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Model Checking Problem

Does the closed system S satisfy φ ?
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Control Problem

Can the open system S be restricted to satisfy φ ?
Is there a Controller C s.t. (S ‖ C ) |= φ ?
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Control of Discrete Event Systems
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◮ Introduced by Ramadge & Wonham [Ramadge, 87]

◮ Discrete Event System = Finite Automaton with

Controllable (Actc) and Uncontrollable (Actu) actions

◮ Example of Control Objective: “avoid state Bad”

◮ Means: disable some controllable transitions at the right time
Ramadge & Wonham Theory is based on Language Theory
[Ramadge, 89, Thistle, 94]
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Control and Game
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Open System = 2-player game, Controller (C) vs Environment (E)

◮ Controller does Actc moves, Environment does Actu moves
◮ Control Objective = Winning condition on the game

“Avoid bad states” (safety) or “Enforce good states” (reachability)
◮ Control Problem: find a strategy for the controller to win the game
◮ Various types of game models for C and E

◮ Finite or pushdown or counter automata . . .
◮ Timed or hybrid automata
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Problems of Interest

Verification Problem (or Model Checking Problem)

Input: a model of the closed system S and a property ϕ

Problem: Does S satisfy ϕ ?

Control Problem (CP)

Input: a model of the open system (game) G and a property ϕ

Problem: Is there a controller (strategy) C s.t. (C ‖ G ) satisfy ϕ ?

Control Synthesis Problem (CSP)

Input: a model of the open system (game) G and a property ϕ

Problem: If the answer to the CP(G , ϕ) is “yes”, can we effectively
compute a witness controller ?
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Outline

◮ Verification & Control

◮ Control of Finite Automata

◮ Timed Game Automata

◮ Symbolic Algorithms for Timed Game Automata

◮ Conclusion
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Game Automata, Strategies & Winning States

Game Automaton
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Strategy

◮ A strategy f gives for each finite run the controllable action to take.
We assume full observability of the system
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Strategy

◮ A strategy f gives for each finite run the controllable action to take.
We assume full observability of the system

Example of Strategies:

f (ℓ0) = a
f (ℓ0

a
−→ ℓ1) = c

f (ℓ0

a
−→ ℓ1

u
−→ ℓ2) = b

f (ℓ0

a
−→ ℓ1

u
−→ ℓ2

b
−→ ℓ0

a
−→ ℓ1) = e

f ′(· · · ℓ0) = a
f ′(· · · ℓ1) = c
f ′(· · · ℓ2) = b
f ′(· · · ℓ3) = d

MSR’05 (Autrans, France) Control of Timed Systems 10 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to take.
We assume full observability of the system

Example of Strategies:

f (ℓ0) = a
f (ℓ0

a
−→ ℓ1) = c

f (ℓ0

a
−→ ℓ1

u
−→ ℓ2) = b

f (ℓ0

a
−→ ℓ1

u
−→ ℓ2

b
−→ ℓ0

a
−→ ℓ1) = e

f ′(· · · ℓ0) = a
f ′(· · · ℓ1) = c
f ′(· · · ℓ2) = b
f ′(· · · ℓ3) = d

MSR’05 (Autrans, France) Control of Timed Systems 10 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to take.
We assume full observability of the system

◮ A strategy restricts the set of runs of the system.
from a state s it generates of subset of the runs of the initial game

MSR’05 (Autrans, France) Control of Timed Systems 10 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Game Automata, Strategies & Winning States

Game Automaton

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

e

d u

Strategy

◮ A strategy f gives for each finite run the controllable action to take.
We assume full observability of the system

◮ A strategy restricts the set of runs of the system.
from a state s it generates of subset of the runs of the initial game

◮ A strategy is winning if it generates only good runs.

MSR’05 (Autrans, France) Control of Timed Systems 10 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Game Automata, Strategies & Winning States

Game Automaton
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Strategy

◮ A strategy f gives for each finite run the controllable action to take.
We assume full observability of the system

◮ A strategy restricts the set of runs of the system.
from a state s it generates of subset of the runs of the initial game

◮ A strategy is winning if it generates only good runs.

Winning States

A state s is winning if there exists a winning strategy from s.

MSR’05 (Autrans, France) Control of Timed Systems 10 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

MSR’05 (Autrans, France) Control of Timed Systems 11 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Controllable Predecessors

ℓ0 ℓ1

ℓ2 ℓ3

Bad
a

u
c

b

d

d

e

u

π(X ) = states from which one can enforce X with a controllable action

π(X ) = PredActc (X ) \ PredActu(X )
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π(X ) = states from which one can enforce X with a controllable action

π(X ) = PredActc (X ) \ PredActu(X )

π(X )

X

X

•

•

•

∃c ∈ Actc

not (∃u ∈ Actu)
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π(X ) = states from which one can enforce X with a controllable action

π(X ) = PredActc (X ) \ PredActu(X )

Some Values of the π Operator

◮ π({ℓ3}) = ∅

◮ π({ℓ1}) = {ℓ0}

◮ π({ℓ0, ℓ1}) = {ℓ0, ℓ2}

◮ π({ℓ0, ℓ1, ℓ2}) = {ℓ0, ℓ1, ℓ2}
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π(X ) = states from which one can enforce X with a controllable action

A Fixpoint Characterization of Winning States:

1 let ϕ be a set of safe (good) states and G a game

2 let W ∗ be the greatest fixpoint of h(X ) = ϕ ∩ π(X )

3 W ∗ is the set of winning states for (G , ϕ)
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π(X ) = states from which one can enforce X with a controllable action

A Fixpoint Characterization of Winning States:

1 let ϕ be a set of safe (good) states and G a game

2 let W ∗ be the greatest fixpoint of h(X ) = ϕ ∩ π(X )

3 W ∗ is the set of winning states for (G , ϕ)

◮ CP: check that ℓ0 ∈W ∗
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Controllable Predecessors
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π(X ) = states from which one can enforce X with a controllable action

A Fixpoint Characterization of Winning States:

1 let ϕ be a set of safe (good) states and G a game

2 let W ∗ be the greatest fixpoint of h(X ) = ϕ ∩ π(X )

3 W ∗ is the set of winning states for (G , ϕ)

◮ CP: check that ℓ0 ∈W ∗

◮ CSP: Given W ∗ and G , we can build a winning strategy
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Results for Finite Games
Given G a finite game, ϕ a control objective

Theorem (Positional Strategies are Sufficient)

Positional (or memoryless) strategies suffice to win ω-regular games.
The number of states of C is ≤ number of states of G.
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The fixpoint computation of W ∗ terminates
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Given G a finite game, ϕ a control objective

Theorem (CP is Decidable)

CP is decidable for ω-regular objectives.

Theorem (Effectiveness of CSP)

Strategy synthesis is effective. We can build a finite automaton (controller)
C that specifies a winning strategy.
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Results for Finite Games
Given G a finite game, ϕ a control objective

Theorem (CP is Decidable)

CP is decidable for ω-regular objectives.

Theorem (Effectiveness of CSP)

Strategy synthesis is effective. We can build a finite automaton (controller)
C that specifies a winning strategy.

Theorem (Positional Strategies are Sufficient)

Positional (or memoryless) strategies suffice to win ω-regular games.
The number of states of C is ≤ number of states of G.

Add Dense Time ... CP and CSP ?

MSR’05 (Autrans, France) Control of Timed Systems 12 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Outline

◮ Verification & Control

◮ Control of Finite Automata

◮ Timed Game Automata

◮ Symbolic Algorithms for Timed Game Automata

◮ Conclusion

MSR’05 (Autrans, France) Control of Timed Systems 13 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Automata [Alur & Dill’94]

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2;u

x > 3;u

Runs = sequence of discrete and time steps

ρ1 : (ℓ0, 0)
1.55
−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67
−−−→ (ℓ1, 3.22)

u
−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1
−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1
−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1
−−→ (ℓ2, 3.3)

u
−→ (ℓ0, 0) · · · · · · · · ·

MSR’05 (Autrans, France) Control of Timed Systems 14 / 32



Verification & Control Discrete Games Timed Games Symbolic Algorithms Conclusion

Timed Game Automata

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2; u

x > 3;u

◮ Introduced by Maler, Pnueli, Sifakis [Maler, 95]

◮ The controller continuously observes the system
time elapsing and discrete moves are observable

◮ It has the choice between two types of moves:
◮ “do nothing”
◮ “do a controllable action” (among the ones that are possible)

◮ It can stop time from elapsing by taking a controllable move
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How to Deal with Dense-Time ?
◮ Infinite state systems

Symbolic representation of states

◮ A strategy (or controller) can choose to wait

Add a special wait action

◮ Dense time · · · the controller can be unfair
◮ block time
◮ do infinitely many actions in a bounded time
◮ do arbitrarily closed (in time) discrete actions

Implementation Issues
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Symbolic States

◮ Q = L× R
Clock
≥0

a the set of states of the TGA q = (ℓ, v) ∈ Q

◮ Discrete predecessors of X ⊆ Q by an action a:

Preda(X ) = {q ∈ Q | q
a
−−→ q′ and q′ ∈ X}

◮ Time predecessors of X ⊆ Q:

Predδ(X ) = {q ∈ Q | ∃t ≥ 0 | q
t
−−→ q′ and q′ ∈ X}

◮ Zone = conjunction of triangular constraints
x − y < 3, x ≥ 2 ∧ 1 < y − x < 2

◮ State predicate (SP) P = ∪i∈[1..n](ℓji ,Zi ), ℓi ∈ L, Zi is a zone
(ℓ1, 2 ≤ x < 4) or (ℓ0, x < 1 ∧ y − x ≥ 2) or (ℓ0, x ≤ 2) ∪ (ℓ2, x > 0)

Effectiveness of Preda and Predδ

If P is a SP then Preda(P),Predδ(P) are SP and can be computed
effectively. (There is a symbolic version of Preda and Predδ.)
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Symbolic Computation For Timed Games
X is a state predicate

◮ cPred(X ) =
⋃

c∈Actc
Predc(X ) uPred(X ) =

⋃

u∈Actu
Predu(X )

cPred and uPred are effectively computable
◮ Predδ(X ,Y ): Time controllable predecessors of X avoiding Y :

q q′ ∈ X

Predδ(X ,Y ) is effectively computable for state predicates X ,Y

◮ Controllable Predecessors Operator:

πδ(X ) = Predδ

(

cPred(X ), uPred(X )
)

πδ(X ) is effectively computable for state predicate X .
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Solving CP and CSP for Safety Timed Games

Symbolic Algorithm for Safety Timed Games

1 let ϕ be a State Predicate, G a timed game

2 let W ∗ be the greatest fixpoint of h(X ) = ϕ ∩ πδ(X )

3 W ∗ is the set of winning states for (G , ϕ)
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Symbolic Algorithm for Safety Timed Games

1 let ϕ be a State Predicate, G a timed game

2 let W ∗ be the greatest fixpoint of h(X ) = ϕ ∩ πδ(X )

3 W ∗ is the set of winning states for (G , ϕ)

◮ CP: check that (ℓ0, 0) ∈W ∗

◮ CSP: by def. of πδ there is a strategy
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Symbolic Algorithm for Safety Timed Games

1 let ϕ be a State Predicate, G a timed game

2 let W ∗ be the greatest fixpoint of h(X ) = ϕ ∩ πδ(X )

3 W ∗ is the set of winning states for (G , ϕ)

Theorem (Termination [Maler, 95, De Alfaro, 01])

The iterative computation of W ∗ terminates for (G , ϕ) with G a timed
game automaton ϕ a ω-regular control objective.
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3 W ∗ is the set of winning states for (G , ϕ)

Theorem (Termination [Maler, 95, De Alfaro, 01])

The iterative computation of W ∗ terminates for (G , ϕ) with G a timed
game automaton ϕ a ω-regular control objective.

Theorem (Decidability of CP [Maler, 95, De Alfaro, 01])

The (Safety) Control Problem is decidable for Timed Game Automata.

Theorem (Effectiveness of CSP)

If (ℓ0, 0) ∈W ∗ we can compute a positional winning strategy.
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Example of Computation

x := 0 ℓ0

[x ≤ 4]

ℓ1

[x ≤ 5]

ℓ2

[x ≤ 5]

Bad
x ≤ 4; c1

c2

c3; x := 0

x < 2; u

x > 3;u

•—•—•—•—•
0 1 2 3 4

•—•—•—•—•—•
0 1 2 3 4 5

•—•—•—•—•—•
0 1 2 3 4 5

Skip
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Problems with Dense-Time Control (II)
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◮ Let δi : time spent in ℓ2 on loop i

◮ The controller must ensure:
∑i=+∞

i=0
δi < x0 − y0

The Controller is Non-Zeno but not Implementable !!!
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Partial Conclusion
Assumptions:

◮ Timed systems with full observation

◮ Ideal controller that operates in dense-time

Results:

◮ Control Problem is decidable for ω-regular objectives

◮ Control Synthesis Problem is effective

◮ Positional (or Memoryless) strategies are sufficient

Advanced Topics:

◮ Partial Observability
Patricia

◮ Implementation
Karine
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Timed Automata [Alur & Dill’94]

A Timed Automaton A is a tuple (L, ℓ0,Act,X , inv,−→) where:

◮ L is a finite set of locations

◮ ℓ0 is the initial location

◮ X is a finite set of clocks

◮ Act is a finite set of actions

◮ −→ is a set of transitions of the form ℓ
g , a , R
−−−−→ ℓ′ with:

◮ ℓ, ℓ′ ∈ L,
◮ a ∈ Act
◮ a guard g which is a clock constraint over X
◮ a reset set R which is the set of clocks to be reset to 0

Clock constraints are boolean combinations of x ∼ k with x ∈ C and
k ∈ Z and ∼∈ {≤, <}.

Back
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Semantics of Timed Automata

Let A = (L, ℓ0,Act,X , inv,−→) be a Timed Automaton.

A state (ℓ, v) of A is in L× R
X
≥0

The semantics of A is a Timed Transition System
SA = (Q, q0,Act ∪ R≥0,−→) with:

◮ Q = L× R
X
≥0

◮ q0 = (ℓ0, 0)

◮ −→ consists in:

discrete transition: (ℓ, v)
a
→ (ℓ′, v ′) ⇐⇒















∃ ℓ
g , a , r
−−−−→ ℓ′ ∈ A

v |= g
v ′ = v [r ← 0]
v ′ |= inv(ℓ′)

delay transition: (ℓ, v)
d
→ (ℓ, v + d) ⇐⇒ d ∈ R≥0 ∧ v + d |= inv(ℓ)

Back
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Definition (Outcome in Timed Games)

Let G = (L, ℓ0,Act,X , E , inv) be a TGA and f a strategy over G . The
outcome Outcome((ℓ, v), f ) of f from configuration (ℓ, v) in G is the
subset of Runs((ℓ, v),G ) defined inductively by:

◮ (ℓ, v) ∈ Outcome((ℓ, v), f ),

◮ if ρ ∈ Outcome((ℓ, v), f ) then ρ′ = ρ
e
−−→ (ℓ′, v ′) ∈ Outcome((ℓ, v), f )

if ρ′ ∈ Runs((ℓ, v),G ) and one of the following three conditions hold:
1 e ∈ Actu,
2 e ∈ Actc and e = f (ρ),

3 e ∈ R≥0 and ∀0 ≤ e ′ < e, ∃(ℓ′′, v ′′) ∈ (L× R
X

≥0
) s.t. last(ρ)

e
′

−−→

(ℓ′′, v ′′) ∧ f (ρ
e
′

−−→ (ℓ′′, v ′′)) = λ.

◮ an infinite run ρ is in ∈ Outcome((ℓ, v), f ) if all the finite prefixes of ρ

are in Outcome((ℓ, v), f ).
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