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Abstract

Mobile ad hoc networks consist of mobile wireless de-
vices which autonomously organize their infrastructure.
In such networks, a central issue, ensured by routing
protocols, is to find a route from one device to another.
Those protocols use cryptographic mechanisms in or-
der to prevent malicious nodes from compromising the
discovered route.

Our contribution is twofold. We first propose a cal-
culus for modeling and reasoning about security pro-
tocols, including in particular secured routing proto-
cols. Our calculus extends standard symbolic models to
take into account the characteristics of routing proto-
cols and to model wireless communication in a more ac-
curate way. Our second main contribution is a decision
procedure for analyzing routing protocols for any net-
work topology. By using constraint solving techniques,
we show that it is possible to automatically discover
(in NPTIME) whether there exists a network topology
that would allow malicious nodes to mount an attack
against the protocol, for a bounded number of sessions.
We also provide a decision procedure for detecting at-
tacks in case the network topology is given a priori. We
demonstrate the usage and usefulness of our approach
by analyzing the protocol SRP applied to DSR .

1 Introduction

Mobile ad hoc networks consist of mobile wireless
devices which autonomously organize their communi-
cation infrastructure: each node provides the function
of a router and relays packets on paths to other nodes.
Finding these paths is a crucial functionality of any ad
hoc network. Specific protocols, called routing proto-
cols, are designed to ensure this functionality known as
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route discovery.

Prior research in ad hoc networking has generally
studied the routing problem in a non-adversarial set-
ting, assuming a trusted environment. Thus, many of
the currently proposed routing protocols for mobile ad
hoc networks are assumed to be used in a friendly envi-
ronment (e.g. [23, 15]). Recent research has recognized
that this assumption is unrealistic and that attacks can
be mounted [13, 20, 9]. Since an adversary can easily
paralyse the operation of a whole network by attacking
the routing protocol, it is crucial to prevent malicious
nodes from compromising the discovered routes. Since
then, secure versions of routing protocols have been
developed to ensure that mobile ad hoc networks can
work even in an adversarial setting [28, 13, 21]. Those
routing protocols use cryptographic mechanisms such
as encryption, signature, MAC, in order to prevent a
malicious node to insert and delete nodes inside a path.

Formal modeling and analysis techniques are well-
adapted for checking correctness of security protocols.
Formal methods have for example been successfully
used for authentication or key establishment security
protocols and a multitude of effective frameworks have
been proposed (e.g. the Paulson inductive model [22],
the strand spaces model [26], the applied-pi calculus [1]
or constraints systems [24] to cite only a few). While
secrecy and authentication properties have been shown
undecidable in the general case [12], many decision
procedures have been proposed. For example, secrecy
and authentication become NP-complete for a bounded
number of sessions [24] and Bruno Blanchet has devel-
oped a (semi) decision procedure for security protocols
encoded as Horn clauses [7]. This yielded various effi-
cient tools for detecting flaws and proving security (e.g.
ProVerif [8] or Avispa [5]).

While key-exchange protocols are well-studied in
traditional networks, there are very few attempts to
develop formal techniques allowing an automated anal-
ysis of secure routing protocols. Up to our knowledge,



tools that would allow the security analysis of rout-
ing protocols are also missing. Those protocols indeed
involve several subtleties that cannot be reflected in
existing work. For example, the underlying network
topology is crucial to define who can receive the mes-
sages sent by a node and the intruder is localized to
some specific nodes (possibly several nodes). More-
over, the security properties include e.g. the validity
of a route, which differ from the usual secrecy and au-
thenticity properties.

Our contributions. The first main contribution of
this paper is the proposition of a calculus, inspired from
CBS# [20], which allows mobile wireless networks and
their security properties to be formally described and
analyzed. We propose in particular a logic to express
the tests performed by the nodes at each step. It al-
lows for example checking whether a route is “locally”
valid, given the information known by the node. We
model cryptography as a black box (the perfect cryp-
tography assumption), thus the attacker cannot break
cryptography, e.g. decrypt a message without having
the appropriate decryption key. To model routing pro-
tocols in an accurate way, some features need to be
taken into account. Among them:

• Network topology : nodes can only communicate
(in a direct way) with their neighbor.

• Broadcast communication: the main mode of
communication is broadcasting and only adjacent
nodes receive messages

• Internal states : nodes are not memory-less but
store some information in routing tables with im-
pact on future actions.

There are also some implications for the attacker
model. Indeed, in most existing formal approaches, the
attacker controls the entire network. This abstraction
is reasonable for reasoning about classical protocols.
However, in the context of routing protocols, this at-
tacker model is too strong and leads to a number of
false attacks. The constraints on communication also
apply to the attacker. Our model reflects the fact that
a malicious node can interfere directly only with his
neighbors.

We would like to emphasize that our model is not
strictly dedicated to routing protocols but can be used
to model many other classes of protocols. In partic-
ular, by considering a special network topology where
the attacker is at the center of the network, we retrieve
the classical modeling where the attacker controls all
the communications. We thus can model as usual all
the key exchange and authenticity protocols presented

e.g. in the Clark & Jacob library [10]. Since we also
provide each node with a memory, our model can also
capture protocols where a state global to all sessions is
assumed for each agent. It is typically the case of pro-
tocols where an agent should check that a key has not
been already accepted in a previous session, in order
to protect the protocol against replay attacks.

Our second main contribution is to provide two NP
decision procedures for analyzing routing protocols for
a bounded number of sessions. For a fixed set of roles
and sessions, our first decision procedure allows to dis-
cover whether there exists a network topology and a
malicious behavior of some nodes that yields an attack.
Using similar ingredients, we can also decide whether
there exists an attack, for a network topology chosen
by the user. Our two procedures hold for any prop-
erty that can be expressed in our logic, which includes
classical properties such as secrecy as well as proper-
ties more specific to routing protocols such as route
validity.

The main ingredients of our decision procedures are
as follows. We first propose a symbolic semantics for
our execution model and show how the analysis of
routing protocols can be reduced to (generalized) con-
straint systems solving. We then adapt and generalize
existing techniques [11] for solving our more general
constraint systems. We show in particular that min-
imal attacks (whether the underlying network topol-
ogy is fixed or not) require at most a polynomially
bounded number of nodes. We demonstrate the us-
age and usefulness of our model and techniques by
analyzing SRP (Secure Routing Protocol) [21] applied
on the protocol DSR (Dynamic Source Routing Proto-
col) [16]. This allows us to retrieve an attack presented
first in [9].

Related work. Recently, some frameworks have
been proposed to model wireless communication
and/or routing protocols in a more accurate way. For
example, Yang and Baras [27] provide a first symbolic
model for routing protocols based on strand spaces,
modeling the network topology but not the crypto-
graphic primitives that can be used for securing com-
munications. They also implement a semi-decision pro-
cedure to search for attacks. Buttyán and Vadja [9]
provide a cryptographic model for routing protocol, in
a cryptographic setting. They provide a security proof
(by hand) for a fixed protocol. Ács [3] uses a similar
cryptographic model and provides proofs of security
(or insecurity) for several protocols, but his method
can not be automated. Nanz and Hankin [20] pro-
pose a process calculus to model the network topology
and broadcast communications. They also propose a

1



decision procedure but for an intruder that is already
specified by the user. This allows to check security only
against fixed, known in advance scenarios. The model
proposed in this paper is inspired from their work,
adding in particular a logic for specifying the tests per-
formed at each step by the nodes on the current route
and to specify the security properties. Schaller et al [25]
propose a symbolic model that allows an accurate rep-
resentation of the physical properties of the network,
in particular the speed of the communication. This
allows in particular to study distance bounding pro-
tocols. Several security proofs are provided for some
fixed protocols, formalized in Isabelle/HOL. However,
no generic procedure is proposed for proving security.

To our knowledge, our paper presents the first de-
cidability and complexity result for routing protocols,
for arbitrary intruders and network topologies. More-
over, since we reuse existing techniques on solving con-
straint systems, our decision procedure seems amend-
able to implementation, re-using existing tools (such as
Avispa [5]).

A preliminary version of this work was presented at
Secret’09 [6] (with informal proceedings). In this first
version, our decision procedure only held for a network
topology fixed in advance and for a restricted fragment
of security properties. Detailed proofs of our result can
be found in Appendix.

Outline. Section 2 presents our formal model for
routing protocol. It is illustrated with the modeling
of the SRP protocol. We then give an alternative sym-
bolic semantics in Section 3, more amendable to au-
tomation, and we show its correctness and complete-
ness w.r.t. the concrete semantics. Finally, we state
our main decidability result in Section 4 and present a
detailed sketch of its proof. Some concluding remarks
can be found in Section 5.

2 Model for protocols

2.1 Messages

Cryptographic primitives are represented by func-
tion symbols. More specifically, we consider a sig-
nature (S,F) made of a set of sorts S and func-
tion symbols F together with arities of the form
ar(f) = s1 × . . . × sk → s. We consider an infinite set
of variables X and an infinite set of names N that typ-
ically represent nonces or agent names. In particular,
we consider a special sort loc for the nodes of the net-
work. We assume that names and variables are given
with sorts. We also assume an infinite subset Nloc of

names of sort loc. The set of terms of sort s is defined
inductively by:

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where ti is a term of some sort si and ar(f) = s1×. . .×
sk → s. We assume a special sort terms that subsumes
all the other sorts and such that any term is of sort
terms. We write var(t) the set of variables occurring
in a term t and St(t) the syntactic subterms of t. The
term t is said to be a ground term if var(t) = ∅.

Example 1 For example, we will consider the specific
signature (S1,F1) defined by S1 = {loc, lists, terms} and
F1 = {hmac, 〈〉, ::,⊥, { } }, with the following arities:

• hmac : terms × terms → terms,

• 〈 , 〉 : terms × terms → terms,

• :: : loc × lists → lists,

• ⊥ :→ lists,

• { } : terms × terms → terms.

The sort lists represents lists of terms of sort loc. The
symbol :: is the list constructor. ⊥ is a constant repre-
senting an empty list. The term hmac(m, k) represents
the keyed hash message authentication code computed
over message m with key k while 〈〉 is a pairing op-
erator. The term {m}k represents the message m en-
crypted by the key k. We write 〈t1, t2, t3〉 for the term
〈t1, 〈t2, t3〉〉, and [t1; t2; t3] for t1 :: (t2 :: (t3 :: ⊥)).

Substitutions are written σ = {t1/x1
, . . . , tn/xn

} with
dom(σ) = {x1, . . . , xn}. We only consider well-sorted
substitutions, that is substitutions for which xi and ti
have the same sort. The substitution σ is ground if and
only if all of the ti are ground. The application of a
substitution σ to a term t is written σ(t) or tσ. A most
general unifier of two terms t and u is a substitution
denoted by mgu(t, u). We write mgu(t, u) = ⊥ when t
and u are not unifiable.

The ability of the intruder is modeled by a deduction
relation ⊢⊆ 2terms × terms. The relation T ⊢ t repre-
sents the fact that the term t is computable from the set
of terms T . The deduction relation can be arbitrary in
our model thus is left unspecified. It is typically defined
through a deduction system. For example, for the term
algebra (S1,F1) defined in Example 1, the deduction
system presented in Figure 1 reflects the ability for the
intruder to concatenate terms, to compute MAC when
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T ⊢ a T ⊢ l

T ⊢ a :: l

T ⊢ a :: l

T ⊢ a

T ⊢ a :: l

T ⊢ l

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

T ⊢ 〈u, v〉

T ⊢ u

T ⊢ 〈u, v〉

T ⊢ v

T ⊢ u T ⊢ v

T ⊢ {u}v

T ⊢ {u}v T ⊢ v

T ⊢ u

T ⊢ u T ⊢ v

T ⊢ hmac(u, v)

u ∈ T

T ⊢ u

Figure 1. Example of deduction system.

he knows the key, to build lists, to encrypt and de-
crypt when he knows the keys. Moreover, he is able to
retrieve components of a pair or a list.

2.2 Process calculus

Several calculi already exist to model security pro-
tocols (e.g. [2, 1]). However, for our purpose, a node,
i.e. a process, has to perform some specific actions
that can not be easily modeled in such calculi. For
instance, a node stores some information, e.g. the con-
tent of its routing table. We also need to take into
account the network topology and to model broadcast
communication. Such features can not be easily mod-
eled in these calculi. Actually, our calculus is inspired
from CBS# [20], which allows mobile wireless networks
and their security properties to be formally described
and analyzed. However, we extend this calculus to al-
low nodes to perform some sanity checks on the routes
they receive, such as neighborhood properties.

The intended behavior of each node of the network
can be modeled by a process defined by the grammar
given below. Our calculus is parametrized by a set L
of formulas.

P, Q ::= Processes
0 null process
out(u).P emission
in u[Φ].P reception, Φ ∈ L
store(u).P storage
read u then P else Q reading
if Φ then P else Q conditional, Φ ∈ L
P | Q parallel composition
!P replication
new m.P fresh name generation

The process out(u).P emits u and then behaves
like P . The process in u[Φ].P expects a message m

of the form u such that Φ is true and then behaves
like Pσ where σ = mgu(m, u). If Φ is the true formula,
we simply write in u.P . The process store(u).P stores u
in its storage list and then behaves like P . The process
read u then P else Q looks for a message of the form u
in its storage list and then, if such an element m is
found, it behaves like Pσ where σ = mgu(m, u). If no
element of the form u is found, then it behaves like Q.
Sometimes, for the sake of clarity, we will omit the null
process. We also omit the else part when Q = 0.

We write fv(P ) for the set of free variables of P . A
process P is ground when fv(P ) = ∅.

The store and read primitives are particularly im-
portant when modeling routing protocols, in order to
avoid multiple answers to a single request or to al-
low nodes to store and retrieve already known routes.
These primitives can also be used to represent other
classes of protocols, where a global state is assumed for
each agent, in order to store some information (black
list, already used keys. etc.) throughout the sessions.

Secured routing protocols typically perform some
checks on the route they received before accepting a
message. Thus we will typically consider the logic Lroute

defined by the following grammar:

Φ ::= Formula
check(a, b) neighborhood of two nodes
checkl(c, l) local neighborhood of a

node in a list
route(l) validity of a route
loop(l) existence of a loop in a list
Φ1 ∧ Φ2 conjunction
Φ1 ∨ Φ2 disjunction
¬Φ negation

Given an undirected graph G = (V, E) with
V ⊆ Nloc, the semantics [[Φ]]G of a formula Φ ∈ Lroute

is recursively defined by:

• [[check(a, b)]]G = 1 iff (a, b) ∈ E,

• [[checkl(c, l)]]G = 1 iff l is of sort lists, c appears
exactly once in l, and for any l′ sub-list of l,

– if l′ = a :: c :: l1, then (a, c) ∈ E.

– if l′ = c :: b :: l1, then (b, c) ∈ E.

• [[route(l)]]G = 1 iff l is of sort lists, l = a1 :: . . . :: an,
for every 1 ≤ i < n, (ai, ai+1) ∈ E, and for every
1 ≤ i, j ≤ n, i 6= j implies that ai 6= aj .

• [[loop(l)]]G iff l is of sort lists and there exists an
element appearing at least twice in l,

• [[Φ1∧Φ2]]G = [[Φ1]]G∧[[Φ2]]G, [[¬Φ]]G = ¬[[Φ]]G, and
[[Φ1 ∨ Φ2]]G = [[Φ1]]G ∨ [[Φ2]]G.
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2.3 Example: modeling the SRP protocol

We consider the secure routing protocol
SRP introduced in [21], assuming that each node
already knows his neighbors (running e.g. some
neighbor discovery protocol). SRP is not a routing
protocol by itself, it describes a generic way for
securing source-routing protocols. We model here its
application to the DSR protocol [16]. DSR is a protocol
which is used when an agent S (the source) wants to
communicate with another agent D (the destination),
which is not his immediate neighbor. In an ad hoc
network, messages can not be sent directly to the
destination, but have to travel along a path of nodes.

To discover a route to the destination, the source
constructs a request packet and broadcasts it to its
neighbors. The request packet contains its name S,
the name of the destination D, an identifier of the re-
quest id , a list containing the beginning of a route to D,
and a hmac computed over the content of the request
with a key KSD shared by S and D. It then waits for
an answer containing a route to D with a hmac match-
ing this route, and checks that it is a plausible route
by checking that the route does not contain a loop and
that his neighbor in the route is indeed a neighbor of S
in the network.

Consider the signature given in Example 1 and let
S, D, req, rep, id , KSD be names (S, D ∈ Nloc) and xL

be a variable of sort lists. The process executed by a
node S initiating the search of a route towards a node D
is:

Pinit(S, D) = new id .out(u1).in u2[ΦS ].0

where:

u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL).

The names of the intermediate nodes are accumu-
lated in the route request packet. Intermediate nodes
relay the request over the network, except if they have
already seen it. An intermediate node also checks
that the received request is locally correct by verify-
ing whether the head of the list in the request is one
of its neighbors. Below, V ∈ Nloc, xS , xD and xa are
variables of sort loc whereas xr is a variable of sort lists

and xid , xm are variables of sort terms. The process
executed by an intermediary node V when forwarding
a request is as follows:

Preq(V ) = in w1[ΦV ].read t then 0 else (store(t).out(w2))

where















w1 = 〈req, xS , xD, xid , xa :: xr, xm〉
ΦV = check(V, xa)
t = 〈xS, xD, xid〉
w2 = 〈req, xS , xD, xid , V :: (xa :: xr), xm〉

When the request reaches the destination D, it
checks that the request has a correct hmac and that the
first node in the route is one of his neighbors. Then,
the destination D constructs a route reply, in particu-
lar it computes a new hmac over the route accumulated
in the request packet with KSD, and sends the answer
back over the network.

The process executed by the destination node D is
the following:

Pdest(D, S) = in v1[ΦD].out(v2).0

where:

v1 = 〈req, S, D, xid , xa :: xl, hmac(〈req, S, D, xid〉, KSD)〉
ΦD = check(D, xa)
v2 = 〈rep, D, S, xid , xa :: xl,

hmac(〈rep, D, S, xid , xa :: xl〉, KSD)〉

Then, the reply travels along the route back to S.
The intermediate nodes check that the route in the re-
ply packet is locally correct (that is that they appear
once in the list and that the nodes before and after
them are their neighbors) before forwarding it. The
process executed by an intermediary node V when for-
warding a reply is the following:

Prep(V ) = in w′[Φ′
V ].out(w′)

where

{

w′ = 〈rep, xD, xS , xid , xr, xm〉
Φ′

V = checkl(V, xr)

2.4 Execution model

Each process is located at a specified node of the net-
work. Unlike classical Dolev-Yao model, the intruder
does not control the entire network but can only in-
teract with its neighbors. More specifically, we assume
that the topology of the network is represented by giv-
ing an undirected graph G = (V, E) with V ⊆ Nloc,
where an edge in the graph models the fact that two
nodes are neighbors. We also assume that we have a
set of nodes M that are controlled by the attacker.
These nodes are then called malicious. Our model
is not restricted to a single malicious node. Our re-
sults allow us to consider the case of several compro-
mised nodes that collaborate by sharing their knowl-
edge. However, it is well-known that the presence of
several colluding malicious nodes often yields straight-
forward attacks [14, 18].

A (ground) concrete configuration of the network is
a triplet (P;S; I) where:
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• P is a multiset of expressions of the form ⌊P ⌋n

where null processes, i.e. expressions of the form
⌊0⌋n are removed. ⌊P ⌋n represents the (ground)
process P located at node n ∈ V . We will write
⌊P ⌋n ∪ P instead of {⌊P ⌋n} ∪ P.

• S is a set of expressions of the form ⌊t⌋n with
n ∈ V and t a ground term. ⌊t⌋n represents the
fact that the node n has stored the term t.

• I is a set of ground terms representing the mes-
sages seen by the intruder.

Example 2 Continuing our modeling of SRP , a typi-
cal initial configuration for the SRP protocol is

K0 = (⌊Pinit(S, D)⌋S | ⌊Pdest(D, S)⌋D; ∅; I0)

where both the source node S and the destination
node D wish to communicate. We assume that each
node has an empty storage list and that the initial
knowledge of the intruder is given by an infinite set
of terms I0. A possible network configuration is mod-
eled by the graph G0 below. We assume that there is
a single malicious node, i.e. M0 = {nI}. The nodes
W and X are two extra (honest) nodes. We do not
assume that the intermediary nodes nI , W , and X ex-
ecute the routing protocol. Actually, this is not needed
to show that the protocol is flawed, and we want to keep
this example as simple as possible.

W

X

nIS D

Each honest node broadcasts its messages to all its
neighbors. To capture more malicious behaviors, we
allow the nodes controlled by the intruder to send mes-
sages only to some specific neighbor. The communica-
tion system is formally defined by the rules of Figure 2.
They are parametrized by the underlying graph G and
the set of malicious nodes M.

The relation →∗
G,M is the reflexive and transitive

closure of →G,M. We may write →, →G, →M instead
of →G,M when the underlying network topology G or
the underlying set M is clear from the context.

Note that in case we assume that there is a single
malicious node with each honest node is connected to
it, we retrieve the model where the attacker is assumed
to control all the communications.

Example 3 Continuing the example developed in Sec-
tion 2.3, the following sequence of transitions is enabled
from the initial configuration K0:

K0→
∗
G0,M0

(⌊in u2[ΦS ].0⌋S∪⌊Pdest(D, S)⌋D; ∅; I0∪{u1})

where:

u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)

During this transition, S broadcasts to its neighbors
a request to find a route to D. The intruder nI is
a neighbor of S in G0, so he learns the request mes-
sage. Assuming that the intruder knows the names of
its neighbors, i.e. W, X ∈ I0, he can then build the
following fake message request:

m = 〈req, S, D, id, [X; W ; S], hmac(〈req, S, D, id〉, KSD)〉

and broadcasts it. Since (X, D) ∈ E, D accepts this
message and the resulting configuration of the transi-
tion is

(⌊in u2[ΦS ].0⌋S ∪ ⌊out(v2σ).0⌋D; ∅; I0 ∪ {u1})

where







v2 = 〈rep, D, S, xid , xa :: xl,
hmac(〈D, S, xid , xa :: xl〉, KSD)〉

σ = {id/xid
, X/xa

, [W ;S]/xl
}

As usual, an attack is defined as a reachability prop-
erty.

Definition 1 Let G be a graph and M be a set of
nodes. There is an M-attack on a configuration with
a hole (P[ ];S; I) for the network topology G and the
formula Φ if there exist n,P ′,S ′, I ′ such that:

(P[if Φ then out(error)];S; I)
→∗

G,M (⌊out(error)⌋n ∪ P ′,S ′, I ′)

where error is a special symbol not occurring in the con-
figuration (P[ ];S; I).

The usual secrecy property can be typically encoded
by adding a witness process in parallel. For example,
the process W = in s. can only evolve if it receives
the secret s. Thus the secrecy preservation of s on a
configuration (P;S; I) for a graph G = (V, E) can be
defined by the (non) existence of an {nI}-attack on the
configuration (P∪⌊W ⌋n;S; I) and the formula true for
the graph G′ = (V ∪ {n}, E ∪ {(n, nI)}).

Example 4 For the SRP protocol, the property we
want to check is that the list of nodes obtained by the
source through the protocol represents a path in the
graph. We can easily encode this property by replacing
the null process in Pinit(S, D) by a hole, and checking
whether the formula ¬route(xL) holds. Let P ′

init(S, D)
be the resulting process.

P ′
init(S, D) = new id .out(u1).in u2[ΦS ].P
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Comm ({⌊in uj [Φj ].Pj⌋nj
| mgu(t, uj) 6= ⊥, [[Φjσj ]]G = 1,

→G,M
({⌊Pjσj⌋nj

} ∪ ⌊P ⌋n ∪ P;S; I ′)
(n, nj) ∈ E} ∪ ⌊out(t).P ⌋n ∪ P;S; I)

where σj = mgu(t, uj), I ′ = I ∪ {t} if (n, nI) ∈ E for some nI ∈ M and I ′ = I otherwise.

In (⌊in u[Φ].P ⌋n ∪ P;S; I) →G,M (⌊Pσ⌋n ∪ P;S; I)
if (nI , n) ∈ E for some nI ∈ M, I ⊢ t, σ = mgu(t, u) and [[Φσ]]G = 1

Store (⌊store(t).P ⌋n ∪ P;S; I) →G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I)

Read-Then (⌊read u then P else Q⌋n ∪ P; ⌊t⌋n ∪ S; I) →G,M (⌊Pσ⌋n ∪ P; ⌊t⌋n ∪ S; I)
where σ = mgu(t, u)

Read-Else (⌊read u then P else Q⌋n ∪ P;S; I) →G,M (⌊Q⌋n ∪ P;S; I)
if for all t such that ⌊t⌋n ∈ S, mgu(t, u) = ⊥

If-Else (⌊if Φ then P else Q⌋n ∪ P;S; I) →G,M (⌊P ⌋n ∪ P;S; I) if [[Φ]]G = 1
If-Then (⌊if Φ then P else Q⌋n ∪ P;S; I) →G,M (⌊Q⌋n ∪ P;S; I) if [[Φ]]G = 0

Par (⌊P1 | P2⌋n ∪ P;S; I) →G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I)
Repl (⌊!P ⌋n ∪ P;S; I) →G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I)

where α is a renaming of the bound variables of P

New (⌊new m.P ⌋n ∪ P;S; I) →G,M (⌊P{m′

/m}⌋n ∪ P;S; I)
where m′ is a fresh name

Figure 2. Concrete transition system.

where P = if ¬route(xL) then out(error). Then, we re-
cover the attack mentioned in [9] with the topology G0

given in Example 2, and from the initial configuration:

K ′
0 = (⌊P ′

init(S, D)⌋S | ⌊Pdest(D, S)⌋D; ∅; I0).

Indeed, we have that:

K ′
0 →∗ (⌊in u2[ΦS ].P ⌋S ∪ ⌊out(m′).0⌋D; ∅; I)
→ (⌊in u2[ΦS ].P ⌋S ∪ ⌊0⌋D; ∅; I ′)
→ (⌊if¬route([X; W ; S]) then out(error)⌋S ; ∅; I ′)
→ (⌊out(error).0⌋S ; ∅; I ′)

where















m′ = 〈rep, D, S, id, [X; W ; S],
hmac(〈D, S, id, [X; W ; S]〉, KSD)〉

I = I0 ∪ {u1}, and
I ′ = I0 ∪ {u1} ∪ {m′}.

3 Symbolic semantics

It is difficult to directly reason with the transition
system defined in Figure 2 since it is infinitely branch-
ing. Indeed, a potentially infinite number of distinct
messages can be sent at each step by the intruder node.
That is why it is often interesting to introduce a sym-
bolic transition system where each intruder step is cap-
tured by a single rule (e.g. [4]).

3.1 Constraint systems

As in [19, 11, 24], groups of executions can be repre-
sented using constraint systems. However, compared to
previous work, we have to enrich constraint systems in
order to cope with the formulas that are checked upon
the reception of a message and also in order to cope
with generalized disequality tests for reflecting cases
where agents reject messages of the wrong form.

Definition 2 A constraint system C is a finite con-
junction of constraints of the form v = u (unification
constraint), I  u (deduction constraint), ∀X. v 6= u
(disequality constraint), and Φ (formula of Lroute),
where v, u are terms, I is a non empty set of terms,
and X is a set of variables. Moreover, we assume that
the constraints in C can be ordered C1, . . . , Cn in such
a way that the following properties hold:

• (monotonicity) If Ci = Ii  ui and Cj = Ij  uj

with i < j then Ii ⊆ Ij;

• (origination) If Ci = Ii  ui (resp. Ci = vi = ui)
then for all x ∈ var(Ii) (resp. x ∈ var(vi)), there
exists j < i such that

– either Cj = Ij  uj with x ∈ var(uj);

– or Cj = vj = uj with x ∈ var(uj).
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Lastly, we assume that var(C) ⊆ rvar(C) where rvar(C)
represents the set of variables introduced in C in the
right-hand-side of a unification constraint or a deduc-
tion constraint.

The origination property ensures that variables are
always introduced by a unification constraint or a de-
duction constraint, which is always the case when mod-
eling protocols. Actually, the set rvar(C) represents all
the free variables. This means that all the variables
are introduced in the right-hand-side of a unification
constraint or a deduction constraint.

Note that our disequality constraints are rather gen-
eral since they do not simply allow to check that two
terms are different (u 6= v), but they also allow to en-
sure that no unification was possible at a certain point
of the execution, which is a necessary check due to our
broadcast primitive.

A solution to a constraint system C for a graph G
is a ground substitution θ such that dom(θ) = rvar(C)
such that:

• tθ = uθ for all t = u ∈ C;

• Tθ ⊢ uθ for all T  u ∈ C;

• for all (∀X. t 6= u) ∈ C, then tθ and uθ are not
unifiable (even renaming the variables of X with
fresh variables); and

• [[Φθ]]G = 1 for every formula Φ ∈ C.

Example 5 Let C = {I0 ∪ {u1}  v1 ∧ ΦD ∧ I0 ∪
{u1, v2}  u2 ∧ ΦS ∧ ¬route(xL)} with:

u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦD = check(D, xa)
ΦS = checkl(S, xL) ∧ ¬loop(xL)
v1 = 〈req, S, D, xid , xa :: xl

, hmac(〈req, S, D, xid〉, KSD)〉
v2 = 〈rep, D, S, xid , xa :: xl,

hmac(〈rep, D, S, xid , xa :: xl〉, KSD)〉

We have that C is a constraint system, and σ =
{id/xid

, X/xa
, [W ;S]/xl

, [X;W ;S]/xL
} is a solution of the

constraint system C for graph G0.

3.2 Transition system

Concrete executions can be finitely represented by
executing the transitions symbolically. A symbolic con-
figuration is a quadruplet (P;S; I; C) where

• P is a multiset of expressions of the form ⌊P ⌋n

where null processes are removed. ⌊P ⌋n represents
the process P located at node n ∈ V ;

• S is a set of expressions of the form ⌊t⌋n with
n ∈ V and t a term (not necessarily ground).

• I is a set of terms (not necessarily ground) repre-
senting the messages seen by the intruder.

• C is a constraint system such that T ⊆ I for every
T  u ∈ C.

Such a configuration is ground when fv(P) ∪ var(S) ∪
var(I) ⊆ rvar(C).

Symbolic transitions are defined in Figure 3, they
mimic concrete ones. In particular, for the second rule,
the set I of processes ready to input a message is split
into three sets: the set J of processes that accept the
message t, the set K of processes that reject the mes-
sage t because t does not unify with the expected pat-
tern uj , and the set L that reject the message t because
the condition φ is not fulfilled.

Whenever (P;S; I; C) →s
G,M (P ′;S ′; I ′; C′) where

(P;S; I; C) is a (ground) symbolic configuration then
(P ′;S ′; I ′; C′) is still a (ground) symbolic configuration.
This is formally proved in Appendix A.

Example 6 For example, executing the same transi-
tions as in Example 4 symbolically, we reach the fol-
lowing configuration:

Ks = (⌊out(error).0⌋S; ∅; I0 ∪ {u1, v2}; C)

where C, u1, v2 are defined as in Example 5.

3.3 Soundness and completeness

We show that our symbolic transition system reflects
exactly the concrete transition system, i.e. each con-
crete execution of a process is captured by one of the
symbolic executions. More precisely, a concrete config-
uration is represented by a symbolic configuration if it
is one of its instances, called concretization.

Definition 3 (θ-concretization) A concretization
of a symbolic configuration Ks = (Ps;Ss; Is; C) is
a concrete configuration Kc = (P;S; I) such that
there exists θ a solution of C and, furthermore,
Psθ = P, Ssθ = S, Isθ = I. We say that Kc is a
θ-concretization of Ks.

Note that the θ-concretization of a ground symbolic
configuration is a ground concrete configuration.

Each concrete transition can be matched by a sym-
bolic one.
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Comms (⌊out(t).P ⌋n ∪ {⌊in ui[Φi].P
′
i⌋ni

| i ∈ I}
→s

G,M

(⌊P ⌋n ∪ {⌊in uk[Φk].P ′
k⌋nk

| k ∈ K ∪ L}
∪P;S; I; C) ∪{⌊P ′

j⌋nj
| j ∈ J} ∪ P;S; I ′; C′)

where:
- ⌊P ′⌋n′ ∈ P implies that (n, n′) 6∈ E or P ′ is not of the form in u′[Φ′].Q′,
- I = J ⊎ K ⊎ L and (ni, n) ∈ E for every i ∈ I,
- C′ = C ∧ {t = uj ∧Φj | j ∈ J} ∧ {∀(var(uk) r rvar(C)) . t 6= uk | k ∈ K} ∧ {t = ulαl ∧¬Φlαl | l ∈ L} where
αl is a renaming of var(ul) r rvar(C) by fresh variables,
- I ′ = I ∪ {t} when (n, nI) ∈ E for some nI ∈ M, and I ′ = I otherwise.

Ins (⌊in u[Φ].P ⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ I  u ∧ Φ})

if (nI , n) ∈ E for some nI ∈ M

Stores (⌊store(t).P ⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I; C)

Read-Thens (⌊read u then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ t = u) where ⌊t⌋n ∈ S

Read-Elses (⌊read u then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊Q⌋n ∪ P;S; I; C ∧ {∀X . t 6= u | ⌊t⌋n ∈ S})

where X = var(u) r rvar(C)

If-Thens (⌊if Φ then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ Φ)

If-Elses (⌊if Φ then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊Q⌋n ∪ P;S; I; C ∧ ¬Φ)

Pars (⌊P1 | P2⌋n ∪ P;S; I; C) →s
G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I; C)

Repls ⌊!P ⌋n ∪ P;S; I; C →s
G,M ⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I; C

where α is a renaming of the bound variables of P that are not in rvar(C).

News (⌊new m.P ⌋n ∪ P;S; I; C) →s
G,M (⌊P{m′

/m}⌋n ∪ P;S; I; C)

where m′ is a fresh name

Figure 3. Symbolic transition system.

Lemma 1 (Completeness) Let G be a graph and
M ⊆ Nloc. Let Ks = (Ps;Ss; Is; C) be a ground sym-
bolic configuration and θ be a solution of C. Let Kc

be the θ-concretization of Ks. Let K ′
c be a concrete

configuration such that Kc →G,M K ′
c. Then there ex-

ists a ground symbolic configuration K ′
s and a substitu-

tion θ′ such that K ′
c is the θ′-concretization of K ′

s and
Ks →s

G,M K ′
s.

The proof is performed by studying each rule of
the concrete transition system, showing that the corre-
sponding symbolic rule covers all possible cases. In
particular, disequality constraints allow to faithfully
model cases where nodes reject a message because the
message does not match the expected pattern.

Conversely, each symbolic transition can be instan-
tiated in a concrete one.

Lemma 2 (Soundness) Let G be a graph and M ⊆
Nloc. Let Ks = (Ps;Ss; Is; C) and K ′

s = (P ′
s;S

′
s; I

′
s; C

′)
be two ground symbolic configurations such that
Ks →s

G,M K ′
s. Let θ′ be a solution of C′ and θ be

the restriction of θ′ to rvar(C). Let Kc be the θ-

concretization of Ks. There exists a ground concrete
configuration K ′

c such that Kc →G,M K ′
c, and K ′

c is
the θ′-concretization of K ′

s.

We deduce that checking for a concrete attack can
be reduced to checking for a symbolic one.

Proposition 1 Let G be a graph and M ⊆ Nloc. Let
K = (P[ ];S; I) be a ground concrete configuration
with a hole, and Φ be a formula. There is an M-attack
on K and Φ for graph G if, and only if,

(P[if Φ then out(error)];S; I; ∅)
→s∗

G,M (⌊out(u)⌋n ∪ Ps;Ss; Is; C)

and the constraint system C ∧ u = error has a solution.

Note that our result holds for any signature, for any
choice of predicates, and for processes possibly with
replication. Of course, it then remains to decide the
existence of a constraint system that has a solution.

Example 7 Consider our former example of an attack
on SRP , with initial configuration K0. We can reach
the configuration Ks, and the constraint system C has
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a solution σ for graph G0 (cf. Example 5), so there is
an {nI}-attack on K0 for G0.

4 Decidability result

In the remaining of the paper, we assume the fixed
signature (S1,F1) (defined in Example 1) for list, con-
catenation, mac and encryption. We also assume its
associated deduction system ⊢ defined in Figure 1.

Simple properties like secrecy are undecidable when
considering an unbounded number of role executions,
even for classical protocols [12]. Since our class of pro-
cesses encompasses classical protocols, the existence of
an attack is also undecidable. In what follows, we thus
consider a finite number of sessions, that is processes
without replication. In most existing frameworks, the
intruder is given as initial knowledge a finite number
of messages (e.g. some of the secret keys or messages
learned in previous executions). However, in the con-
text of routing protocols, it is important to give an
a priori unbounded number of node names to the at-
tacker that he can use as its will, in particular for pos-
sibly passing some disequality constraints and for cre-
ating false routes.

We say that a process is finite if it does not contain
the replication operator. A concrete configuration K =
(P[ ];S; I) is said initial if K is ground, P is finite, S
is a finite set of terms and I = Nloc ∪ I′ where I ′ a
finite set of terms (the intruder is given all the node
names in addition to its usual initial knowledge).

Our second main contribution is to show that acces-
sibility properties are decidable for finite processes of
our process algebra, which models secure routing pro-
tocols, for a bounded number of sessions. We actually
provide two decision procedures, according to whether
the network is a priori given or not. In case the net-
work topology is not fixed in advance, our procedure
allows to automatically discover whether there exists a
(worst-case) topology that would yield an attack.

Theorem 1 Let K = (P[ ];S; I) be an initial concrete
configuration with an hole, M ⊆ Nloc be a finite set of
nodes, and Φ ∈ Lroute be a property. Deciding whether
there exists a graph G such that there is an M-attack
on K and Φ for the topology G is NP-complete.

Theorem 2 Let K = (P[ ];S; I) be an initial concrete
configuration with an hole, G be a graph, M ⊆ Nloc

be a finite set of nodes, and Φ ∈ Lroute be a property.
Deciding whether there exists an M-attack on K and Φ
for the topology G is NP-complete.

Note that Theorem 1 does not imply Theorem 2
and reciprocally. Theorems 1 and 2 ensure in par-
ticular that we can decide whether a routing protocol
like SRP can guaranty that any route accepted by the
source is indeed a route (a path) in the network (which
can be fixed by the user or discovered by the proce-
dure). The NP-hardness of the existence of an attack
comes from the NP-hardness of the existence of a so-
lution for deduction constraint systems [24]. The (NP)
decision procedures proposed for proving Theorems 1
and 2 involve several steps, with many common ingre-
dients.

Step 1. Applying Proposition 1, it is sufficient to de-
cide whether there exists a sequence of symbolic tran-
sitions (and a graph G if G is not fixed)

(P[if Φ then out(error)];S; I; ∅)
→s∗

G,M(⌊out(u)⌋n ∪ Ps;Ss; Is; C)

such that C ∧ u = error admits a solution for the
graph G. Since processes contain no replication and in-
volve communication between a finite number of nodes,
it is possible to guess the sequence of symbolic transi-
tions yielding an attack (by guessing also the edges
between the nodes that are either in M or involved in
a communication step) and the resulting configuration
remains of size polynomially bounded by the size of
the initial configuration. Moreover, any left-hand-side
of a deduction constraint in C is of the form T ∪ Nloc

where T is a finite set of terms. It then remains to
decide the existence of a solution for our class of con-
straint systems.

Step 2. It has been shown in [11] that the existence
of a solution of a constraint system (with only deduc-
tion constraints) can be reduced to the existence of
a solution of a solved constraint system, where right-
hand-sides of the constraints are variables only. We
have extended this result to our generalized notion of
constraint systems, i.e. with disequality tests and for-
mula of Lroute, and for an intruder knowledge with an
infinite number of names.

Step 3. We then show how to decide the existence of a
solution for a constraint system, where each deduction
constraint is solved, that is of the form T  x. It is not
straightforward like in [11] since we are left with (non
solved) disequality constraints and formulas. The key
step consists in showing that we can bound (polynomi-
ally) the size of the lists in a minimal attack.

The two last steps are developed in the two following
(sub-)sections.
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4.1 Solving constraint systems with an in-
finite number of names

A constraint system C can be split in four disjoint
sets C = C1 ∧ C2 ∧ C3 ∧ C4 where C1, C2, C3, C4 are re-
spectively the sets of unification constraints, deduction
constraints, disequality constraints and formulas. Con-
sidering a most general unifier θ of the unification con-
straints in C1, we are left to decide the existence of
a solution for (C2 ∧ C3 ∧ C4)θ. We say that a con-
straint system C is a deduction constraint system if all
its constraints are deduction constraints. Such a sys-
tem is in solved form if C = T1  x1 ∧ . . . ∧ Tn  xn

where x1, . . . , xn are distinct variables. First, we have
that C2θ is a deduction constraint system. The goal of
this section is to show that we can assume that C2θ is
in solved form.

It has been shown in [11] that the existence of a
solution of a deduction constraint system can be re-
duced to the existence of a solution of a solved deduc-
tion constraint system by applying (a variant of) the
transformation rules presented in Figure 4.

All the rules are indexed by a substitution. When
there is no index then the identity substitution is im-
plicitly assumed. We write C  n

σ C′ if there are
C1, . . . , Cn with n ≥ 1, C′ = Cn, C  σ1

C1  σ2
· · · σn

Cn, and σ = σ1σ2 . . . σn. We write C  ∗
σ C′ if C  n

σ C′

for some n ≥ 1, or if C′ = C and σ is the identity
substitution.

Getting a polynomial bound on the length of sim-
plification sequences can be achieved by considering
a (complete) strategy in order to avoid getting twice
the same constraint. It has been shown in [11] that
a deduction constraint system admits a solution if,
and only if, the transformation rules yield (in non-
deterministically polynomial time) a solved constraint.

However, the result of [11] assumes that the deduc-
tion constraints are of the form T  u where T is a
finite set of terms. We have extended this result to the
case where T contains an infinite set of names. More-
over, we have adapted the simplification rules to our
signature with mac and lists.

Definition 4 Let C be a deduction constraint sys-
tem where all left hand sides of constraints are fi-
nite, and I0 be a (possibly infinite) set of names.
We say that (C, I0) is a special constraint system if

St(C) ∩ I0 = ∅. The deduction constraint system C
I0

associated to (C, I0) is inductively defined by

C ∧ T  u
I0

= C
I0

∧ ((I0 ∪ T )  u).

A substitution θ is a solution of a special constraint
system (C, I0) if for every T  u ∈ C, (T ∪ I0)θ  uθ,

i.e. θ is a solution of C
I0

.

We show that when solving a special constraint sys-
tem (C, I0), it is sufficient to apply the transformation
rules to C, following a well-chosen strategy in order to
get a polynomial bound on the length of simplification
sequences. We consider the following strategy S:

• apply eagerly R4 and postpone R1 as much as pos-
sible

• apply the substitution rules eagerly (as soon as
they are enabled). This implies that all substi-
tution rules are applied at once, since the rules
R1, R4, Rf cannot enable a substitution.

• when R4 and substitution rules are not enabled,
apply Rf to the constraint whose right hand side
is maximal (in size).

For ordinary constraint systems, the strategy S is
complete and yields derivations of polynomial length
(see Section 4.7 in [11]). It remains to show that the
procedure also works for special constraint systems.

Theorem 3 Let (C0, I0) be a special constraint sys-
tem, Φ a set of formulas and disequality constraints,
and θ be a substitution.

1. (Correctness) If C0  
∗
σ C′ by a derivation in S

for some C′ and some substitution σ, and if θ is a
solution for Φσ and (C′, I0), then σθ is a solution
for Φ and (C0, I0).

2. (Completeness) If θ is a solution for
(C0, I0) and Φ, then there exists a deduction
constraint system C′ in solved form and sub-
stitutions σ, θ′ such that θ = σθ′, C0  

∗
σ C′

by a derivation in S, and θ′ is a solution for
(C′, I0) and Φσ.

3. (Termination) If C0  
n
σ C′ by a derivation in S

for some deduction constraint system C′ and some
substitution σ, then n is polynomially bounded in
the size of C0.

The proof of Theorem 3 is mainly an adaptation of
the result in [11] and relies on the following lemma,
which intuitively states that adding an infinite set of
disjoint names does not provide an additional deduc-
tion power to the intruder.

Lemma 3 Let T be a set of terms that contains at
least one constant, u a term and E a set of constants
such that St(T ∪ {u}) ∩ E = ∅. If T ∪ E ⊢ u, then we
have that T ⊢ u.
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R1 C ∧ T  u  C if T ∪ {x | (T ′
 x) ∈ C, T ′ ( T} ⊢ u

R2 C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t, v), t ∈ St(T ), v ∈ St(u), t 6= v, t, v not variables
R3 C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T ), t1 6= t2, t1, t2 not variables
R4 C ∧ T  u  ⊥ if var(T, u) = ∅ and T 6⊢ u
Rf C ∧ T  f(u, v)  C ∧ T  u ∧ T  v for f ∈ {〈〉, ::, hmac, enc}

Figure 4. Simplification rules

4.2 Bounding the size of minimal attacks

Applying the technique described in the previous
section, we are left to decide the existence of a solution
for a constraint system C = C2 ∧ C3 ∧ C4 where C2 is
a solved deduction constraint system, C3 contains dise-
quality constraints, and C4 contains formulas of Lroute.
We can show that the size of the constraint system C
obtained after the successive transformations remains
polynomially bounded in the size of the initial config-
uration.

We first prove that given any solution of C, the vari-
ables which are not of sort loc or lists can be instanti-
ated by any fresh name, still preserving the solution.

Lemma 4 Let (C, I) be a special constraint system in
solved form, Φ1 be a formula of Lroute, Φ2 be a set of
disequality constraints, and G be a graph. Consider σ
a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G. There is a
solution σ′ of (C, I) ∧ Φ1 ∧ Φ2 for graph G such that:

• xσ′ = xσ for every variable x of sort loc or lists;

• xσ′ ∈ I otherwise.

We then show that it is possible to find a solution
in which lists are polynomially bounded. We need to
prove two separate lemmas, according to whether the
network topology is fixed or not. In case the network
topology is not fixed, we show that we can bound the
size of an attack, possibly by changing the graph.

Lemma 5 Let (C, I) be a special constraint system in
solved form, Φ1 be a conjunction of atomic formulas of
Lroute, Φ2 be a set of disequality constraints. If there
is a solution of (C, I) ∧ Φ1 ∧ Φ2 for the graph G, then
there exists a graph G′ and a substitution σ such that
σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′, and σ is
polynomially bounded in the size of C, Φ1 and Φ2.

In case the network topology is fixed, we show that
we can bound the size of an attack, where the bound
depends on the size of the graph.

Lemma 6 Let (C, I) be a special constraint system in
solved form, Φ1 be a conjunction of atomic formulas of
Lroute, Φ2 be a set of disequality constraints, and G be
a graph. If there is a solution of (C, I)∧Φ1∧Φ2 for G,
then there exists a solution σ of (C, I)∧Φ1 ∧Φ2 for G
that is polynomially bounded in the size of C, Φ1, Φ2

and G.

The proofs of Lemma 5 and 6 use the fact that dis-
equality constraints can be satisfied using fresh node
name and that the predicates of the logic Lroute check
only a finite number of nodes. Combining the lemmas,
we get that it is possible to bound the size of a (mini-
mal) solution. For Theorem 1, we conclude by further
noticing that nodes that do not occur explicitly in a
solution σ can be removed from the graph.

5 Conclusion

Using our symbolic semantic, we have shown that,
for general processes that can broadcast and perform
some correctness check in addition to the usual pat-
tern matching, existence of attacks can be reduced to
existence of a solution for (generalized) constraint sys-
tems. As an illustration, for a large class of processes
without replication that captures routing protocol like
SRP applied on DSR, we have proved that the exis-
tence of an attack is NP-complete. In particular, we
generalize existing works on solving constraint systems
to properties like the validity of a route and to pro-
tocols with broadcasting. Our result enables in par-
ticular to automatically discover whether a particular
network topology may allow malicious nodes to mount
an attack.

As future work, we plan to extend our results to
other cryptographic primitives (e.g. signatures and
public keys) in order to model more protocols. Since
our results reuse existing techniques such as constraint
solving, we believe that our procedure could be imple-
mented in existing tools after a few adaptations. We
also plan to consider how to model changes in the net-
work topology to analyze the security of route updates.
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A Proofs of Section 3

We show in Lemma 7 that the result of a transition
from a ground symbolic configuration is also a ground
symbolic configuration, in particular the set of con-
straints obtained is a constraint system. This lemma
will be useful to show that our transition system is
complete (Lemma 1) and sound (Lemma 3) when con-
sidering ground configurations.

Lemma 7 Let G be a graph, M ⊆ Nloc, and Ks =
(P;S; I; C) be a ground symbolic configuration. If K ′

s is
such that Ks →s

G,M K ′
s, then K ′

s is a ground symbolic
configuration.

Proof. Since Ks is a symbolic configuration, we have
that C is a constraint system and T ⊆ I for every
T  u ∈ C. Moreover, since Ks is ground, we have
that var(I) ∪ fv(P) ∪ var(S) ⊆ rvar(C).

Let K ′
s = (P ′;S ′; I ′; C′) and G = (V, E). To prove

the result, we do a case analysis on the transition rule
involved in Ks →s

G,M K ′
s. Note that the result is

straightforward for the transition rules Stores, Pars,
Repls, and News. Indeed, in these cases, we have that
C′ = C, I ′ = I, and fv(P)∪ var(S) = fv(P ′)∪ var(S ′).

Now, we consider the remaining rules in turn.

• Rule Read-Thens. We have that:

Ks = (⌊read u then P else Q⌋n ∪ Q;S; I; C)
→s

G,M (⌊P ⌋n ∪Q;S; I; C ∧ t = u) = K ′
s

where ⌊t⌋n ∈ S.

First we have that C′ is a constraint system. In-
deed, monotonicity is still satisfied by C′. More-
over, we have that var(t) ⊆ var(S) ⊆ rvar(C)
(since Ks is ground). Hence, C′ satisfies the orig-
ination property. Since I ′ = I and the deduction
constraints are the same in C and C′, we have that
T ⊆ I ′ for every T  u ∈ C′. Lastly, since Ks is
ground, we have that:

(fv(P ) r var(u)) ∪ fv(Q) ⊆ rvar(C).

Consequently, we have that:

fv(P ) ∪ fv(Q) ⊆ rvar(C) ∪ var(u).

Since rvar(C)∪var(u) = rvar(C∪{t = u}), we de-
duce that the resulting symbolic configuration K ′

s

is also ground.

• Rule Read-Elses. We have that:

Ks = (⌊read u then P else Q⌋n ∪Q;S; I; C)
→s

G,M (⌊Q⌋n ∪ Q;S; I; C ∧ Eq) = K ′
s

where Eq = {∀var(u) r rvar(C) . t 6= u | ⌊t⌋n ∈ S}.

Since no deduction or unification constraint is in-
troduced, C′ is a constraint system. Since I ′ = I,
we also have that T ⊆ I′ for every T  u ∈ C′.
Since Ks is ground, we have that:

fv(Q) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C).

Since rvar(C′) = rvar(C), we have that:

fv(Q) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C′).

The resulting configuration K ′
s is ground.

• Rule If-Thens. We have that:

Ks = (⌊if Φ then P else Q⌋n ∪Q;S; I; C)
→s

G,M (⌊P ⌋n ∪ Q;S; I; C ∧ Φ) = K ′
s

It is easy to see that C′ is still a constraint system.
Moreover, since I ′ = I and C′rC does not contain
any deduction contraint, we have that T ⊆ I′ for
every T  u ∈ C′.

Since Ks is ground, we have that:

fv(P ) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C).

Since rvar(C′) = rvar(C), we have that:

fv(P ) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C′).

Thus, the configuration K ′
s is ground.

• Rule If-Elses. Similar to the previous case.

• Rule Ins. We have that:

Ks = (⌊in u[Φ].P ⌋n ∪Q;S; I; C)
→s

G,M (⌊P ⌋n ∪ Q;S; I; C ∧ I  u ∧ Φ) = K ′
s

where (nI , n) ∈ E for some ni ∈ M.

Since C is a constraint system and T ⊆ I for
any T  u ∈ C, we deduce that C′ satisfies the
monotonicity property. Moreover, since var(I) ⊆
rvar(C) (because Ks is ground), C′ satisfies the
origination property. Clearly, we have that T ⊆ I ′

for any T  u ∈ C′. Lastly, since Ks is ground, we
have that:

fv(P )∪fv(Q)∪var(S)∪var(I) ⊆ rvar(C)∪var(u).
Since rvar(C′) = rvar(C) ∪ var(u), we easily de-
duce that the symbolic configuration K ′

s is ground.

• Rule Comms. We have that:

(⌊out(t).P ⌋n ∪ PI ∪ Q;S; I; C) →s
G,M

(⌊P ⌋n ∪ PJ ∪ PK,L ∪ Q;S; I ′; C ∧ CJ ∧ CK ∧ CL)

where:

– PI = {⌊in ui[Φi].Pi⌋ni
| i ∈ I},

– PJ = {⌊Pj⌋nj
| j ∈ J}
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– PK,L = {⌊in uk[Φk].Pk⌋nk
| k ∈ K ∪ L}

– CJ = {t = uj ∧ Φj | j ∈ J},

– CK = {∀var(uk) r rvar(C) . t 6= uk | k ∈ K},

– CL = {t = ulαl ∧ ¬Φlαl | l ∈ L}.

⌊P ′⌋n′ ∈ Q implies that (n, n′) /∈ E or P ′ is not of
the form in u′[Φ′].Q′, I = J

⊎

K
⊎

L, (ni, n) ∈ E
for any i ∈ I, αl is a renaming of var(ul)rrvar(C)
by fresh variables,
and if (n, nI) ∈ E for some nI ∈ M then I ′ = I∪t
else I ′ = I.
Clearly, C′ satisfies the monotocity property.

Moreover, we have that T ⊆ I′ for any T  u ∈ C′.
To show that C′ satisfies the origination prop-
erty, we have to prove that var(t) ⊆ rvar(C).
This is indeed the case since Ks is ground and
var(t) ⊆ fv(P). Lastly, we have to show that K ′

s

is ground. Since Ks is ground, we have that:

1. fv(PI) ⊆ rvar(C)

2. fv(P ) ∪ fv(Q) ∪ var(S) ∪ var(I) ⊆ rvar(C)

3. var(t) ⊆ rvar(C).

From 1, we deduce that:

fv(PJ) ∪ fv(PK,L) ⊆ rvar(C) ∪
⋃

j∈J

var(uj).

Moreover, we have that:

rvar(C) ∪
⋃

j∈J

var(uj) ⊆ rvar(C′).

Hence, we have that:

– fv(PJ ) ∪ fv(PK,L) ⊆ rvar(C′),

– fv(P ) ∪ fv(Q) ⊆ rvar(C′),

– var(S ′) = var(S) ⊆ rvar(C),

– var(I ′) ⊆ var(I) ∪ var(t) ⊆ rvar(C).

We easily conclude that K ′
s is a ground symbolic

configuration. �

We now show that, to a concrete transition, corre-
sponds a symbolic transition.

Lemma 1 (Completeness) Let G be a graph and
M ⊆ Nloc. Let Ks = (Ps;Ss; Is; C) be a ground sym-
bolic configuration and θ be a solution of C. Let Kc

be the θ-concretization of Ks. Let K ′
c be a concrete

configuration such that Kc →G,M K ′
c. Then there ex-

ists a ground symbolic configuration K ′
s and a substitu-

tion θ′ such that K ′
c is the θ′-concretization of K ′

s and
Ks →s

G,M K ′
s.

Proof. Let Kc = (P;S; I). We distinguish cases de-
pending on which transition is applied to Kc. We show

that there exists a symbolic configuration K ′
s such that

K ′
c is the θ′-concretization of K ′

s and Ks →s
G,M K ′

s.
Thanks to Lemma 7, we easily deduce that K ′

s is
ground.

• Rule Par. We have that:

Kc = (⌊P1|P2⌋n ∪ Q;S; I)
→G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ Q;S; I) = K ′

c

Since Ks is a symbolic configuration whose
θ-concretization is Kc, we have that Ks =
(⌊P s

1 |P
s
2 ⌋n∪Qs;Ss; Is; C) with Qsθ = Q, Ssθ = S,

Isθ = I, P s
1 θ = P1, and P s

2 θ = P2. Let
K ′

s = (⌊P s
1 ⌋n ∪ ⌊P s

2 ⌋n ∪ Qs;Ss; Is; C). We have
that Ks →s

G,M K ′
s (with the Pars rule), θ is a

solution of C and K ′
c is the θ-concretization of K ′

s.

• Rule Repl. We have that:

Kc = (⌊!P ⌋n ∪ Q;S; I)
→G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪ Q;S; I) = K ′

c

where α is a fresh renaming of the bound vari-
ables in P . Since Ks is a symbolic configura-
tion whose θ-concretization is Kc, we have that
Ks = (⌊!Ps⌋n ∪ Qs;Ss; Is; C) with Qsθ = Q,
Ssθ = S, Isθ = I and Psθ = P . Note that α is also
a renaming of the variables in bv(Ps) r rvar(C).
Let K ′

s = (⌊Psα⌋n ∪ ⌊!Ps⌋n ∪ Qs;Ss; Is; C). We
have that Ks →s

G,M K ′
s (with the Repls rule)

and θ is a solution of C. It remains to show
that K ′

c is the θ-concretization of K ′
s. Since the

variables introduced by α are fresh, we have that
img(α)∩ dom(θ) = ∅, and since Psθ = P , we have
that dom(α) ∩ dom(θ) = ∅. Hence we have that
(Psα)θ = (Psθ)α = Pα. This allows us to con-
clude.

• Rule New. We have that:

Kc = (⌊new m.P ⌋n ∪Q;S; I)

→G,M (⌊P{m′

/m}⌋n ∪Q;S; I) = K ′
c

where m′ is a fresh name.

Since Ks is a symbolic configuration whose
θ-concretization is Kc, we have that Ks =
(⌊new m.Ps⌋n ∪ Qs;Ss; Is; C) with Qsθ = Q,
Ssθ = S, Isθ = I, and Psθ = P . Let
K ′

s = (⌊Ps{m′

/m}⌋n ∪Qs;Ss; Is; C). We have that
Ks →s

G,M K ′
s (with the News rule), θ is a solu-

tion of C and K ′
c is the θ-concretization of K ′

s.

• Rule Store. We have that:

Kc = (⌊store(t).P ⌋n ∪Q;S; I)
→G,M (⌊P ⌋n ∪Q; ⌊t⌋n ∪ S; I) = K ′

c
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Since Ks is a symbolic configuration whose
θ-concretization is Kc, we have that Ks =
(⌊store(ts).Ps⌋n ∪ Qs;Ss; Is; C) with Qsθ = Q,
Ssθ = S, Isθ = I, Psθ = P and tsθ = t.

Let K ′
s = (⌊Ps⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C). We have

that Ks →s
G,M K ′

s (with the Stores rule), θ is a
solution of C and K ′

c is the θ-concretization of K ′
s.

• Rule Read-Then. We have that:

Kc = (⌊read u then P else Q⌋nQ; ⌊t⌋n ∪ S; I)
→G,M (⌊Pσ⌋n ∪ Q; ⌊t⌋n ∪ S; I) = K ′

c

where σ = mgu(t, u).

Note that t is ground since Kc is a ground
concrete configuration, and thus we have that
uσ = t. Since Ks is a symbolic configuration
whose θ-concretization is Kc, we have that Ks =
(⌊read us then Ps else Qs⌋n ∪Qs; ⌊ts⌋n ∪ Ss; Is; C)
with Qsθ = Q, usθ = u, tsθ = t, Psθ = P ,
Qsθ = Q, Ssθ = S and Isθ = I.

Let K ′
s = (⌊Ps⌋n ∪Qs; ⌊ts⌋n ∪ Ss; Is; C ∧ ts = us).

We have that Ks →s
G,M K ′

s (with the Read-

Thens rule). Let θ′ = θ ∪ σ. To show that θ′ is
a solution of C, it remains to prove that (tsθ)σ =
(usθ)σ. Actually, we have that (tsθ)σ = tσ = t =
uσ. Lastly, we have that Psθ

′ = (Psθ)σ = Pσ.
Since Ks is a ground symbolic configuration, we
have that fv(Qs) ∪ var(Ss) ∪ var(Is) ⊆ rvar(C) =
dom(θ). Thus Qsθ

′ = Qsθ = Q, Ssθ
′ = Ssθ = S,

and Isθ
′ = Isθ = I. Hence, we have that K ′

c is
the θ′-concretization of K ′

s.

• Rule Read-Else. We have that:

Kc = (⌊read u then P else Q⌋n ∪Q;S; I)
→G,M (⌊Q⌋n ∪Q;S; I) = K ′

c

and for all ⌊t⌋n ∈ S we have that mgu(t, u) = ⊥.

Since Ks is a symbolic configuration whose
θ-concretization is Kc, we have that Ks =
(⌊read us then Ps else Qs⌋n ∪ Qs;Ss; Is; C) with
usθ = u, Psθ = P , Qsθ = Q, Qsθ = Q, Ssθ = S,
and Isθ = I.

Let K ′
s = (⌊Qs⌋n ∪ Qs;Ss; Is; C′) where C′ = C ∧

{∀var(us) r rvar(C).ts 6= us | ⌊ts⌋n ∈ S}.

We have that Ks →s
G,M K ′

s (with the Read-

Elses rule). Now, let us show that θ is a solu-
tion of C′. Let ∀var(us) r rvar(C).ts 6= us be a
disequation in C′ r C. We have that usθ = u,
tsθ = t for some term t such that ⌊t⌋n ∈ S,
and mgu(t, u) = ⊥. Thus, θ is also a solution
of this constraint, and more generally θ is a solu-
tion of C′. Now, it is easy to see that K ′

c is the
θ-concretization of K ′

s.

• Rule If-Then. We have that:

Kc = (⌊if Φ then P else Q⌋n ∪Q;S; I)
→G,M (⌊P ⌋n ∪Q;S; I) = K ′

c

and [[Φ]]G = 1.

Since Ks is a symbolic configuration whose
θ-concretization is Kc, we have that Ks =
(⌊if Φs then Ps else Qs⌋n ∪ Qs;Ss; Is; C) with
Φsθ = Φ, Psθ = P , Qsθ = Q, Qsθ = Q, Ssθ = S,
and Isθ = I.

Let K ′
s = (⌊Ps⌋n ∪ Qs;Ss; Is; C ∧ Φs). We have

that Ks →s
G,M K ′

s (with the If-Thens rule). By
hypothesis, we have that θ is a solution of C, and
as [[Φsθ]]G = [[Φ]]G is true, we easily deduce that θ
is a solution of C′ = C ∧ Φs. Lastly, it is easy to
see that K ′

c is the θ-concretization of K ′
s.

• Rule If-Else. Similar to the previous case.

• Rule In. We have that:

Kc = (⌊in u[Φ].P ⌋n ∪ Q;S; I)
→G,M (⌊Pσ⌋n ∪Q;S; I) = K ′

c

with (nI , n) ∈ E for some nI ∈ M, σ = mgu(t, u),
I ⊢ t and [[Φσ]]G = 1.

Since Ks is a symbolic configuration whose
θ-concretization is Kc, we have that Ks =
(⌊in us[Φs].Ps⌋n ∪ Qs;Ss; Is; C) with usθ = u,
Φsθ = Φ, Psθ = P , Qsθ = Q, Ssθ = S, and
Isθ = I.

Let K ′
s = (⌊Ps⌋n ∪ Qs;Ss; Is; C′) where C′ = C ∧

Is  us ∧ Φs. We have that Ks →s
G,M K ′

s (with
the Ins rule).

Let θ′ = θ ∪ σ. By hypothesis, we have that θ is a
solution of C. To show that θ′ is a solution of C′,
it remains to establish that:

– (Isθ)σ ⊢ (usθ)σ: We have that (Isθ)σ =
Iσ = I since var(I) = ∅, and
(usθ)σ = uσ = t. Since by hypothesis, we
have that I ⊢ t, we easily conclude.

– [[(Φsθ)σ]]G = 1. Actually, we have that
(Φsθ)σ = Φσ. Since, by hypothesis, we have
that [[Φσ]]G = 1, we easily conclude.

Hence, we have that θ′ is a solution of C′. It is
easy to see that K ′

c is the θ′-concretization of K ′
s.

• Rule Comm. We have that

Kc = (⌊out(t).P ⌋n∪
{⌊in uj [Φj ].Pj⌋nj

| j ∈ J} ∪ Q;S; I)
→G,M (⌊P ⌋n ∪ ⌊Pjσj⌋nj

} ∪ Q;S; I ′) = K ′
c

where:
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– σj = mgu(t, uj), (n, nj) ∈ E, and
[[Φjσj ]]G = 1 for any j ∈ J ,

– if (n, nI) ∈ E for some nI ∈ M then I ′ =
I ∪ {t} else I ′ = I.

Since Ks is a symbolic configuration whose θ-
concretization is Kc, we have that:

Ks = (⌊out(ts).Ps⌋n∪
{⌊in us

j [Φ
s
j ].P

s
j ⌋nj

|j ∈ J} ∪ Qs;Ss; Is; C)

with tsθ = t, Psθ = P , Isθ = I, Ssθ = S,
Qsθ = Q and for any j ∈ J , we have that
us

jθ = uj , Φs
jθ = Φj , and P s

j θ = Pj .

Let

– Ps
K,L = {⌊in us

k[Φs
k].P s

k ⌋nk
∈ Qs | (nk, n) ∈ E},

– Q′
s be such that Qs = Ps

K,L ∪Q′
s,

– K = {k | ⌊in us
k[Φs

k].P s
k ⌋nk

∈
Ps

K,L and mgu(tsθ, u
s
kθ) = ⊥},

– L = {l | ⌊in us
l [Φ

s
l ].P

s
l ⌋nk

∈ Ps
K,L and σ′

l =
mgu(tsθ, u

s
l θ) exists, and ¬[[(Φs

l θ)σ′
l]]G = 1}.

Let K ′
s = (⌊Ps⌋n∪P

s
J∪P

s
K,L∪Q

′
s;Ss; I

′
s; C

′) where:

– Ps
J = {⌊P s

j ⌋nj
| j ∈ J},

– C′ = C ∧ CJ ∧ CK ∧ CL,

– CJ = {ts = us
j | j ∈ J},

– CK = {∀var(uk)r rvar(C) . ts 6= us
k | k ∈ K},

– CL = {ts = us
l αl ∧ ¬Φs

l αl | l ∈ L} where αl

is a renaming of var(us
l ) r rvar(C) by fresh

variables,

– I ′
s = Is ∪ {t} if (n, nI) ∈ E and I ′

s = Is

otherwise.

Clearly, we have that Ks →s
G K ′

s. To conclude, it
remains to show that there exists a substitution θ′

that is a solution of C′ and such that K ′
c is the

θ′-concretization of K ′
s.

Let σJ =
⋃

j∈J σj . Let σL =
⋃

l∈L σl where σl =
mgu(t, (us

l θ)αl) for any l ∈ L (σ′
l = αlσl). Let

θ′ = θ ∪ σ where σ = σJ ∪ σL. By hypothesis, we
have that θ is a solution of C. To show that θ′ is
a solution of C′ = C ∧ CJ ∧ CK ∧ CL, it remains to
establish that:

– θ′ is a solution of CJ , i.e. tsθ
′ = us

jθ
′ for any

j ∈ J . We have that tsθ
′ = (tsθ)σ = tσ = t

(since t is ground). Moreover, for any j ∈ J ,
we have that:

(us
jθ

′) = (us
jθ)σ = (us

jθ)σj = ujσj = t

– θ′ is a solution of CK , i.e. θ′ satisfies
∀var(uk) r rvar(C) . ts 6= us

k for any k ∈ K.
This is true since dom(θ) = rvar(C), and
mgu(tsθ, u

s
kθ) = ⊥ for any k ∈ K.

– θ′ is a solution of CL, i.e. tsθ
′ = (us

l αl)θ
′

and [[(Φs
l αl)θ

′]]G = 0 for any l ∈ L. We
have that tsθ

′ = (tsθ)σ = tσ = t and
(us

l αl)θ
′ = ((us

l αl)θ)σl = ((us
l θ)αl)σl = t

(by definition of σl). Moreover we have that
(Φs

l αl)θ
′ = ((Φs

l αl)θ)σl = ((Φs
l θ)αl)σl =

(Φs
l θ)σ′

l. Hence, we have that [[(Φs
l αl)θ

′]]G =
0 for any l ∈ L.

Lastly, it remains to verify that K ′
c is the θ′-

concretization of K ′
s. Indeed, we have that:

– Psθ
′ = (Psθ)σ = Psθ = P ,

– P s
j θ′ = (P s

j θ)σ = (P s
j θ)σj = Pjσj for any

j ∈ J ,

– (Ps
K,L ∪ Q′

s)θ
′ = Qsθ

′ = (Qsθ)σ = Qsθ = Q,

– Ssθ
′ = (Ssθ)σ = Ssθ = S,

– I ′
sθ

′ = (I ′
sθ)σ = I ′

sθ = I ′.

This allows us to conclude. �

Lemma 3 (Soundness) Let G be a graph and M ⊆
Nloc. Let Ks = (Ps;Ss; Is; C) and K ′

s = (P ′
s;S

′
s; I

′
s; C

′)
be two ground symbolic configurations such that
Ks →s

G,M K ′
s. Let θ′ be a solution of C′ and θ be

the restriction of θ′ to rvar(C). Let Kc be the θ-
concretization of Ks. There exists a ground concrete
configuration K ′

c such that Kc →G,M K ′
c, and K ′

c is
the θ′-concretization of K ′

s.

Proof. As taking a transition can only add constraints
to the constraint system C and since θ′ is a solution
of C′, it also satisfies the constraints in C. Furthermore,
θ is the restriction of θ′ to rvar(C), so θ is a solution
of C. Let Kc be the θ-concretization of Ks and K ′

c

be the θ′-concretization of K ′
s. It remains to show that

Kc →G,M K ′
c. We distinguish several cases, depending

on the rule involved in the transition Ks →s
G,M K ′

s.

• Rule Pars. We have that:

Ks = (⌊P s
1 |P

s
2 ⌋n ∪ Qs;Ss; Is; C)

→s
G,M (⌊P s

1 ⌋n ∪ ⌊P s
2 ⌋n ∪Qs;Ss; Is; C) = K ′

s

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:

– K ′
c = (⌊P s

1 θ′⌋n ∪ ⌊P s
2 θ′⌋n ∪Qsθ

′;Ssθ
′; Isθ

′),

– Kc = (⌊P s
1 θ|P s

2 θ⌋n ∪ Qsθ;Ssθ; Isθ).
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Since C′ = C, we have that θ′ = θ, and thus
Kc →G,M K ′

c (by the Par rule).

• Rule Repls. We have that:

Ks = (⌊!Ps⌋n ∪Qs;Ss; Is; C)
→s

G,M (⌊Psαs⌋n ∪ ⌊!Ps⌋n ∪Qs;Ss; Is; C) = K ′
s

where αs is a renaming of the bound variables of Ps

that are not in rvar(C).

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:

– K ′
c = (⌊(Psαs)θ

′⌋n ∪ ⌊!Psθ
′⌋n ∪ Qsθ

′;Ssθ
′; Isθ

′),

– Kc = (⌊!Psθ⌋n ∪ Qsθ;Ssθ; Isθ).

Since C′ = C, we have that θ′ = θ. To show that
Kc →G,M K ′

c (by the Repl rule), it remains to
prove that:

– (Psθ)αs = (Psαs)θ. This equality comes
from the fact dom(θ) ∩ dom(αs) = ∅.

– αs is a renaming of bv(Psθ). This is due to
the fact that αs is renaming of the bound
variables of Ps that are not in rvar(C) and
dom(θ) = rvar(C).

• Rule News. We have that:

Ks = (⌊new m.Ps⌋n ∪ Qs;Ss; Is; C)

→s
G,M (⌊Ps{

m′

/m}⌋n ∪ Qs;Ss; Is; C) = K ′
s

where m′ is a fresh name.

As in the previous cases, we have that K ′
c

(resp. Kc) is the θ′-concretization (resp. θ-
concretization) of K ′

s (resp. Ks). Moreover, since
C′ = C, we have that θ′ = θ. Hence, we have that:

– K ′
c = (⌊((Ps{m′

/m})θ)⌋n ∪ Qsθ;Ssθ; Isθ),

– Kc = (⌊new m.Psθ⌋n ∪Qsθ;Ssθ; Isθ).

As in the previous case, since m′ is a fresh name
and (Psθ){m′

/m} = (Ps{
m′

/m})θ, we have that
Kc →G,M K ′

c (by the New rule).

• Rule Stores. We have that:

Ks = (⌊store(ts).Ps⌋n ∪ Qs;Ss; Is; C)
→s

G,M (⌊Ps⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C) = K ′
s

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:

– Kc = (⌊store(tsθ).(Psθ)⌋n ∪Qsθ;Ssθ; Isθ),

– K ′
c = (⌊Psθ

′⌋n ∪Qsθ
′; ⌊tsθ′⌋n ∪ Ssθ

′; Isθ
′).

Since C′ = C, we have that θ′ = θ, and thus
Kc →G,M K ′

c (by the Store rule).

• Rule Read-Thens. We have that Ks →s
G,M K ′

s,
i.e.:

(⌊read us then Ps else Qs⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C)
→s

G,M (⌊Ps⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C ∧ ts = us)

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:

– K ′
c = (⌊Psθ

′⌋n ∪ Qsθ
′; ⌊tsθ′⌋n ∪ Ssθ

′; Isθ
′),

– Kc = (⌊read usθ then Psθ else Qsθ⌋n ∪
Qsθ; ⌊tsθ⌋n ∪ Ssθ; Isθ).

Since θ′ is a solution of C′, we have tsθ
′ = usθ

′.
Moreover, since θ is the restriction of θ′ to rvar(C),
we have that θ′ = θ∪σ for some substitution σ. We
have that (tsθ)σ = (usθ)σ. Since tsθ is a ground
term, actually we have that σ = mgu(tsθ, usθ).
Hence, we have that:

Kc →G,M (⌊(Psθ)σ⌋n ∪Qsθ; ⌊tsθ⌋n ∪ Ssθ; Isθ)

by the Read-Then rule. Since Ks is a ground
symbolic configuration, we know that

var(Is) ∪ fv(Qs) ∪ var(⌊ts⌋n ∪ Ss) ⊆ dom(θ),

and thus, Kc →G,M K ′
c (by the Read-Then

rule).

• Rule Read-Elses. We have that:

Ks = (⌊read us then Ps else Qs⌋n ∪Qs;Ss; Is; C)
→s

G,M (⌊Qs⌋n ∪Qs;Ss; Is; C ∧ Eq) = K ′
s

Eq = {∀var(us) r rvar(C) . ts 6= us | ⌊ts⌋n ∈ Ss}.

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:

– Kc = (⌊read usθ then Psθ else Qsθ⌋n ∪
Qsθ;Ssθ; Isθ),

– K ′
c = (⌊Qsθ

′⌋n ∪ Qsθ
′;Ssθ

′; Isθ
′).

Since rvar(C′) = rvar(C), we have that θ′ = θ.
Moreover, since θ is a solution of C′, we have that
usθ is not unifiable with tsθ for any ⌊ts⌋n ∈ Ss. In
other words, mgu(usθ, t) = ⊥ for any t such that
⌊t⌋n ∈ Ssθ. Hence, we have that Kc →G,M K ′

c by
the Read-Else rule.

• Rule If-Thens. We have that:

Ks = (⌊if Φs then Ps else Qs⌋n ∪ Qs;Ss; Is; C)
→s

G,M (⌊Ps⌋n ∪ Qs;Ss; Is; C ∧ Φs) = K ′
s

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:
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– Kc = (⌊if Φsθ then Psθ else Qsθ⌋n ∪
Qsθ;Ssθ; Isθ),

– K ′
c = (⌊Psθ⌋n ∪ Qsθ;Ssθ; Isθ).

Since rvar(C′) = rvar(C), we have that θ′ = θ.
Moreover, since θ is a solution of C′, we have that
[[Φsθ]] = 1. Hence, we have that Kc →G,M K ′

c by
the If-Then rule.

• Rule If-Elses. This case is similar to the previous
one.

• Rule Ins. We have that:

Ks = (⌊in us[Φs].Ps⌋n ∪ Qs;Ss; Is; C)
→s

G,M (⌊Ps⌋n ∪ Qs;Ss; Is; C′) = K ′
s

where C′ = C ∧ Is  us ∧ Φs and (nI , n) ∈ E for
some nI ∈ M.

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:

– Kc = (⌊in usθ[Φsθ].Psθ⌋n ∪ Qsθ;Ssθ; Isθ),

– K ′
c = (⌊Psθ

′⌋n ∪Qsθ
′;Ssθ

′; Isθ
′).

Since θ′ is a solution of C′, we have that Isθ
′ ⊢ usθ

′

and [[Φsθ
′]]G = 1. Moreover, we know that there

exists a substitution σ such that θ′ = θ ∪ σ with
dom(σ) = var(usθ). We have that usθ

′ is a ground
term, and thus mgu(usθ

′, usθ) = σ.

Lastly, since Ks is a ground symbolic configura-
tion, we have that fv(Qs) ∪ var(Ss) ∪ var(Is) ⊆
dom(θ), and thus Qsθ

′ = Qsθ, Ssθ
′ = Ssθ, and

Isθ
′ = Isθ. Hence, we have that Kc →G,M K ′

c by
the In rule.

• Rule Comms. We have that Ks →s
G,M K ′

s, i.e.:

(Ps
I ∪ ⌊out(ts).Ps⌋n ∪ Qs;Ss; Is; C)

→s
G,M (Ps

J ∪ Ps
K,L ∪ ⌊Ps⌋n ∪ Qs;Ss; I ′

s; C
′)

where:

– Ps
I = {⌊in us

i [Φ
s
i ].P

s
i ⌋ni

| i ∈ I},

– I = J ⊎ K ⊎ L,

– Ps
J = {⌊P s

j ⌋nj
| j ∈ J},

– Ps
K,L = {⌊in uk[Φs

k].P s
k ⌋nk

| k ∈ K ⊎ L},

– C′ = C ∧ CJ ∧ CK ∧ CL,

– CJ = {ts = us
j ∧ Φs

j | j ∈ J},

– CK = {∀y ∈ var(us
k) r rvar(C) . ts 6= us

k | k ∈
K},

– CL = {ts = us
l αl ∧ ¬Φs

l αl | l ∈ L} where αl

is a renaming of var(us
l ) r rvar(C) by fresh

variables.

– I ′
s = Is∪{ts} if (n, nI) ∈ E for some nI ∈ M

and I ′
s = Is otherwise.

Moreover, ⌊Qs⌋n′ ∈ Qs implies that (n, n′) /∈ E or
Qs is not of the form in u′

s[Φ
′
s].Q

′
s. We have also

that (ni, n) ∈ E for every i ∈ I.

Since K ′
c (resp. Kc) is the θ′-concretization (resp.

θ-concretization) of K ′
s (resp. Ks), we have that:

– Kc = (Ps
I θ∪⌊out(tsθ).Psθ⌋n∪Qsθ;Ssθ; Isθ),

– K ′
c = (Ps

Jθ′ ∪ Ps
K,Lθ′ ∪ ⌊Psθ

′⌋n ∪
Qsθ

′;Ssθ
′; I ′

sθ
′).

To conclude, it remains to show that Kc →G,M

K ′
c. First, by using the fact that Ks is a ground

symbolic configuration, we have that:

– Ssθ
′ = Ssθ,

– if (n, nI) ∈ E for some nI ∈ M then I ′
sθ

′ =
Isθ

′ ∪ {tsθ′} = Isθ ∪ {tsθ}. Otherwise, we
have that I ′

sθ
′ = Isθ.

– Psθ
′ = Psθ, Qsθ

′ = Qsθ, and Ps
K,Lθ′ =

Ps
K,Lθ (thanks to the renaming αl).

Note also that the processes in Qsθ are not of the
right form to evolve by receiving a message from
the node n. Thus, to show that Kc →G K ′

c, it
remains to prove that J = J ′ where

J ′ =







⌊in us
i [Φ

s
i ].P

s
i ⌋ni

∈ Ps
I ,

i σj = mgu(tθ, us
iθ) exists ,

(n, ni) ∈ E, [[(Φs
i θ)σi]]G = 1







.

We prove the two inclusions separately. Let σ be
the substitution such that θ′ = θ ∪ σ. For any
i ∈ J , we denote by σi the restriction of σ to the
variables var(us

i ), whereas for any i ∈ L, σi is the
restriction of σ to the variables var(us

iαi). Lastly,
dom(σi) = ∅ when i ∈ K. Hence, we have that
σ =

⋃

i∈I σi.

First, we show that J ⊆ J ′. Let i ∈ J . We know
that ⌊in us

i [Φ
s
i ].P

s
i ⌋ni

∈ Ps
I , (n, ni) ∈ E, and since

θ′ is a solution of C′, we have that tθ′ = us
i θ

′ and
[[Φs

i θ
′]]G = 1. Since tθ′ = us

i θ
′ and θ is the re-

striction of θ on the variables rvar(C), we deduce
that σi = mgu(tθ, us

iθ) exists. Since tθ is a ground
term, we have that σi = σi. Lastly, we have that
Φs

i θ
′ = (Φs

i θ)σ = (Φs
i θ)σi = (Φs

iθ)σi. This allows
us to conclude that i ∈ J ′.

Now, we show that J ′ ⊆ J . Let i ∈ J ′. By def-
inition of J ′, we know that ⌊in us

i [Φ
s
i ].P

s
i ⌋ni

∈
Ps

I , (n, ni) ∈ E, σi = mgu(tθ, us
iθ) exists, and

[[(Φs
i θ)σi]]G = 1. Hence, we have that i ∈ I. In or-

der to conclude that i ∈ J , it is sufficient to show
that i 6∈ K and i 6∈ L.
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1. i 6∈ K. By contradiction, assume that i ∈ K.
Since θ′ is a solution of C′, we have that
θ′ satisfies the constraint ∀y ∈ var(us

i ) r

rvar(C) . ts 6= us
i . This implies that tsθ and

us
i θ are not unifiable This is impossible since

we know that σi = mgu(tθ, us
iθ) exists. Con-

tradiction. Hence, we deduce that i 6∈ K.

2. i 6∈ L. By contradiction, assume that i ∈ L.
Since θ′ is a solution of C′, we have that t =
(us

iαi)θ
′ and [[(Φs

i αi)θ
′]]G = 0. Actually, we

have that:

(us
iαi)θ

′ = ((us
iαi)θ)σi = ((us

iθ)αi)σi.

Hence, we have that σi = αiσi. We have also
that:

(Φs
i αi)θ

′ = ((Φs
iαi)θ)σi = ((Φs

iθ)αi)σi.

We deduce that [[(Φs
i θ)σi]]G = 0. Contradic-

tion. Hence, we have that i 6∈ L.

This allows us to conclude. �

The symbolic transition system is complete and
sound with respect to the concrete transition system.

Proposition 1 Let G be a graph and M ⊆ Nloc. Let
K = (P[ ];S; I) be a ground concrete configuration
with a hole, and Φ be a formula. There is an M-attack
on K and Φ for graph G if, and only if,

(P[if Φ then out(error)];S; I; ∅)
→s∗

G,M (⌊out(u)⌋n ∪ Ps;Ss; Is; C)

and the constraint system C ∧ u = error has a solution.

Proof. First, let us suppose that there is an attack
on K and Φ for graph G. By definition of an attack,
there exists a concrete configuration K ′ such that:

• K ′ is of the form (⌊out(error)⌋n ∪ P ′;S ′; I ′), and

• K →∗
G K ′.

By applying Lemma 1 recursively, we deduce that
there exists a ground symbolic configuration K ′

s and a
substitution θ′ such that:

• (P[if Φ then out(error) else 0];S; I; ∅) →s∗
G K ′

s, and

• K ′ is the θ′-concretization of Ks.

Consequently, K ′
s is of the form (⌊out(u)⌋n ∪

P ′
s;S

′
s; I

′
s; C

′), θ′ is a solution of C′, and uθ′ = error.
Hence we have that θ′ is a solution of C′ ∧ u = error.
This allows us to conclude.

Conversely, assume that

Ks = (P[if Φ then out(error) else 0];S; I; ∅)
→s∗

G (⌊out(u)⌋n ∪ Ps;Ss; Is; C) = K ′
s

and the constraint system C ∧ u = error has a solu-
tion. Let θ′ be a solution of C ∧ u = error. Note that,
since K ′

s is a ground symbolic configuration (thanks to
Lemma 7), we have that var(u) ⊆ rvar(C). Hence, we
have that θ′ is a solution of C and uθ′ = error.

First note that Ks is a ground sym-
bolic configuration whose concretization is
K = (P[if Φ then out(error) else 0];S; I). Thanks to
Lemma 7, we know that the symbolic configurations
involved in this derivation are ground.

Hence, by applying recursively Lemma 3, we know
that there exists a ground concrete configuration K ′

such that:

• K →∗
G K ′, and

• K ′ is the θ′-concretization of K ′
s.

Moreover, since uθ′ = error, we easily deduce that
K ′ = (⌊out(error)⌋n ∪ Psθ

′;Ssθ
′; Isθ

′). Hence, there
is an attack on K and Φ for graph G. �

B Proofs of Section 4.1

It has been shown in [11] that the existence of a so-
lution of a constraint system (with only deduction con-
straints) can be reduced to the existence of a solution
of a solved constraint system, where right-hand-sides
of the constraints are variables only.

We extend in Theorem 3 this result to our notion of
constraint system and for an intruder knowledge with
an infinite number of names. We use the simplification
rules in Figure 4.

B.1 Some Preliminaries

Let C be a constraint system and I be a possible
infinite set of names. We want to apply the simplifica-

tion rules to C
I
. We show that it is enough to apply

the simplification rules to C and add I in the left-hand
side of each constraint of C. This will give us an NP
decision procedure.

Lemma 8 Let T be a set of terms, u be a term and E
be a set of constants such that St(T ∪ {u}) ∩ E = ∅.
We consider an inference system where no constant
of E appears in the rules, and side conditions are pre-
served by arbitrary substitution of the constants of E.
If T ∪ E ⊢ u, and T contains at least one constant,
then T ⊢ u.
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Proof. Let π be a proof of T ∪ E ⊢ u, and a be a
constant in T . Let δ be the operation replacing all
constants of E by a. The operation δ is extended to
terms, proofs and substitutions in the obvious way. We
show that πδ is a proof of T ⊢ uδ. We reason by
induction on π.

• If π is the application of the axiom rule, then u ∈
T ∪E. Either u ∈ T , or u ∈ E. In the latter case,
uδ = a, and a ∈ T . Otherwise, u ∈ St(T ), thus
uδ = u. Consequently, in both cases, uδ ∈ T , so
πδ is a proof of T ⊢ uδ.

• Suppose that the last inference rule R applied in π
is of the form

T ∪ E ⊢ v1 . . . T ∪ E ⊢ vn

T ∪ E ⊢ v
s

There exists θ such that u = vθ, and [[sθ]] = 1. We
have that πi is proof of T∪E ⊢ viθ = ui for 1 ≤ i ≤
n. We can apply the induction hypothesis on each
proof πi. Hence, we have that πiδ is a proof of T ⊢
uiδ. Now we apply the inference rule R to T ⊢ u1δ,
. . . , T ⊢ unδ. For this, we have to show that there
exists a substitution θ′ such that viθ

′ = (viθ)δ for
each i ∈ {1, . . . , n}. As the inference rules do not
contain any constant of E, we have that (viθ)δ =
vi(θδ) and thus such a substitution θ′ exists. It is
sufficient to choose θ′ = θδ. To conclude, we only
have to check the side condition, i.e. to check that
[[sθ′]] = 1. We consider an inference system where
side conditions are preserved by substituting the
constants of E. We easily deduce that [[sθ′]] = 1
from the fact that [[sθ]] = 1. Hence, we can apply
the rule R, obtaining a proof πδ of T ⊢ vθ′, i.e. a
proof of T ⊢ uδ since vθ′ = v(θδ) = (vθ)δ = uδ.

By induction, we have shown that if T ∪ E ⊢ u, then
T ⊢ uδ. If St(u) ∩ E = ∅, then uδ = u. Consequently,
if T ∪ E ⊢ u with St(u) ∩ E = ∅, then T ⊢ u. �

Remark: Lemma 8 holds in particular for the infer-
ence system given in Figure 1. Hence, Lemma 3 is a
corollary of Lemma 8.

Lemma 9 Let (C, I) be a special constraint system.

If C
R
 σ C′ then C

I R
 σ C′

I
, and (C′, I) is a special

constraint system.

Proof. We reason by case study over R, the simplifica-

tion rule used in C
R
 σ C′.

• If C′ is obtained by applying R1, then C = C′∧T 
u and T ∪ {x | (T ′

 x) ∈ C, T ′ ( T} ⊢ u.

Consequently, C
I

= C′
I
∧T ∪I  u. Furthermore,

{x | (T ′
 x) ∈ C

I
, T ′ ( T ∪ I}

= {x | (T ′
 x) ∈ C, T ′ ( T}.

Hence we have that

T ∪ I ∪ {x | (T ′
 x) ∈ C

I
, T ′ ( T ∪ I} ⊢ u.

So we can apply the simplification rule R1 to C
I
,

and C
I R1

 σ C′
I
.

Furthermore, St(C′) ⊆ St(C), hence St(C′)∩I = ∅,
since (C, I) is a special constraint system. Thus,
(C′, I) is a special constraint system.

• If C′ is obtained by applying R2, then
C = C0 ∧ T  u, C′ = C0σ ∧ Tσ  uσ,
where σ = mgu(t, v), t ∈ St(T ), v ∈ St(u), t 6= v,
t, v not variables.

In that case, C
I

= C0
I
∧ T ∪ I  u, we can thus

apply simplification rule R2 to C
I
, and

C
I R2

 σ C0
I
σ ∧ (T ∪ I)σ  uσ = C′

I

Furthermore, to show that (C′, I) is a special con-
straint system, it remains to show that St(Cσ) ∩
I = ∅. As St(C) ∩ I = ∅, for every x ∈ dom(σ),
St(xσ)∩I = ∅. So St(Cσ)∩I = ∅, i.e. St(C′)∩I =
∅.

• C′ is obtained by applying R3. This case is similar
to the previous one.

• If C′ is obtained by applying some rule Rf , then
C = C0 ∧T  f(u, v), and C′ = C0 ∧T  u∧T  v.

In that case, C
I

= C0
I
∧ T ∪ I  f(u, v), we can

apply rule Rf , and

C
I Rf

 σ C0
I
∧ T ∪ I  u ∧ T ∪ I  v.

Furthermore, St(C′) ⊆ St(C), hence St(C′)∩I = ∅,
since (C, I) is a special constraint system. Thus,
(C′, I) is a special constraint system.

• If C′ is obtained by applying rule R4, then
C′ = ⊥, C = C0 ∧ T  u, var(T, u) = ∅ and T 6⊢ u.

Consequently, C
I

= C0
I
∧T ∪I  u. Furthermore,

var(T ∪I, u) = var(I)∪var(T, u) = ∅ because I is
a set of names. Thanks to Lemma 3, we also have
that T ∪I 6⊢ u, because St(T, u)∩I = ∅ (as (C, I)
is a special constraint system). So we can apply

Rule R4: C
I R4

 ⊥ = ⊥
I

and (⊥, I) is a special
constraint system.

�
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Lemma 10 Let (C, I) be a special constraint system

such that C
I R
 σ C′

s, then there exists C′ such that

C′
s = C′

I
and C

R
 σ C′, furthermore (C′, I) is a spe-

cial constraint system.

Proof. We reason by case study over the simplification

rule R used in C
I R
 σ C′

s.

• If C′
s is obtained by applying R1, then

C
I

= C′
s ∧ T  u and T ∪ {x | (T ′

 x) ∈ C
I
, T ′ (

T} ⊢ u.

By definition of C
I
, we deduce that there exists

C′ such that C = C′ ∧ T ′
 u, with C′

I
= C′

s, and
T = T ′ ∪ I. Furthermore,

{x | (T ′
 x) ∈ C

I
, T ′ ( T ∪ I}

= {x | (T ′
 x) ∈ C, T ′ ( T}.

Consequently, we have that

T ′ ∪ I ∪ {x | (T ′
 x) ∈ C, T ′ ( T} ⊢ u.

As (C, I) is a special constraint system, we have
that St(C) ∩ I = ∅, so we can apply Lemma 3, we
obtain that

T ′ ∪ {x | (T ′
 x) ∈ C, T ′ ( T} ⊢ u.

Consequently, we can apply rule R1 to C: C
R1

 C′.

Furthermore, St(C′) ⊆ St(C), hence St(C′)∩I = ∅,
since (C, I) is a special constraint system. Thus,
(C′, I) is a special constraint system.

• If C′
s is obtained by applying R2, then

C
I

= C0
I
∧ T ∪ I  u, C′

s = C0
I
σ ∧ Tσ ∪ I  uσ,

where σ = mgu(t, v), t ∈ St(T ∪ I), v ∈ St(u),
t 6= v, t, v not variables.

In that case, C = C0 ∧ T  u. We only need to
show that t ∈ St(T ) to apply simplification rule R2

to C with substitution σ. It is sufficient to show
that t /∈ St(I) = I. By contradiction, suppose
that t ∈ I. We know that tσ = vσ. If t ∈ I,
tσ = t ∈ I. But v ∈ St(C), so St(v) ∩ I = ∅. If
vσ ∈ I, as I is a set of names, this implies that v
is a variable, which yields a contradiction.

Consequently, t ∈ St(T ), and we can apply sim-
plification rule R2 to C:

C
R2

 σ C0σ ∧ Tσ  uσ = C′

Furthermore, to show that (C′, I) is a special con-
straint system, it remains to show that St(Cσ) ∩
I = ∅. As St(C) ∩ I = ∅, for every x ∈
dom(σ), St(xσ) ∩ I = ∅. So St(Cσ) ∩ I = ∅, i.e.
St(C′) ∩ I = ∅.

• If C′
s is obtained by applying R3, then

C
I

= C0
I
∧ T ∪ I  u, C′

s = C0
I
σ ∧ Tσ ∪ I  uσ,

where σ = mgu(t1, t2), t1, t2 ∈ St(T ∪ I), t1 6= t2,
t1, t2 not variables.

In that case, C = C0 ∧ T  u. We only need to
show that t1, t2 ∈ St(T ) to apply simplification
rule R3 to C with substitution σ. It is sufficient to
show that t1, t2 /∈ St(I) = I. By contradiction,
suppose that t1 ∈ I (the same reasoning holds for
t2 ∈ I by symmetry). We know that t1σ = t2σ.
If t2 ∈ I, t2σ = t2 ∈ I. So t1 = t2, which is false.
So t2 /∈ I. In that case, as t2σ ∈ I, as I is a set
of names, this implies that t2 is a variable, which
yields a contradiction.

Consequently, t1, t2 ∈ St(T ), and we can apply
simplification rule R3 to C:

C
R3

 σ C0σ ∧ Tσ  uσ = C′

Furthermore, to show that (C′, I) is a special
constraint system, it is sufficient to show that
St(Cσ) ∩ I = ∅. As St(C) ∩ I = ∅, for every
x ∈ dom(σ), St(xσ) ∩ I = ∅. So St(Cσ) ∩ I = ∅,
i.e. St(C′) ∩ I = ∅.

• If C′
s is obtained by applying some rule Rf , then

C
I

= C0∧T  f(u, v), and C′
s = C0∧T  u∧T  v.

By definition of C
I
, there exists C1, T

′ such that

C0 = C1
I
, T = T ′ ∪ I and C = C1 ∧ T ′

 f(u, v).
Consequently, we can apply the same simplifica-
tion rule Rf :

C
Rf

 σ C1 ∧ T ′
 u ∧ T ′

 v = C′. Furthermore,

C′
I

= C1
I
∧ T ′ ∪ I  u ∧ T ′ ∪ I  v = C0 ∧ T 

u ∧ T  v = C′
s

Furthermore, St(C′) ⊆ St(C), hence St(C′)∩I = ∅,
since (C, I) is a special constraint system. Thus,
(C′, I) is a special constraint system.

• If C′
s is obtained by applying rule R4, then

C′
s = ⊥, C

I
= C0∧T  u, var(T, u) = ∅ and T 6⊢ u.

By definition of C
I
, there exists C1, T

′ such that

C0 = C1
I
, T = T ′ ∪ I and C = C1 ∧ T ′

 u.
var(T ′, u) = var(T, u) = ∅, and, as T = T ′ ∪ I
and T 6⊢ u, we have that T ′ 6⊢ u. Consequently, we

can apply to C the simplification rule R4: C
R4

 ⊥.
We have that (⊥, I) is a special constraint system,

and ⊥
I

= ⊥.

B.2 Proof of Theorem 3

The following theorem shows that when solving a
special constraint system (C, I0), it is sufficient to apply
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the transformation rules to C.

Theorem 3 Let (C0, I0) be a special constraint sys-
tem, Φ a set of formulas and disequality constraints,
and θ be a substitution.

1. (Correctness) If C0  
∗
σ C′ by a derivation in S

for some C′ and some substitution σ, and if θ is a
solution for Φσ and (C′, I0), then σθ is a solution
for Φ and (C0, I0).

2. (Completeness) If θ is a solution for
(C0, I0) and Φ, then there exists a deduction
constraint system C′ in solved form and sub-
stitutions σ, θ′ such that θ = σθ′, C0  

∗
σ C′

by a derivation in S, and θ′ is a solution for
(C′, I0) and Φσ.

3. (Termination) If C0  
n
σ C′ by a derivation in S

for some deduction constraint system C′ and some
substitution σ, then n is polynomially bounded in
the size of C0.

Proof. We show the three items separately.
Correctness. If C0  

∗
σ C′, then by applying Lemma 9

inductively, we get that C0
I0

 
∗
σ C′

I0

. Thanks to The-
orem 4.3 in [11], we deduce that σθ is an attack for Φ

and C0
I0

.

Completeness. θ is a solution for C0
I0

and Φ. By ap-
plying Theorem 4.3 in [11], there exists a constraint
system Cs in solved form and substitutions σ, θ′ such

that θ = σθ′, C0
I0

 
∗
σ Cs by a derivation in S, and θ′ is

a solution for C′ and Φσ. By applying Lemma 10 recur-

sively, we get that there exists C′ such that Cs = C′
I0

,
and C  ∗

σ C′. Furthermore, C′ is in solved form, since

C′
I0

is in solved form. We know that the series of rules
applied in the derivation C  ∗

σ C′ is the same as in

derivation C0
I0

 
∗
σ Cs. Moreover, the right hand sides

of the constraints in C
I0

and C are the same for any C.
Hence, we have that the derivation C  ∗

σ C′ is in S.

Termination. The strategy yields derivations of poly-
nomial length (see Section 4.7 in [11]).

C Decidability

We restrict ourselves to finite ground processes with-
out replication.

C.1 Preliminary results

Lemma 11 Let ∀Y.u 6= v be a disequality constraint.
Let σ be a substitution with dom(σ) ⊆ Y and such that

uσ = vσ. Then for every ground substitution θ with
dom(θ)∩ Y = ∅, we have that uθ and vθ are unifiable.
In other words, the constraint is not satisfiable.

Proof. Let θ be a ground substitution such that
dom(θ) ∩ Y = ∅. In order to conclude, we have to
show that uθ and vθ are unifiable. Let τ = θ ◦ σ. We
have that:

• (uθ)τ = ((uθ)σ)θ = (uσ)θ, and

• (vθ)τ = ((vθ)σ)θ = (vσ)θ.

By hypothesis, we have that uσ = vσ. Hence, we eas-
ily conclude that (uθ)τ = (vθ)τ , i.e. uθ and vθ are
unifiable. �

Let u be a term. We denote by |u| the size of u (i.e.
number of non variable symbols in u) and by |u|d the
maximal depth of a variable in u. Let S be a set, we
denote by #S the cardinal of S.

Lemma 12 Let T be a set of terms and P be a set of
equations between terms in T with σ = mgu(P ). For
every variable x, we have that

|xσ|d ≤ #dom(σ) · max{|t|d | t ∈ T}.

Proof. We use the rules for dag syntactic unification
given in Figure 5. Applying these rules on P results in
a most general unifier of P in dag solved form (see [17]):

σ = {x1 = t1, . . . , xn = tn}.

By definition of a dag solved form, we have that:

• xi 6= xj for all 1 ≤ i < j ≤ n,

• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.

Hence, we have that |xσ|d < |t1|d + . . . + |tn|d.
Furthermore, by inspection of the rules, we can

see that each ti is a subterm (modulo a non-bijective
renaming of the variables) of T . Hence, for every
1 ≤ i ≤ n, we have that |ti|d ≤ max{|t|d | t ∈ T}.
Since n = dom(σ), we deduce that |xσ|d < #dom(σ) ·
max{|t|d | t ∈ T}. �

Lemma 13 Let P and P ′ be two sets of equations and
σ, σ′ be two substitutions such that σ = mgu(P ) and
σ′ = mgu(P ′σ). We have that σ′ ◦ σ = mgu(P ∪ P ′).

Proof. First, it is easy to check that σ′ ◦σ is indeed an
unifier of P and P ′.

Now, let µ be an unifier of P ∪ P ′. In order to
conclude that σ′ ◦ σ is a most general unifier, we show
that there exists µ′ such that σ′ ◦ σ = µ′ ◦ µ.
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Delete P ∪ {s = s} =⇒ P

Dec. P ∪ {f(s1, . . . , sn) = f(t1, . . . , tn)}
=⇒ P ∪ {s1 = t1, . . . , sn = tn}

Conf. P ∪ {f(s1, . . . , sn) = g(t1, . . . , tk)} =⇒ ⊥
if f 6= g

Coal. P ∪ {x = y} =⇒ P{x 7→ y} ∪ {x = y}
if x, y ∈ var(P ) and x 6= y

Check P ∪ {x1 = s1[x2], . . . , xn = sn[x1]} =⇒ ⊥
if si /∈ X for some i ∈ [1 . . . n]

Merge P ∪ {x = s, x = t} =⇒ P ∪ {x = s, s = t}
if 0 < |s| ≤ |t|

Figure 5. Rules for dag syntactic unification

• Since σ = mgu(P ), there exists τ such that µ =
τ ◦ σ. Note also that τ is a unifier of P ′σ

• Since σ′ = mgu(P ′σ), there exists τ ′′ such that
τ = τ ′′ ◦ σ′.

We have that µ = τ ◦ σ = (τ ′′ ◦ σ′) ◦ σ = τ ′′ ◦ (σ′ ◦ σ).
This allows us to conclude that σ′ ◦σ is a most general
unifier. �

Lemma 14 Let T be a set of terms and P be a set of
equations between terms in St(T ) with σ = mgu(P ).
We have that St(Tσ) ⊆ {tσ | t ∈ St(T )}.

Proof. We use the rules for dag syntactic unification
given in Figure 5. Applying these rules on P results in
a set of equations P ′ = {x1 = t1, . . . , xn = tn} in dag
solved form (see [17]). By definition of a dag solved
form, we have that:

• xi 6= xj for all 1 ≤ i < j ≤ n,

• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.

Let σ = {x1 7→ t1, . . . , xn 7→ tn}. By inspection of
the rules in Figure 5, we can show by induction on the
length of the derivation from P to P ′ that St(P ′)σ ⊆
St(P )σ. Since St(P ) ⊆ St(T ), we easily deduce that
St(ti)σ ⊆ St(T )σ for every 1 ≤ i ≤ n.

Let u ∈ St(Tσ), we show that there exists t ∈ St(T )
such that u = tσ. Either there exists v a subterm of T
such that u = vσ, and we conclude, or there exists
xi ∈ dom(σ) such that u is a subterm of xiσ. In that
case, let i0 = max{i | u ∈ St(xiσ)}.

• Either u ∈ St(ti0)σ ⊆ St(T )σ, and we conclude.

• Or u ∈ St(xσ) for some x ∈ var(ti0) ∩ dom(σ).
By definition of a dag solved form, we have that
var(ti0) ∩ dom(σ) ⊆ {xi0+1, . . . , xn}. Hence, we
have that u ∈ St(xjσ) for some j > i0. This yields
to a contradiction. �

Lemma 4 Let (C, I) be a special constraint system in
solved form, Φ1 be a formula of Lroute, Φ2 be a set of
disequality constraints, and G be a graph. Consider σ
a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G. There is a
solution σ′ of (C, I) ∧ Φ1 ∧ Φ2 for graph G such that:

• xσ′ = xσ for every variable x of sort loc or lists;

• xσ′ ∈ I otherwise.

Proof. Since (C, I) is a special constraint system in
solved form, we have that

C = T1  x1 ∧ . . . Tn  xn

where x1, . . . , xn are distinct variables and var((C, I)∧
Φ1 ∧ Φ2) = {x1, . . . , xn} = rvar(C). We show
the result by induction on µ(σ) = #{x ∈
rvar(C) | x is not of sort loc or lists and xσ /∈ I}.

Base case: µ(σ) = 0. In such a case, since rvar(C)
contains all the variables that occur in the constraint
system, we easily conclude. The substitution σ is al-
ready of the right form.

Induction step: µ(σ) > 0. Let i0 be the maximal index
1 ≤ i0 ≤ n such that xi0σ 6∈ I and let a be a name in I
that does not occur elsewhere. Let σ′ = τ ∪ {xi0 7→ a}
where τ = σ|X with X = dom(σ) r {xi0}. Clearly,
we have that µ(σ′) ≤ µ(σ). In order to conclude, it
remains to show that σ′ is a solution of (C, I)∧Φ1∧Φ2.

1. We show that σ′ is a solution of (C, I). For every
i < i0, since σ is a solution of (C, I), we have that
Tiσ ∪ I ⊢ xiσ. Since xi0 does not occur in this
constraint, we also have that Tiσ

′ ∪ I ⊢ xiσ
′.

Since a ∈ I, we have that Ti0σ
′ ∪ I ⊢ xi0σ

′.

For every i > i0, according to the definition of i0,
either xi /∈ Xt, or xiσ ∈ I. In the first case, as
for every term t of sort loc or lists, Nloc ⊢ t, we
have that Nloc ⊢ xiσ. In the second case, I ⊢ xiσ.
Hence, in both cases, we have that Tiσ

′∪I ⊢ xiσ
′.

2. We show that σ′ is a solution of Φ1. All the
variables appearing in Φ1 are of type loc or lists.
Hence, we have that Φ1σ = Φ1σ

′. This allows us
to conclude.

3. Lastly, we show that σ′ is a solution of Φ2. Let
∀Y.u 6= v be a disequality constraint in Φ2. As-
sume w.l.o.g. that dom(σ) ∩ Y = ∅. Since σ is
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a solution of ∀Y.u 6= v, we know that uσ and vσ
are not unifiable. If uσ′ and vσ′ are not unifiable,
we easily conclude. Otherwise, the means that uτ
and vτ are unifiable. Let θ = mgu(uτ, vτ ). We
distinguish 3 cases:

Case 1: x 6∈ dom(θ), i.e. dom(θ) ⊆ Y . In such a
case, we have that:

(uσ)θ = ((uτ ){x 7→ xσ})θ = (uτθ){x 7→ xσ}
(vσ)θ = ((vτ ){x 7→ xσ})θ = (vτθ){x 7→ xσ}.

Hence, we deduce that uσ and vσ are unifiable,
and we obtain a contradiction.

Case 2: x ∈ dom(θ) and xθ = y ∈ Y . Again, we
have that:

(uσ)θ = ((uτ ){x 7→ xσ})θ = (uτθ){y 7→ xσ}
(vσ)θ = ((vτ ){x 7→ xσ})θ = (vτθ){y 7→ xσ}.

Hence, we deduce that uσ and vσ are unifiable,
and we obtain a contradiction.

Case 3: x ∈ dom(θ) and xθ 6∈ Y . Assume by
contradiction that there exists a substitution θ′

such that uσ′θ′ = vσ′θ′ (i.e. σ′ does not satisfy
∀Y.u 6= v). In such a case, we have that:

(uσ′)θ′ = ((uτ ){x 7→ a})θ′ = ((uτ )θ′){x 7→ a}
(vσ′)θ′ = ((vτ ){x 7→ a})θ′ = ((vτ )θ′){x 7→ a}

Since a is fresh, we deduce that (uτ )θ′ = (vτ )θ′,
and thus we have that ((uτ )θ′){x 7→ xσ} =
((vτ )θ′){x 7→ xσ}, i.e. uσθ′ = vσθ′. This con-
tradicts the fact that uσ and vσ are not unifiable.

Hence, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2. �

Lemma 15 Let G be a graph, (C, I) be a special con-
straint system, Φ1 be a formula of Lroute, and Φ2 be
a set of disequality constraints. Let σ be a solution of
(C, I)∧Φ1 ∧Φ2 for G and G′ be a graph that coincides
with G on N ′

loc where N ′
loc represents the names in Nloc

that occur in C, Φ1, Φ2, and σ. Then σ is a solution
of (C, I) ∧ Φ1 ∧ Φ2 for G′.

Proof. We show that σ satisfies each constraint in
(C, I)∧Φ1∧Φ2 when the underlying graph is G′. First,
not that σ trivially satisfies the deduction constraints,
the disequality constraints and the loop constraints.

In order to conclude, we have to check that this re-
sult also holds for the remaining constraints in Φ1. Let
G = (V, E) and G′ = (V ′, E′).

• [[check(aσ, bσ)]]G = 1 if, and only if, (aσ, bσ) ∈ E
with aσ and bσ of sort loc. Hence, we have
that [[check(aσ, bσ)]]G = 1 if, and only if,
[[check(aσ, bσ)]]G′ = 1.

• [[checkl(cσ, lσ)]]G = 1 if, and only if, cσ is of sort
loc, lσ is of sort lists, cσ appears exactly once in lσ,
and for any l′ sub-list of lσ,

– if l′ = a :: cσ :: l1, then (a, cσ) ∈ E.

– if l′ = cσ :: b :: l1, then (b, cσ) ∈ E.

As in the previous case, we easily conclude
that [[checkl(cσ, lσ)]]G = 1 if, and only if,
[[checkl(cσ, lσ)]]G′ = 1.

• [[route(lσ)]]G = 1 if, and only if, lσ is of sort lists,
lσ = a1 :: . . . :: an, for every 1 ≤ i < n, (ai, ai+1) ∈
E, and for every 1 ≤ i, j ≤ n, i 6= j implies that
ai 6= aj . As in the previous case, (ai, ai+1) ∈ E if,
and only if, (ai, ai+1) ∈ E′. Hence, [[route(lσ)]]G =
1 if, and only if, [[route(lσ)]]G′ = 1.

Hence, σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′. �

Definition 5 An extracted list from l = [a1, . . . , an] is
a list [ai1 , . . . , aik

] such that 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n
with 0 ≤ k ≤ n.

We denote by names(t) the set of names occurring
in a term t. This notation is extended as expected to
sets of terms, substitutions, . . .

Lemma 5 Let (C, I) be a special constraint system in
solved form, Φ1 be a conjunction of atomic formulas of
Lroute, Φ2 be a set of disequality constraints. If there
is a solution of (C, I) ∧ Φ1 ∧ Φ2 for the graph G, then
there exists a graph G′ and a substitution σ such that
σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′, and σ is
polynomially bounded in the size of C, Φ1 and Φ2.

Proof. We write G = (VG, EG), Φ2 =
∧

n

∀Yn.un 6= vn,

Φ1 =
∧

i

±i check(ai, bi) ∧
∧

j

pj
∧

k

±jk
checkl(cjk

, lj) ∧
∧

l

±l route(rl) ∧
∧

h

±h loop(ph)

with ± ∈ {+,−}, ai, bi, cjk
are of sort loc, lj , rl, ph are

terms of type lists, un, vn are terms and Yn are sets of
variables.

Let N be the maximal depth of a variable in the
disequality constraints, k be the maximal number of
variables in a disequality constraint, C be the num-
ber of constraints ±checkl in Φ1, L be the number of
constraints loop in Φ1, R be the number of constraints
¬route in Φ1, and M = 2 × (kN + 3C + L + R + 2).

We are going to show that there exists a solution σ
where for all variables x of sort lists, |xσ| ≤ M .

Consider σ a solution of (C, I) ∧ Φ1 ∧ Φ2 for G. If
for all variables x of sort lists, xσ is of length at most
M , the result is true.
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Else, there exists a variable xℓ of sort lists such that
|xℓσ| > M . We extend the graph G with a set of
fresh nodes that are neighbors of all the other nodes.
These nodes are called ubiquitous. Formally, let Vubiq

be a set of M/2 fresh names of I such that Vubiq ∩
names(C, Φ1, Φ2, σ) = ∅. Let E′ = EG ∪ {(a, b)| a ∈
EG ∪ Vubiq, b ∈ Vubiq}, and G′ = (VG ∪ Vubiq, E

′).
We build σ′ such that for all x 6= xℓ, xσ′ = xσ, and
|xℓσ

′| ≤ M .
In what follows, we say that a list l = a1 :: . . . ::

an is an ubiquitous variation of a partially marked list
l′ = a′

1 :: . . . :: a′
n if, for every 1 ≤ i ≤ n,

• either ai = a′
i,

• or a′
i is not marked and ai ∈ Vubiq.

• Moreover we require that the ubiquitous nodes of
l are all distinct.

xℓ is a variable of sort lists, and σ is a solution of Φ1 ∧
Φ2. We build xℓσ

′ by marking the names we want to
keep in the list in the following manner:

xℓσ= a1 a2 . . . akN . . . aP

We mark the first kN names in the list:

a1 a2 . . . akN . . .

We then mark the other names we want to keep in
the list in the following way:

• If there exists cjk
such that checkl(cjk

, lj) is a con-
straint that occurs positively in Φ1, i.e. ±jk

= +,
and xℓ ∈ var(lj). Assume lj = d1 :: . . . :: dp :: xℓ.
As σ is a solution for Φ1, in particular we know
that c = cjk

σ appears exactly once in ljσ, and for
any l′ sublist of ljσ,

– if l′ = a :: c :: l1, then (a, c) ∈ EG ⊆ E′.

– if l′ = c :: b :: l1, then (b, c) ∈ EG ⊆ E′.

c appears exactly once in ljσ, so either there exists
n such that c = dn, or there exists m such that
c = am. In the first case and if n = p, we mark a1.
In the second case, we mark am, am−1(if m > 1)
and am+1(if m < P ). Any ubiquitous variation of
a list extracted from xℓσ containing the marked
names satisfies this checkl condition for graph G′.

a1 . . . am−1 am am+1 . . . aP

• If there exists cjk
such that checkl(cjk

, lj) is a con-
straint that occurs negatively in Φ1, i.e. ±jk

= −,
and xℓ ∈ var(lj). Assume lj = b1 :: . . . :: bp :: xℓ.
As σ is a solution for Φ1, we can have three differ-
ent cases depending on c = cjk

σ:

– c does not appear in ljσ: for every n, m, bn 6=
c and am 6= c. In that case, we mark nothing.

– c appears at least twice in ljσ. In that case,
we choose two occurrences of c and we mark
them when they appear in xℓσ.

a1 . . . c . . . c . . . aP

– c appears once in ljσ, but one of its neighbors
in the list is not a neighbor of it in the graph.
For example, c = ai and (ai, ai+1) /∈ EG.
We mark c and this false neighbor when they
appear in xℓσ. In that case, (ai, ai+1) /∈ E′,
because ai, ai+1 ∈ names(Φ1, σ).

a1 . . . ai ai+1 . . . aP

Any ubiquitous variation of a list extracted from
xℓσ containing the marked names satisfies the
¬checkl condition for graph G′.

• If there exists h such that loop(ph) is a constraint
that occurs positively in Φ1, i.e. ±h = +, and
xℓ ∈ var(ph). Assume ph = b1 :: . . . :: bp :: xℓ.
Then there exists a name c repeated in phσ. We
mark two occurrences of such a c, when they ap-
pear in xℓσ. Any ubiquitous variation of a list
extracted from xℓσ containing the marked names
satisfies the loop condition for graph G′. Indeed,
the condition does not depend on the graph.

• If there exists h such that loop(ph) occurs neg-
atively in Φ1, i.e. ±h = −, and xℓ ∈ var(ph).
Assume ph = b1 :: . . . :: bp :: xℓ. Removing nodes
from the list preserves this condition, so any ex-
tracted list of xℓσ satisfies the ¬loop condition.
Moreover, Vubiq ∩ names(Φ1, σ) = ∅, so no ubiq-
uitous node appears in phσ, and in a ubiquitous
variation, the ubiquitous nodes are all distinct.
Consequently, any ubiquitous variation of a list
extracted from xℓσ satisfies the ¬loop condition.

• If there exists rl such that route(rl) occurs nega-
tively in Φ1, i.e. ±l = −, and xℓ ∈ var(rl). As-
sume rl = b1 :: . . . :: bp :: xℓ. As σ is a solution for
Φ1, we can have two different cases:

– There exists a name c repeated in rlσ. Then
we mark two occurrences of such a c, when
they appear in xℓσ.
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– There exists a sublist l of rlσ such that l =
c :: d :: l1 and (c, d) /∈ EG. We mark c and d if
they appear in xℓσ. As c, d ∈ names(Φ1, σ),
and (c, d) /∈ EG, (c, d) /∈ E′.

a1 . . . c d . . . aP

Any ubiquitous variation of a list extracted from
xℓσ containing the marked names satisfies the
¬route condition for G′.

• If there exists rl such that route(rl) occurs pos-
itively in Φ1, i.e. ±l = +, and xℓ ∈ var(rl).
Assume rl = b1 :: . . . :: bp :: xℓ. As σ is
a solution for Φ1, for every l′ sublist of xℓσ, if
l′ = a :: b :: l1, then (a, b) ∈ EG, and there are
no repeated names in rlσ. Consider l1 extracted
from xlσ by leaving exactly one unmarked name
between sequences of marked names, and let l2
be the ubiquitous variation of l1 obtained by re-
placing all unmarked names of l1 by ubiquitous
names. b1σ :: . . . :: bpσ :: l2 satisfies the route

condition for G′: indeed, let l3 be a sublist of
b1σ :: . . . :: bpσ :: l2.

– If l3 = biσ :: bi+1σ :: l′, (biσ, bi+1σ) ∈ EG ⊆
E′

– If l3 = bpσ :: c1 :: l′: either a1 was marked,
and c1 = a1, so (c1, bp) ∈ EG ⊆ E′, or a1 was
unmarked, and c1 ∈ Vubiq, so (c1, bp) ∈ E′.

– If l3 = c1 :: c2 :: l′: if there exists i such
that c1 = ai and c2 = ai+1, then (c1, c2) =
(ai, ai+1) ∈ EG ⊆ E′. Else, c1 (or c2) is
ubiquitous, and so (c1, c2) ∈ E′.

Moreover, there are no repeated names in b1σ ::
. . . :: bpσ :: l2.

We now count the number of marked names. We
have marked the first kN names in the list. For each
constraint ±checkl, we mark at most 3 names in the
list. Suppose there are several constraints ¬route(l)
with xℓ sublist of l. Either ¬route(xℓσ) holds, and we
can mark two names in xℓσ which will make all the
¬route constraints true; or the constraint is satisfied
by marking one name for each constraint. Thus, we
need only to mark max(R, 2) names when R ≥ 1 and
0 otherwise. Thus, in any case, it is sufficient to mark
R + 1 names in xℓσ to satisfy the ¬route constraints.
Similarly, it is sufficient to mark L+1 names in xℓσ to
satisfy the loop constraints.

The number of names marked in the list is at most
kN + 3C + (R + 1) + (L + 1) ≤ M/2. Consider l1
extracted from xlσ by leaving exactly one unmarked

name between sequences of marked names, and l2 the
ubiquitous variation of l1 obtained by replacing all un-
marked names of l1 by ubiquitous names. For each
condition considered above, l2 satisfies it, as it is a
ubiquitous variation of a list extracted from xℓσ. We
have no more than M/2 ubiquitous names in l2, so
|l2| ≤ M .

Let σ0 be the substitution such that xσ0 = xσ for
every x ∈ dom(σ) r {xℓ}, and xσ = x otherwise. Let
σ′ = σ0 ∪ {xℓ 7→ l2}. By hypothesis, σ is a solution of
Φ1 for G, and thus σ is also a solution for G′, thanks
to Lemma 15. So by construction, σ′ is a solution of
Φ1 for G′.

Now, it remains to show that σ′ is a solution of (C, I)
and Φ2. Thanks to Lemma 4, we can assume w.l.o.g
that for every variable x which is not of sort loc or lists,
xσ ∈ I.

Deduction constraints. We deduce that σ′ is a solution
of (C, I). Indeed, consider a right-hand side variable
xi of C. Either xi is of sort loc or lists, which means
that Nloc ⊢ xiσ

′, thus I ⊢ xiσ
′. Or xi is not of sort

loc or lists, so in particular xi ∈ dom(σ) r xℓ, and
xiσ

′ = xiσ ∈ I, so I ⊢ xiσ
′. Hence, in both cases, we

have that I ⊢ xiσ
′. Consequently, σ is a solution of

(C, I).

Disequality constraints. Consider ∀Y.u 6= v ∈ Φ2. We
assume w.l.o.g. that dom(σ)∩Y = ∅. We have to show
that uσ′ and vσ′ are not unifiable. We distinguish two
cases. Either uσ0 and vσ0 are not unifiable, but in
such a case, we easily deduce that uσ′ and vσ′ are not
unifiable too. This allows us to conclude. Otherwise,
let µ = mgu(uσ0, vσ0).

If dom(µ) ⊆ Y , let τ = {xℓ 7→ xσ} ◦ µ. We have
that:

(uσ)τ = ((uσ0){xℓ 7→ xℓσ})τ = (uσ0µ){xℓ 7→ xℓσ}
(vσ)τ = ((vσ0){xℓ 7→ xℓσ})τ = (vσ0µ){xℓ 7→ xℓσ}.

Hence, we deduce that uσ and vσ are unifiable, and we
obtain a contradiction since σ satisfies the constraint
∀Y.u 6= v. Hence, this case is impossible.

Else, there exists a term t such that µ(xℓ) =
t, and var(t) ⊆ Y . We apply Lemma 12 to
T = {uσ0, vσ0}, P = {uσ0 = vσ0} and µ. We
get that |xℓµ|d ≤ #dom(µ).max(|uσ0|d, |vσ0|d) ≤
#dom(µ).max(|u|d, |v|d) ≤ kN , because σ0 is ground.
We reason by case over t:

• If t is not of sort lists, as σ′ is well-sorted, uσ′ and
vσ′ are not unifiable.

• Suppose t = a1 :: . . . :: an :: ⊥, with a1, . . . , an

terms of type loc. We write t = t1@t2 with t2
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ground term of maximal size, where @ denotes the
concatenation of lists. We have that |t1|d = |t|d ≤
kN .

We know that xℓσ
′ = b1 :: . . . :: bp and there

exists k′ > kN such that bk′ = aℓ and aℓ is
a ubiquitous constant. In particular, this means
that aℓ /∈ names(Φ2, σ). On the other hand,
ak′ ∈ names(t2) ⊆ names(Φ2, σ0). Consequently,
ak′ 6= aℓ, and so for any substitution θ, we have
that xℓσ

′ 6= tθ.

Now, assume by contradiction that uσ′ and vσ′

are unifiable. This means that there exists τ
such that (uσ′)τ = (vσ′)τ . Hence, we have that
τ ◦ {xℓ 7→ xℓσ

′} is an unifier of uσ0 and vσ0.
By hypothesis, we have that µ = mgu(uσ0, vσ0).
Hence, we deduce that there exists θ′ such that
τ ◦ {xℓ 7→ xℓσ

′} = θ′ ◦ µ. We have that:

– τ ◦ {xℓ 7→ xℓσ
′}(xℓ) = xℓσ

′, and

– θ′ ◦ µ(xℓ) = tθ′.

This leads to a contradiction.

• Suppose t = a1 :: . . . :: an :: yℓ, with yℓ ∈ Y
variable of sort lists. We know that |t|d ≤ kN ,
hence we have that n < kN . We reason by con-
tradiction. Assume that there exists θ′ such that
(uσ′)θ′ = (vσ′)θ′. In the remaining of the proof,
we show that uσ and vσ are unifiable.

By hypothesis, we have that θ′ ◦{xℓ 7→ xℓσ
′} is an

unifier of uσ0 and vσ0. Since µ = mgu(uσ0, vσ0),
we deduce that there exists ρ′ such that

ρ′ ◦ µ = θ′ ◦ {xℓ 7→ xℓσ
′} (1)

We have that xℓσ
′ = (xℓµ)ρ′ = tρ′. By hy-

pothesis, we know that the size of xℓσ is greater
than M ≥ kN ≥ n. Let lt be the list obtaining
from xℓσ by removing its n first elements. Let ρ0

be a substitution such that xρ0 = xρ for every
x ∈ dom(ρ) r {yℓ}, and yρ0 = y otherwise. Let
ρ = ρ0◦{yℓ 7→ lt}. In order to conclude, it remains
to show that ρ ◦ µ is an unifier of uσ and vσ.

First, we have that:

(xℓµ)ρ = tρ
= (a1 :: . . . :: an :: yℓ)ρ
= a1ρ

′ :: . . . :: anρ′ :: lt
= xℓσ.

Hence, we have that ((uσ)µ)ρ = ((uσ0)µ)ρ, and
((vσ)µ)ρ = ((vσ0)µ)ρ. We easily conclude that uσ
and vσ are unifiable since we know that (uσ0)µ =
(vσ0)µ.

In all possible cases, σ′ satisfies the disequality con-
straint.

Hence, we have shown that σ′ is a solution of (C, I)∧
Φ1 ∧ Φ2 for G′, where |xℓσ

′| ≤ M . We can repeat this
procedure recursively on all lists longer than M , and
we get in the end a substitution σ′′ and a graph G′′

such that for every variable x of sort lists, |xσ′′| ≤ M ,
and σ′′ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′′. �

Lemma 6 Let (C, I) be a special constraint system in
solved form, Φ1 be a conjunction of atomic formulas of
Lroute, Φ2 be a set of disequality constraints, and G be
a graph. If there is a solution of (C, I)∧Φ1∧Φ2 for G,
then there exists a solution σ of (C, I)∧Φ1 ∧Φ2 for G
that is polynomially bounded in the size of C, Φ1, Φ2

and G.

Proof. We write G = (VG, EG), Φ2 =
∧

n

∀Yn.un 6= vn,

Φ1 =
∧

i

±i check(ai, bi) ∧
∧

j

pj
∧

k

±jk
checkl(cjk

, lj) ∧
∧

l

±l route(rl) ∧
∧

h

±h loop(ph)

with ± ∈ {+,−}, ai, bi, cjk
are of sort loc, lj , rl, ph are

terms of type lists, un, vn are terms and Yn are sets of
variables.

Let N be the maximal depth of a variable in the
disequality constraints, k be the maximal number of
variables in a disequality constraint, C be the num-
ber of constraints ±checkl in Φ1, L be the number of
constraints loop in Φ1, R be the number of constraints
¬route in Φ1, and M = max(kN +3C +L+R+3, |G|).

We show that, if there is a solution of (C, I)∧Φ1∧Φ2

for graph G, then there exists a substitution σ such that
σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G, and

• for all variables x of sort lists, |xσ| ≤ M , and

• |xσ| = 1 otherwise.

Consider a smallest solution σ of (C, I) ∧ Φ1 ∧ Φ2

for G, where the size of a solution σ is given by:

|σ| =
∑

x∈dom(σ)

|xσ|.

First, we have that |xσ| = 1 when x is a variable of
sort loc. Moreover, thanks to Lemma 4, we can assume
that xσ ∈ I (and thus |xσ| = 1) when x is a variable
that is neither of sort loc nor of type lists. Now, either
|xσ| ≤ M for all variables x of sort lists and we easily
conclude. Otherwise, there exists a variable xℓ of sort
lists such that the length of xℓσ is greater than M .
We are going to show that we can build σ′ from σ,
solution of (C, I)∧Φ1∧Φ2 for G, smaller than σ. More
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specifically, we build σ′ such that for all x 6= xℓ, xσ′ =
xσ, and |xℓσ

′| ≤ M < |xℓσ|.
In what follows, we say that a list l = a1 :: . . . :: an is

a variation of a partially marked list l′ = a′
1 :: . . . :: a′

n

if there exists 1 ≤ j ≤ n such that:

• a′
j is not marked and aj is a fresh name,

• ∀i 6= j, ai = a′
i

xℓ is a variable of sort lists, and σ is a solution of Φ1 ∧
Φ2. We build xℓσ

′ by marking the names we want to
keep in the list in the following manner:

xℓσ= a1 a2 . . . akN . . . aP

We mark the first kN names in the list:

a1 a2 . . . akN . . .

We then mark the other names we want to keep in
the list in the following way:

• If there exists cjk
such that checkl(cjk

, lj) is a con-
straint that occurs positively in Φ1, i.e. ±jk

= +,
and xℓ ∈ var(lj). Assume lj = d1 :: . . . :: dp :: xℓ.
As σ is a solution for Φ1, in particular we know
that c = cjk

σ appears exactly once in ljσ, and for
any l′ sublist of ljσ,

– if l′ = a :: c :: l1, then (a, c) ∈ EG.

– if l′ = c :: b :: l1, then (b, c) ∈ EG.

c appears exactly once in ljσ, so either there exists
n such that c = dn, or there exists m such that c =
am. In the first case and if n = p, we mark a1. In
the second case, we mark am, am−1(if m > 1) and
am+1(if m < P ). Any variation of a list extracted
from xℓσ containing the marked names satisfies
the checkl condition for graph G.

a1 . . . am−1 am am+1 . . . aP

• If there exists cjk
such that checkl(cjk

, lj) is a con-
straint that occurs negatively in Φ1, i.e. ±jk

= −,
and xℓ ∈ var(lj). Assume lj = b1 :: . . . :: bp :: xℓ.
As σ is a solution for Φ1, we can have three differ-
ent cases depending on c = cjk

σ:

– c does not appear in ljσ: for every n, m, bn 6=
c and am 6= c. In that case, we mark nothing.

– c appears at least twice in ljσ. In that case,
we choose two occurrences of c and we mark
them when they appear in xℓσ.

a1 . . . c . . . c . . . aP

– c appears once in ljσ, but one of its neighbors
in the list is not a neighbor of his in the graph.
For example, c = ai and (ai, ai+1) /∈ EG.
We mark c and this false neighbor when they
appear in xℓσ.

a1 . . . ai ai+1 . . . aM

Any variation of a list extracted from xℓσ contain-
ing the marked names satisfies the ¬checkl condi-
tion for graph G.

• If there exists h such that loop(ph) is a constraint
that occurs positively in Φ1, i.e. ±h = +, and xℓ ∈
var(ph). Assume ph = b1 :: . . . :: bp :: xℓ. Then
there exists a name c repeated in phσ. We mark
two occurrences of such a c, when they appear in
xℓσ.

a1 . . . c . . . c . . . aP

Any variation of a list extracted from xℓσ contain-
ing the marked names satisfies the loop condition
for graph G. Indeed, the condition does not de-
pend on the graph.

• If there exists h such that loop(ph) occurs neg-
atively in Φ1, i.e. ±h = −, and xℓ ∈ var(ph).
Assume ph = b1 :: . . . :: bp :: xℓ. Removing nodes
from the list preserves this condition, so any ex-
tracted list of xℓσ satisfies the ¬loop condition.
Moreover, as a variation of a list is built with a
fresh constant, any variation of a list extracted
from xℓσ satisfies the condition.

• If there exists rl such that route(rl) occurs nega-
tively in Φ1, i.e. ±l = −, and xℓ ∈ var(rl). As-
sume rl = b1 :: . . . :: bp :: xℓ. As σ is a solution for
Φ1, we can have two different cases:

– There exists a name c repeated in rlσ. Then
we mark two occurrences of such a c, when
they appear in xℓσ.

– There exists a sublist l of rlσ such that l =
c :: d :: l1 and (c, d) /∈ EG. We mark c and d
if they appear in xℓσ.

a1 . . . c d . . . aP

Any variation of a list extracted from xℓσ contain-
ing the marked names satisfies the ¬route condi-
tion for G.
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• If there exists rl such that route(rl) occurs pos-
itively in Φ1, i.e. ±l = +, and xℓ ∈ var(rl).
Assume rl = b1 :: . . . :: bp :: xℓ. Write rlσ =
a1 :: . . . :: an. As σ is a solution for Φ1 in G, for
every 0 < i < n, (ai, ai+1) ∈ EG and for every
i 6= j, ai 6= aj . Consequently, |rlσ| ≤ |VG|, and as
|xℓσ| ≤ |rlσ|, |xℓσ| ≤ |G|. But our hypothesis tells
us that |xℓσ| > M ≥ |G|. So there is no positive
route condition on xℓ.

We count the number of marked names. We have
marked the first kN names in the list. For each con-
straint ±checkl, we mark at most 3 names in the list.
Suppose there are several constraints ¬route(l) with xℓ

sublist of l. Either ¬route(xℓσ) holds, and we can mark
two names in xℓσ which will make all the ¬route con-
straints true; or the constraint is satisfied by marking
one name for each constraint. Thus, we need only mark
max(R, 2) names when R ≥ 1 and 0 otherwise. Thus,
in any case, it is sufficient to mark R+1 names in xℓσ.
Similarly, it is sufficient to mark L+1 names in xℓσ to
satisfy the loop constraints.

The number of names marked in the list is at most
kN +3C+(R+1)+(L+1) ≤ M . Consider l1 extracted
from xℓσ by keeping only the marked names in xℓσ and
the first unmarked name. Such an unmarked name
exists, because |xℓσ| ≥ M . Let l2 be the variation
of l1 replacing the first unmarked name with a fresh
constant aℓ. For each condition considered above, l2
satisfies it, as it is a variation of a list extracted from
xℓσ containing the marked names.

Let σ0 be the substitution such that xσ0 = xσ for
every x ∈ dom(σ) r {xℓ}, and xσ = x otherwise. Let
σ′ = σ0 ∪ {xℓ 7→ l2}. By hypothesis, σ is a solution
of Φ1 for G, so by construction, σ′ is a solution of Φ1

for G.

Now, it remains for us to show that σ′ is a solution
of (C, I) and Φ2.

Deduction constraints. Consider a right-hand side vari-
able xi of C. Either xi is of sort loc or lists, which means
that Nloc ⊢ xiσ

′, thus I ⊢ xiσ
′. Or xi is not of sort

loc or lists, so in particular xi ∈ dom(σ) r xℓ, and
xiσ

′ = xiσ ∈ I, so I ⊢ xiσ
′. Hence, in both cases, we

have that I ⊢ xiσ
′. Consequently, σ′ is a solution of

(C, I).

Disequality constraints. Consider ∀Y.u 6= v ∈ Φ2. We
assume w.l.o.g. that dom(σ)∩Y = ∅. We have to show
that uσ′ and vσ′ are not unifiable. We distinguish two
cases. Either uσ0 and vσ0 are not unifiable, but in
such a case, we easily deduce that uσ′ and vσ′ are not
unifiable too. This allows us to conclude. Otherwise,
let µ = mgu(uσ0, vσ0).

If dom(µ) ⊆ Y , let τ = {xℓ 7→ xσ} ◦ µ. We have
that:

(uσ)τ = ((uσ0){xℓ 7→ xℓσ})τ = (uσ0µ){xℓ 7→ xℓσ}
(vσ)τ = ((vσ0){xℓ 7→ xℓσ})τ = (vσ0µ){xℓ 7→ xℓσ}.

Hence, we deduce that uσ and vσ are unifiable, and we
obtain a contradiction since σ satisfies the constraint
∀Y.u 6= v. Hence, this case is impossible.

Else, there exists a term t such that µ(xℓ) = t,
and var(t) ⊆ Y . We apply Lemma 12 to T =
{uσ0, vσ0}, P = {uσ0 = vσ0} with µ = mgu(P ).
We get that |t|d ≤ #dom(µ).max(|uσ0|d, |vσ0|d) ≤
#dom(µ).max(|u|d, |v|d) ≤ kN , because σ0 is ground.
We reason by case over t:

• If t is not of sort lists, as σ′ is well-sorted, uσ′ and
vσ′ are not unifiable.

• Suppose t = a1 :: . . . :: an :: ⊥, with an terms of
type loc. We write t = t1@t2 with t2 ground term
of maximal size, where @ denotes the concatena-
tion of lists. We have that |t1|d = |td| ≤ kN .

We know that xℓσ
′ = b1 :: . . . :: bp and there

exists k′ > kN such that bk′ = aℓ and aℓ is a
constant of I which does not appear anywhere else
in the constraints. Consequently, ak′ 6= aℓ, and so
xℓσ

′ 6= tθ for any substitution θ.

Now, assume by contradiction that uσ′ and vσ′

are unifiable. This means that there exists τ
such that (uσ′)τ = (vσ′)τ . Hence, we have that
τ ◦ {xℓ 7→ xℓσ

′} is an unifier of uσ0 and vσ0.
By hypothesis, we have that µ = mgu(uσ0, vσ0).
Hence, we deduce that there exists θ′ such that
τ ◦ {xℓ 7→ xℓσ

′} = θ′ ◦ µ. We have that:

– τ ◦ {xℓ 7→ xℓσ
′}(xℓ) = xℓσ

′, and

– θ′ ◦ µ(xℓ) = tθ′.

This leads to a contradiction.

• Suppose t = a1 :: . . . :: an :: yℓ, with yℓ ∈ Y
variable of sort lists. We know that |t|d ≤ kN ,
thus we must have n < kN . We reason by con-
tradiction. Assume that there exists θ′ such that
(uσ′)θ′ = (vσ′)θ′. In the remaining of the proof,
we show that uσ and vσ are unifiable.

By hypothesis, we have that θ′ ◦{xℓ 7→ xℓσ
′} is an

unifier of uσ0 and vσ0. Since µ = mgu(uσ0, vσ0),
we deduce that there exists ρ′ such that

ρ′ ◦ µ = θ′ ◦ {xℓ 7→ xℓσ
′} (2)
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We have that xℓσ
′ = (xℓµ)ρ′ = tρ′. By hy-

pothesis, we know that the size of xℓσ is greater
than M ≥ kN ≥ n. Let lt be the list obtaining
from xℓσ by removing its n first elements. Let ρ0

be a substitution such that xρ0 = xρ for every
x ∈ dom(ρ) r {yℓ}, and yρ0 = y otherwise. Let
ρ = ρ0◦{yℓ 7→ lt}. In order to conclude, it remains
to show that ρ ◦ µ is an unifier of uσ and vσ.

First, as xℓσ and xℓσ
′ have the same first kN ele-

ments by construction, and n < kN , we have that:

(xℓµ)ρ = tρ
= (a1 :: . . . :: an :: yℓ)ρ
= a1ρ

′ :: . . . :: anρ′ :: lt
= xℓσ.

Hence, we have that ((uσ)µ)ρ = ((uσ0)µ)ρ, and
((vσ)µ)ρ = ((vσ0)µ)ρ. We easily conclude that uσ
and vσ are unifiable since we know that (uσ0)µ =
(vσ0)µ.

In all possible cases, σ′ satisfies the disequality con-
straint.

As a conclusion, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2,
smaller than σ, which leads to a contradiction. �

C.2 Proof of decidability

We will now explain how to decide the existence of
a graph G leading to an attack.

Theorem 1 Let K = (P[ ];S; I) be an initial concrete
configuration with an hole, M ⊆ Nloc be a finite set of
nodes, and Φ ∈ Lroute be a property. Deciding whether
there exists a graph G such that there is an M-attack
on K and Φ for the topology G is NP-complete.

Proof. Let Ks = (P[if Φ then out(error) else 0];S; I; ∅).
Ks is a ground symbolic configuration whose con-
cretization is (P[if Φ then out(error) else 0];S; I). Let
VK be the set of names of sort loc that occur in P, S,
Φ or M. Our decision procedure works as follows:

Step 1. We partially guess the graph G = (V, E).
Actually, we guess whether (n1, n2) ∈ E for ev-
ery n1, n2 ∈ VK . Let GK = (VK , EK) where
EK = {(n1, n2) | (n1, n2) ∈ E and n1, n2 ∈ VK}.

Step 2. We guess a path of execution of the symbolic
transition rules w.r.t. the graph GK .

Ks →s∗
GK ,M (⌊out(u)⌋n ∪ P ′;S ′; I ′; C).

Step 3. Let σ be an mgu of the equality constraints
in C′ = C ∧ {u = error}.

Step 4. The system C′σ is equal to (D, I0)∧Φ1 where
(D, I0) is a special constraint system and Φ1 is
a formula that contains disequality constraints
and formulas of Lroute. We get rid of the triv-
ial constraints of the form t = t. We have that
I = Nloc ∪ Ii where Ii is a finite set of terms and
we can choose I0 = Nloc r names(P,S, Φ, Ii).

Step 5. We guess a sequence of transformation rules
from D to D′ where D′ is a constraint system in
solved form. We have that:

D  ∗
σ′ D′ with D′ in solved form.

Step 6. We compute the conjunctive normal form of
the formula Φ1σ

′. Hence, Φ1σ
′ is equivalent to

Φ′
1 =

∧

k

φk
1 ∨ · · · ∨ φk

ik
.

We choose non-deterministically φk
αk

for every k.

Let Φ2 =
∧

k

φk
αk

, which we can write Ψ2 ∧ Ψ1,

where Ψ2 only contains conjunctions of disequal-
ity constraints and Ψ1 is a conjunction of atomic
formulas of Lroute.

Step 7. Let V = #var(P) be the number of variables
occurring in P and S = |P| be the size of P. Let
I ′

0 be a finite subset of I0 of size

2VS × (V2S3 + VS2 + 5S2 + 2).

Guess the values of variables which are not of
sort lists in I ′

0 ∪ VK . Guess the values of vari-
ables of sort lists among lists of nodes in I ′

0 ∪ VK

of length at most

2 × (V2S3 + VS2 + 5S2 + 2).

This gives us a substitution σ and we guess a graph
G = (V, E) such that V = I ′

0 ∪ Vk and that coin-
cides with GK on VK , i.e.:

EK = {(n1, n2) ∈ E | n1, n2 ∈ Vk}.

Lastly, we check whether σ is a solution of
(D′, I0) ∧ Φ2 for the graph G.

We now explain each step of our algorithm.

Step 1. We have that |VK | < |P| + |Φ| + |S| + |M|.
Hence, we can guess GK whose size is polynomially
bounded.

Step 2. For every graph G′ = (V ′, E′) such that VK ⊆
V ′ and EK = {(n1, n2) ∈ E′ | n1, n2 ∈ VK}, we have
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that (P;S; I; C)→s
GK ,M(P ′;S ′; I ′; C′) if, and only if,

(P;S; I; C)→s
G′,M(P ′;S ′; I ′; C′).

So we can guess the transitions knowing only EK .
Now, thanks to Proposition 1 we deduce that there is
an M-attack on K and Φ for graph G if, and only if,
there is a derivation

(P[if Φ then out(error) else 0];S; I; ∅)
→s∗

GK ,M(⌊out(u)⌋n ∪ Ps;Ss; Is; C)

and the constraint system C′ = C ∧ {u = error} has a
solution for graph G.

Actually, we can guess such a path. Indeed, the
number of derivations starting from configuration Ks

is bounded. Actually, the length of possible paths is
bounded by the size of the protocol: as there is no
replication in the initial configuration, each transition
leads to a smaller process. Moreover, the number of
configurations reachable with one symbolic transition
is bounded as well: we can first guess which process’s is
going to evolve and which is the corresponding transi-
tion. There is only one possible resulting configuration
once this is chosen, except for the communication tran-
sition, where we also have to guess which neighbors will
receive the message, and for the read transition, where
we have to choose which term to read.

Step 3. Let σ be an mgu of the equality constraints
in C′. If σ = ⊥, then C′ has no solution. Else, C′ has a
solution if, and only if, C′σ has a solution.

Step 4. We have that C′σ = (D, I0)∧Φ1 where (D, I0)
is a special constraint system, and Φ1 contains the re-
maining constraints, i.e. disequality constraints and
formulas of Lroute. In particular, (D, I0) satisfies the
origination property since application of a substitution
preserves this property.

Step 5. We apply Theorem 3. Thus, there exists a
solution θ of (D, I0) and Φ1 for graph G if, and only
if, there exists a special constraint system (D′, I0) in
solved form and some substitutions σ′, and θ′ such that
θ = σ′ ◦ θ′, D  ∗

σ′ D′ and θ′ is a solution for D′

and Φ1σ
′ for graph G.

Step 6. This step is straightforward. Φ1σ
′ contains

disequality constraints and formulas of Lroute. Conse-
quently, Φ′

1 also contains disequality constraints and
formulas of Lroute, and Φ2 =

∧

k

φk
αk

, obtained from Φ′,

can be written:

Φ2 =
∧

i

∀Yi.ui 6= vi ∧
∧

j

±j check(aj , bj) ∧
∧

k

∧

i

±ik
checkl(cik

, lk) ∧
∧

h

±h loop(ph) ∧
∧

l

±l route(rl)

Finally, we are left to decide whether there exists a
solution to a solved special constraint system (D′, I0)
and a formula Φ2 = Ψ1 ∧ Ψ2, where:

• Ψ2 =
∧

i

∀Yi.ui 6= vi

• Ψ1 =
∧

j

±j check(aj , bj) ∧
∧

l

±l route(rl) ∧
∧

k

∧

i

±ik
checkl(cik

, lk) ∧
∧

h

±h loop(ph)

with ± ∈ {+,−}.

Step 7. Let V = #var(P) be the number of variables
occurring in P and S = |P| be the size of P.

First, we show that |t|d ≤ VS2 + S for any term
t ∈ D′ ∧Ψ1 ∧Ψ2. By construction, we know that there
exists t′ in C′ such that (t′σ)σ′ = t.

Actually, we have that σ′ ◦ σ = mgu(P ) for some
set P of equations between subterms in C′. In order to
prove this result, we show that:

• σi = mgu(P i
D

) for some set of equations P i
D

be-
tween subterms of D, and

• St(Di) ⊆ St(D)σi

when D  σi
Di. We prove this result by induction on

the length n of the derivation and we rely on Lemma 14
and Lemma 13.

Hence, we have that σ = mgu(PC′) where PC′ is a set
of equations between subterms in C′ and we have also
that St(D) ⊆ St(C′σ) ⊆ St(C′)σ (Lemma 14). We have
shown that σ′ = mgu(Pn

D
) and we have that Pn

D
= P ′

C′σ
for some set P ′

C′ (equations between subterms in C′).
Thanks to Lemma 13, we deduce that σ′ ◦σ = mgu(P )
where P = PC′ ∪ P ′

C′ is a set of equations between
subterms in C′. Thanks to Lemma 12, we deduce that

|(xσ)σ′|d ≤ #{dom(σ′ ◦ σ)} × max{|t|d | t ∈ C′}.

By inspection of the symbolic transition rules, we
see that at each step, the constraint system can gain
at most V variables (this case corresponds to the
communication rule), so the total number of vari-
ables in the resulting constraint system is bounded:
#var(C′) ≤ VS. Moreover, max{|t|d | t ∈ C′} ≤ S.
Hence, we have that |t|d ≤ VS2 + S for any term t ∈
D′ ∧Ψ1 ∧Ψ2. In particular, we have that N ≤ VS2 +S

where N is the maximal depth of variables in the terms
of all disequality constraints in Ψ2.

Let L be the number of occurrences of a loop predi-
cate in Ψ1, R be the number of occurrences of a route

predicate in Ψ1, and C be the number of occurrences
of a checkl predicate in Ψ1. We have that:

L ≤ S2, R ≤ S2, and C ≤ S2.
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Let n be the number of variables in D′∧Ψ1∧Ψ2. We
have that n ≤ #var(C′) ≤ VS. Let k be the maximal
total number of variables in a disequality constraint.
We have also that k ≤ VS.

Now, we have to show that if there exists a graph
G = (V, E) such that VK ⊆ V and EK = {(n1, n2) ∈
E | n1, n2 ∈ VK} and on which there is an attack, then
there exists a graph as described in Step 7 for which
there is an attack and the substitution witnessing the
fact that there exists an attack is also as described in
Step 7 of our algorithm.

• Thanks to Lemma 4, we know that there is a solu-
tion where the variables which are not of sort loc

or lists are substituted by names of sort loc (inde-
pendently of the underlying graph).

• Thanks to Lemmas 5 and 15, we know that if
there is a graph leading to a solution, there ex-
ists a substitution σ where the size of the instan-
tiated variables of type lists is bounded by M =
2× (kN +3C +R+L+2) and there exists a graph
G = (V, E) where V is the set of names that occur
in D′, Ψ1, Ψ2, σ and VK , such that σ is a solution
for G and EK = {(n1, n2 ∈ E | n1, n2 ∈ VK}.

We have that: M ≤ 2 × (V2S3 + VS2 + 5S2 + 2).
Hence, the number of distinct names of sort loc in σ is
bounded by n × M ≤ 2VS × (V2S3 + VS2 + 5S2 + 2).
So there is a solution σ for a graph G with all nodes in
I ′

0 ∪ VK . �

We will now explain how to decide the existence of
an attack given a fixed graph G.

Theorem 2 Let K = (P[ ];S; I) be an initial concrete
configuration with an hole, G be a graph, M ⊆ Nloc

be a finite set of nodes, and Φ ∈ Lroute be a property.
Deciding whether there exists an M-attack on K and Φ
for the topology G is NP-complete.

Proof. Let Ks = (P[if Φ then out(error) else 0];S; I; ∅).
Ks is a ground symbolic configuration whose con-
cretization is (P[if Φ then out(error) else 0];S; I). We
write G = (V, E). Our decision procedure works as
follows:

Step 1. We guess a path of execution of the symbolic
transition rules w.r.t. graph G.

Ks →s∗
G,M (⌊out(u)⌋n ∪ P ′;S ′; I ′; C).

Step 2. Let σ be an mgu of the equality constraints
of C′ = C ∧ {u = error}.

Step 3. The system C′σ is equal to (D, I0)∧Φ1 where
(D, I0) is a special constraint system and Φ1 is
a formula that contains disequality constraints
and formulas of Lroute. We get rid of the triv-
ial constraints of the form t = t. We have that
I = Nloc ∪ Ii where Ii is a finite set of terms and
we can choose I0 = Nloc r names(P,S, Φ, Ii).

Step 4. We guess a sequence of transformation rules
from D to D′ where D′ is a constraint system in
solved form. We have that:

D  ∗
σ′ D′ with D′ in solved form.

Step 5. We compute the conjunctive normal form of
formula Φ1σ. Hence, Φ1σ

′ is equivalent to

Φ′
1 =

∧

k

φk
1 ∨ · · · ∨ φk

ik
.

We choose non-deterministically φk
αk

for every k.

Let Φ2 =
∧

k

φk
αk

, which we can write Ψ2 ∧ Ψ1,

where Ψ2 only contains conjunctions of disequal-
ity constraints and Ψ1 is a conjunction of atomic
formulas of Lroute.

Step 6. Let V = #var(P) the number of variables
occurring in P and S = |P| be the size of P. Let
I ′

0 be a finite subset of I0 of size

VS × max(V2S3 + VS2 + 5S2 + 3, |G|).

Guess the values of variables which are not of
sort lists in I ′

0∪V . Guess the values of variables of
sort lists among lists of nodes in I ′

0 ∪ V of length
at most

max(V2S3 + VS2 + 5S2 + 3, |G|).

This gives us a substitution σ. We check whether
σ is a solution of (D′, I0) ∧ Φ2 for graph G.

The first five steps are the same as Steps 2 to 6 in
Theorem 1.
Step 6. First, we have that |t|d ≤ VS2 + S for any
term t ∈ D′ ∧Ψ1 ∧Ψ2, as shown in the proof of Step 7
in Theorem 1.

Let N be the maximal depth of variables in the
terms of all disequality constraints in Ψ2. We have
that N ≤ VS2 + S.

Let L be the number of occurrences of a loop predi-
cate in Φ2, C be the number of occurrences of a checkl

predicate in Φ2, and R be the number of occurrences
of a route predicate in Φ2. We have that

L ≤ S2, R ≤ S2, and C ≤ S2.
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Let n be the number of variables D′ ∧ Ψ1 ∧ Ψ2. We
have that n ≤ #var(C′) ≤ VS. Let k be the maximal
total number of variables in a disequality constraint.
We also have that k ≤ VS.

Now, we want to show that if there exists an attack
for graph G, then there is an attack captured by a
substitution as described in Step 6 of our algorithm.

• Thanks to Lemma 4, we know that there is a solu-
tion where the variables which are not of sort loc

or lists are substituted by names of sort loc.

• Thanks to Lemma 6, we know that if there is a
solution, there exists one, say σ, such that |xσ| ≤
M for any x of type lists where

M = max(kN + 3C + L + R + 3, |G|).

Actually, we have that

M ≤ max(V2S3 + VS2 + 5S2 + 3, |G|).

Hence, the number of distinct names of sort loc in σ
is bounded by

n × M ≤ VS × max(V2S3 + VS2 + 5S2 + 3, |G|).

So there is a solution σ for the graph G with all vertices
in I ′

0 ∪ V . �
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