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Abstract. We introduce new classes of weighted automata on words. Equipped with pebbles and
a two-way mechanism, they go beyond the class of recognizable formal power series, but capture a
weighted version of first-order logic with bounded transitive closure. In contrast to previous work,
this logic allows for unrestricted use of universal quantification. Our main result states that pebble
weighted automata, nested weighted automata, and first-order logic with bounded transitive closure
are expressively equivalent. We also give new logical characterizations of the recognizable series.

1 Introduction

Connections between logical and state-based formalisms have always been a fascinating research area
in theoretical computer science, which produced some fundamental theorems. The line of classical
results started with the equivalence of MSO logic and finite automata [Büc60,Elg61,Tra61] and
gave rise to natural generalizations to trees in terms of logics for tree automata [Rab69,C+08],
tree-walking automata, and pebble tree automata [BSSS06,SS07,Boj08]. Such automata models
recently attracted significant interest, for instance in the context of manipulating XML documents
and evaluating XPath queries [tCS10].

Other extensions of finite automata are of quantitative nature and include timed automata,
probabilistic systems, and transducers, which all come with more or less natural, specialized logical
characterizations. A generic concept of adding weights to qualitative systems is provided by the
theory of weighted automata [KVD09], first introduced by Schützenberger [Sch61]. The output of
a weighted automaton running on a word is no longer a Boolean value discriminating between
accepted and rejected behaviors. A word is rather mapped to a weight from a semiring, summing
over all possible run weights, each calculated as the product of its transition outcomes. Indeed,
probabilistic automata and word transducers appear as instances of that framework, which found
its way into numerous application areas such as natural language processing and speech recognition
or digital image compression (see [KVD09, Part IV]).

A logical characterization of weighted automata, however, was established only recently [DG07],
in terms of a (restricted) weighted MSO logic capturing the recognizable formal power series (i.e.,
the behaviors of finite weighted automata). The key idea is to interpret existential and universal
quantifications as the operations sum and product from a semiring. To make this definition work,
however, one has to restrict the universal first-order quantification, which, otherwise, appears to
be too powerful and goes beyond the class of recognizable series. In the present paper, we follow
a different approach. Instead of restricting the logic, we define an extended automata model that
naturally reflects it. Indeed, it turns out that universal quantification is essentially captured by
a pebble (two-way) mechanism in the automata-theoretic counterpart. Inspired by the theory of
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two-way and pebble automata on words and trees [EH99,BSSS06,SS07,Boj08], we actually define
weighted generalizations that preserve their natural connections with logic.

More precisely, we introduce pebble weighted automata on words and establish expressive equiv-
alence to weighted first-order logic with bounded transitive closure and unrestricted use of quan-
tification, extending the classical Boolean case for words [EH07]. Our equivalence proof makes a
detour via another natural concept, named nested weighted automata, which resembles the nested
tree-walking automata by ten Cate and Segoufin [tCS10]. The transitive closure logic also yields
alternative characterizations of the (classical) recognizable formal power series.

These results are not only of theoretical interest. They also lay the basis for quantitative exten-
sions of database query languages such as XPath, and may provide tracks to evaluate quantitative
aspects of XML documents. The framework of weighted automata is natural for answering questions
such as “How many nodes are selected by a request?”, or “How difficult is it to answer a query?”. The
navigational mechanism of pebble automata is also well-suited in this context. For these reasons,
our work is a first step before tackling similar questions on trees.

Outline. In Section 2, we recall the classical concept of recognizable formal power series and intro-
duce weighted MSO logics. The new bounded transitive closure operator is defined in Section 3. The
class of recognizable series is revisited in the light of transitive closure, which yields to new logical
characterizations. In Section 4, we go beyond recognizable series and introduce nested weighted
automata giving a translation into FO+BTC<, first-order logic with bounded transitive closure.
Pebble weighted automata are defined in Section 5 where we also state their expressive equivalence
to nested weighted automata and FO+BTC< logic.

2 Notation and background

In this section we set up the notation and we recall some basic results on weighted automata and
weighted logics. We refer the reader to [DG07,KVD09] for details.

Throughout the paper, � denotes a finite alphabet and �∗ (resp. �+) is the free monoid (resp.
semigroup) over �, i.e., the set of words (resp., nonempty words). The length of u ∈ �∗ is denoted
∣u∣. If ∣u∣ = n ≥ 1, we usually write u = u1 ⋅ ⋅ ⋅un with ui ∈ � and we let Pos(u) = {1, . . . , n}. For
1 ≤ i ≤ j ≤ n, we denote by u[i..j] the factor uiui+1 ⋅ ⋅ ⋅uj of u. Finally, we let �≤k =

∪
1≤i≤k�

i.

Formal power series. A semiring is a structure K = (K,⊕,⊙,0,1) where (K,⊕,0) is a commu-
tative monoid, (K,⊙,1) is a monoid, ⊙ distributes over ⊕, and 0 is an absorbing element for ⊙.
We say that K is commutative if so is (K,⊙,1). We shall refer in the examples to the usual Boolean
semiring B = ({0,1},∨,∧,0,1) and to the semiring (ℕ,+, ⋅ , 0, 1) of natural numbers, denoted ℕ.
A formal power series (or series, for short) is a mapping f : �+ → K. The set of formal power
series is denoted K⟨⟨�+⟩⟩. We denote again by ⊕ and ⊙ the pointwise addition and multiplication
(called the Hadamard product) on K⟨⟨�+⟩⟩, and by 0 and 1 the constant series with values 0 and
1, respectively. Then (K⟨⟨�+⟩⟩,⊕,⊙,0,1) is itself a semiring.

Weighted automata. All automata we consider are finite. A weighted automaton (wA) over
K = (K,⊕,⊙,0,1) and � is a tuple A = (Q,�, �, 
), where Q is the set of states, � : � → KQ×Q

is the transition weight function and �, 
 : Q → K are weight functions for entering and leaving a
state. The function � gives, for each a ∈ � and p, q ∈ Q, the weight �(a)p,q of the transition p

a
−→ q.

It extends uniquely to a homomorphism � from �+ to KQ×Q with matrix multiplication. Viewing
� as a mapping � : Q × � × Q → K, we sometimes write �(p, a, q) instead of �(a)p,q. A run on a
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word u = u1 ⋅ ⋅ ⋅un is a sequence of transitions � = p0
u1−→ p1

u2−→ ⋅ ⋅ ⋅
un−→ pn. The weight of the run

� is

weight(�)
def

= �(p0)⊙ [
n⊙

i=1

�(pi−1, ui, pi)]⊙ 
(pn)

and the weight JAK(u) of u is the sum of all weights of runs on u, which can be computed as JAK(u) =
�⊙ �(u)⊙ 
, viewing �, �, 
 as matrices of dimension 1× ∣Q∣, ∣Q∣ × ∣Q∣, and ∣Q∣ × 1, respectively.

We call JAK ∈ K⟨⟨�+⟩⟩ the behavior, or semantics of A. A formal power series f ∈ K⟨⟨�+⟩⟩
is called recognizable if it is the behavior of some weighted automaton. We let K

rec⟨⟨�+⟩⟩ be the
collection of all the recognizable formal power series.

Example 1. Consider (ℕ,+, ⋅ , 0, 1) and let A be the automaton with a single state, �(a) = 2 for all
a ∈ �, and � = 
 = 1. Then, JAK(u) = 2∣u∣ for all u ∈ �+.

It is well-known that K
rec⟨⟨�+⟩⟩ is stable under ⊕ and, if K is commutative, also under ⊙, making

(Krec⟨⟨�+⟩⟩,⊕,⊙,0,1) a subsemiring of (K⟨⟨�+⟩⟩,⊕,⊙,0,1).

Weighted logics. We fix infinite supplies Var = {x, y, z, t, x1, x2, . . .} of first-order variables, and
VAR = {X,Y,X1, X2, . . .} of second-order variables. The set of weighted monadic second-order
formulas over K and �, denoted MSO(K, �) (or, simply, MSO), is given by the grammar

' ::= k ∣ Pa(x) ∣ x ≤ y ∣ x ∈ X ∣ ¬' ∣ ' ∨ ' ∣ ' ∧ ' ∣ ∃x' ∣ ∀x' ∣ ∃X' ∣ ∀X'

where k ∈ K, a ∈ �, x, y ∈ Var and X ∈ VAR.
For ' ∈ MSO(K, �), let Free(') denote the set of free variables of '. If Free(') = ∅, then

' is called a sentence. For a finite set V ⊆ Var ∪ VAR and a word u ∈ �+, a (V , u)-assignment
is a function � that maps a first-order variable in V to an element of Pos(u) and a second-order
variable in V to a subset of Pos(u). For x ∈ Var and i ∈ Pos(u), �[x 7→ i] denotes the (V ∪ {x}, u)-
assignment that maps x to i and, otherwise, coincides with �. For X ∈ VAR and I ⊆ Pos(u), the
(V ∪ {X}, u)-assignment �[X 7→ I] is defined similarly.

A pair (u, �), where � is a (V , u)-assignment, can be encoded as a word over the extended
alphabet �V

def

= �×{0, 1}V . We write a word (u1, �1) ⋅ ⋅ ⋅ (un, �n) ∈ �
+
V as (u, �) where u = u1 ⋅ ⋅ ⋅un

and � = �1 ⋅ ⋅ ⋅�n. We call (u, �) valid if, for each first-order variable x ∈ V , the x-row of � contains
exactly one 1. If (u, �) is valid, then � can be considered as the (V , u)-assignment that maps a first-
order variable x ∈ V to the unique position carrying 1 in the x-row, and a second-order variable
X ∈ V to the set of positions carrying 1 in the X-row.

Fix a finite set V of variables such that Free(') ⊆ V . The semantics J'KV ∈ K⟨⟨�+
V ⟩⟩ of ' wrt. V

is given as follows: if (u, �) is not valid, we set J'KV(u, �) = 0, otherwise J'KV is given in Figure 1.
Hereby, the product follows the natural order on Pos(u) and some fixed order on the power set
of Pos(u).

We simply write J'K for J'KFree('). By K
MSO⟨⟨�+⟩⟩, we denote the collection of all formal power

series definable by a sentence from MSO(K, �).

Example 2. For K = B, recognizable and MSO(K, �)-definable series coincide. In contrast, for

K = (ℕ,+, ⋅ , 0, 1), the very definition yields J∀x∀y 2K(u) = 2∣u∣
2
, which is not recognizable [DG07].

Indeed, let A = (Q,�, �, 
). Then, JAK(u) = O((M ∣Q∣)∣u∣+2) for M = max{�(a)p,q, �(p), 
(q) ∣ a ∈
�, p, q ∈ Q}, since there are O(∣Q∣∣u∣+1) runs on u, each of weight O(M ∣u∣+2). Also observe that
the behavior of the automaton of Example 1 is J∀y 2K. Therefore, recognizable series are not stable
under universal first-order quantification.

3



J'1 ∨ '2KV(u, �) = J'1KV(u, �)⊕ J'2KV(u, �).

JkKV(u, �) = k, for k ∈ K. J'1 ∧ '2KV(u, �) = J'1KV(u, �)⊙ J'2KV(u, �).

JPa(x)KV(u, �) =

{
1 if u�(x) = a,

0 otherwise.
J∃x'KV(u, �) =

⊕

i∈Pos(u)

J'KV∪{x}(u, �[x 7→ i]).

Jx ∈ XKV(u, �) =

{
1 if �(x) ∈ �(X),
0 otherwise.

J∃X'KV(u, �) =
⊕

I⊆Pos(u)

J'KV∪{X}(u, �[X 7→ I]).

Jx ≤ yKV(u, �) =

{
1 if �(x) ≤ �(y),
0 otherwise.

J∀x'KV(u, �) =
⊙

i∈Pos(u)

J'KV∪{x}(u, �[x 7→ i]).

J¬'KV(u, �) =

{
1 if J'KV(u, �) = 0,

0 otherwise.
J∀X'KV(u, �) =

⊙

I⊆Pos(u)

J'KV∪{X}(u, �[X 7→ I]).

Fig. 1. Semantics of weighted MSO

We denote by bMSO(K, �) the syntactic Boolean fragment of MSO(K, �) consisting of MSO
formulas where atomic formulas k ∈ K∖{0,1}, disjunction and existential quantifiers are disallowed,
i.e., given by the grammar

' ::= 0 ∣ 1 ∣ Pa(x) ∣ x ≤ y ∣ x ∈ X ∣ ¬' ∣ ' ∧ ' ∣ ∀x' ∣ ∀X'

where a ∈ �, x, y ∈ Var and X ∈ VAR. One can check, by induction, that the semantics of any
bMSO formula over an arbitrary semiring K assumes values in {0,1} and coincides with the classical
semantics in B.

For the sake of simplicity, we use macros for Boolean disjunction '∨ 
def

= ¬(¬'∧¬ ) and Boolean
existential quantification ∃x'

def

= ¬∀x¬', and ∃X'
def

= ¬∀X¬'. The semantics of ∨ and ∃ coincide
with the classical semantics of disjunction and existential quantification in the Boolean semiring B.
Finally, we define '

+
→  

def

= ¬'∨ ('∧ ) so that, if ' is a Boolean formula (i.e., J'K(�+) ⊆ {0,1}),
J'

+
→  K(u, �) = J K(u, �) if J'K(u, �) = 1, and J'

+
→  K(u, �) = 1 if J'K(u, �) = 0.

A common fragment of MSO(K, �) is the weighted first-order logic FO(K, �), where no second-
order quantifier appears (note that second order variables may still appear free):

' ::= k ∣ Pa(x) ∣ x ≤ y ∣ x ∈ X ∣ ¬' ∣ ' ∨ ' ∣ ' ∧ ' ∣ ∃x' ∣ ∀x'.

We let bFO(K, �) be the fragment of bMSO(K, �) with no second-order quantifiers:

' ::= 0 ∣ 1 ∣ Pa(x) ∣ x ≤ y ∣ x ∈ X ∣ ¬' ∣ ' ∧ ' ∣ ∀x'.

We also let bFO+mod be the fragment of bMSO consisting of bFO augmented with modulo con-
straints x ≡ℓ m for constants 1 ≤ m ≤ ℓ (since the positions of words start with 1, it is more
convenient to compute modulo as a value between 1 and ℓ). The semantics is given by

Jx ≡ℓ mK(u, �) =

{
1 if �(x) ≡ mmod ℓ

0 otherwise
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and it is bMSO-definable by

x ≡ℓ m
def

= ∀X
([

(x ∈ X) ∧
(
∀y(y ∈ X ∧ y > ℓ)

+
→ y − ℓ ∈ X

)] +
→ m ∈ X

)
.

For ℒ ⊆ bMSO, an ℒ-step formula is a finite disjunction
⋁

i('i∧ki) with 'i ∈ ℒ and ki ∈ K. All
bMSO-step formulas are clearly recognizable. By [DG07], ∀x' is recognizable for any step formula '.
A restricted fragment RMSO(K, �) of MSO(K, �) was defined in [DG07] in order to obtain

Theorem 3 ([DG07]). A formal power series is recognizable if and only if it is definable in
RMSO(K, �).

Essentially, RMSO(K, �) restricts the use of universal second order quantification to bMSO
formulas and of universal first-order quantification to bMSO-step formulas.

3 Transitive closure logic and weighted automata

To ease notation, we write J'(x, y)K(u, i, j) instead of J'(x, y)K(u, [x 7→ i, y 7→ j]). We allow con-
stants, modulo constraints and comparisons, like e.g. x ≤ y+2. We use first and last as abbreviations
for the first and last positions of a word. All of these shortcuts can be replaced by suitable bFO-
formulas, except “x ≡ℓ m” with 1 ≤ m ≤ ℓ, which is bMSO-definable.

Transitive closure. For a formula '(x, y) with at least two free variables x and y, we let

'1(x, y)
def

= '(x, y) ∧ (x ≤ y),

'n+1(x, y)
def

= ∃z
[
(x < z < y) ∧ '(x, z) ∧ 'n(z, y)

]
, for n ≥ 1.

We now define a transitive closure operator TC<
xy' by

TC<
xy' =

⋁

n≥1

'n.

This infinite disjunction is well-defined: J'n(x, y)K(u, �) = 0 if n ≥ max(2, ∣u∣), i.e., on each pair
(u, �), only finitely many disjuncts assume a nonzero value. Intuitively, the TC<

xy operator generalizes
the forward transitive closure operator from the Boolean case: a formula '(x, y) with two free
variables defines a binary relation on positions of a word u, namely {(i, j) ∣ (i < j)∧J'(x, y)K(u, i, j)}.
The relation defined by TC<

xy' is the transitive closure of this relation, augmented with all pairs
(i, i) satisfying '.

The fragment FO+TC<(K, �) is then defined by the grammar

' ::= k ∣ Pa(x) ∣ x ≤ y ∣ ¬' ∣ ' ∨ ' ∣ ' ∧ ' ∣ ∃x' ∣ ∀x' ∣ TC<
xy'

with the restriction that one can apply negation only over bFO-formulas, i.e., without atomic
formulas k ∈ K ∖ {0,1}, nor disjunctions, nor existential quantifiers.
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Bounded transitive closure. We also introduce a bounded transitive closure operation. For each
integer N > 0, the N -TC<

xy operator is given by

N -TC<
xy' = TC<

xy

(
(y ≤ x+N) ∧ '(x, y)

)
. (1)

Equivalently, N -TC<
xy' =

⋁
n≥1 '

n,N where '1,N (x, y)
def

= '(x, y) ∧ (x ≤ y ≤ x+N) and for n ≥ 2,

'n,N (x, y) = ∃z0 ⋅ ⋅ ⋅ ∃zn
[
x = z0 ∧ y = zn ∧

⋀

1≤ℓ≤n

(zℓ−1 < zℓ ≤ zℓ−1 +N) ∧ '(zℓ−1, zℓ)
]
. (2)

All results of the paper concerning the bounded transitive closure operator also hold with alter-
nate choices for its definition: for instance, we may allow a fixed number of unbounded steps in (2),
or we may replace '1,N by ' in the second definition of N -TC<

xy. The fragment FO+BTC<(K, �)
is then defined by the grammar

' ::= k ∣ Pa(x) ∣ x ≤ y ∣ ¬' ∣ ' ∨ ' ∣ ' ∧ ' ∣ ∃x' ∣ ∀x' ∣ N -TC<
xy' ,

with the restriction that one can apply negation only over bFO-formulas, and with N ≥ 1: to build
formulas of FO+BTC<, we are allowed to use each of the operators 1-TC<

xy, 2-TC<
xy, and so on. We

denote by K
FO+BTC<

⟨⟨�+⟩⟩ the class of all FO+BTC<(K, �)-definable series.

Example 4. Let '(x, y)
def

= (y = x + 1) ∧ ∀z 2 ∧ (x = 1
+
→ ∀z 2) on K = ℕ. Let u = u1 ⋅ ⋅ ⋅un. We

have J[N -TC<
xy']K(u, first, last) =

⊙n−1
i=1 J'K(u, i, i + 1) due to the constraint y = x + 1 in '. Now,

J'K(u, 1, 2) = 22∣u∣ and J'K(u, i, i + 1) = 2∣u∣ if i > 1, so J[N -TC<
xy']K(u, first, last) = 2∣u∣

2
. This

example shows in particular that the class of recognizable series is not closed under BTC<.

Example 5. Consider the formula  = 2-TC<
x,y(2 ∧ y = x+ 2) over � and K = ℕ. We have

J K(u, first, last) =

{
2n if ∣u∣ = 2n+ 1 with n ≥ 1

0 otherwise.

Notice that the support of J K (i.e., the language of all words mapped to nonzero values) is not
bFO-definable. Therefore, J K is not FO-definable, since otherwise, we would have J K = J'K for '
an FO-formula, and the bFO formula obtained from ' by changing all nonzero constants of ℕ to
1 and replacing ∨ and ∃ by ∨ and ∃ respectively would recognize the support of J K (this works
because ℕ is a positive semiring).

Example 6. It is well-known that modulo can be expressed in bFO+BTC<. For 1 ≤ m ≤ ℓ, the
predicate is expressed by

x ≡ℓ m
def

= ℓ-TC<
yz(z = y ∨ z = y + ℓ)(m,x)

while the binary relation can be expressed with

x ≡ℓ y
def

= (y = x) ∨ ℓ-TC<
x′y′(y

′ = x′ + ℓ)(x, y) ∨ ℓ-TC<
x′y′(y

′ = x′ + ℓ)(y, x).

We now consider syntactical restrictions of FO+TC< and FO+BTC<, inspired by normal form
formulas of [NS00] where only one “external” transitive closure is allowed.
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Definition 7. For ℒ ⊆ bMSO, BTC<
step(ℒ) consists of formulas of the form N -TC<

xy', where
'(x, y) is an ℒ-step formula with two free variables x, y. We say that f ∈ K⟨⟨�+⟩⟩ is BTC<

step(ℒ)-
definable if there exists an ℒ-step formula '(x, y) such that, for all u ∈ �+:

f(u) = JN -TC<
xy'K(u, first, last).

We define TC<
step(ℒ) and TC<

step(ℒ)-definability similarly, by replacing N -TC<
xy' with TC<

xy'.

We also define fragments of the logic RMSO(K, �) introduced in [DG07].

Definition 8. For ℒ ⊆ bMSO, let ∃∀step(ℒ) consists of all MSO-formulas of the form ∃X∀x'(x,X)
with ' an ℒ-step formula.

The following result characterizes the expressive power of weighted automata.

Theorem 9. Let K be a (possibly noncommutative) semiring and f ∈ K⟨⟨�+⟩⟩. The following
assertions are equivalent over K and �.

(1) f is recognizable.
(2) f is BTC<

step(bFO+mod)-definable.
(3) f is BTC<

step(bMSO)-definable.
(4) f is TC<

step(bFO+mod)-definable.
(5) f is TC<

step(bMSO)-definable.
(6) f is ∃∀step(bFO)-definable.
(7) f is ∃∀step(bMSO)-definable.

Proof. The implications (2)⇒ (3), (4)⇒ (5) and (6)⇒ (7) are clear since bFO+mod ⊆ bMSO, and
(7)⇒ (1) follows from Theorem 3 because ∃∀step(bMSO) ⊆ RMSO. The implications (2)⇒ (4) and
(3) ⇒ (5) are also obvious since BTC< can be defined with TC<. We prove (1) ⇒ (2), (1) ⇒ (6),
and (5)⇒ (7). For the first two implications, let us fix a weighted automaton A = (Q,�, �, 
) with
Q = {1, . . . , n}.

For d ≥ 1 and p, q ∈ Q, we use a formula  d
p,q(x, y) to compute the weight of the factor of length d

located between positions x and y, when A goes from p to q:

 d
p,q(x, y)

def

= (y = x+ d− 1) ∧
⋁

v=v1⋅⋅⋅vd

(
�(v)p,q ∧

⋀

1≤i≤d

Pvi(x+ i− 1)
)

We easily show that for every word u, and every positions i, j,

J d
p,q(x, y)K(u, i, j) =

{
�(u[i..j])p,q if j = i+ d− 1,
0 otherwise.

Let us show (1) ⇒ (2). We construct a formula '(x, y) of bFO+mod, such that JAK(u) =
J2n-TC<

xy'K(u, first, last). The idea, inspired by [Tho82], consists in making the transitive closure
pick positions zℓ = ℓn + qℓ, with 1 ≤ qℓ ≤ n, for successive values of ℓ, to encode runs of A going
through state qℓ just before reading the letter at position ℓn+ 1. To make this still work for ℓ = 0,
one can assume wlog. that �(1) = 1 and �(q) = 0 for q ∕= 1, i.e., the only initial state yielding a
nonzero value is q0 = 1. Consider slices [ℓn+1, (ℓ+1)n] of positions in the word where we evaluate
the formula (the last slice might be incomplete). Each position y is located in exactly one such
slice. We write ⟨y⟩ = ℓn+ 1 for the first position of that slice, as well as [y]

def

= y + 1− ⟨y⟩ ∈ Q for
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the corresponding “offset”. Notice that, for q ∈ Q, [y] = q can be expressed in bFO+mod simply
by y ≡n q. Hence, we will freely use [y] as well as ⟨y⟩ = y + 1 − [y] as macros in formulas. Our
TC<-formula picks positions x and y marked ∙ in Figure 2, and computes the weight of the factor of
length n between the positions ⟨x⟩ and ⟨y⟩−1, assuming states [x] and [y] just before these positions.

(ℓ− 1)n+ 1 ℓn ℓn+ 1 (ℓ+ 1)n

⟨x⟩ ⟨y⟩

∙

x

∙
y

[x] [y]

 n
[x],[y]

Fig. 2. Positions picked by the TC<-formula

The formula ' distinguishes the cases where x is far or near from the last position:

'(x, y) = (⟨x⟩+ 2n ≤ last) ∧ (⟨y⟩ = ⟨x⟩+ n) ∧  n
[x],[y](⟨x⟩, ⟨y⟩ − 1)

∨ (⟨x⟩+ 2n > last) ∧ (y = last) ∧
⋁

q∈Q

 
y−⟨x⟩+1
[x],q (⟨x⟩, y) ∧ 
(q)

This definition implies that for every word u and every positions i, j,

J'(x, y)K(u, i, j) =

⎧
⎨
⎩

�(u[⟨i⟩..⟨j⟩ − 1])[i],[j] if ⟨j⟩ = ⟨i⟩+ n ∧ ⟨i⟩+ 2n ≤ last,

�[i] ⊙ �(u[⟨i⟩..j])⊙ 
 if j = last ∧ ⟨i⟩+ 2n > last,

0 otherwise,

(3)

where �ℓ is the row vector with 1 in position ℓ and 0 elsewhere. Now, by definition of the 2n-TC<
xy

operator,

J2n-TC<
xy'(x, y)K(u, first, last) =

⊕

m≥1

J'm,2n(x, y)K(u, first, last).

We show that there is a single nonzero value in this sum which is J'm,2n(x, y)K(u, first, last) with

m = max(1, ⌊ ∣u∣−1
n
⌋).

Let 1 = i0, . . . , im = ∣u∣ be a sequence of positions chosen in an assignment of variables z0, . . . , zm
in (2), yielding a nonzero value in J'm,2n(x, y)K(u, first, last). The first case of (3) implies that
⟨iℓ⟩ = ⟨iℓ−1⟩+ n for all ℓ ∈ {1, . . . ,m− 1}, so that ⟨iℓ⟩ = ℓn+ 1 if ℓ < m.

If ∣u∣ ≤ 2n, then it follows from (3) that J'1,2n(x, y)K(u, first, last) = J'(x, y)K(u, first, last) =
� ⊙ �(u) ⊙ 
 (the second case of (3) applies). Further, J'm,2n(x, y)K(u, first, last) = 0 for m ≥ 2,
because 1 < i1 < ∣u∣ implies that J'(x, y)K(u, i0, i1) = 0 (the first case of (3) is excluded because
⟨i0⟩ + 2n > ∣u∣ and the second one because i1 ∕= ∣u∣). Therefore, J2n-TC<

xy'(x, y)K(u, first, last) =
� ⊙ �(u)⊙ 
 = JAK(u).

If ∣u∣ > 2n then J'(x, y)K(u, first, last) = 0. Then m ≥ 2 and ⟨iℓ⟩ = ℓn + 1 for ℓ < m. By (3),

J'm,2n(x, y)K(u, first, last) ∕= 0 implies ⟨im−2⟩ + 2n ≤ ∣u∣ < ⟨im−1⟩ + 2n, that is m = ⌊ ∣u∣−1
n
⌋.

We deduce that J2n-TC<
xy'(x, y)K(u, first, last) = J'm,2n(x, y)K(u, first, last) for m = ⌊ ∣u∣−1

n
⌋. The

assignment 1 = i0 < i1 < . . . < im = ∣u∣ is uniquely defined by the sequence ([i1], . . . , [im−1]) ∈
Qm−1, since iℓ = ⟨iℓ⟩ − 1 + [iℓ] = ℓn + [iℓ] for ℓ < m. The possible choices of this tuple induce
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the sum in the following evaluation of J'm,2n(x, y)K(u, first, last), where we rename the sequence
([i1], . . . , [im−1]) as a vector q = (q1, . . . , qm−1) and we omit the variable names (x, y) in the right
hand side. Recall that q0 = 1 is the unique initial state giving a nonzero value.

J'm,2n(x, y)K(u, first, last)

=
⊕

q∈Qm−1

[m−1⊙

ℓ=1

J'K
(
u, (ℓ− 1)n+ qℓ−1, ℓn+ qℓ − 1

)]
⊙ J'K(u, (m− 1)n+ qm−1, ∣u∣)

=
⊕

q∈Qm−1

([m−1⊙

ℓ=1

�
(
u[(ℓ− 1)n+ 1..ℓn]

)
qℓ−1,qℓ

]
⊙
(
�qm−1 ⊙ �(u[(m− 1)n+ 1..∣u∣])⊙ 


)
)

= �q0 ⊙ �
(
u[1..(m− 1)n]

)
⊙ �(u[(m− 1)n+ 1..∣u∣])⊙ 


= � ⊙ �(u)⊙ 
.

Let us now outline the proof of (1)⇒ (6), which relies on a similar technique. To encode runs of
A by a formula ∃X∀x'(x,X) with ' a bFO-step formula, we write an ∃∀step(bFO) formula forcing
X to represent positions x0 < t0 < x1 < t1 < . . . with xℓ = (2n + 1)ℓ + 1, where the distance
tℓ − xℓ encodes the state of A reached just before position xℓ. For instance, since we assume as
above that the only initial state yielding a nonzero value is q0 = 1, we enforce x0 = 1 and t0 = 2,
so that t0 − x0 = 1 encodes that state. In order to distinguish the xℓ’s from the tℓ’s, we enforce
1 ≤ tℓ−xℓ ≤ n (so that tℓ−xℓ ∈ Q) but we make a gap between tℓ and xℓ+1, namely xℓ+1− tℓ > n.
We use shortcuts like {z, t} ⊆ X, or X ∩ ]z, t] = ∅, where ]z, t] = {z′ ∣ z < z′ ≤ t}, which are easily

(2n+ 1)ℓ+ 1 (2n+ 1)(ℓ+ 1) + 1

xℓ (xℓ+1 − 1) xℓ+1

∙ ∙
tℓ

∙ ∙
tℓ+1p q

 2n+1
p,q

Fig. 3. Positions represented by X, marked ∙

bFO-definable. The variables x and y appearing in 'far and 'near represent two consecutive xℓ’s.
We write

' =
[
last > n ∧ {1, 2} ⊆ X ∧ ('far ∨ 'near)

]

∨
[
last ≤ n ∧X = ∅ ∧

[
x = first

+
→

⋁

p,q∈Q

�(p) ∧  last

p,q (1, last) ∧ 
(q)
]]
.

The outermost disjunction distinguishes the cases of long or short words, while the disjunction
['far ∨ 'near](x,X) discriminates between positions x ∈ X located far/near from the last position.
For the case of short words, the product resulting from the quantification ∀x has value JAK(u)
thanks to the premise x = first of the implication

+
→ (without it, we would compute JAK(u)∣u∣).

Moreover, the sum resulting from ∃X has a single nonzero value thanks to X = ∅. Therefore, the
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overall semantics is indeed JAK(u). We define 'far as

'far(x,X) = (x+ 3n+ 1 ≤ last) ∧
(
(x ∈ X ∧X ∩ ]x, x+ n] ∕= ∅)

+
→

∃y
⋁

p,q∈Q

X ∩ ]x, x+ 3n+ 1] = {x+ p, y, y + q} ∧  2n+1
p,q (x, y − 1)

)
.

Note that the only position y for which J 2n+1
p,q K(x, y − 1) ∕= 0 is x+ 2n+ 1, by definition of  2n+1

p,q .
To produce a nonzero value, we must also have x + 3n + 1 ≤ last, so that y + n ≤ last. Further,
y ∈ X ∧X ∩ ]y, y + n] ∕= ∅, so that the pattern repeats. We define 'near as

'near(x,X) = (x+ 3n+ 1 > last) ∧
(
(x ∈ X ∧X ∩ ]x, x+ n] ∕= ∅)

+
→

⋁

p,q∈Q

X ∩ ]x, last] = {x+ p} ∧  last−x+1
p,q (x, last) ∧ 
(q)

)
.

Then one can check that '(x,X) is a bFO-step formula and J∃X∀x'(x,X)K(u, first, last) = JAK(u).
As in [Tho82], we could use a more compact formula by encoding states in binary.

We finally prove (5) ⇒ (7). Let  (z, t) = [TC<
xy

(⋁
i∈I 'i(x, y) ∧ ki

)
](z, t) be a TC<

step(bMSO)-
formula: we note '(x, y) =

⋁
i∈I 'i(x, y) ∧ ki. Let u ∈ �+ be a word, j ∈ Pos(u) and J ⊆ Pos(u).

If j < max(J) then we let next(j, J) = inf{ℓ ∈ J ∣ j < ℓ}. We define the bMSO-step formula

�(x,X)
def

=
⋁

i∈I

ki ∧ ∃y(x < y ∧X ∩ ]x, y] = {y} ∧ 'i(x, y))

and we can easily check that

J�K(u, j, J) =

{
J'K(u, j, next(j, J)) if j < max(J)

0 otherwise.

The ∃∀step(bMSO)-formula equivalent to  is then

 ′(z, t) = ∃X∀x

⎛
⎝

z = t ∧X = ∅ ∧ (x = z
+
→ '(z, t))

∨
z ∕= t ∧ {z, t} ⊆ X ⊆ [z, t] ∧ ((x ∈ X ∧ x < max(X))

+
→ �(x,X))

⎞
⎠ .

Note that bMSO-step formulas are closed under positive Boolean combinations so the formula  ′

above is indeed an ∃∀step(bMSO)-formula. Let u ∈ �+ and j, ℓ ∈ Pos(u). It is easy to check that
J K′(u, j, j) = J K(u, j, j). Assume now that j < ℓ and let j = j0 < j1 < ⋅ ⋅ ⋅ < jm = ℓ for some
m > 0. For J = {j0, j1, . . . , jm}, the formula �(X) = ∀x((x ∈ X ∧ x < max(X))

+
→ �(x,X))

computes J�K(u, J) =
⊙

n<mJ'K(u, jn, jn+1). Therefore,

J K′(u, j, ℓ) =
⊕

m>0

⊕

j=j0<j1<⋅⋅⋅<jm=ℓ

⊙

n<m

J'K(u, jn, jn+1) =
⊕

m>0

J'mK(u, j, ℓ) = J (z, t)K(u, j, ℓ)

where the last equality comes from the definition of the transitive closure operator. ⊓⊔
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4 Weighted nested automata

Example 2 shows that weighted automata lack closure properties to capture FO+BTC<. We intro-
duce a notion of nested automata making up for this gap.

For r ≥ 0, the class r-nwA(�) (r-nwA if � is understood) of r-nested weighted automata over
� (and K) consists of all tuples (Q,�, �, 
) where Q is the set of states, �, 
 : Q → K, and
� : Q × � × Q → (r − 1)-nwA(� × {0, 1}). Here, we agree that (−1)-nwA = K. In particular, a
0-nwA(�) is a weighted automaton over �. Intuitively, the weight of a transition is computed by an
automaton of the preceding level running on the whole word, where the additional {0, 1} component
marks the letter of the transition whose weight is to be computed.

Let us formally define the behavior JAK ∈ K⟨⟨�+⟩⟩ of A = (Q,�, �, 
) ∈ r-nwA(�). If r = 0,

then JAK is the behavior of A considered as wA over �. For r ≥ 1, the weight of a run � = q0
u1−→

q1
u2−→ ⋅ ⋅ ⋅

un−→ qn of A on u = u1 ⋅ ⋅ ⋅un ∈ �
+ is

weight(�)
def

= �(q0)⊙
[ n⊙

i=1

J�(qi−1, ui, qi)K(u, i)
]
⊙ 
(qn)

where (u, i) ∈ (� × {0, 1})+ is the word v = v1 ⋅ ⋅ ⋅ vn with vi = (ui, 1) and vj = (uj , 0) if j ∕= i. As
usual, JAK(u) is the sum of the weights of all runs of A on u. Note that, unlike the nested automata
of [tCS10], the values given by lower automata do not explicitly influence the applicable transitions.

Set nwA =
∪

r≥0 r-nwA. A series f ∈ K⟨⟨�+⟩⟩ is r-nwA-recognizable if f = JAK for some

r-nwA A. It is nwA-recognizable if it is r-nwA-recognizable for some r. We let K
r-nwA⟨⟨�+⟩⟩ (resp.,

K
nwA⟨⟨�+⟩⟩) be the class of r-nwA-recognizable (resp., nwA-recognizable) series over K and �.

Example 10. A 1-nwA recognizing the series u 7→ 2∣u∣
2

over ℕ is A = ({p}, �, 1, 1) where, for every
a ∈ �, �(p, a, p) is the weighted automaton of Example 1.

Proposition 11. Every nwA-recognizable series is FO+BTC<-definable.

Proof. Starting from an r-nwA, we build an FO+BTC<-formula by induction on r. The case r = 0
was already done in Theorem 9 since modulo is definable in FO+BTC<. The induction step is shown
like in the proof of the implication (1)⇒ (2) of Theorem 9. The main difference is in the definition
of the formulas  ℓ

p,q, which use now the induction hypothesis. So let �p,a,q be the FO+BTC<-formula
describing the series denoted by the automaton �(p, a, q) over the alphabet � × {0, 1}. Since the
automaton �(p, a, q) is only called on words of the form (u, i) with i ∈ Pos(u), we may assume that
�p,a,q has one free first-oder variable z for the position marked by i in u. We can then define

 ℓ
p0,pℓ

(x, y)
def

= (y = x+ ℓ− 1) ∧
⋁

p1,...,pℓ−1∈Q

⋀

0≤i<ℓ

⋁

a∈�

Pa(x+ i) ∧ �pi,a,pi+1(x+ i) .

We have to guess non-deterministically the states p1, . . . , pℓ−1 that the nested automaton will visit
between the positions x and y, because each of them is useful to compute the runs of lower automata.
We obtain for u ∈ �+ and 1 ≤ j ≤ j + ℓ− 1 ≤ ∣u∣

J ℓ
p0,pℓ

K(u, j, j + ℓ− 1) =
⊕

p1,...,pℓ−1∈Q

⊙

0≤i<ℓ

J�pi,uj+i,pi+1K(u, j + i) .
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1

JA2K(a1) ⋅ ⋅ ⋅ JA2K(an)

1

a1/A1 an/A1

�/A2 �/A2

1 1

�/1

�/A

�/1

1 1

�/A

Fig. 4. nwA for conjunction, existential and universal quantifications

Then, we use exactly the same formula as in Theorem 9:

'(x, y) = (⟨x⟩+ 2n ≤ last) ∧ (⟨y⟩ = ⟨x⟩+ n) ∧  n
[x],[y](⟨x⟩, ⟨y⟩ − 1)

∨ (⟨x⟩+ 2n > last) ∧ (y = last) ∧
⋁

q∈Q

 
y−⟨x⟩+1
[x],q (⟨x⟩, y) ∧ 
(q)

The macros ⟨x⟩ and [x] are now expressed in FO+BTC< using the definition of modulo given in
Example 6.

We remark that this construction yields an FO+BTC<-formula using only r+ 2 nested BTC<-
operators: r+1 nested BTC<-operators coming from the induction of the proof of Theorem 9, and
the last one coming from the definition of the modulo operation. ⊓⊔

We will see in Section 5 that the opposite direction of Proposition 11 holds, too. We just prove
for now some closure properties. The proof will be completed in Section 5. We say that a class C
of MSO-definable series is closed under disjunction conjunction, first-order quantifications if, when
J'K, J K ∈ C, we have J' ∨  K, J' ∧  K, J∃x'K, J∀x'K ∈ C, respectively.

Proposition 12. The class K
nwA⟨⟨�+⟩⟩ over a (possibly noncommutative) semiring K is stable

under disjunction, conjunction, and first-order quantifications.

Proof. Notice that an r-nwA-recognizable series is also (r + 1)-nwA-recognizable. This is trivial for
r = −1, and an easy induction shows it for all r ≥ 0. Therefore, given two nwA, one can assume
that they are r-nwA for the same r. Closure under ∧ is then obtained as follows. Let A1,A2 be
two r-nwA over �. We still write A1 and A2 for the corresponding automata on � × {0, 1} that
ignore the extra component. An automaton for the conjunction of A1 and A2 is depicted on the
left of Figure 4. Formally, it is given by ({qa ∣ a ∈ �} ⊎ {q0, q1}, �, �, 
) where �(q) = 1 if q = q0
and �(q) = 0 otherwise, and for a, b ∈ �, �(q0, a, qa) = A1, �(qa, b, q1) = A2, �(q1, b, q1) = 1,
and �(p, a, q) = 0 elsewhere, and finally 
(q0) = 0, 
(qa) = JA2K(a) and 
(q1) = 1. The idea is
that JA1K(u) is computed when reading the first letter, and JA2K(u) is computed when reading the
second letter if ∣u∣ ≥ 2, or thanks to 
 if ∣u∣ = 1.

Closure under ∨ is obtained using the disjoint union of the automata A1 and A2.
For first-order quantifiers, we use the extra nesting. For an r-nwA A over � × {0, 1}, the

(r + 1)-nwA for existential and universal first-order quantifications are depicted in Figure 4 (middle
and right). ⊓⊔

Remark 13. If f = JAK where A = (Q,�, �, 
) is an r-nwA, then, for all k ∈ K, the series k⊙ f and
f ⊙k are respectively recognized by the r-nwA k⊙A = (Q,�, k⊙�, 
) and A⊙k = (Q,�, �, 
⊙k).
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5 Pebble weighted automata

We now consider pebble weighted automata (pwA). A pwA has a read-only tape. At each step, it can
move its head one position to the left or to the right (within the boundaries of the input tape), or
either drop or lift a pebble at the current head position. Applicable transitions and weights depend
on the current letter, current state, and the pebbles carried by the current position. Pebbles are
handled using a stack policy: if the automaton has r pebbles and pebbles r, r−1, . . . , i have already
been dropped, it can either lift pebble i (if i ≤ r), drop pebble i − 1 (if i ≥ 2), or move. A pebble
can only be dropped or lifted at the current head position.

As these automata can go in either direction, we add two fresh symbols ⊳ and ⊲ to mark
the beginning and the end of an input word. Let �̃ = � ⊎ {⊳,⊲}. To compute the value of
w = a1 ⋅ ⋅ ⋅ an ∈ �

+, a pwA will work on a tape holding w̃ = ⊳w⊲. For convenience, we number the
letters of w̃ from 0, setting w̃0 = ⊳, w̃n+1 = ⊲, and w̃i = ai for 1 ≤ i ≤ n.

Definition 14. Let r ≥ 0. An r-pebble weighted automaton (r-pwA) over K and � is a pair
A = (Q,�) where Q is a finite set of states and � : Q × �̃ × 2r × D × Q → K is the transition
weight function, with D = {←,→, drop, lift}.

A configuration of A on a word w ∈ �+ of length n is a triple (p, i, u) ∈ Q × {0, . . . , n + 2} ×
{1, . . . , n}≤r. The word w itself will be understood. Informally, p denotes the current state of A and
i is the head position in w̃, i.e, positions 0 and n+1 point to ⊳ and ⊲, respectively, position 1 ≤ i ≤ n
points to w̃i ∈ �, and position n+ 2 is outside w̃. Finally, u = uj ⋅ ⋅ ⋅ur with 1 ≤ j ≤ r+ 1 encodes
the locations of pebbles j, . . . , r (uℓ ∈ {1, . . . , n} is the position of pebble ℓ) while pebbles 1, . . . , j−1
are currently not on the tape. For m ∈ {0, . . . , n + 1}, we set u−1(m) = {ℓ ∈ {j, . . . , r} ∣ uℓ = m}
(viewing u as a partial function u : {1, . . . , r}⇀ {0, . . . , n+1}). Note that u−1(0) = u−1(n+1) = ∅.

There is a step of weight k from configuration (p, i, u) to configuration (q, j, v) if i ≤ n + 1,
k = �(p, w̃i, u

−1(i), d, q), and

⎧
⎨
⎩

j = i− 1 if d =←

j = i+ 1 if d =→

j = i otherwise

and

⎧
⎨
⎩

v = iu if d = drop

u = iv if d = lift

v = u otherwise.

A run of A on w is a sequence of steps from a configuration (p, 0, ") to a configuration (q, n+ 2, ")
(at the end, no pebble is left on the tape). We denote by weight(�) the product of the weights of
the steps in the run. Run � is simple if whenever two configurations � and � appear in �, we have
� ∕= �.

The series JAK ∈ K⟨⟨�+⟩⟩ is defined by JAK(w) =
⊕

� simple run on w weight(�). We denote by

K
r-pwA⟨⟨�+⟩⟩ the collection of formal power series defined by r-pwA, and we let K

pwA⟨⟨�+⟩⟩ =∪
r≥0K

r-pwA⟨⟨�+⟩⟩. Note that a 0-pwA is in fact a 2-way weighted automaton. It follows from
Proposition 17 that 2-way wA have the same expressive power as classical (1-way) wA.

Example 15. Let us sketch a 1-pwA A recognizing the series u 7→ 2∣u∣
2

over ℕ. The idea is that A
drops its pebble successively on every position of the input word. Transitions for reallocating the
pebble have weight 1. When a pebble is dropped, A scans the whole word from left to right where
every transition has weight 2. As this scan happens ∣u∣ times, we obtain JAK(u) = 2∣u∣

2
.

The following theorem summarizes the main results of Sections 4 and 5.
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Theorem 16. For every commutative semiring K, we have

K
FO+BTC<

⟨⟨�+⟩⟩ = K
pwA⟨⟨�+⟩⟩ = K

nwA⟨⟨�+⟩⟩ .

Propositions 17 and 18 will reveal that K
FO+BTC<

⟨⟨�+⟩⟩ ⊆ K
pwA⟨⟨�+⟩⟩ ⊆ K

nwA⟨⟨�+⟩⟩. The
theorem follows, using Proposition 11 for the remaining inclusion. While the first inclusion is easy,
the following result is more difficult.

Proposition 17. For every commutative semiring K and every r ≥ 0, we have

K
r-pwA⟨⟨�+⟩⟩ ⊆ K

r-nwA⟨⟨�+⟩⟩ .

Proof. We provide a translation of a generalized version of r-pwA to r-nwA. That generalized notion
equips an r-pwA A = (P, �) with an equivalence relation ∼ ⊆ P ×P , which is canonically extended
to configurations of A: we write (p, i, u) ∼ (p′, i′, u′) if p ∼ p′, i = i′, and u = u′. The semantics of
JAK∼ is then defined by replacing equality of configurations with ∼-equivalence of configurations in
the definition of a simple run. To stress this fact, we henceforth say that a run is ∼-simple. We will
explain below why it is useful to consider such an equivalence relation in the inductive process.

So let r ≥ 0, let A = (P, �) be an r-pwA over K and �, and let ∼ ⊆ P × P be an equivalence
relation. For technical reasons, we assume wlog. that all runs of A in which a pebble is dropped
and immediately lifted have weight 0. We will build an r-nwA ⟨A⟩∼ = (Q, �, �, 
) over � such that
J⟨A⟩∼K = JAK∼.

The construction of ⟨A⟩∼ proceeds inductively, on the number of pebbles r. It involves two
alternating transformations, which are illustrated in Figure 5. The left-hand side depicts a ∼-simple
run of A on some word w with factor ab. To simulate such a run, ⟨A⟩∼ scans w from left to right
and guesses, at each position z, the sequence of those states and directions that are encountered
at z while pebble r has not been dropped. The state of ⟨A⟩∼ taken before reading the a at position
z is the sequence q = p0→ p3← p4 drop p5 p̂5 lift p6← p7 drop p8 p̂8 lift p9→ (which is enriched by
the guessed input letter a, as explained below). As the micro-states p0, p3, . . . form a segment of a
∼-simple run, p0, p3, p4, p6, p7, p9 are pairwise distinct (wrt. ∼) and so are p5, p̂5, p8, p̂8. Recall that
q actually restricts to run segments in which pebble r has not, or just, been dropped (shown in solid
lines in Fig 5(a)). Missing segments are deferred to an (r − 1)-nwA ℬq, which is called at position
z and computes the run segments from p5 to p̂5 and from p8 to p̂8 that both start in z (shown in
dashed lines in Fig. 5(a)). To this aim, ℬq works on an extension of w where position z is marked,
indicating that pebble r is considered to be at z.

Before we go into the construction of ℬq, let us formalize the r-nwA ⟨A⟩∼. We set � =
(P{→,←} ∪ P{drop}PP{lift})∗P{→}. Sequences from � may keep track of states and direc-
tions that are taken at one given position. As aforementioned, they must meet the requirements
of ∼-simple runs so that only some of them can be considered as states. To determine the set
Q ⊆ (�̃ ⊎ {□})×� of states of ⟨A⟩∼, we therefore define, given � ∈ �, projections proj1(�) ∈ P

+

and proj2(�) ∈ (PP )∗ inductively as follows:

proj1(p→�) = proj1(p←�) = p proj1(�) proj2(p→�) = proj2(p←�) = proj2(�)

proj1(p drop p1 p̂1 lift�) = p proj1(�) proj2(p drop p1 p̂1 lift�) = p1 p̂1 proj2(�)

proj1(") = " proj2(") = ".

With this, we set Q to be the set of pairs (a, �) ∈ (�̃ ⊎ {□}) × � such that proj1(�) consists
of pairwise distinct states wrt. ∼ and so does proj2(�) (there might be states that occur in both
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⊳ . . . a b . . . ⊲ □

p0
→ p1

p2
←p3

p4
drop

p5

p̂5
lift

p6

p7
drop

p8

p̂8
lift

p9
→p10

p11
→

q q′

(a)

⊳ . . . (a, 1) . . . ⊲

(p5, 1)

(p̂5, 1)

(p8, 2)

(p̂8, 2)

final

(b)

Fig. 5. (a) Runs of r-pwA A and r-nwA ⟨A⟩∼; (b) run of (r − 1)-pwA Aq

proj1(�) and proj2(�)). The letter a ∈ �̃ ⊎ {□} of a state (a, �) ∈ Q will denote the symbol that is
to be read next. Symbol □ means that there is no letter left so that the automaton is beyond the
scope of ⊳w⊲ when w is the input word (we could chose, e.g., ⊲ instead of □, but the presentation
will be clearer with a distinguished symbol). Next, we explain how the weight of the run segments
of A with lifted pebble r is computed in ⟨A⟩∼. Two neighboring states of ⟨A⟩∼ need to complement
each other, which can be checked locally by means of transitions. To determine a corresponding
weight, we first count weights of those transitions that move from the current position z to z+1 or
from z + 1 to z. This is the reason why a state of ⟨A⟩∼ also maintains the letter that is to be read
next. In Figure 5(a), the 7 micro-transitions that we count in the step from q to q′ are highlighted
in gray. Assuming q = (a, �0) and q′ = (b, �1), we obtain a value weighta,b(�0 ∣�1) as the following
product:

�(p0, a, ∅,→, p1)
⊙ �(p2, b, ∅,←, p3)
⊙ �(p4, a, ∅, drop, p5)
⊙ �(p̂5, a, {r}, lift, p6)
⊙ �(p7, a, ∅, drop, p8)
⊙ �(p̂8, a, {r}, lift, p9)
⊙ �(p9, a, ∅,→, p10)

15



The formal definition of weighta,b(�0 ∣�1) ∈ K is given in Figure 6 (there and in the following,
whenever an argument is not specified, we suppose the result to be 0).

weighta,b(�0 ∣�1) = weight0a,b(�0 ∣�1)

weight0a,b(p0→�0 ∣ p1 �1) =

(
�(p0, a, ∅,→, p1)

⊙ weight1a,b(�0 ∣ p1 �1)

)
if

{
a ∕= ⊲

or �0 = ", b = □, �1 =→

weight1a,b(�0 ∣ p1→�1) = weight1a,b(�0 ∣�1) if b ∕∈ {⊲,□} or �0 = �1 = "

weight0a,b(p0←�0 ∣�1) = weight0a,b(�0 ∣�1) if a ∕= ⊳

weight1a,b(p0 �0 ∣ p1←�1) = �(p1, b, ∅,←, p0)⊙ weight0a,b(p0 �0 ∣�1) if b ∕= □

weight0a,b(p0 drop p p̂ lift p
′
0 �0 ∣�1) =

⎛
⎝

�(p0, a, ∅, drop, p)
⊙ �(p̂, a, {r}, lift, p′0)
⊙ weight0a,b(p

′
0 �0 ∣�1)

⎞
⎠ if a ∕∈ {⊳,⊲}

weight1a,b(�0 ∣ p1 drop p p̂ lift�1) = weight1a,b(�0 ∣�1) if b ∕∈ {⊲,□}

weight1a,b(" ∣ ") = 1

Fig. 6. Transition weights for ⟨A⟩∼

We are now prepared to define the components �, �, 
 of ⟨A⟩∼. Let (a, �) ∈ Q. We set

�(a, �) =
∑

(⊳,�′)∈Qweight
⊳,a(�

′ ∣�)


(a, �) =

{∑
p∈P weight

⊲,□(� ∣ p→) if a = ⊲

0 if a ∕= ⊲

Moreover, for a ∈ � and states q0 = (a0, �0) and q1 = (a1, �1) from Q, we define

�(a)q0,q1 =

{
weighta0,a1(�0 ∣�1)⊙ ℬq0 if a = a0

0 if a ∕= a0

Here, ℬq is the constant 1 if r = 0. Otherwise, ℬq is the (r − 1)-nwA over � = � × {0, 1} that
is determined inductively as follows: We first define an (r − 1)-pwA Aq over � together with an
equivalence relation ∼q. Then, we set ℬq = ⟨Aq⟩∼q , using the above translation. Note that the
notation k ⊙ ℬq0 in the definition of �(a)q0,q1 is justified due to Remark 13.

Let us define the (r− 1)-pwA Aq = (P ′, �′) over � as well as ∼q ⊆ P
′ × P ′. Suppose q = (a, �)

and proj2(�) = p1 p̂1 ⋅ ⋅ ⋅ pn p̂n. The behavior of Aq is split into n+2 phases. In phase 0, it scans the
input word from left to right until it finds the (unique) letter of the form (a, 1) with a ∈ �. At that
position, call it z, Aq enters a state (p1, 1) (the second component indicating the current phase).
All these transitions are performed with weight 1. Then, Aq starts simulating A, considering pebble
r at position z. Back at position z in state (p̂1, 1), weight-1 transitions will allow Aq to enter the
next phase, starting in (p2, 2) and again considering pebble r at position z. The simulation of A
ends when (p̂n, n) is reached in position z. In the final phase, n+1, a sequel of weight-1 transitions
guides Aq to the end of the tape where it stops.
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The relation ∼q will consider states (p, i) and (p′, i′) equivalent iff p ∼ p′, i.e., it ignores the
phase number. This explains the purpose of the equivalence relation: in order for the automaton Aq

to simulate the dashed part of the run of A, we use phase numbers, so that, during the simulation
two different states (p, i) and (p, i′) of Aq may correspond to the same original state p of A. Now,
only simple runs are considered to compute JAK. Therefore, for the simulation to be faithful, we
want to rule out runs of Aq containing two configurations which only differ by the phase number,
that is, containing two ∼q-equivalent configurations. This is why we only keep ∼q-simple runs.

A run of Aq is illustrated in Figure 5(b) (with n = 2). Note that, if n = 0, then Aq simply scans
the word from left to right, outputting weight 1. For n ≥ 1, Aq is formally given as follows: We set
P ′ = (P ×{1, . . . , n})∪{init, final}∪ ({switch}×{1, . . . , n}). The following transitions describe the
part for simulating A. For p, p′ ∈ P , i ∈ {1, . . . , n}, � ∈ �̃ = � ∪ {⊳,⊲}, J ⊆ 2r−1, and d ∈ D, let

�′((p, i), �, J, d, (p′, i)) =

{
�(p, a, J ∪ {r}, d, p′) if � = (a, 1) (with a ∈ �)

�(p, a, J, d, p′) if � = (a, 0) or � = a ∈ {⊳,⊲})

Next, the following transitions have weight 1 (and all non-specified transitions have weight 0):

(init,⊳, ∅,→, init)
(init, (a, 0), ∅,→, init) for all a ∈ �
(init, (a, 1), ∅,→, (switch, 1)) for all a ∈ �

(switch, i), �, ∅,←, (pi, i)) for all i ∈ {1, . . . , n} and � ∈ �̃
((p̂i, i), (a, 1), ∅,→, (switch, i+ 1)) for all i ∈ {1, . . . , n− 1} and a ∈ �
((p̂n, n), (a, 1), ∅,→, final) for all a ∈ �

(final, �, ∅,→, final) for all � ∈ �̃

Finally, we let ∼q = idR ∪ {((p, i), (p
′, i′)) ∈ (P × {1, . . . , n})2 ∣ p ∼ p′} where R = {init, final} ∪

({switch} × {1, . . . , n}).

We will now argue for correctness of the construction of ⟨A⟩∼, proceeding by induction on r. Fix
a word w = a1 ⋅ ⋅ ⋅ an ∈ �

+ of length n ≥ 1. We suppose that a ∼-simple run � of A on w consists
of n� steps and is of the form � = �0�1 ⋅ ⋅ ⋅ �n� . For i ∈ {0, . . . , n + 2}, let q�i = (ai, �

�
i ) ∈ Q denote

the state associated with position i according to the construction of ⟨A⟩∼ which is illustrated in
Figure 5(a). In particular, a0 = ⊳ and �

�
0 ∈ (P{→})+, an+1 = ⊲ and �

�
n+1 ∈ (P{←})∗P{→},

an+2 = □ and ��n+2 ∈ P{→}. For each i, the sequence ��i is computed from � by the transducer of
Figure 7. Note that there are no transitions from state 3 to state 2 since we have assumed that a
drop is never immediately followed by a lift. Finally, for 1 ≤ j ≤ n�, let k�j denote the weight of the
j-th step �j−1�j in �.

Suppose r = 0. Then, we only use states 1 and 2 from the transducer of Figure 7. We call �j−1�j
an i-step if either �j−1�j = (p, i, ")(q, i+ 1, ") or �j−1�j = (p, i+ 1, ")(q, i, "). Then, we have

weightai,ai+1
(��i ∣�

�
i+1) =

⊙

1≤j≤n�∣�j−1�j i-step

k
�
j . (4)
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1 2

3

q

if (j, u) ∕= (i, ")
(s, j, u)/"

(p, i, ")/p

(s, i+ 1, ")/→
(s, i− 1, ")/←

(q, i, i)/drop q
if (j, u) ∕= (i, i)

(s, j, u)/"

(q, i, i)/"
if (j, u) ∕= (i, ")

(s, j, u)/"

(p, i, ")/q lift p

Fig. 7. Transducer computing ��i from the input �

Using the commutativity of K, we deduce:

JAK∼(w) =
⊕

� ∼-simple

⊙

1≤j≤n�

k
�
j

=
⊕

� ∼-simple

⊙

0≤i≤n+1

weightai,ai+1
(��i ∣�

�
i+1)

=
⊕

q1,...,qn+1∈Q

�(q1)⊙ �(a1)q1,q2 ⊙ ⋅ ⋅ ⋅ ⊙ �(an)qn,qn+1 ⊙ 
(qn+1)

= J⟨A⟩∼K(w)

Now suppose that r ≥ 1 and that the transformation is correct for (r − 1)-pwA. Here, i-steps
are of the form (p, i, ")(q, i+1, ") or (p, i+1, ")(q, i, ") or (p, i, ")(q, i, i) (for a drop) or (p, i, i)(q, i, ")
(for a lift) so that Equation (4) still holds. We call �j−1�j an i-pebble-step if pebble r is placed on
position i at configurations �j−1 and �j , i.e., it is of the form (p, ℓ, ui)(p′, ℓ′, u′i). Each step in � is
either an i-pebble-step or an i-step for some 0 ≤ i ≤ n+1. Then, using the commutativity of K we
obtain:

JAK∼(w) =
⊕

� ∼-simple

⊙

1≤j≤n�

k
�
j

=
⊕

� ∼-simple

⊙

0≤i≤n+1

⊙

1≤j≤n�∣�j−1�j i-step

k
�
j ⊙

⊙

1≤j≤n�∣�j−1�j i-pebble-step

k
�
j

=
⊕

� ∼-simple

⊙

0≤i≤n+1

weightai,ai+1
(��i ∣�

�
i+1)⊙ JAq

�
i
K∼

q
�
i

(w, i) (†)

=
⊕

� ∼-simple

⊙

0≤i≤n+1

weightai,ai+1
(��i ∣�

�
i+1)⊙ Jℬq�i K(w, i)

(†)

=
⊕

q1,...,qn+1∈Q

�(q1)⊙ �(a1)q1,q2 ⊙ ⋅ ⋅ ⋅ ⊙ �(an)qn,qn+1 ⊙ 
(qn+1)

= J⟨A⟩∼K(w)

(†) with the convention that JAq
�
i
K∼

q
�
i

(w, i) = 1 = Jℬq�i K(w, i) when i = 0 or i = n+1. The induction

hypothesis is used for the equalities JAq
�
i
K∼

q
�
i

(w, i) = Jℬq�i K(w, i) for 1 ≤ i ≤ n. ⊓⊔
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Proposition 18. For every (possibly noncommutative) semiring K, we have

K
FO+BTC<

⟨⟨�+⟩⟩ ⊆ K
pwA⟨⟨�+⟩⟩ .

Proof. We proceed by induction on the structure of the formula and suppose that a valuation of
free variables is given in terms of pebbles that are already placed on the word and cannot be lifted.
Disjunction, conjunction, and first-order quantifications are easy to simulate. Indeed, we can proceed
similarly to the proof of Proposition 12. To evaluate [N -TC<

xy'](z, t) for some formula '(x, y), we
either evaluate '(x, y), with pebbles being placed on z and t such that z ≤ t ≤ z + N , or choose
non-deterministically (and with weight 1) positions z = z0 < z1 < ⋅ ⋅ ⋅ < zn−1 < zn = t with
n ≥ 2, using two additional pebbles, 2 and 1. We drop pebble 2 on position z0 and pebble 1 on
some guessed position z1 with z0 < z1 ≤ min(t, z0 + N). We then run the subroutine to evaluate
'(z0, z1). Next we move to position z1 and lift pebble 1. We move left to position z0 remembering
the distance z1 − z0. We lift pebble 2 and move right to z1 using the stored distance z1 − z0. We
drop pebble 2 on z1 and iterate this procedure until t is reached. ⊓⊔

Remark 19. In the context of formal power series, one may call a sentence ' ∈ FO+BTC<(K, �)
satisfiable if there is a word w ∈ �+ such that J'K(w) ∕= 0. Over commutative positive semirings,
satisfiability is decidable due to Theorem 16, which reduces the problem to non-emptiness of the
support of a formal power series recognized by a pwA (or nwA). The latter problem, in turn,
can be reduced to the decidable emptiness problem for classical pebble automata over the Boolean
semiring. We leave it as an open problem to determine for which semirings the satisfiability problem
is decidable.

Conclusion and perspectives

We have introduced pebble weighted automata and characterized their expressive power in terms of
first-order logic with a bounded transitive closure operator. We do not know if allowing unbounded
steps in the transitive closure leads beyond the power of pebble automata. Notice that Theorem 9
shows that allowing unbounded steps is harmless for bMSO-step formulas. It is also easy to show that
such an unbounded transitive closure operator can be captured with strong pebble automata, i.e.,
that can lift the last dropped pebble even when not scanning its position. A short-term perspective
is to investigate whether strong pebble automata bring additional power. A first idea is to adapt
the proof in the Boolean case [BSSS06] that they actually do not. As a mid-term perspective, we
would like to adapt our results to tree languages.
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