
Implementability of Timed Automata

Karine Altisen (Verimag),

Joint work with:
Nicolas Markey (LSV),
Pierre-Alain Reynier (LSV),
Stavros Tripakis (Verimag)

CORTOS, aci-si MSR’05

CORTOS, msr05(6th October 2005) K. Altisen 2

Context: Model-based Design

• Models are good for analysis:
• simulation, testing, theorem prooving, verification...

• What about implementation
• currently mostly an art/practice

• How to move from models to implementation?
• as automatically as possible,
• preserving as much as possible

2

CORTOS, msr05(6th October 2005) K. Altisen 3

Timed Automata: definition

A

x := 0

a?, x := 0
x ≤ 1

b!, x ≤ 1
x = 1

x ≤ 1

x = 1, x := 0

1 2 3

• finite automaton
• real-valued clocks: x

• triggering conditions on transitions:
• guards: x = 1 and resets: x := 0
• inputs? : a? + outputs!: b!

• condition on states: invariants: x ≤ 1

3

CORTOS, msr05(6th October 2005) K. Altisen 4

Timed Automata: semantics

A

x := 0

a?, x := 0
x ≤ 1

b!, x ≤ 1
x = 1

x ≤ 1

x = 1, x := 0

1 2 3

Example of trace:

(state = 1, x = 0) → (state = 1, x = 0.88)
→?a → (state = 2, x = 0) → (state = 2, x = 0.45)
→ b! → (state = 1, x = 0.45) → (state = 1, x = 54.3)
→ a? → (state = 2, x = 0) → (state = 2, x = 1)

→ (state = 3, x = 1) ...

4

CORTOS, msr05(6th October 2005) K. Altisen 5

Timed Automata: semantics

Comments:

• the clocks are infinitely precise
guards are tested against exact values

• the computation takes zero time
(evaluation of guards, change of discrete states)

• the communication with outside takes zero time
(inputs/outputs)

→ a model with ideal semantics

5

CORTOS, msr05(6th October 2005) K. Altisen 6

Towards a Realistic Platform

we consider that a realistic platform should specify:

• how precise are the clocks (they should be digital!)
and how they are related

• speed, frequency and precision of computations

• how inputs and outputs are treated
• w.r.t. environment and shared variables (if some)
• w.r.t. time

6

CORTOS, msr05(6th October 2005) K. Altisen 7

Guaranties

• Property Preservation

model
A

property
formal analysis

(verif, simul, ...)

implem

preservation?

preservation of a modified prop?

• “Faster is better” property
• “implem + platform” satisfies a property
• change for a “more performant”platform,
• is the property still satisfied?

7

CORTOS, msr05(6th October 2005) K. Altisen 8

Approaches

Two ways to take into account the imprecision due to implemen-
tation:

• Model it within a model of the execution platform
KA+ST (Verimag)

• Adapt the semantics of timed automata to include imprecision
Raskin et al. (ULB) and then PB+NM+PAR (LSV)

8

CORTOS, msr05(6th October 2005) K. Altisen 9

Approach1: models the exec. platform

• idea: translate the TA into a program and
model the execution platform as timed automata

• global scheme

trig! now

execution
model: AEX

digital clock
model: ADC

interface model: AIO

input and output

input interface

plant model: Env

a1?, ..., an? b1!, ..., bm!

output interface

program model for A:Prog(A)

9

CORTOS, msr05(6th October 2005) K. Altisen 10

Approach1: the program implementing
A

• translate A into Prog(A) an untimed automaton
interface of Prog(A): inputs = {now, trig, inputs} outputs = {outputs}

now − xp 6= 1
trig?

trig?, b := true
now − xp ≤ 1

x := now
trig?, now − xp = 1trig?

now − xp > 1

trig?, a = true
xp := now

a = false
trig?

Prog(A)
xp := now now − xp = 1

trig?

• program the implementation of A by interpreting Prog(A):

loop each trig -------------------
read now; read inputs;
compute; update; write outputs;

endloop --------------------------

10

CORTOS, msr05(6th October 2005) K. Altisen 11

Approach1: digital clock models

Digital clock model: ADC

• provides now

• models that the clock of the CPU is digital (ie digitally updated)

• and may have some uncertainties

• Examples

x = ∆
x := 0

tick!

now := 0

x ≤ ∆

now := now + ∆

x ≤ ∆

now := 0 now := now + ∆
x := 0

tick!
x ∈ [∆ − ε, ∆ + ε]

11

CORTOS, msr05(6th October 2005) K. Altisen 12

Approach1: checking the
implementation

A model around Prog(A) to check properties of
the implementation

• A model of the execution platform: (timed automata)

digital clock: ADC; → provides now
execution: AEX; → provides trig!
communications: AIO; → provides inputs/outputs

→ model of the platform: P = AEX||ADC||AIO

12

CORTOS, msr05(6th October 2005) K. Altisen 13

trig! now

execution
model: AEX

digital clock
model: ADC

interface model: AIO

input and output

input interface

plant model: Env

a1?, ..., an? b1!, ..., bm!

output interface

program model for A:Prog(A)

13

CORTOS, msr05(6th October 2005) K. Altisen 14

Approach1: checking the
implementation

A model around Prog(A) to check properties of
the implementation

• A model of the “real” execution of A:
• execution platform: P = AEX||ADC||AIO

• reasonable assumptions on the environment: Env

→ model of the execution of the program that implements A
on the execution platform modeled by P

when executing uppon the environment Env
M = Env||Prog(A)||P

14

CORTOS, msr05(6th October 2005) K. Altisen 15

Approach1: checking the
implementation

Formal analysis of M

• verification (model-checking)

• controller synthesis

• preservation and “faster is better” properties are FALSE
with no assumptions
try to prove them under some restrictive hypothesis?

15

CORTOS, msr05(6th October 2005) K. Altisen 16

Approach2: adapt the semantics

Context:
fix the assumptions under which executing the timed automaton,
so as to ensure properties

→ fix a given platform

• digital clock of the CPU: periodically updated (period ∆P)
• execution: one cycle of computation takes at most ∆L

• communications: one shared buffer of size 1 per input/output

loop -----------------------------

read now; read inputs;

compute; update; write outputs;

endloop --------------------------

16

CORTOS, msr05(6th October 2005) K. Altisen 17

Approach2: results – Raskin et al.
(ULB)

Definitions of new semantics:

• [A]∆L,∆P
: sem. of the program of A executing on the platform

• [A∆]: new sem. for A, approximation by ∆ of the ideal sem.
— enlargement: x ∈ [a, b] → x ∈ [a − ∆, b + ∆]

Theorems:

• if ∆ > 4∆P + 3∆L, then [A]∆L,∆P
refines [A∆]

• if ∆′ < ∆, then [A′
∆] refines [A∆]

Robustness: A is robust wrt a property ϕ
iff ∃∆ st the semantics [A∆] satisfies ϕ

17

CORTOS, msr05(6th October 2005) K. Altisen 18

Approach2: robust verification

• Verifies: ∃∆ st the semantics of A∆ satifies ϕ

• Algo (idea): fix-point computation
• Reach(A∆): the set of reachable states
• computes: Reach∗(A) = ∩∆>0Reach(A∆)

• Properties:
• safety (ULB)
• LTL (LSV)
• bounded time properties (LSV)

18

CORTOS, msr05(6th October 2005) K. Altisen 19

Conclusion: Modeling vs Semantics

Modeling:

• uses classical timed automata, their semantics and algorithms

• allows changing the program type/execution platform
by modularly changing the model

• offers possibilities for verfication and synthesis
BUT results are difficult to obtain

Semantics:

• introduces new semantics

• fixes the execution platform

• offers possibilities for robust verification
+ “Faster is better” property is true

19

CORTOS, msr05(6th October 2005) K. Altisen 20

Conclusion – Perspectives

Modeling:

• results: implementation framework using standard semantics +
modeling

• to be continued: platform refinement and preservation

Semantics:

• results: implementability result on a given platform, for some
properties

• to be continued: MTL properties

20

CORTOS, msr05(6th October 2005) K. Altisen 21

Related Work

• The tool TIMES [Uppsala]:
• Timed automata that spawn tasks (multi-threaded programs)
• Focus: schedulability analysis

• Timed Triggered Automata [Mokrushin, Krcal, Yi, Thiagara-
jan]:
• Essentially discrete-time automata

• Digitization, robustness for timed automata [many]:
• Focus: verification
• Relation to code generation needs to be better understood

21

