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Language's Speci�cations

We want to model programs with the following features:

▶ Explicit memory manipulation (no garbage collection)
▶ Copyless, asynchronous message passing

∙ Instead of copying the contents of the message, send a pointer
to it and transfer ownership

∙ Assumes a shared memory
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What to Prove

We are interested in the following properties:

▶ no memory fault

▶ no races

▶ no memory leaks

▶ safe communications
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Proving Copyless Message Passing Programs

▶ We mix separation logic and contracts
∙ separation logic gives us safety properties
∙ contracts give us liveness properties

▶ the combination of the two gives us something more than the
two separately (e.g. no memleaks)
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Communication Model

▶ Channels are bidirectional and asynchronous
channel = pair of FIFO queues

▶ Channels are made of two endpoints
similar to the socket model

▶ Endpoints can be allocated, disposed of, and communicated
through channels

similar to the �-calculus

▶ Communications are ruled by user-de�ned contracts
similar to session types

▶ Inspired by Sing#, the language of the Singularity OS
[Fähndrich & al. '06]
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Message Passing with copies
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Copyless Message Passing (shared memory)
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Example

message cell

put_get () {

local e,f,x;

(e,f) = open(C);

x = new ();

put(e,x) || get(f);

close(e,f);

}

put(e,x) {

send(cell ,e,x);

}

get(f) {

local y;

y = receive(cell ,f);

dispose(y);

}
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Contracts

Contracts dictate which sequences of messages are admissible.

▶ It is a �nite state machine, whose arrows are labeled by a
message's name and a direction: send (!) or receive (?).

▶ Dual endpoints of a channel follow dual contracts
(C̄ = C [?↔!]).
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Contract of the Example

message cell

contract C {

initial final state start

{ !cell -> start; }

}

put_get () {

local e,f,x;

(e,f) = open(C);

x = new ();

put(e,x) || get(f);

close(e,f);

}

put(e,x) {

send(cell ,e,x);

}

get(f) {

local y;

y = receive(cell ,f);

dispose(y);

}

C

start

!cell
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Contract of the Example

message cell

contract C {

initial state start

{ !cell -> end; }

final state end {}

}

put_get () {

local e,f,x;

(e,f) = open(C);

x = new ();

put(e,x) || get(f);

close(e,f);

}

put(e,x) {

send(cell ,e,x);

}

get(f) {

local y;

y = receive(cell ,f);

dispose(y);

}

C

start end
!cell
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Leak-Free Contracts

Leak-Free Contract

A contract is leak-free if for all communications, whenever two
endpoints of a channel following the contract are in the same �nal
state, then the message queues are empty.

▶ Determining whether a given contract is leak-free or not is
undecidable.

▶ We rely on simple su�cient conditions for a contract to be
leak-free.
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Properties of Contracts

De�nition 1 (Determinism)

Two distinct edges in a contract must be labeled by di�erent
messages.

a
b

c

!m

!m

a
b

c

!m

!m′
a

b

c

!m

?m

De�nition 2 (Uniform choice)

De�nition 3 (Synchronizing state)
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De�nition 1 (Determinism)

De�nition 2 (Uniform choice)

All outgoing edges from a same state in a contract must be either
all sends or all receives.
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Properties of Contracts

De�nition 1 (Determinism)

De�nition 2 (Uniform choice)

De�nition 3 (Synchronizing state)

A state s is synchronizing if every cycle that goes through it
contains at least one send and one receive.

a b

!m1

!m2

a b

!m1

?m2
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Properties of Contracts

De�nition 1 (Determinism)

De�nition 2 (Uniform choice)

De�nition 3 (Synchronizing state)

Lemma 4 (Half-Duplex)

1 & 2⇒ communications are

half-duplex.

Lemma 5 (Leak-free)

�nal states are synchronizing and

communications are half-duplex

⇒ contract is leak-free
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Separation Logic

Separation Logic [Reynolds 02, O'Hearn 01, . . . ]

▶ An assertion language to describe states

▶ An extension of Hoare Logic
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Assertion Language

Syntax

E ::= x ∣ n ∈ ℕ expressions
A ::= E1 = E2 ∣ E1 ∕= E2 stack predicates

∣ emph ∣ E1 7→ E2 ∣ list(E ) heap predicates
∣ ∃x .A ∣ A1 ∧ A2 ∣ ¬A ∣ A1 ∗ A2 formulas

Semantics

(s, h) ⊨ E1 = E2 i� JE1Ks = JE2Ks
(s, h) ⊨ emph i� dom(h) = ∅
(s, h) ⊨ E1 7→ E2 i� dom(h) = {JE1Ks} & h(JE1Ks) = JE2Ks

list(E ) ≜ (E = 0 ∧ emph) ∨ (∃x .E 7→ x ∗ list(x))
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Assertion Language

Syntax

E ::= x ∣ n ∈ ℕ expressions
A ::= E1 = E2 ∣ E1 ∕= E2 stack predicates

∣ emph ∣ E1 7→ E2 ∣ list(E ) heap predicates
∣ ∃x .A ∣ A1 ∧ A2 ∣ ¬A ∣ A1 ∗ A2 formulas

Semantics

(s, h) ⊨ A1 ∧ A2 i� (s, h) ⊨ A1 & (s, h) ⊨ A2

(s, h) ⊨ ¬A i� (s, h) ⊭ A

(s, h) ⊨ A1 ∗ A2 i� ∃h1, h2. dom(h1) ∩ dom(h2) = ∅
& h = h1 ∪ h2
& (s, h1) ⊨ A1 & (s, h2) ⊨ A2
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Assertion Language (extension)

Syntax (continued)

A ::= . . .
∣ empep ∣ E

peer7→(C{a},E ′) endpoint predicates

Intuitively E
peer7→(C{a},E ′) means :

▶ E is an allocated endpoint

▶ its peer is E ′

▶ it is ruled by contract C

▶ it currently is in contract state a
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Message Annotation

▶ We have to know the contents of messages

▶ Each message m appearing in a contract is described by a
formula Im of our logic.

▶ Im may refer to two special variables:
∙ val will denote the location of the message in memory
∙ src will denote the location of the sending endpoint

▶ Im(x , f ) ≜ Im[val←x , src←f ]
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Proof System of Standard Separation Logic

Standard Hoare Logic

{A} p {A′} {A′} p′ {B}
{A} p; p′ {B} . . .

Local Reasoning Rules

{A} p {B}
{A ∗ F} p {B ∗ F}

{A} p {B} {A′} p′ {B ′}
{A ∗ A′} p∣∣p′ {B ∗ B ′}

Small Axioms

{A} x = E {A[x←x ′] ∧ x = E [x←x ′]}

{emp} x = new() {∃v . x 7→ v} . . .
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Proof System (extended)

Standard Hoare Logic

Unchanged.

Local Reasoning Rules

Unchanged.

Small Axioms

Small axioms added for new commands.
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Small Axioms for Communications

Open and Close rules:

i = init(C )

{emp} (e, f) = open(C) {e peer7→(C{i}, f ) ∗ f peer7→(C̄{i}, e)}

a ∈ �nals(C )

{e peer7→(C{a}, f ) ∗ f peer7→(C̄{a}, e)} close (e, f) {emp}

18 / 22



Small Axioms for Communications

Receive rule:

a
?m−→ b ∈ C

{e peer7→(C{a}, f )} x = receive(m, e) {e peer7→(C{b}, f ) ∗ Im(x , f )}
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Small Axioms for Communications

Send rules:

a
!m−→ b ∈ C

{e peer7→(C{a},−) ∗ Im(E , e)} send(m,e,E) {E peer7→(C{b},−)}

a
!m−→ b ∈ C

{e peer7→(C{a},−) ∗ (e
peer7→(C{b},−) −−∗ Im(E , e))} send(m,e,E) {emp}
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Soundness

Theorem 6 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak

free, then if the program p starts in a state satisfying A,

1. contracts are respected

2. p does not fault on memory accesses

3. p does not leak memory

thanks to contracts!

4. if p terminates, the �nal states satisfy B

5. there is no race

6. no communication error occur

thanks to contracts!
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heaps that hop!

[TACAS'10] Tracking Heaps that Hop with Heap-Hop

http://www.lsv.ens-cachan.fr/~villard/heaphop/

http://www.lsv.ens-cachan.fr/~villard/heaphop/
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Conclusion

In this Talk

▶ Formalization of heap-manipulating, message passing programs
with contracts

▶ Contracts help us to ensure the absence of memory leaks

▶ Proof system

▶ Tool to prove speci�cations: Heap-Hop

▶ Not in this talk: Semantics, based on abstract separation logic

In a Future Talk

▶ Contracts help us to ensure the absence of deadlocks

▶ Enrich contracts with counters, non determinism, . . .

▶ Tackle �real� case studies: MPI, cache coherence protocols, . . .
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