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Abstract

Formal methods have proved their usefulness for an-
alyzing the security of protocols. Most existing results
focus on trace properties like secrecy or authentication.
There are however several security properties, which
cannot be defined (or cannot be naturally defined) as
trace properties and require the notion of observational
equivalence. Typical examples are anonymity, privacy
related properties or statements closer to security prop-
erties used in cryptography.

In this paper, we consider the applied pi calculus and
we show that for determinate processes, observational
equivalence actually coincides with trace equivalence, a
notion simpler to reason with. We exhibit a large class
of determinate processes, called simple processes, that
capture most existing protocols and cryptographic prim-
itives. Then, for simple processes without replication,
we reduce the decidability of trace equivalence to decid-
ing an equivalence relation introduced by M. Baudet.
Altogether, this yields the first decidability result of ob-
servational equivalence for a general class of equational
theories.

1 Introduction

Security protocols are paramount in today’s secure
transactions through public channels. It is therefore
essential to obtain as much confidence as possible in
their correctness. Formal methods have proved their
usefulness for precisely analyzing the security of pro-
tocols. In the case of a bounded number of sessions,
secrecy preservation is co-NP-complete [5, 21, 22], and
for an unbounded number of sessions, several decid-
able classes have been identified (e.g. [20]). Many tools
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have also been developed to automatically verify cryp-
tographic protocols (e.g. [9, 6]).

Most existing results focus on trace properties, that
is, statements that something bad never occurs on any
execution trace of a protocol. Secrecy and authentica-
tion are typical examples of trace properties. There are
however several security properties, which cannot be
defined (or cannot be naturally defined) as trace prop-
erties and require the notion of observational equiva-
lence. We focus here on the definition proposed in
the context of applied pi-calculus [2], which is well-
suited for the analysis of security protocols. Two pro-
cesses P and Q are observationally equivalent, denoted
by P ≈ Q, if for any process O the processes P | O
and Q | O are equally able to emit on a given chan-
nel and are (weakly) bisimilar. This means that the
process O cannot observe any difference between the
processes P and Q.

Observational equivalence is crucial when specifying
properties like anonymity that states that an observer
cannot distinguish the case where A is talking from the
case where B is talking (see [3]). Privacy related prop-
erties involved in electronic voting protocols (e.g. [15])
also use equivalence as a key notion and cannot be ex-
pressed in linear temporal logic. Observational equiv-
alence is also used for defining a stronger notion of se-
crecy, called “strong secrecy” [10] or even for defining
authentication [4]. More generally, it is a notion that
allows to express flexible notions of security by requir-
ing observational equivalence between a protocol and
an idealized version of it, that magically realizes the
desired properties.

Related work. In contrast to the case of trace prop-
erties, there are very few results on automating the
analysis of observational equivalence. Decidability re-
sults are limited to fixed cryptographic primitives in
spi-calculus (e.g. [18, 16]). In applied-pi calculus, an
alternative approach has been considered [14, 7, 11] for
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arbitrary cryptographic primitives. The approach con-
sists in designing stronger notions of equivalences that
imply observational equivalence. One of these tech-
niques has been implemented in ProVerif [11]. None
of these are however complete, that is, there exist ob-
servationally equivalent processes that do not satisfy
these stronger notions of equivalences.

Our contributions. One of the difficulties in prov-
ing observational equivalence is the bisimulation prop-
erty. Although bisimulation-based equivalences may
be simpler to check than trace equivalences [19], in the
context of cryptographic protocols, it seems easier to
simply check trace equivalence, that is, equality of the
set of execution traces (modulo some equivalence rela-
tion between traces). In particular, most decision tech-
niques have been developed for trace properties only.
However, it is well-known that this is not sufficient
to ensure observational equivalence. J. Engelfriet has
shown that observational equivalence and trace equiv-
alence actually coincide in a general model of parallel
computation with atomic actions, when processes are
determinate [17]. Intuitively, a process P is determi-
nate if after the same experiment s, the resulting pro-
cesses are equivalent, that is, if P

s
⇒ P ′ and P

s
⇒ P ′′

then P ′ ≈ P ′′. Our first contribution is to generalize
this result to the applied pi-calculus, which consists in
the pi-calculus algebra enriched with terms and equa-
tional theories on terms.

Then we show that a large class of processes en-
joys the determinacy property. More precisely, we de-
sign the class of simple processes and show that sim-
ple processes are determinate. Simple processes allow
replication, else branches and arbitrary term algebra
modulo an equational theory. Consequently, this class
captures most existing security protocols and crypto-
graphic primitives. In addition, our simple processes
are close to the fragment considered in [13] for which
cryptographic guarantees can be deduced from obser-
vational equivalence. The class of processes defined
in [13] is however not determinate but we believe that
their result could be easily extended to our class of
simple processes, yielding to a decision technique for
proving indistinguishability in cryptographic models.

Our third contribution is a decidability result for
simple processes without replication nor else branch
and for convergent subterm theories. Convergent sub-
term theories capture a wide array of functions, e.g.
pairing, projections, various flavors of encryption and
decryption, digital signatures, one-way hash functions,
etc. We show that trace equivalence of simple pro-
cesses without replication can be reduced to deciding
an equivalence relation introduced by M. Baudet and

which has been shown decidable for convergent sub-
term theories in [7].

Putting our three contributions together, we obtain
decidability of observational equivalence for a large and
interesting class of processes of the applied pi-calculus.
This is the first decidability result for a general class
of equational theories. Some of the proofs are omitted
but can be found in appendix.

2 The applied pi calculus

The applied pi calculus [2] is a derivative of the pi
calculus that is specialized for modeling cryptographic
protocols. Participants in a protocol are modeled as
processes, and the communication between them is
modeled by means of message passing.

2.1 Syntax

To describe processes in the applied-pi calculus, one
starts with a set of names N = {a, b, . . . , sk, k, n, . . .},
which is split into the set Nb of names of basic types
and the set Ch of names of channel type (which are used
to name communication channels). We also consider
a set of variables X = {x, y, . . .}, and a signature F
consisting of a finite set of function symbols. We rely
on a sort system for terms. The details of the sort
system are unimportant, as long as base types differ
from channel types. We suppose that function symbols
only operate on and return terms of base type.

Terms are defined as names, variables, and func-
tion symbols applied to other terms. Let N ⊆ N
and X ⊆ X , the set of terms built from N and X by ap-
plying function symbols in F is denoted by T (N, X). Of
course function symbol application must respect sorts
and arities. We write fv(T ) for the set of variables oc-
curring in T . The term T is said to be a ground term
if fv(T ) = ∅. We shall use u, v, . . . to denote metavari-
ables that range over both names and variables.

Example 1 Consider the following signature

F = {enc/2, dec/2, pk/1, 〈 〉/2, π1/1, π2/1}

that contains function symbols for asymmetric encryp-
tion, decryption and pairing, each of arity 2, as well as
projection symbols and the function symbol pk, each of
arity 1. The ground term pk(sk) represents the public
counterpart of the private key sk.

In the applied pi calculus, one has plain processes,
denoted P, Q, R and extended processes, denoted by
A, B, C. Plain processes are built up in a similar way
to processes in pi calculus except that messages can
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P, Q, R := 0 plain processes
P | Q
!P
νn.P
if M = N then P else Q
in(u, x).P
out(u, N).P

A, B, C := extended processes
P
A | B
νn.A
νx.A
{M/x}

where M and N are terms, n is a name, x a variable and u is a metavariable.

Figure 1. Syntax of processes

contain terms rather than just names. Extended pro-
cesses add active substitutions and restriction on vari-
ables (see Figure 1).

The substitution {M/x} is an active substitu-
tion that replaces the variable x with the term M .
Active substitutions generalize the “let” construct:
νx.({M/x} | P ) corresponds exactly to

“let x = M in P”.

As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We write
fv(A), bv(A), fn(A) and bn(A) for the sets of free and
bound variables and free and bound names of A, re-
spectively. We say that an extended process is closed
if all its variables are either bound or defined by an
active substitution. An evaluation context C[ ] is an
extended process with a hole instead of an extended
process.

Active substitutions are useful because they allow
us to map an extended process A to its frame, de-
noted φ(A), by replacing every plain process in A
with 0. Hence, a frame is an extended process built
up from 0 and active substitutions by parallel compo-
sition and restriction. The frame φ(A) accounts for the
set of terms statically possessed by the intruder (but
does not take into account for A’s dynamic behavior).
The domain of a frame ϕ, denoted by dom(ϕ), is the
set of variables for which ϕ defines a substitution (those
variables x for which ϕ contains a substitution {M/x}
not under a restriction on x).

Example 2 Consider the following process A made
up of three components in parallel:

νs, sk, x1. (out(c1, x1)
| in(c1, y).out(c2, dec(y, sk))

| {enc(s,pk(sk))/x1
}).

Its first component publishes the message enc(s, pk(sk))
stored in x1 by sending it on c1. The second re-
ceives a message on c1, uses the secret key sk to de-
crypt it, and forwards the result on c2. We have

φ(A) = νs, sk, x1.{
enc(s,pk(sk))/x1

} and dom(φ(A)) = ∅
(since x1 is under a restriction).

2.2 Semantics

We briefly recall the operational semantics of the ap-
plied pi calculus (see [2] for details). First, we associate
an equational theory E to the signature F . The equa-
tional theory is defined by a set of equations M = N
with M, N ∈ T (∅, X) and induces an equivalence rela-
tion over terms: =E is the smallest equivalence relation
on terms, which contains all equations M = N in E and
that is closed under application of contexts and substi-
tution of terms for variables. Since the equations in E

do not contain any names, we have that E is also closed
by substitutions of terms for names.

Example 3 Consider the signature F of Example 1.
We define the equational theory Eenc by the following
equations:

dec(enc(x, pk(y)), y) = x
πi(〈x1, x2〉) = xi for i ∈ {1, 2}.

We have that π1(dec(enc(〈n1, n2〉, pk(sk)), sk)) =Eenc
n1.

Structural equivalence, noted ≡, is the smallest
equivalence relation on extended processes that is
closed under α-conversion of names and variables, by
application of evaluation contexts, and satisfying some
further basic structural rules such as A | 0 ≡ A, asso-
ciativity and commutativity of |, binding-operator-like
behavior of ν, and when M =E N the equivalences:

νx.{M/x} ≡ 0 {M/x} ≡ {N/x}

{M/x} | A ≡ {M/x} | A{M/x}.

Example 4 Let P be the following process:

νs, sk. (out(c1, enc(s, pk(sk)))
| in(c1, y).out(c2, dec(y, sk))).

The process P is structurally equivalent to the process A
given in Example 2. We have that φ(P ) = 0 ≡ φ(A).
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The operational semantics of processes in the ap-
plied pi calculus is defined by structural rules defining
two relations: structural equivalence (described above)

and internal reduction, noted
τ
−→. Internal reduction is

the smallest relation on extended processes closed un-
der structural equivalence and application of evaluation
contexts such that:

out(a, x).P | in(a, x).Q
τ
−→ P | Q

if M = M then P else Q
τ
−→ P

if M = N then P else Q
τ
−→ Q

where M, N are ground terms such that M 6=E N

The operational semantics is extended by a labeled
operational semantics enabling us to reason about pro-
cesses that interact with their environment. Labeled
operational semantics defines the relation

ℓ
→ where ℓ is

either an input or an output. We adopt the following
rules in addition to the internal reduction rules. Below,
the names a and c are channel names whereas x is a
variable of base type and y is a variable of any type.

In in(a, y).P
in(a,M)
−−−−−→ P{M/y}

Out-Ch out(a, c).P
out(a,c)
−−−−−→ P

Open-Ch
A

out(a,c)
−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

Out-T out(a, M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}

x 6∈ fv(P ) ∪ fv(M)

Scope
A

ℓ
−→ A′ u does not occur in ℓ

νu.A
ℓ
−→ νu.A′

bn(ℓ) ∩ fn(B) = ∅

Par
A

ℓ
−→ A′ bv(ℓ) ∩ fv(B) = ∅

A | B
ℓ
−→ A′ | B

Struct
A ≡ B B

ℓ
−→ B′ B′ ≡ A′

A
ℓ
−→ A′

Note that the labeled transition is not closed un-
der application of evaluation contexts. Moreover the
output of a term M needs to be made “by reference”
using a restricted variable and an active substitution.
The rules differ slightly from those described in [2] but
it has been shown in [14] that the two underlying no-
tions of observational equivalence coincide.

3 Trace and observational equivalences

Let A be the alphabet of actions (in our case this
alphabet is infinite) where the special symbol τ ∈ A
represents an unobservable action. For every α ∈ A
the relation

α
−→ has been defined in Section 2. For ev-

ery w ∈ A∗ the relation
w
−→ on extended processes is

defined in the usual way. By convention A
ǫ
−→ A where ǫ

denotes the empty word.
For every s ∈ (A r {τ})∗, the relation

s
⇒ on ex-

tended processes is defined by: A
s
⇒ B if, and only

if, there exists w ∈ A∗ such that A
w
−→ B and s is

obtained from w by erasing all occurrences of τ . In-
tuitively, A

s
⇒ B means that A transforms into B by

experiment s. We also consider the relation A
w
7→ B

and A
s
Z⇒ B that are the restriction of the relations

w
−→

and
s
⇒ on closed extended processes.

3.1 Observational equivalence

Intuitively, two processes are observationally equiv-
alent if they cannot be distinguished by any active at-
tacker represented by any context.

We write A ⇓ c when A can send a message on c,
that is, when A →∗ C[out(c, M).P ] for some evaluation
context C that does not bind c.

Definition 1 Observational equivalence is the largest
symmetric relation R between closed extended processes
with the same domain such that A R B implies:

1. if A ⇓ c, then B ⇓ c;

2. if A →∗ A′, then B →∗ B′ and A′ R B′ for
some B′;

3. C[A] R C[B] for all closing evaluation contexts C.

Observational equivalence can be used to formalize
many interesting security properties, in particular pri-
vacy related properties, such as those studied in [3, 15].
However, proofs of observational equivalences are dif-
ficult because of the universal quantification over all
contexts. It has been shown that observational equiv-
alence coincides with labeled bisimilarity [2]. Before
defining this notion, we introduce a notion of intruder’s
knowledge that has been extensively studied (e.g. [1]).

Definition 2 (static equivalence ∼) Two terms M
and N are equal in the frame φ, written (M =E N)φ, if
there exists ñ and a substitution σ such that φ ≡ νñ.σ,
ñ ∩ (fn(M) ∪ fn(N)) = ∅, and Mσ =E Nσ.

Two closed frames φ1 and φ2 are statically equiva-
lent, written φ1 ∼ φ2, when:

• dom(φ1) = dom(φ2), and
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• for all terms M, N we have that

(M =E N)φ1 if and only if (M =E N)φ2.

Example 5 Consider the theory Eenc described in Ex-
ample 3, and the two frames

• ϕa = {enc(a,pk(sk))/x1
}, and

• ϕb = {enc(b,pk(sk))/x1
}.

We have that (dec(x1, sk) =Eenc
a)ϕa whereas

(dec(x1, sk) 6=Eenc
a)ϕb, thus we have that ϕa 6∼ ϕb.

However, we have that νsk.ϕ ∼ νsk.ϕ′. This is a
non trivial equivalence. Intuitively, there is no test that
allows one to distinguish the two frames since the de-
cryption key and the encryption key are not available.

Definition 3 (labeled bisimilarity ≈) Labeled
bisimilarity is the largest symmetric relation R on
closed extended processes such that A R B implies

1. φ(A) ∼ φ(B),

2. if A
τ
7→ A′, then B

ǫ
Z⇒ B′ and A′ R B′ for some B′,

3. if A
ℓ
7→ A′ and bn(ℓ) ∩ fn(B) = ∅ then B

ℓ
Z⇒ B′

and A′ R B′ for some B′.

Example 6 Consider the theory Eenc and the two
processes Pa = out(c, enc(a, pk(sk))) and Pb =
out(c, enc(b, pk(sk))). We have that νsk.Pa ≈ νsk.Pb

whereas Pa 6≈ Pb. These results are direct consequences
of the static (in)equivalence relations stated and dis-
cussed in Example 5.

3.2 Trace equivalence

For every closed extended process A we define its set
of traces, each trace consisting in a sequence of actions
together with the sequence of sent messages:

trace(A) = {(s, φ(B)) | A
s
Z⇒ B for some B}.

Note that, in the applied pi calculus, the sent mes-
sages are exclusively stored in the frame and not in the
sequence s (the outputs are made by “reference”).

Definition 4 (trace inclusion ⊑t) Let A and B be
two closed extended processes, A ⊑t B if for every
(s, ϕ) ∈ trace(A) such that bn(s) ∩ fn(B) = ∅, there
exists (s′, ϕ′) ∈ trace(B) such that s = s′ and ϕ ∼ ϕ′.

Definition 5 (trace equivalence ≈t) Two closed
extended processes A and B are trace equivalent,
denoted by A ≈t B, if A ⊑t B and B ⊑t A.

It is easy to see that observational equivalence (or
labeled bisimilarity) implies trace equivalence while the
converse is false in general (see Example 7).

Lemma 1 Let A and B be two closed extended pro-
cesses: A ≈ B implies A ≈t B.

Example 7 Consider the two following processes:

A = νc′.(out(c′, ok) | in(c′, x).out(c, a).out(c, b1)
| in(c′, x).out(c, a).out(c, b2))

B = out(c, a).νc′.(out(c′, ok) | in(c′, x).out(c, b1)
| in(c′, x).out(c, b2)).

We have that A ≈t B whereas A 6≈ B. Intuitively, af-
ter B’s first move, B still has the choice of emitting b1

or b2, while A, trying to follow B’s first move, is forced
to choose between two states from which she can only
emit one of the two.

3.3 Determinacy

J. Engelfriet has shown that observational and trace
equivalence coincide for a process algebra with atomic
actions, when processes are determinate [17].

Definition 6 (determinacy) Let ∼= be an equiva-
lence relation on closed extended processes. A closed
extended process A is ∼=-determinate if whenever
A

s
Z⇒ B, A

s
Z⇒ B′ and φ(B) ∼ φ(B′) then B ∼= B′.

Fixing the equivalence relation yields to potentially
different notions of determinacy. We define two of
them: observation determinacy (for ∼= := ≈) and trace
determinacy (for ∼= := ≈t). By using the techniques
of J. Engelfriet, we can show that these two notions of
determinacy actually coincide. So we say that an ex-
tended process is determinate if it satisfies any of these
two notions.

Lemma 2 Let A be a closed extended process. The
process A is observation determinate if, and only if, it
is trace determinate.

Example 8 Consider for instance the closed extended
process A given in Example 7. We have that A

τ
7→ A1

and A
τ
7→ A2 for A1 and A2 given below:

A1 = νc′. (out(c, a).out(c, b1)
| in(c′, x).out(c, a).out(c, b2))

A2 = νc′. (in(c′, x).out(c, a).out(c, b1)
| out(c, a).out(c, b2)).
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The process A1 can output the messages a and then b1

whereas the process A2 can output a and then b2. Thus,
the process A is neither observation determinate, nor
trace determinate.

Our first main contribution is to extend the result of
J. Engelfriet [17] to processes of the applied-pi calcu-
lus, showing that observational equivalence and trace
equivalence coincide when processes are determinate.

Theorem 1 Let A and B be two closed extended pro-
cesses that are determinate.

A ≈t B implies A ≈ B.

Proof (sketch). Let A and B be two closed ex-
tended processes that are determinate, and assume
that A ≈t B. We consider the relation R defined as
follows:

A′ R B′ iff there exists s such that A
s
Z⇒ A′, B

s
Z⇒ B′,

and φ(A′) ∼ φ(B′).

We have that A R B. It remains to check that R
satisfies the three points of Definition 3. �

4 An expressive class of determinate

processes

In what follows, we consider any signature and equa-
tional theory. We do not need the full applied pi-
calculus to represent security protocols. For example,
it is generally assumed that all communications are
controlled by the attacker thus private channels be-
tween processes are not accurate (they should rather
be implemented using cryptography). In addition, the
attacker schedules the communications between pro-
cesses thus he knows exactly to whom he is sending
messages and from whom he is listening. Thus we as-
sume that each process communicates on a personal
channel.

Formally, we consider the fragment of simple pro-
cesses built on basic processes. A basic process repre-
sents a session of a protocol role where a party waits
for a message of a certain form or checks some equali-
ties and outputs a message accordingly. Then the party
waits for another message or checks for other equalities
and so on.

Intuitively, any protocol whose roles have a deter-
ministic behavior can be modeled as a simple process.
Most of the roles are indeed deterministic since an
agent should usually exactly know what to do once
he has received a message. In particular, all protocols
of the Clark and Jacob library [12] can be modeled as
simple processes.

Definition 7 (basic process) The set B(c,V) of ba-
sic processes built from c ∈ Ch and V ⊆ X (variables of
base type) is the least set of processes that contains 0
and such that

• if B1, B2 ∈ B(c,V), M, N, s1, s2 ∈ T (Nb,V), then

if M = N then out(c, s1).B1 else out(c, s2).B2

∈ B(c,V).

• if B ∈ B(c,V ⊎ {x}), x of base type (x /∈ V), then

in(c, x) · B ∈ B(c,V).

Intuitively, in a basic process, depending on the out-
come of the test, the process sends on its channel c a
message depending on its inputs. A basic process may
also input messages on its channel c.

Example 9 We consider a slightly simplified version
of a protocol given in [3] designed for transmitting a se-
cret without revealing its identity to other participants.
In this protocol, A is willing to engage in communi-
cation with B and wants to reveal its identity to B.
However, A does not want to compromise its privacy by
revealing its identity or the identity of B more broadly.
The participants A and B proceed as follows:

A → B : enc(〈Na, pub(A)〉, pub(B))

B → A : enc(〈Na, 〈Nb, pub(B)〉〉, pub(A))

First A sends to B a nonce Na and its public key
encrypted with the public key of B. If the message is of
the expected form then B sends to A the nonce Na, a
freshly generated nonce Nb and its public key, all of this
being encrypted with the public key of A. Otherwise, B
sends out a “decoy” message: enc(Nb, pub(B)). This
message should basically look like B’s other message
from the point of view of an outsider. This is important
since the protocol is supposed to protect the identity of
the participants.

A session of role A played by agent a with b
can be modeled by the following basic process where
true denotes a test that is always satisfied and
M = dec(x, ska). Note that A is not given the value
skb but is directly given the value pk(skb), that is the
public key corresponding to B’s private key.

A(a, b)
def
=

if true then

out(cA, enc(〈na, pk(ska)〉, pk(skb))).
in(cA, x).
if 〈π1(M), π2(π2(M))〉 = 〈na, pk(skb)〉 then 0

else 0
else 0.
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Similarly, a session of role B played by agent b
with a can be modeled by the basic process B(b, a) where
N = dec(y, skb).

B(b, a)
def
= in(cB, y).

if π2(N) = pk(ska) then
out(cB, enc(〈π1(N), 〈nb, pk(skb)〉〉, pk(ska))).0
else out(cB, enc(nb, pk(skb))).0.

Intuitively, this protocol preserves anonymity if an
attacker cannot distinguish whether b is willing to talk
to a (represented by the process B(b, a)) or willing to
talk to a′ (represented by the process B(b, a′)), provided
a, a′ and b are honest participants. For illustration
purposes, we also consider the process B′(b, a) obtained
from B(b, a) by replacing the else branch by else 0.
We will see that the “decoy” message plays a crucial
role to ensure privacy.

Definition 8 (simple process) A simple process is
obtained by composing and replicating basic processes
and frames, hiding some names:

νñ. ( νñ1.(B1 | σ1) | !(νc′1, m̃1.out(p1, c
′
1).B

′
1)

...
...

νñk.(Bk | σk) | !(νc′n, m̃n.out(pn, c′n).B′
n) )

where Bj ∈ B(cj , ∅), B′
j ∈ B(c′j , ∅) and cj are channel

names that are pairwise distinct. The names p1, . . . , pn

are distinct channel names that do not appear elsewhere
and σ1, . . . , σk are frames without restricted names (i.e.
substitutions).

Each basic process B′
j first publishes its channel

name c′j on the public channel pj so that an attacker
can communicate with it. Intuitively the public chan-
nels p1, . . . , pn indicate from which role the channel
name c′i is emitted. Names of base types may be shared
between processes, this is the purpose of ñ.

It is interesting to notice that protocols with deter-
ministic behavior are usually not modeled within our
fragment (see e.g. [2]) since a single channel is used for
all communications. We think however that using a
single channel does not provide enough information to
the attacker since he is not able to schedule exactly the
messages to the processes and he does not know from
which process a message comes from while this infor-
mation is usually available (via e.g. IP adresses). For
example, a role emitting the constant a twice would be
modeled by P1 = out(c, a).out(c, a).0 while two roles
emitting each the constant a would be modeled by
P2 = out(c, a).0 | out(c, a).0. Then P1 and P2 are ob-
servationally equivalent while the two protocols could
be distinguished in practice, which is reflected in our
modeling in simple processes.

Example 10 Continuing Example 9, a simple process
representing unbounded number of sessions in which a
plays A (with b) and b plays B with a is:

νska, skb. ( !(νna, cA.out(pA, cA).A(a, b))
| !(νnb, cB.out(pB, cB).B(b, a)) )

For modelling and verification purposes, we may want
to disclose the public keys in order to make them avail-
able to the attacker. This can be done by means of an
additional basic process

K(a, b) = out(cK , pk(ska)) · out(cK , pk(skb)).0.

Simple processes is a large class of processes that
are determinate. Indeed, since each basic process has
its own channel to send and receive messages, all the
communications are visible to the attacker. Moreover,
the attacker knows exactly who is sending a message or
from whom he is receiving a message. Actually, given
a simple process A a sequence of actions tr, there is a
unique process B (up to some internal reduction steps)

such that A
tr
Z⇒ B.

Theorem 2 Any simple process is determinate.

Applying Theorems 1 and 2, we get that, on simple
processes, it is sufficient to check trace equivalence to
prove observational equivalence.

Corollary 1 Let A and B be two simple processes:
A ≈t B if, and only if, A ≈ B.

5 Intermediate calculus

Reasoning on processes of the applied-pi calculus is
quite involved since it requires one to consider all the
rules defining the labeled transition relation

α
→. Thus

we use a simplified fragment of the class of interme-
diate processes, defined in [14], that are easier to ma-
nipulate and such that trace equivalence of simple pro-
cesses without replication nor else branch is equivalent
to trace equivalence of their corresponding intermedi-
ate processes.

5.1 Syntax

The grammar of the plain intermediate processes is
as follows:

P, Q, R := 0
if M1 = M2 then P else Q
in(c, x).P
out(c, N).P

where c ∈ Ch is channel name, M1, M2 are terms of
base type, x is a variable of base type, and N is a
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message of base type. Terms M1, M2 and N can also
use variables.

Definition 9 (intermediate process) An interme-
diate process is a triple (E ;P; Φ) where:

• E is a set of names that represents the names re-
stricted in P;

• Φ = {w1 ⊲ t1, . . . , wn ⊲ tn} where t1, . . . , tn are
ground terms, and w1, . . . , wn are variables;

• P is a multiset of plain intermediate processes
(defined below) where null processes are removed
and such that fv(P) ⊆ {w1, . . . , wm}.

Additionally, we require intermediate processes to be
variable distinct, i.e. any variable is at most bound
once.

Given a sequence Φ = {w1 ⊲ t1, . . . , wn ⊲ tn} where
t1, . . . , tn are terms, we also denote by Φ its associated
frame, i.e. {t1/w1

} | . . . | {tn/wn
}.

Given a closed extended process A of the original
applied pi without replication, we can easily trans-
form it into an intermediate process Ã = (E ;P; Φ) such
that A ≈ νE .(P | Φ). The idea is to rename names and
variables to avoid clashes, to apply the active substitu-
tions (Subst), to remove the restrictions on variables
(Alias), and finally to push the restrictions on names
in front of the process. We can also add some restricted
names not appearing in the process in front of it. This
will be useful to obtain two intermediate processes with
the same set of restricted names.

Example 11 Consider the extended process A de-
scribed below (M is a term such that n 6∈ fn(M)):

νsk.νx.(out(c, enc(x, pk(sk))).νn.out(c, n) | {M/x}).

An intermediate process A′ associated to A is:

A′ = (E ;P; Φ)
= ({sk, n}; out(c, enc(M, pk(sk))).out(c, n); ∅).

We have that A ≈ νE .(P | Φ). However, note that A
and νE .(P | Φ) are not in structural equivalence. In-
deed, structural equivalence does not allow one to push
all the restrictions in front of a process.

5.2 Semantics

From now on, we consider intermediate processes
without else branch, that is we assume that any sub-
process of the form if M = N then P else Q is such
that Q = 0. The semantics for intermediate processes

(without else branch) is given in Figure 2. Let Ai be
the alphabet of actions for the intermediate semantics.
For every w ∈ A∗

i the relation
w
−→i on intermediate pro-

cesses is defined in the usual way. For s ∈ (Ai r {τ})∗,

the relation
s
⇒i on intermediate processes is defined by:

A
s
⇒i B if, and only if there exists w ∈ A∗

i such that

A
w
−→i B and s is obtained by erasing all occurrences

of τ . Note that by definition, intermediate processes
are closed.

5.3 Equivalence

Let A = (E1;P1; Φ1) be an intermediate process. We
define the following set:

tracei(A) = {(s, νE2.Φ2) | (E1;P1; Φ1)
s
⇒i (E2;P2; Φ2)

for some (E2;P2; Φ2)}

Definition 10 (≈t for intermediate processes)
Let A and B be two intermediate processes having the
same set of restricted names, i.e. A = (E ;P1; Φ1) and
B = (E ;P2; Φ2).

The processes A and B are intermediate trace equiv-
alent, denoted by A ≈t B, if for every (s, ϕ) ∈ tracei(A)
there exists (s′, ϕ′) ∈ tracei(B) such that s = s′ and
ϕ ∼ ϕ′ (and conversely).

Despite the differences between the two semantics, it
can be shown that the two notions of trace equivalence
coincide [14]. For intermediate processes derived from
simple processes, we wish to obtain a similar result for
a more detailed notion of trace, called annotated trace.

Annotated traces are obtained by replacing the la-
bel τ of the rule Theni in Figure 2 with testp where p
is the identity of the process, i.e. the name of its chan-
nel. If Ai

a1−→i . . .
an−−→i A′

i, we denote by a1 · . . . · an the
trace obtained from a1 · . . . · an by replacing any testp
by τ , recovering a trace for the previous definition of
trace. We can easily adapt the definition of trace and
trace equivalence, yielding to annotated trace and an-
notated trace equivalence.

We show that on simple processes without else
branch nor replication, trace equivalence coincides with
annotated trace equivalence.

Proposition 1 Let A and B be two simple pro-
cesses without else branch nor replication. Let Ã =
(E ;PA; ΦA) and B̃ = (E ;PB; ΦB) be the two associated
intermediate processes.

The processes A and B are trace equivalent
(i.e. A ≈t B in the original applied pi calculus seman-
tics) if, and only if, Ã and B̃ are annotated trace equiv-
alent.
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(E ; {if u = v then P else Q} ⊎ P; Φ)
τ
−→i (E ; {P} ⊎ P; Φ) if u =E v (Theni)

(E ; {in(p, x).P} ⊎ P; Φ)
in(p,M)
−−−−−→i (E ; {P{x 7→ u}} ⊎ P; Φ) (Ini)

MΦ = u, fv(M) ⊆ dom(Φ) and fn(M) ∩ E = ∅

(E ; {out(p, u).P} ⊎ P; Φ)
νwn.out(p,wn)
−−−−−−−−−→i (E ; {P} ⊎ P; Φ ∪ {wn ⊲ u}) (Out-Ti)

wn variable such that n = |Φ| + 1

u, v and x are terms of base type whereas p is a channel name.

Figure 2. Intermediate semantics of simple processes

The proof relies on the result of [14] that states that
two processes are trace equivalent if and only if the
corresponding intermediate processes are intermediate
trace equivalent. We then need to show that traces can
be grouped following the annotation, which is due to
the determinism of simple processes.

6 A decision procedure for observa-

tional equivalence

The aim of the section is to provide a decision proce-
dure for trace equivalence and for a large class of pro-
cesses (namely the class of simple processes), for the
class of convergent subterm equational theories. Start-
ing from intermediate processes that are obtained from
simple processes without else branch nor replication,
we reduce trace equivalence to equivalence of constraint
systems. We can then conclude by using the decision
procedure proposed in [7, 8] for constraint systems for
the class of convergent subterm equational theories.

6.1 Constraint system

Following the notations of [7], we consider a new
set X 2 of variables called second order variables
X, Y, . . ., each variable with an arity, denoted ar(X).
We denote by var1(C) (resp. var2(C)) the first order
(resp. second order) variables of C, that is var1(C) =
fv(C) ∩ X (resp. var2(C) = fv(C) ∩ X 2).

A constraint system represents the possible execu-
tions of a protocol once an interleaving has been fixed.

Definition 11 (constraint system [7]) A con-
straint system is a triple (E ; Φ; C):

• E is a set of names (names that are initially un-
known to the attacker);

• Φ is a sequence of the form {w1 ⊲ t1, . . . , wn ⊲ tn}
where ti are terms and wi are variables. The ti
represent the terms sent on the network, their vari-
ables represent messages sent by the attacker.

• C is a set of constraints of the form X ⊲
? x with

ar(X) ≤ n, or of the form s =?
E s′ where s, s′

are first-order terms. Intuitively, the constraint
X ⊲? x is meant to ensure that x will be replaced
by a deducible term.

The size of Φ, denoted |Φ| is its length n. We also
assume the following conditions:

1. for every x ∈ var1(C), there exists a unique X such
that (X ⊲? x) ∈ C, and each variable X occurs at
most once in C.

2. for every 1 ≤ k ≤ n, for every x ∈ var1(tk), there
exists (X ⊲

? x) ∈ C such that ar(X) < k.

Given a term T with variables w1, . . . , wk and Φ =
{w1 ⊲ t1, . . . , wn ⊲ tn}, n ≥ k, TΦ denotes the term T
where each wi has been replaced by ti. The structure
of (E ; Φ; C) is given by E , |Φ| and var2(C) with their
arity.

Example 12 The triple Σs = (Es; Φ
0
s ∪ {w4 ⊲ t}; Cs)

where

Es = {ska, ska′, skb, na, nb},
Φ0

s = {w1 ⊲ pk(ska), w2 ⊲ pk(ska′), w3 ⊲ pk(skb)},
t = enc(〈π1(dec(y, skb)), 〈nb, pk(skb)〉〉, pk(ska)),
Cs = {Y ⊲? y, π2(dec(y, skb)) =?

E pk(ska)}, ar(Y ) = 3

is a constraint system. We will see that it corresponds
to the execution of the process B′(b, a) presented in Ex-
ample 9. We consider three agents (a, a′ and b) so that
the attacker can try to learn whether b is willing to talk
to a or to a′. Their public keys are made available to
the attacker.

Definition 12 (solution) A solution of a constraint
system Σ = (E ; Φ; C) is a substitution θ such that

• dom(θ) = var2(C), and

• Xθ ∈ T (Nb r {E}, dom(Φ)) for any X ∈ dom(θ).

Moreover, we require that there exists a closed substi-
tution λ with dom(λ) = var1(C) such that:

8



1. for every (X ⊲? x) ∈ C, (Xθ)(Φλ) = xλ;

2. for every (s =?
E s′) ∈ C, sλ =E s′λ;

The substitution λ is called first order solution of Σ
associated to θ. The set of solutions of a constraint
system Σ is denoted Sol(Σ).

Example 13 Continuing Example 12, a solution to
Σs = (Es; Φs; Cs) is θ where dom(θ) = {Y } and
θ(Y ) = enc(〈ni, w1〉, w3) with ni a public name (i.e.
ni 6∈ Es). The first order-solution λ of Σs associated
to θ is a substitution whose domain is {y} and such
that λ(y) = enc(〈ni, pk(ska)〉, pk(skb)).

A constraint system Σ is satisfiable if Sol(Σ) 6= ∅. Two
constraint systems Σ1 and Σ2 with the same structures
are equivalent if and only if Sol(Σ1) = Sol(Σ2). We
further define S-equivalence [7] that will be useful to
capture static equivalence.

Definition 13 (S-equivalence) Let Σ1 = (E ; Φ1; C1)
and Σ2 = (E ; Φ2; C2) be two constraint systems with the
same structure and consider x, y 6∈ var1(Ci) and X, Y 6∈
var2(Ci) for i = 1, 2. The two systems Σ1 and Σ2 are
S-equivalent if the constraint systems:

• (E ; Φ1; C1 ∪ {X ⊲? x, Y ⊲? y, x =?
E y}), and

• (E ; Φ2; C2 ∪ {X ⊲? x, Y ⊲? y, x =?
E y})

are equivalent.

Example 14 Let Σ′
s be the constraint system below:

(Es; Φ
0
s∪{w4 ⊲ t′}; Y ⊲

? y, π2(dec(y, skb)) =?
E pk(ska′))

where t′ = enc(〈π1(dec(y, skb)), 〈nb, pk(skb)〉〉, pk(ska′)),
and Es, Φ0

s are defined as in Example 12. We will see
that this system corresponds to the system obtained
after a symbolic execution of the process B′(b, a′)
presented in Example 9.

The system Σs (given in Example 12) is not equiv-
alent to Σ′

s. Indeed, the substitution θ given in Exam-
ple 13 is such that θ ∈ Sol(Σs) whereas θ 6∈ Sol(Σ′

s).
We conclude that the constraint systems Σs and Σ′

s

are not equivalent, and thus not in S-equivalence. Ac-
tually, this corresponds to the fact that an attacker can
distinguish between B′(b, a) and B′(b, a′) by sending a
message enc(〈n, pk(ska)〉, pk(skb)) and see whether b
answers or not.

6.2 Symbolic calculus

Following the approach of [8], we compute from an
intermediate process P = (E ;P; Φ) the set of con-
straints systems capturing the possible executions of P ,

starting from Ps
def
= (E ;P; Φ; ∅) and applying the rules

defined in Figure 3.

Definition 14 (symbolic process) A symbolic pro-
cess is a tuple (E ;P; Φ; C) where:

• E is a set of names;

• P is a multiset of plain intermediate processes
where null processes are removed and such that
fv(P) ⊆ {x | X ⊲? x ∈ C};

• (E , Φ, C) is a constraint system.

The rules of Figure 3 define the semantics of sym-
bolic processes. The aim of this symbolic semantics
is to avoid the infinite branching due to the inputs of
the environment. This is achieved by keeping variables
rather than the input terms. The constraint system
gives a finite representation of the value that these vari-
ables are allowed to take.

The Thens (resp. INs) rule allows the process to
pass a test (resp. an input). The corresponding con-
straint is added in the set of constraints C. When a
process is ready to output a term on a public chan-
nel p, the outputted term is added to the frame Φ,
which means that this term is made available to the
attacker.

Example 15 We consider one session of the protocol
presented in Example 9, in which b plays the role B′

(with a) and a plays the role A with b. We consider
the following process K(a, a′, b) that models keys dis-
closure, i.e.

out(cK , pk(ska)).out(cK , pk(ska′)).out(cK , pk(skb)).

Let E be the set of names {ska, ska′, skb, na, nb},
and P s

ex the following symbolic process:

P s
ex = (E ; {A(a, b), B′(b, a), K(a, a′, b)}; ∅; ∅).

We have that P s
ex

tr
⇒s (Es;Ps; Φs; Cs) where

• tr = νw1.out(cK , w1) · νw2.out(cK , w2) ·
νw3.out(cK , w3) · in(cB, y) · νw4.out(cB, w4),

• Ps = {A(a, b)}, and

• (Es; Φs; Cs) is the constraint system Σs defined in
Example 12.

We show that the set of symbolic processes obtained
from an intermediate process (E ;P; Φ) without else
branch exactly captures the set of execution traces of
(E ;P; Φ) though θ-concretization.
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Thens (E ; {if u = v then P else 0} ⊎ P; Φ; C)
τ
−→s (E ; {P} ⊎ P; Φ; C ∪ {u =?

E v})

Ins (E ; {in(p, x).P} ⊎ P; Φ; C)
in(p,Y )
−−−−−→s (E ; {P{x 7→ y}} ⊎ P; Φ; C ∪ {Y ⊲? y})

where Y, y are fresh variables, ar(Y ) = |Φ|

Out-Ts (E ; {out(p, u).P} ⊎ P; Φ; C)
νwn.out(p,wn)
−−−−−−−−−→s (E ; {P} ⊎ P; Φ ∪ {wn ⊲ u}; C)
where wn is a variable such that n = |Φ| + 1

u, v, and x are terms of base type whereas p is a channel name.

Figure 3. Symbolic execution of simple processes

Definition 15 (θ-concretization) Consider the
symbolic process (E1;P1; Φ1; C1) and let θ be a sub-
stitution in Sol((E1; Φ1; C1)). The intermediate
process (E1;P1λθ; Φ1λθ) is the θ-concretization of
(E1;P1; Φ1; C1) where λθ is the first order solution of
(E1; Φ1; C1) associated to θ.

We now show soundness of
αs−→s w.r.t.

α
−→i: when-

ever this relation holds between two symbolic pro-
cesses, the relation in the intermediate semantics holds
for each θ-concretization. Actually, we need such a
result for the more detailed notion of annotated traces
(see page 7): the label τ of the rules Thens and Theni

is replaced by testp where p is the identity of the pro-
cess, i.e. the name of its channel.

Proposition 2 (soundness) Let (E1;P1; Φ1; C1),
(E2;P2; Φ2; C2) be two symbolic processes such that

• (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2), and

• θ2 ∈ Sol((E2; Φ2; C2)).

Let θ1 = θ2|var2(C1). We have that:

1. θ1 ∈ Sol((E1; Φ1; C1)), and

2. (E1;P
′
1; Φ

′
1)

αsθ2−−−→i (E2;P
′
2; Φ

′
2) where (E1;P

′
1; Φ

′
1)

(resp. (E2;P ′
2; Φ

′
2) is the θ1-concretization (resp.

θ2) of (E1;P1; Φ1; C1) (resp. (E2;P2; Φ2; C2)).

We also show completeness of the symbolic seman-
tics w.r.t. the intermediate one: each time a θ-
concretization of a symbolic process reduces to another
intermediate process, the symbolic process also reduces
to a corresponding symbolic process.

Proposition 3 (completeness) Let (E1;P1; Φ1; C1)
be a symbolic process, (E1;P ′

1; Φ
′
1) its θ1-concretization

where θ1 ∈ Sol((E1; Φ1; C1)). Let (E ;P; Φ) be an in-

termediate process such that (E1;P
′
1; Φ

′
1)

α
−→i (E ;P; Φ).

There exist a symbolic process (E2;P2; Φ2; C2) and θ2

such that:

1. (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2);

2. θ2 ∈ Sol((E2; Φ2; C2));

3. the process (E ;P; Φ) is the θ2-concretization of
(E2;P2; Φ2; C2); and

4. αsθ2 = α.

6.3 Symbolic equivalence

Definition 16 (symbolic trace equivalence)
Let A be a simple process without else branch nor
replication. We define the set of its symbolic traces as
follows:

traces(A) = {(tr, Σ) | As
tr
⇒s (E ′;P ′; Φ′; C′) and

Σ = (E ′; Φ′; C′) satisfiable.}

Let A and B be two simple processes. They are in sym-
bolic trace equivalence if for every (tr, Σ) ∈ traces(A)
there exists (tr′, Σ′) ∈ traces(B) such that tr = tr′ and
Σ, Σ′ are S-equivalent (and conversely).

We show that symbolic trace equivalence exactly
captures trace equivalence.

Proposition 4 Let A = (E ;PA; ΦA) and B =
(E ;PB; ΦB) be two intermediate processes derived from
simple processes without else branch nor replication.
We have that A and B are in annotated trace equiv-
alence if, and only if, they are in annotated symbolic
trace equivalence.

The proof relies on the fact that, when A ≈t B, ex-
ecution traces can be grouped in the same way for A
and B, forming symbolic traces with S-equivalent con-
straint systems.

The following proposition is an immediate conse-
quence of Proposition 1 and Proposition 4.

Proposition 5 Let A and B be two simple processes
without else branch nor replication: A ≈t B if, and
only if A and B are in annotated symbolic trace equiv-
alence.
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Example 16 Relying on our technique, we can now
prove that the two following processes Pex and P ′

ex are
not in observational equivalence:

• Pex = νñ.[ A(a, b) | B′(b, a) | K(a, a′, b) ], and

• P ′
ex = νñ.[ A(a′, b) | B′(b, a′) | K(a, a′, b) ].

Continuing Example 15, we have that (tr, Σs) ∈
traces(P

s
ex) and Σs satisfiable (see Example 13). The

only constraint system reachable from

P ′s
ex = (E ; {A(a′, b), B′(b, a′), K(a, a′, b)}; ∅; ∅)

by the sequence tr is Σ′
s as defined in Example 14.

We have seen that Σ′
s is not in S-equivalence with Σs.

This allows us to conclude that the simple processes Pex

and P ′
ex are not in symbolic trace equivalence, and

thanks to Proposition 5, Theorem 1 and Theorem 2,
we conclude that Pex 6≈ P ′

ex.

Similarly, our techniques allow to prove that two
processes are in observational equivalence. An example
is provided in Appendix E.

6.4 Decidability result

It remains to show how to decide symbolic trace
equivalence. We mainly rely on the result of [7] that
ensures that checking whether two constraints systems
are S-equivalent is NP-complete, for the class of con-
vergent subterm theories.

An equational theory E is a convergent subterm the-
ory if it is generated by a convergent rewriting sys-
tem R such that any rule l → r ∈ R satisfies that
either r is a strict subterm of l or r is a closed term
in normal form w.r.t. R. The equational theory pre-
sented in Example 3 is a convergent subterm theory.
Many other examples can be found e.g. in [1].

Now, we are able to state our main result.

Theorem 3 Let E be a subterm convergent equa-
tional theory. Let A and B be two simple processes
without else branch nor replication. The problem
whether A and B are observationally equivalent is co-
NP-complete.

The decidability of observational equivalence follows
from Proposition 5 since there are a finite number of
symbolic traces and non S-equivalence of constraint
systems is decidable [7]. Actually, since we consider
annotated trace, we have that for any simple process P
and any annotated trace tr, there is at most one Σ such
that (tr, Σ) ∈ traces(P ). We show that two simple pro-
cesses A and B without else branch nor replication are

in trace equivalence if, and only if, for any annotated
trace (tr, Σ) ∈ traces(A), there exists a (unique) an-
notated trace (tr, Σ′) ∈ traces(B) such that Σ and Σ′

are S-equivalent. We show this result in two steps:
we go from applied pi to the intermediate calculus (see
Proposition 1) and then we go from intermediate calcu-
lus to our symbolic calculus (see Proposition 4). Then
the NP-TIME decision procedure for non observational
equivalence works as follows:

• Guess a symbolic (annotated) trace tr;

• Compute (in polynomial time) Σ and Σ′ such that
(tr, Σ) ∈ traces(A) and (tr, Σ′) ∈ traces(B);

• check whether Σ and Σ′ are not S-equivalent.

Due to [7], we know that the last step can be done
in NP-TIME for convergent subterm theories thus we
deduce that the overall procedure is NP-TIME. NP-
hardness is obtained using the usual encoding [22].

7 Conclusion

In this paper, we consider the class of determinate
processes and we show that observational equivalence
actually coincides with trace equivalence, a notion sim-
pler to reason with. We exhibit a large class of pro-
cesses that are determinate and we show how to re-
duce the decidability of trace equivalence to deciding
an equivalence relation introduced by M. Baudet. Al-
together, this yields the first decidability result of ob-
servational equivalence for a general class of processes.

As future work, it would be interesting to extend
this class of processes in different ways. For exam-
ple, we would like to extend our decision result to else
branches. This would require adding disequality tests
in set of constraints and adapt the procedure of [7] ac-
cordingly. Moreover, some protocols such as e-voting
protocols are divided in several phases. It does not
seem difficult to add a “phase” operator to the applied
pi-calculus and obtain a corresponding decision result
for observational equivalence. It would be also inter-
esting to consider larger classes of equational theories
such as those considered for e-voting protocols [15].

Our class of simple processes is close to the frag-
ment of processes considered in [13] for proving crypto-
graphic indistinguishability using observational equiv-
alence. However, the fragment of [13] does not enjoy
the determinacy property (since it was not designed
for it). We plan to extend their result to our class of
simple processes, yielding to a decision technique for
proving indistinguishability in cryptographic models.
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A Proofs of Section 3

Trace equivalence implies observational equivalence.

Lemma 1 Let A and B be two closed extended pro-
cesses: A ≈ B implies A ≈t B.

Proof. Let (s, ϕ) ∈ trace(A) with bn(s) ∩ fn(B) = ∅.
By definition of trace(A) we have that there exists A′

such that A
s
Z⇒ A′, and ϕ = φ(A′). By relying on

the fact that A ≈ B, we can show by induction on
the length of the derivation A

s
Z⇒ A′ that there ex-

ists B′ such that B
s
Z⇒ B′ and A′ ≈ B′. Thus, we have

that (s, φ(B′)) ∈ trace(B) and since A′ ≈ B′ we have
that φ(A′) ∼ φ(B′). This allows us to conclude that
A ⊑t B. The other direction can be proved in a similar
way. �

Observation and trace determinacy coincide.

Lemma 2 Let A be a closed extended process. The
process A is observation determinate if, and only if, it
is trace determinate.

Proof. We prove the two directions separately.
(⇒) Let A be a closed extended process that is ob-
servation determinate. Let B and B′ be two closed
extended processes and s be a sequence of actions such
that A

s
Z⇒ B, A

s
Z⇒ B′ and φ(B) ∼ φ(B′). In order to

show that A is trace determinate, we have to show that
B ≈t B′. Actually, since A is observation determinate,
we have that B ≈ B′ and thanks to Lemma 1, we easily
conclude.

(⇐) Let A be a closed extended process that is trace
determinate. Let B and B′ be two closed extended
processes and s1 be a sequence of actions such that
A

s1

Z⇒ B, A
s1

Z⇒ B′ and φ(B) ∼ φ(B′). By hypothesis
we have that B ≈t B′. In order to show that A is ob-
servation determinate, we have to show that B ≈ B′.
To prove this, first we define a relation R (which de-
pends on B, B′ and A) on closed extended processes
and then we will show that R is a labeled bisimulation
witnessing B ≈ B′.

(i) Definition of R. B̃ R B̃′ if, and only if, there

exists s2 such that B
s2

Z⇒ B̃, B′ s2

Z⇒ B̃′, and φ(B̃) ∼
φ(B̃′).

(ii) R is a bisimulation relation witnessing B ≈ B′.
First note that B R B′. Now, we have to show that R
satisfies the three points of the definition of labeled
bisimulation (Definition 3). Let B̃ and B̃′ be two closed
extended processes such that B̃ R B̃′. Note that, by
definition of R, we have that there exists s2 such that
B

s2

Z⇒ B̃, B′ s2

Z⇒ B̃′, and φ(B̃) ∼ φ(B̃′).

1. φ(B̃) ∼ φ(B̃′). This is an easy consequence of the
definition of R.

2. If B̃
τ
7→ Ã then there exists an extended process

Ã′ such that B̃′
Z⇒ Ã′ and Ã R Ã′.

Let Ã′ = B̃′. We have that B̃′
Z⇒ Ã′ and

Ã R Ã′ since B
s2

Z⇒ B̃
τ
7→ Ã, B′ s2

Z⇒ B̃′ = Ã′,
and φ(Ã) ∼ φ(Ã′). This last point is due to the
following relations:

φ(Ã) = φ(B̃) ∼ φ(B̃′) = φ(Ã′).

3. If B̃
ℓ
7→ Ã with bn(ℓ) ∩ fn(B̃′) = ∅ then B̃′ ℓ

Z⇒ Ã′

and Ã R Ã′ for some extended process Ã′.

Since A is trace determinate, we have that
B̃ ≈t B̃′. We have that (ℓ, φ(Ã)) ∈ trace(B̃).
Since, B̃ ⊑t B̃′ and bn(ℓ) ∩ fn(B̃′) = ∅, we de-

duce that there exists Ã′ such that B̃′ ℓ
Z⇒ Ã′ and

φ(Ã) ∼ φ(Ã′). We deduce that Ã R Ã′ (by the
sequence s2 · ℓ). This allows us to conclude. �

Theorem 1 Let A and B be two closed extended pro-
cesses that are determinate.

A ≈t B implies A ≈ B.

Proof. Let A and B be two closed extended processes
that are determinate, and assume that A ≈t B. We
have to show that A ≈ B. Define R as in the proof of
Lemma 2:

A′ R B′ iff there exists s such that A
s
Z⇒ A′, B

s
Z⇒ B′,

and φ(A′) ∼ φ(B′).

First note that A R B. We show that R satisfies the
three points of the definition of labeled bisimulation
(Definition 3). Let A′ and B′ be two extended pro-
cesses such that A′ R B′.

1. φ(A′) ∼ φ(B′). This is an easy consequence of the
definition of R.

2. If A′ τ
7→ A′′ then there exists an extended pro-

cess B′′ such that B′
Z⇒ B′′ and A′′ R B′′.

Let B′′ = B′. We have that B′
Z⇒ B′′ and

A′′ R B′′ since A
s
Z⇒ A′′, B

s
Z⇒ B′′, and

φ(A′′) ∼ φ(B′′). Indeed, we have that

φ(A′) = φ(A′′) ∼ φ(B′′) = φ(B′).

3. If A′ ℓ
7→ A′′ with bn(ℓ)∩ fn(B′) = ∅ then B′ ℓ

Z⇒ B′′

and A′′ R B′′ for some extended process B′′.

We have that A
s
Z⇒ A′ ℓ

7→ A′′. Since A ≈t B, we
easily deduce that there exist two closed extended
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processes D′ and D′′ such that B
s
Z⇒ D′ ℓ

Z⇒ D′′

such that φ(A′′) ∼ φ(D′′). Now, since B is de-

terminate and B
s
Z⇒ B′ and B

s
Z⇒ D′, we have

that B′ ≈t D′. Hence there exists B′′ such that

B′ ℓ
Z⇒ B′′ and φ(D′′) ∼ φ(B′′). We have that

A
s·ℓ
Z⇒ A′′, B

s·ℓ
Z⇒ B′′ and φ(A′′) ∼ φ(B′′), i.e.

A′′ R B′′. This allows us to conclude. �

B Proof of Section 4

Before to prove Theorem 2, we introduce some def-
initions and notations. Let B be a basic process such
that B ∈ B(c,V). If B

τ
7→ B′ then it is easy to see that

B′ is of the form B′ ≡ out(c, s).B′′ for some term s
and some B′′ ∈ B(c,V). We say that B′ is a derived
basic process.

A simple process built from basic processes that are
possibly derived is a derived simple process. Each pro-
cess of the form !(νc, ñ.out(p, c).B) with B ∈ B(c, ∅)
is called a replicated process for the role p. For every
w ∈ A∗, we denote by s(w) the trace obtained from w
by erasing all occurrences of τ . By definition, we have

that A
s(w)
Z⇒ B when A

w
7→ B.

We say that two processes P1 and P2 are in relation,
denoted by P1 ↔ P2, if

• P1 ≡ νñ.(B1 | · · · | Bk | R1 | · · ·Rl | σ),

• P2 ≡ νñ.(B′
1 | · · · | B′

k | R1 | · · ·Rl | σ),

where σ is a sequence of active substitutions, the Ri

are replicated processes and the Bi, B′
i are (possibly

derived) basic processes such that either Bi = B′
i or

Bi
τ
7→ B′

i or B′
i

τ
7→ Bi. It is easy to check that ↔ is an

equivalence relation on derived simple processes.

Theorem 2 Any simple process is determinate.

Proof. Let P be (possibly derived) simple process. We
show by induction on the length of the trace w that

whenever P
w
7→ P1 and P

s(w)
Z⇒ P2 then P1 ↔ P2. This

implies P1 ≈ P2 thus this would prove that P is deter-
minate.

Assume that P
w
7→ P1

α
7→ P ′

1 and P
s(w.α)

Z⇒ P ′
2 where

α ∈ A. We have P
w′

7→ P2
α
7→ P ′′

2
w′′

7→ P ′
2 for some w

and w′ such that s(w) = s(w′) and w′′ ∈ {τ}∗ or pos-
sibly P ′

2 = P2 in case α = τ . By induction hypothesis,
we have P1 ↔ P2 thus we have that

• P1 ≡ νñ.(B1 | · · · | Bk | R1 | · · ·Rl | σ),

• P2 ≡ νñ.(B′
1 | · · · | B′

k | R1 | · · ·Rl | σ),

where the Ri are replicated processes and the Bi, B′
i

are (possibly derived) basic processes such that either

Bi = B′
i or Bi

τ
7→ B′

i or B′
i

τ
7→ Bi. Let us show that

P ′
1 ↔ P ′

2 by case analysis on α.

Case α = τ . Then P1
τ
7→ P ′

1 thus P1 ↔ P ′
1. We have

also that P2
w
7→ P ′

2 for w ∈ {τ}∗, thus P2 ↔ P ′
2.

Since ↔ is an equivalence relation, we deduce
P ′

1 ↔ P ′
2.

Case α = νc.out(p, c) where c is a name channel. It
must be the case that one process Ri is a replicated
process for the role p and has sent a new channel
names for a fresh instance of the role p. Let Ri ≡
!(νc, m̃ · out(p, c).B) with B ∈ B(c, ∅). We must
have P ′

1 ≡ νñ, m̃.(B1 | · · · | Bk | B | R1 | · · ·Rl |

σ). Similarly, since P2
α
−→ P ′′

2 , we must have P ′′
2 ≡

νñ, m̃.(B′
1 | · · · | B′

k | B | R1 | · · ·Rl | σ). Thus
P ′

1 ↔ P ′′
2 . Since P ′′

2 →∗ P ′
2, we also have P ′′

2 ↔ P ′
2

thus P ′
1 ↔ P ′

2.

Case α = νx.out(c, x) where x is a variable. Let Bi

the (derived) basic process such that Bi =
out(c, s).B′′

i . Such a Bi is unique and we must

have B′
i = Bi. Indeed the other cases, i.e. B′

i

τ
7→

Bi and Bi
τ
7→ B′

i are impossible since Bi and B′
i

are ready to emit. We deduce that P ′
1 ≡ νñ.(B1 |

· · · | B′′
i | · · · | Bk | R1 | · · ·Rl | σ | {s/x}) and

P ′′
2 ≡ νñ.(B′

1 | · · · | B′′
i | · · · | B′

k | B | R1 | · · ·Rl |
σ | {s/x}). We deduce similarly that P ′

1 ↔ P ′
2.

Case α = in(c, M). Let Bi the basic process such
that Bi = in(c, x).B′′

i . Such a Bi is unique and we
must have B′

i = Bi. Since B′
i and Bi get the same

input, they both evolved into B′′
i {

M/x} thus we
have that P ′

1 ↔ P ′
2. �

C Proofs of Section 5

Proposition 1 is a consequence of Propositions 6
and 7 stated and proved below.

Despite the difference between the two semantics
(the original one and the intermediate one), it can be
shown that the two notions of trace equivalence coin-
cide. The following proposition is a direct consequence
of results established in [14].

Proposition 6 Let A and B be two simple processes s
(of the original applied pi) without replication nor else
branch. Let Ã = (E1;P1; Φ1) (resp. B̃ = (E2;P2; Φ2))
be an intermediate process associated to A (resp. B ).
Moreover we assume that E1 = E2. We have that A ≈t

B (in the original applied pi calculus semantics) if, and
only if, the two processes Ã and B̃ are intermediate
trace equivalent.
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Actually, we want to obtain such a result but for
the more detailed notion of annotated trace. For this,
it remains to prove the following proposition.

Proposition 7 Let A and B be two simple pro-
cesses without else branch nor replication. Let Ã =
(E ;PA; ΦA) and B̃ = (E ;PB; ΦB) be the two associ-
ated intermediate processes. The processes Ã and B̃
are trace equivalent if, and only if, Ã and B̃ are anno-
tated trace equivalent.

Proof. We show the two directions separately.

(⇐) Let Ã and B̃ be two intermediate processes that
are annotated trace equivalent. Then they are of course
trace equivalent.

(⇒) Assume that Ã and B̃ are in trace equivalence.
Now, it remains to show that they are in trace equiv-
alence w.r.t. annotated traces that seems at first sight
a stronger notion of trace equivalence.

Let w be an annotated trace such that Ã
w
⇒i Ã′. We

show that there exists B̃′ such that B̃
w
⇒i B̃′ with the

same annotated trace w and φ(B̃) ∼ φ(B̃′). First, we

force Ã′ to emit as much as possible, i.e. Ã′ w′

⇒i Ã′′ such
that w′ only consists in actions of the form νw.out(c, w)
and Ã′′ cannot perform any out action of a message of
base type. By trace equivalence, we have that there

exists B̃′′ such that B̃
s(w·w′)
⇒ i B̃′′ and φ(Ã′′) ∼ φ(B̃′′)

(Definition of s(w) is given page 14 and Definition of
w can be found on page 7).

Let VB be the set of annotated traces such that
B̃

vB⇒i B̃′′. Note that VB 6= ∅ and every annotated trace
vB in VB is such that vB = wB ·w′

B , s(wB) = s(w) for
some wB and w′

B. Let vB be an annotated trace in VB

of maximal common prefix with w. We show that w is
a prefix of vB .

Indeed, if not, we consider the first time where the
two annotated traces w and vB differ. We have that
w = u·a·u′ and vB = u·b·v′ with a 6= b. Clearly a and b
can not be both observable actions. One of them (at
least) is an annotation. Assume w.l.o.g. that a = testp
for some p. We consider the first occurrence (after the
action a) of the process identified by p in the trace w·w′.
Note that such an occurrence necessarily exists and
is of the form νw.out(p, w) since each test is followed
by an emission and we have force Ã to emit. Thus,
vB must contain an action of the form νw.out(p, w),
which enforces that testp also occur in vB . Thus, we
can remove this action testp to insert it just before the
occurrence of b. We obtain another trace that is also
in VB and which contradicts the maximality of vB.

Hence, we have that w is a prefix of vB . Let B̃′

be the process obtained after the execution of w in

the derivation B̃
vB⇒i B̃′′. We have that B̃

w
⇒i B̃′

by the annotated trace w and φ(Ã′) ∼ φ(B̃′) since
φ(Ã′′) ∼ φ(B̃′′). �

D Proofs of Section 6

Proposition 2 (soundness) Let (E1;P1; Φ1; C1),
(E2;P2; Φ2; C2) be two symbolic processes such that

• (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2), and

• θ2 ∈ Sol((E2; Φ2; C2)).

Let θ1 = θ2|var2(C1). We have that:

1. θ1 ∈ Sol((E1; Φ1; C1)), and

2. (E1;P ′
1; Φ

′
1)

αsθ2−−−→i (E2;P ′
2; Φ

′
2) where (E1;P ′

1; Φ
′
1)

(resp. (E2;P ′
2; Φ

′
2) is the θ1-concretization (resp.

θ2) of (E1;P1; Φ1; C1) (resp. (E2;P2; Φ2; C2)).

Proof. We prove this result by case analysis on the rule
involved in the reduction step:

(E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2).

Case Thens. In such a case there exist u, v, P , P
and c such that P1 = {if u = v then P else 0} ⊎ P,
C2 = C1 ∪ {u =?

E v}, P2 = {P} ⊎ P, E1 = E2, Φ1 = Φ2,
and αs = testc where c is the channel name used in the
process P .

1. Since var2(C1) = var2(C2), we have θ1 = θ2, and it
is now easy to see that θ1 ∈ Sol((E1; Φ1; C1)).

2. Since θ2 ∈ Sol((E2; Φ2; C1 ∪ {u =?
E v})), θ2 = θ1,

Φ2 = Φ1, we have λθ1
= λθ2

and thus uλθ1
=E

vλθ1
. Hence we have that

(E1; {if uλθ1
= vλθ1

then Pλθ1
else 0} ⊎ Pλθ1

; Φ1λθ1
)

testc−−−→i (E1; {Pλθ2
} ⊎ Pλθ2

; Φ2λθ2
),

i.e. (E1;P
′
1; Φ

′
1)

αsθ2−−−→i (E2;P
′
2; Φ

′
2)

where (E1;P ′
1; Φ

′
1) (resp. (E2;P ′

2; Φ
′
2) is the

θ1-concretization (resp. θ2-concretization) of
(E1;P1; Φ1; C1) (resp. (E2;P2; Φ2; C2)).

Case Ins. In such a case, there exist p, x, P , P
and fresh variables y and Y with ar(Y ) = |Φ1| and
such that αs = in(p, Y ), P1 = {in(p, x).P} ⊎ P,
P2 = {P{x 7→ y}} ⊎ P, C2 = C1 ∪ {Y ⊲

? y}, E1 = E2

and Φ1 = Φ2.

1. We have that var2(C1) = var2(C2) r {Y },
var1(C1) = var1(C2) r {y} and Φ1 = Φ2. Thus,
we have that λθ1

= λθ2
|var1(C1) and we easily de-

duce that θ1 ∈ Sol((E1; Φ1; C1)).
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2. Let M = Y θ2 and u = yλθ2
. We have that

fn(M) ∩ E1 = ∅ since θ2 ∈ Sol((E2; Φ2; C2)) and
E2 = E1. We have also that u = yλθ2

=
M(Φ1λθ1

) = MΦ′
1. Lastly, by definition of a solu-

tion, we have that fv(M) ⊆ dom(Φ′
1). Hence, we

have that

(E1; {in(p, x).Pλθ1
} ⊎ Pλθ1

; Φ1λθ1
)

in(p,M)
−−−−−→i (E1; {Pλθ1

{x 7→ u}} ⊎ Pλθ1
; Φ2λθ1

),

i.e. (E1;P1λθ1
; Φ1λθ1

)
αsθ2−−−→ (E2; (P{x 7→ y})λθ2

⊎
Pλθ2

; Φ2λθ2
) since E2 = E1, Φ2 = Φ1, var1(Φ1) =

var1(Φ2) and λθ2
= λθ1

∪ {y 7→ u}. Hence,

we have that (E1;P ′
1; Φ

′
1)

αsθ2−−−→ (E2;P ′
2; Φ

′
2)

where (E1;P ′
1; Φ

′
1) (resp. (E2;P ′

2; Φ
′
2) is the θ1-

concretization (resp. θ2) of (E1;P1; Φ1; C1) (resp.
(E2;P2; Φ2; C2)).

Case Out-Ts. In such a case, there exist p, u, P ,
P and wl such that l = |Φ1| + 1, αs = νwl.out(p, wl),
P1 = {out(p, u).P} ⊎ P, P2 = {P} ⊎ P, C2 = C1, E2 =
E1, and Φ2 = Φ1 ∪ {wl ⊲ u}.

1. We have that θ1 = θ2 and wl does not occur in θ1.
Hence we have that λθ1

= λθ2
. This allows us to

deduce that θ1 ∈ Sol((E1; Φ1; C1)).

2. Let v = uλθ1
. We have that:

(E1; {out(p, uλθ1
).Pλθ1

} ⊎ Pλθ1
; Φ1λθ1

)
νwl.out(p,wl)
−−−−−−−−−→i

(E1; {Pλθ1
} ⊎ Pλθ1

; Φ1λθ1
∪ {wl ⊲ uλθ1

}),

i.e. (E1;P ′
1; Φ

′
1)

νwl.out(p,wl)
−−−−−−−−−→i (E2;P2λθ1

; Φ2λθ1
),

and thus (E1;P
′
1; Φ

′
1)

νwl.out(p,wl)
−−−−−−−−−→i (E2;P

′
2; Φ

′
2)

since λθ1
= λθ2

. �

Proposition 3 (completeness) Let (E1;P1; Φ1; C1)
be a symbolic process, (E1;P

′
1; Φ

′
1) its θ1-concretization

where θ1 ∈ Sol((E1; Φ1; C1)). Let (E ;P; Φ) be an in-

termediate process such that (E1;P ′
1; Φ

′
1)

α
−→i (E ;P; Φ).

There exist a symbolic process (E2;P2; Φ2; C2) and θ2

such that:

1. (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2);

2. θ2 ∈ Sol((E2; Φ2; C2));

3. the process (E ;P; Φ) is the θ2-concretization of
(E2;P2; Φ2; C2); and

4. αsθ2 = α.

Proof. We prove this result by case analysis on the rule
involved in the reduction step:

(E1;P
′
1; Φ

′
1)

α
−→i (E ;P; Φ).

Case Theni. In such a case we have that E = E1

and there exist u′, v′, P ′, P ′, and c such that u′ =E v′,
P ′

1 = {if u′ = v′ then P ′ else 0}⊎P ′, P = {P ′}⊎P ′,
Φ = Φ′

1, and α = testc where c is the channel name
used in P ′. Since (E1;P

′
1; Φ

′
1) is the θ1-concretization

of (E1;P1; Φ1; C1), we have that P ′
1 = P1λθ1

and Φ′
1 =

Φ1λθ1
. Hence we deduce that that there exist u, v, P

and P0 such that P1 = {if u = v then P else 0}⊎P0,
and thus we have that uλθ1

= u′, vλθ1
= v′, Pλθ1

= P ′

and P0λθ1
= P ′. Let E2 = E1, P2 = {P}⊎P0, Φ2 = Φ1,

C2 = C1 ∪ {u = v}, αs = testc and θ2 = θ1. We have
that:

1. (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2). Indeed, we

have that

(E1; {ifu = v thenP else 0} ⊎ P0; Φ1; C1)
αs−→s

(E1; {P} ⊎ P0; Φ1; C1 ∪ {u = v}).

2. We have that var2(C2) = var2(C1), E2 = E1 and
Φ2 = Φ1. To check that θ2 is a solution, it remains
to show that λθ2

satisfies the constraints in C2 =
C1 ∪ {u = v}. Actually we have that λθ2

= λθ1
.

Moreover, we have that uλθ1
=E vλθ1

, thus we
deduce that θ2 ∈ SolE((E2; Φ2; C2)).

3. We have that

(E2;P2λθ2
; Φ2λθ2

) = (E1; ({P} ⊎ P0)λθ1
; Φ1λθ1

)
= (E ; {P ′} ⊎ P ′; Φ′

1)
= (E ;P; Φ).

4. We have that αsθ2 = αs = α = testc.

Case Ini. In such a case we have that E = E1,
Φ = Φ′

1 and there exist p, x, P ′, P ′, M and u such
that P ′

1 = {in(p, x).P ′} ⊎ P ′, P = {P ′{x 7→ u}} ⊎ P ′,
MΦ′

1 = u, fv(M) ⊆ dom(Φ′
1), fn(M)∩E1 = ∅, and α =

in(p, M). Since (E1;P ′
1; Φ

′
1) is the θ1-concretization

of (E1;P1; Φ1; C1), we have that P ′
1 = P1λθ1

, and
Φ′

1 = Φλθ1
. Hence, we deduce that there exist P , P0

such that P1 = {in(p, x).P} ⊎ P0 with Pλθ1
= P ′ and

P0λθ1
= P ′. (Note that λθ1

can only instantiate vari-
ables of base type, thus the channel name is necessar-
ily p.)

Let Y be a second order variable of arity |Φ1| and y
be a fresh first order variable. Let E2 = E1, P2 =
{P{x 7→ y}} ⊎ P0, Φ2 = Φ1, C2 = C1 ∪ {Y ⊲? y},
and αs = in(p, Y ). Let θ2 be the substitution such
that dom(θ2) = dom(θ1) ∪ {Y }, θ2 = θ1|var2(C1), and
Y θ2 = M . We have that:
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1. (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2). Indeed, we

have that

(E1; {in(p, x).P} ⊎ P0; Φ1; C1)
in(p,Y )
−−−−−→s

(E1; {P{x 7→ y}} ⊎ P0; Φ1; C1 ∪ {Y ⊲? y}).

2. We have dom(θ2) = var2(C2) and fn(θ2) ∩ E2 = ∅
since fn(θ1)∩E1 = ∅ and fn(M)∩ E1 = ∅. Now, it
remains to show that λθ2

satisfies the constraints
in C2. Actually, we have that λθ2

= λθ1
|var1(C1)

and yλθ2
= u. This allows us to conclude since

(Y θ2)Φ1 = MΦ1 = u = yλθ2
.

3. We have that

(E2;P2λθ2
; Φ2λθ2

)
= (E1; {P{x 7→ y}λθ2

} ⊎ P0λθ2
; Φ1λθ1

)
= (E1; Pλθ1

{x 7→ u}} ⊎ P ′; Φ′
1)

= (E ; {P ′{c 7→ u}} ⊎ P ′; Φ)
= (E ;P; Φ).

4. We have that αsθ2 = in(p, Y )θ2 = in(p, M) = α.

Case Out-Ti. In such a case we have that E = E1

and there exist p, u′, P ′, and P ′ such that P ′
1 =

{out(p, u′).P ′} ⊎ P ′, Φ = Φ′
1 ∪ {wl ⊲ u′} where l =

|Φ′
1|+ 1, P = {P ′}⊎P ′, and α = νwl.out(p, wl). Since

(E1;P
′
1; Φ

′
1) is the θ1-concretization of (E1;P1; Φ1; C1),

we have that P ′
1 = P1λθ1

and Φ′
1 = Φ1λθ1

. Hence,
we deduce that there exist u, P and P0 such that
P1 = {out(p, u).P} ⊎ P0, with uλθ1

= u′, Pλθ1
= P ′,

and P0λθ1
= P ′.

Let E2 = E1, P2 = {P} ⊎ P0, Φ2 = Φ1 ∪ {wl ⊲ u},
C2 = C1, αs = νwl.out(p, wl) and θ2 = θ1. We have
that:

1. (E1;P1; Φ1; C1)
αs−→s (E2;P2; Φ2; C2). Indeed, we

have that

(E1; {out(p, u).P} ⊎ P0; Φ1; C1)
νwl.out(p,wl)
−−−−−−−−−→s

(E1; {P} ⊎ P0; Φ1 ∪ {wl ⊲ u}; C1).

2. We have that θ2 = θ1, C2 = C1 and Φ2 = Φ1 ∪
{wl ⊲ u}. Since for all X ∈ var2(C2), we have
that ar(X) ≤ |Φ1|, we deduce that λθ1

= λθ2
and

θ2 ∈ Sol((E2; Φ2; C2)).

3. We have that

(E2;P2λθ2
; Φ2λθ2

)
= (E1; {Pλθ1

} ⊎ P0λθ1
; Φ1λθ1

∪ {wl ⊲ uλθ1
})

= (E ; {P ′} ⊎ P ′; Φ′
1 ∪ {wl ⊲ u′})

= (E ;P; Φ)

4. We have that αsθ2 = νwl.out(p, wl) = α. �

Before to prove that for the class of simple processes
without else branch nor replication, trace equivalence
and symbolic trace equivalence coincide, we need to
relate S-equivalence to static equivalence. As shown
in [7], S-equivalence captures static equivalence.

Proposition 8 Let Σ1 = (E ; Φ1; C1) and Σ2 =
(E ; Φ2; C2) be two constraint systems with the same
structure. Σ1 and Σ2 are S-equivalent iff

1. Σ1 and Σ2 are equivalent; and

2. for every θ ∈ Sol(Σ1), νE .Φ1λθ ∼ νE .Φ2λθ.

The following proposition can be easily proved by
relying on Propositions 2 and 3. We also use Proposi-
tion 8 to deal with static equivalence.

Proposition 4 Let A = (E ;PA; ΦA) and B =
(E ;PB; ΦB) be two intermediate processes derived from
simple processes without else branch nor replication.
We have that A and B are in annotated trace equiv-
alence if, and only if, they are in annotated symbolic
trace equivalence.

Proof. We show the two directions separately.

(⇐) We consider annotated traces. We have to
show that for every (w, ϕA) ∈ tracei(A) there exists
(w, ϕB) ∈ tracei(B) such that ϕA ∼ ϕB (and recip-
rocally). Let (w, ϕA) ∈ tracei(A). By definition of
tracei(A), this means that there exists (E ′;P ′

A; Φ′
A)

such that (E ;PA; ΦA)
w
⇒i (E ′;P ′

A; Φ′
A), and ϕA =

νE ′.Φ′
A. Let As = (E ;PA; ΦA; ∅) and θ be the identity.

We have that A is the θ-concretization of As and θ ∈
Sol((E ; ΦA; ∅)). Thanks to Proposition 3, we have that
there exist a symbolic process A′

s = (E ′;P ′s
A ; Φ′s

A; C′
A)

and a substitution θ′ such that

1. (E ;PA; ΦA; ∅)
ws⇒s (E ′;P ′s

A ; Φ′s
A; C′

A);

2. θ′ ∈ Sol((E ′; Φ′s
A; C′

A));

3. (E ′;P ′
A; Φ′

A) is the θ′-concretization of
(E ′;P ′s

A ; Φ′s
A; C′

A); and

4. wsθ
′ = w.

Let Σ′
A = (E ′; Φ′s

A; C′
A). By definition of traces(As),

we have that (ws, Σ
′
A) ∈ traces(As). Since As and Bs

are in symbolic trace equivalence, we deduce that
there exists Σ′

B = (E ′; Φ′s
B; C′

B) such that (ws, Σ
′
B) ∈

traces(Bs) and Σ′
A, Σ′

B are S-equivalent. By definition
of traces(Bs), we have that

(E ;QB; ΦB; ∅)
ws⇒s (E ′;Q′s

B; Φ′s
B; C′

B)
for some Q′s

B, Φ′s
B and C′

B .
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Since Σ′
A and Σ′

B are S-equivalent, they are also
equivalent (Proposition 8) and thus θ′ ∈ Sol(Σ′

B).
Moreover, we have that νE ′.Φ′s

Aλθ′ ∼ νE ′.Φ′s
Bλθ′ (again

thanks to Proposition 8). Now, we apply Proposition 2,

we have that (E ;PB; ΦB)
wsθ′

⇒ i (E ′;P ′s
Bλθ′ ; Φ′s

Bλθ′). Let
ϕB = νE ′.Φ′s

Bλθ′ . Clearly, we have that (wsθ
′, ϕB) ∈

tracei(B). From the fact that νE ′.Φ′s
Aλθ′ ∼ νE ′.Φ′s

Bλθ′ ,
we deduce that ϕA ∼ ϕB. The other inclusion can be
shown in a similar way.

(⇒) First, note that for the class of symbolic processes

we consider, we have that As

wa

s⇒ A′
s and As

wa

s⇒ A′′
s for

some annotated trace wa
s implies that A′

s = A′′
s . We

have to show that As and Bs are in symbolic trace
equivalence. Let (ws, Σ

′
A) ∈ traces(As) and let wa

s

be the associated annotated trace (wa
s is uniquely de-

fined).
Let Σ′

A = (E ′; Φ′s
A; C′

A). Thanks to Proposition 2,
we have that (wa

sθ, νE ′.Φ′s
Aλθ) is an annotated trace

of A for every θ ∈ Sol(Σ′
A). Since A and B are in

annotated trace equivalence, we deduce that for every
θ ∈ Sol(Σ′

A) there exists an annotated trace (wa
sθ, ϕθ

B)
issued from B and such νE ′.Φ′s

Aλθ ∼ ϕθ
B. By complete-

ness, we deduce that for each θ ∈ Sol(Σ′
A), there ex-

ists B′θ
s whose associated constraint system is Σ′θ

B and

an annotated sequence wθ
s such that Bs

wθ

s⇒s B′θ
s and

θ ∈ Sol(Σ′θ
B). Actually, there exists a unique symbolic

derivation that is possible.
Let Σ′

B = (E ′; Φ′s
B; C′

B) be the constraint system ob-
tained after such a derivation. Moreover, we necessarily
have that wθ

s = wa
s . Hence we have that

{(wa
sθ, νE ′.Φ′s

Aλθ) | θ ∈ Sol(Σ′
A)}

⊆
{(wa

sθ, νE ′.Φ′s
Bλθ) | θ ∈ Sol(Σ′

B)}.

Actually, we have that

{(wa
sθ, νE ′.Φ′s

Aλθ) | θ ∈ Sol(Σ′
A)}

=
{(wa

sθ, νE ′.Φ′s
Bλθ) | θ ∈ Sol(Σ′

B)}.

Indeed, let (wa, ϕ′
B) ∈ {(wa

sθ, νE ′.Φ′s
Bλθ) | θ ∈

Sol(Σ′
B)}. Since A and B are in annotated trace equiv-

alence, we know that there exists A′ such that A
wa

⇒i A′.
Thanks to Proposition 3, we know that As can mimic
this derivation and it is easy to see that the only pos-
sible trace is actually wa

s , hence the result. �

E Example

This subsection contains an example that illustrates
our techniques and the different notions we used.

Example 17 Consider the theory Eenc described in
Example 3, and the two frames:

• ϕ0 = νsks.{pk(sks)/x1
, enc(〈ni,v0〉,pk(sks))/x2

},

• ϕ1 = νsks.{pk(sks)/x1
, enc(〈ni,v1〉,pk(sks))/x2

}

We have that (enc(〈ni, v0〉, x1) =Eenc
x2)ϕ0 whereas

(enc(〈ni, v0〉, x1) 6=Eenc
x2)ϕ1.

However, we have that νni.ϕ0 ∼ νni.ϕ1. This is a
non trivial equivalence. Intuitively, there is no test that
allows one to distinguish the two frames since neither
the decryption key nor the nonce ni are available.

Example 18 Consider the theory Eenc and the follow-
ing process

P (v) = νsks.out(c, pk(sks)).out(c, enc(〈ni, v〉, pk(sks))).

We have that νni.P (v0) ≈ νni.P (v1) whereas
P (v0) 6≈ P (v1). These results are direct consequences
of the static (in)equivalence relations stated and dis-
cussed in Example 17.

Example 19 We consider a protocol that could be
used for the voting phase of an e-voting protocol. In
this protocol, S sends a token, i.e. a nonce Ns, to the
voter A. Then A votes by sending the token together
with his vote, the whole encrypted by the public key
of S. We will see that the nonce Na used in this an-
swer is crucial to ensure privacy, i.e. the fact that A
does not want to reveal his vote v. The participants A
and S proceed as follows:

S → A : enc(〈Ns, pub(A)〉, pub(A))

A → S : enc(〈Ns, 〈v, Na〉〉, pub(S))

Firstly S sends to A a nonce Ns concatenated with
the public key of A (in order to identify A), all of this
being encrypted with the public key of A. If the message
is of the expected form then A sends to S the nonce Ns,
a freshly generated nonce Na and his vote v, all of this
being encrypted with the public key of the server S.
From the point of view of an outsider, the messages
should basically look similar for any voting option. This
is important since the protocol is supposed to ensure
privacy.

A session of role A played by agent a with s to cast
the vote v can be modeled by the following basic pro-
cess where true denotes a test that is always satisfied
and M = dec(x, ska). Note that A is not given the
value sks but is directly given the value pk(sks), that
is the public key corresponding to S’s private key.

A(a, b, v)
def
= in(cA, x).

if π2(M) = pk(ska) then
out(cA, enc(〈π1(M), 〈v, na〉〉, pk(sks))).0
else 0.
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where M = dec(x, sks).
Similarly, a session of role S played by agent s with a

can be modeled by the basic process S(s, a) where N =
dec(y, sks).

S(s, a)
def
= if true then

out(cS, enc(〈ns, pk(ska)〉, pk(ska)))
in(cS, y).
if π1(N) = nsthen out(cS, ok).0
else 0

else 0.

Intuitively, this protocol preserves privacy if an at-
tacker cannot distinguish whether a is casting v0 or v1.
For illustration purposes, we also consider the pro-
cess A′(a, s, v) obtained from A(a, s, v) by removing the
nonce na in the outputted message. We will see that
this nonce plays a crucial role to ensure privacy.

Example 20 Continuing Example 19, a simple pro-
cess representing an unbounded number of sessions in
which a plays A (with s) to cast vote v and s plays S
with a is:

νska, sks.( !(νna.A(a, s, v)) | (νns.S(s, a)) )

This represents the case where A may try to vote sev-
eral times while the server S will provide only one token
to A. For modeling and verification purposes, we wish
to disclose the public keys in order to make them avail-
able to the attacker. This can be done by means of an
additional basic process

K(a, s) = out(cK , pk(ska)) · out(cK , pk(sks)).0

Example 21 The triple Σs = (Es; Φ
0
s ∪ {w3 ⊲ t}; Cs)

where

Es = {ska, sks, na, ns},
Φ0

s = {w1 ⊲ pk(ska), w2 ⊲ pk(sks)},
t = enc(〈π1(dec(x, ska)), v0〉, pk(sks)),
Cs = {X ⊲? x, π2(dec(x, ska)) =?

E pk(ska)}, ar(X) = 2

is a constraint system. We will see that it corresponds
to the execution of the process A′(a, s, v0) presented in
Example 19. Note that the public keys of the partici-
pants are made available to the attacker since they ap-
pear in Φ0

s.

Example 22 Continuing Example 21, a solution to
Σs = (Es; Φs; Cs) is θ where dom(θ) = {X} and
θ(X) = enc(〈ni, w1〉, w1) with ni a public name (i.e.
ni 6∈ Es). The first order-solution λ of Σs associated
to θ is a substitution whose domain is {x} and such
that λ(x) = enc(〈ni, pk(ska)〉, pk(ska)).

Example 23 Let Σ′
s be the following constraint sys-

tem:

Σ′
s = (Es; Φ

0
s ∪ {w3 ⊲ t1}; Cs)

where t1 = enc(〈π1(dec(x, ska)), v1〉, pk(sks))}, and Es,
Cs and Φ0

s are defined as in Example 21. This system
corresponds to the system obtained after a symbolic ex-
ecution of the process A′(a, s, v1) presented in Exam-
ple 19.

The system Σs (given in Example 21) is not S-
equivalent to Σ′

s. Indeed, the two following constraint
systems are not equivalent:

• (Es; Φs; Cs∪{X1 ⊲? x1, X2 ⊲? x2, x1 =?
E x2}), and

• (Es; Φ
′
s; Cs ∪ {X1 ⊲

? x1, X2 ⊲
? x2, x1 =?

E x2}).

Let θ be the substitution such that dom(θ) =
{X, X1, X2} and θ(X) = enc(〈ni, w1〉, w1), θ(X1) =
enc(〈ni, v0〉, w2) and θ(X2) = w3. We have that θ ∈
Sol(Σs) whereas θ 6∈ Sol(Σ′

s). We conclude that the
constraint systems Σs and Σ′

s are not in S-equivalence.
Actually, this corresponds to the fact that an attacker
can distinguish between A′(a, s, v0) and A′(a, s, v1)
by sending the message enc(〈ni, pk(ska)〉, pk(ska))
to a and see whether the answer of a is equal to
enc(〈ni, v0〉, pk(sks)) or not.

Example 24 We consider one session of the protocol
presented in Example 19, in which a plays the role A′

(with s) to cast the vote v0 and s plays the role S with a.
We consider the process K(a, s) defined in Example 20.
Let E be the set of names {ska, sks, na, ns}, and P s

ex be
the following symbolic process:

P s
ex = (E ; {A′(a, b, v0), S(s, a), K(a, s)}; ∅; ∅).

We have that P s
ex

tr
⇒s (Es;Ps; Φs; Cs) where

• tr = νw1.out(cK , w1) · νw2.out(cK , w2) · in(cA, x) ·
νw3.out(cA, w3),

• Ps = {S(s, a)}, and

• (Es; Φs; Cs) is the constraint system Σs defined in
Example 21.

Example 25 Relying on our techniques, we can now
prove that the two processes Pex and P ′

ex are not in
observational equivalence, where

• Pex = νñ.[ A′(a, s, v0) | S(s, a) | K(a, s) ], and

• P ′
ex = νñ.[ A′(a, s, v1) | S(s, a) | K(a, s) ].
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Continuing Example 24, we have that (tr, Σs) ∈
traces(P

s
ex) and Σs is satisfiable (see Example 22). The

only constraint system reachable from

P ′s
ex = (E ; {A′(a, s, v1), S(s, a), K(a, s)}; ∅; ∅)

by the sequence tr is Σ′
s as defined in Example 23.

We have seen that Σ′
s is not in S-equivalence with Σs.

This allows us to conclude that the simple processes Pex

and P ′
ex are not in symbolic trace equivalence, and

thanks to Proposition 5, Theorem 1 and Theorem 2,
we conclude that Pex and P ′

ex are not in observational
equivalence.

Our techniques also allow one to show that the pro-
cesses Qex and Q′

ex are in observational equivalence,
where

• Qex = νñ.[ A(a, s, v0) | S(s, a) | K(a, s) ], and

• Q′
ex = νñ.[ A(a, s, v1) | S(s, a) | K(a, s) ].

Let

Qs
ex = (E ; {A(a, b, v0), S(s, a), K(a, s)}; ∅; ∅)

Q′s
ex = (E ; {A(a, b, v1), S(s, a), K(a, s)}; ∅; ∅)

Thanks to Proposition 5, Theorem 1 and Theorem 2,
it is sufficient to check that, for any (tr, Σs) ∈
traces(Q

s
ex), there exists (tr, Σ′

s) ∈ traces(Q
′s
ex) such that

Σs and Σ′
s are in S-equivalence, and reciprocally. S-

equivalence can be checked by hand in this example or
using the decision procedure of [7]. This shows that the
nonce Na plays a crucial role to ensure privacy.
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