightforward to verify that R is a bisimulation relation which respects
accepting configurations.

Finally, just notice that there is always exactly one token in one of the places l for
l ∈ L. This justifies the definition of Acc. Moreover, it is easy to verify that the net we
have constructed is safe, thus bounded. ut

Example 4. We illustrate the transformation of a TA into a bounded RA-TdPN on an
example. It is worth noticing that for the clock x, which is both checked and reset, we
can use a pre- and a post-arc, whereas for the clock y, which is checked but not reset,
we use a read-arc.

33

•

• •

`1 `2

`1 `2

x y

a
x < 2 ∧ y ≥ 3, a

x := 1
< 2

[1]

≥ 3

4.3 Expressiveness Results for TA

Combining this former result with the results of the previous section on Petri nets, we
get interesting side results on timed automata, and in particular quite surprising results
for languages of infinite timed words.

Corollary 1. For the {∗, ωnz}-equivalence,

1. bounded TdPNs and TA are equally expressive;
2. (integral) TA and 0-reset (integral) TA are equally expressive.

Corollary 2. For the ω-equivalence,

3. TdPNs and TA are incomparable;
4. TA are strictly more expressive than bounded TdPNs;
5. integral TA are strictly more expressive than integral 0-reset TA;
6. TA and 0-reset TA are equally expressive.

As a “folk” result, it was thought that TA and bounded TdPNs are equally expres-
sive. We have proved that this is indeed the case for finite and infinite non-zeno be-
haviours (item 1.), but that it is wrong when considering also zeno behaviours (item 4.).
Indeed, the result is even stronger: even though TdPNs can be somehow seen as timed
systems with infinitely many clocks, we have proved that TA and TdPNs are in general
incomparable (item 3.).

The three other results complete the picture of known results about general resets
in TA [5]. Item 2. was already partially proved in the above-mentioned paper, and we
provide here a new proof of this result. Items 5. and 6. are quite surprising, since they
show that refining the granularity of the guards is necessary for removing general resets
in TA (and for preserving the languages of infinite timed words). It is one of the first
such results in the framework of timed systems (up to our knowledge). Finally, the
construction provided in the proof of Theorem 5 applied to TA provides an extension
to infinite words of the construction presented in [5] for removing general resets in
TA (which is indeed only correct for finite and infinite non-zeno timed words). We
illustrate this construction by giving a 0-reset TA ω-equivalent to the timed automaton
of Figure 2(b).

x = 0, a

x := 0

x < 1
2 , b

x < 1
2 , ε

x < 1
2 , b

34

5 Conclusion

In this paper , we have thoroughly studied the relative expressiveness of TdPNs and
TA, and we have proved in particular that they are incomparable in general. This has
motivated the introduction of read-arcs in TdPNs, yielding the model of RA-TdPNs.
This model unifies TA and TdPNs, has a decidable coverability problem, and enjoys
pretty surprising expressiveness results.

We have studied the expressive power of read-arcs in RA-TdPNs, and we have
proved that, when restricting to finite or infinite non-zeno behaviours, read-arcs do
not add expressiveness. On the other hand, we show that zeno behaviours discrimi-
nate between several subclasses of RA-TdPNs. For instance, RA-TdPNs are strictly
more expressive than TdPNs. Since we also prove that bounded RA-TdPNs and TA are
equally expressive, we get the surprising result that TA are strictly more expressive than
bounded TdPNs, which is quite counter-intuitive.

Classically, TdPNs use quite general resets, whereas TA use only resets to 0. We
have thus studied the expressive power of these general resets, compared with resets
to 0. We have shown that they don’t add any expressiveness to the above-mentioned
models, but that the granularity has to be refined for removing general resets in RA-
TdPN when considering zeno behaviours. Up to our knowledge, this is one of the first
expressiveness results (at least in the domain of timed systems), which requires to refine
the granularity of the model. As side results, we complete the work in [5], and get that it
is necessary to refine the granularity of guards in TA for removing general resets, when
considering languages of infinite possibly zeno timed words.

Our main further work will be to develop partial-order techniques for RA-TdPNs,
taking advantage of the locality of the firing rules.

References

1. P. A. Abdulla, P. Mahata, and R. Mayr. Decidability of Zenoness, syntactic boundedness
and token-liveness for dense-timed petri nets. In Proc. 24th Conf. Foundations of Software
Technology and Theoretical Computer Science (FST&TCS’04), volume 3328 of LNCS, pages
58–70. Springer, 2004.

2. P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. In Proc. 22nd Int. Conf. Application
and Theory of Petri Nets (ICATPN’01), volume 2075 of LNCS, pages 53–70. Springer, 2001.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

4. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Transactions in Software Engineering, 17(3):259–273, 1991.

5. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theoretical
Computer Science, 321(2–3):291–345, 2004.

6. C. Girault and R. Valk, editors. Petri Nets for Systems Engineering. Springer, 2002.
7. G. Higman. Ordering by divisibility in abstract algebras. In Proc. London Math. Soc.,

volume 2, pages 326–336, 1952.
8. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata with one

or two clocks. In Proc. 15th Int. Conf. Concurrency Theory (CONCUR’04), volume 3170 of
LNCS, pages 387–401. Springer, 2004.

35

9. S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. 8th International Confer-
ence on Foundations of Software Science and Computation Structures (FoSSaCS’05), volume
3441 of Lecture Notes in Computer Science, pages 250–265. Springer, 2005.

10. P. Mahata. Model Checking Parameterized Timed Systems. PhD thesis, Dept. Information
Technology, Uppsala University, Sweden, 2005.

11. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6):545–596, 1995.
12. J. Ouaknine and J. B. Worrell. On the language inclusion problem for timed automata:

Closing a decidability gap. In Proc. 19th Annual Symposium on Logic in Computer Science
(LICS’04), pages 54–63. IEEE Computer Society Press, 2004.

13. J. Ouaknine and J. B. Worrell. On the decidability of metric temporal logic. In Proc. 19th An-
nual Symposium on Logic in Computer Science (LICS’05), pages 188–197. IEEE Computer
Society Press, 2005.

14. V. Valero Ruiz, F. Cuartero Gomez, and D. de Frutos-Escrig. On non-decidability of reach-
ability for timed-arc Petri nets. In Proc. 8th Int. Work. Petri Nets and Performance Models
(PNPM’03), pages 188–196. IEEE Computer Society Press, 1999.

36

