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Abstract. Like most models used in model-checking, timed automata are an idealized
mathematical model used for representing systems with strong timing requirements. In such
mathematical models, properties can be violated, due to unlikely (sequences of) events. We
propose two new semantics for the satisfaction of LTL formulas, one based on probabilities,
and the other one based on topology, to rule out these sequences. We prove that the two
semantics are equivalent and lead to a PSPACE-Complete model-checking problem for LTL
over finite executions.

1 Introduction

Timed automata, a model for verification. In the 90’s, Alur and Dill proposed timed
automata [AD94] as a model for verification purposes, which takes into account real-
time constraints. With this model, one can express constraints on (possibly relative)
dates of events. One of the fundamental properties of this model is that, though
there are infinitely many possible configurations in the system, many verification
problems can be solved (e.g. reachability and safety properties, branching-time timed
temporal properties). Since then, this model has been intensively studied, and several
verification tools have been developed.

Idealization of mathematical models. Timed automata are an idealized mathematical
model, in which several assumptions are implicitely made: it has infinite precision,
instantaneous events, etc. Several ideas have been explored to overcome the fact
that these hypotheses are in practice unrealistic. The model of implementable con-
trollers has been proposed, where constraints and precision of clocks are somewhat
relaxed [DDR04]. In this framework, if the model satisfies a safety property, then, on
a simple model of processor, its implementation will also satisfy this property. This
implementation model has been considered in [Pur98,DDMR04,ALM05,BMR06].
However, it induces a very strong notion of robustness, suitable for really critical
systems (like rockets or X-by-wire systems in cars), but maybe too strong for less
critical systems (like mobile phones or network applications).
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Another robustness model has been proposed at the end of the 90’s in [GHJ97]
with the notion of tube acceptance: a metric is put on the set of traces of the timed
automaton, and a trace is robustly accepted if and only if a tube around that trace
is classically accepted. This acceptance has been further studied for language-based
properties, for instance the universality problem [HR00]. However, this language-
focused notion of acceptance is not completely satisfactory for implementability
issues, because it does not take into account the structure of the automaton, and
hence is not related to the most-likely behaviours of the automaton.

Using probabilities to alleviate the disadvantages of mathematical models. In their
recent paper [VV06], Varacca and Völzer propose a probabilistic framework for
finite-state systems to overcome side-effects of modelling. They use probabilities
to define the notion of being fairly correct as having probability zero to fail, when
every non-deterministic choice has been transformed into a ‘reasonable’ probabilistic
choice. Moreover, in their framework, a system is fairly correct with respect to
some property if and only if the set of traces satisfying that property in the system
is topologically large, which somehow attests the relevance of this notion of fair
correctness.

Contribution. We address both motivations, ruling out unlikely sequences of tran-
sitions (as in the approach of [VV06]) and ruling out unlikely events (from a time
point of view, as in the implementability paradigm discussed above). In order to
do so, we propose two alternative semantics for timed automata: (i) a probabilis-
tic semantics which assigns probabilities both on delays and on discrete choices,
and (ii) a topological semantics, following ideas of [GHJ97,HR00] but rather based
on the structure of the automaton than on its accepted language. For both se-
mantics, we can naturally address a model-checking problem for LTL: almost-sure
model-checking for the probabilistic case and large model-checking for the topo-
logical case. Our results in these new frameworks are twofold. First we prove, by
means of Banach-Mazur games, that the two semantics coincide: an LTL formula
is almost-surely satisfied if and only if it is largely satisfied. Second we show that
the almost-sure model-checking problem (and hence the large model-checking prob-
lem) for LTL specifications is PSPACE-Complete, i.e., no more expensive than the
classical LTL model-checking problem.

About probabilistic timed systems. Probabilities are not new in the model-checking
community, and neither are timed systems. Several pieces of work even combine
both. We refer to [Spr04] for a survey on probabilistic timed systems. However,
all of them were designed for modelling and analysing stochastic hybrid systems
under quantitative aspects, whereas we aim at a probabilistic interpretation of non-
probabilistic systems, which rule out unlikely events and yield a non-standard but
still purely qualitative satisfaction relation for linear-time properties. To the best
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of our knowledge, we present here the first attempt to provide a probabilistic in-
terpretation for non probabilistic timed systems in order to establish linear-time
properties assuming ‘fairness’ on actions and delays.

2 Timed Automata and Region Automata

In this section, we recall the classical notions of timed automaton and its well-known
abstraction, the region automaton [AD94].

Timed automata. Let X be a finite set of clocks. A clock valuation over X is
a mapping ν : X → R+, where R+ is the set of nonnegative reals. We write RX

+

for the set of clock valuations over X. If ν ∈ RX
+ and τ ∈ R+, ν + τ is the clock

valuation defined by (ν + τ)(x) = ν(x) + τ if x ∈ X. If Y ⊆ X, the valuation
[Y ← 0]ν is the valuation assigning 0 to x ∈ Y and ν(x) to x 6∈ Y . A guard over
X is a finite conjunction of expressions of the form x ∼ c where x ∈ X, c ∈ N, and
∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards over X. The satisfaction
relation for guards over clock valuations is defined in a natural way, and we write
ν |= g, if ν satisfies g. We denote AP a finite set of atomic propositions.

Definition 1. A timed automaton is a tuple A = (L,X,E, I,L) such that: (i) L is
a finite set of locations, (ii) X is a finite set of clocks, (iii) E ⊆ L×G(X)× 2X ×L
is a finite set of edges, (iv) I : L→ G(X) assigns an invariant to each location, and
(v) L : L→ 2AP is the labelling function.

The semantics of a timed automaton A is given by a labelled transition system
TA = (S,E ∪ R+,→) where the set S of states is {s = (`, ν) ∈ L× RX

+ | ν |= I(`)},
and the transition relation → (⊆ S × (E ∪ R+)× S) is composed of:

– (delay transition) (`, ν)
τ−→ (`, ν+τ) if τ ∈ R+ and for all 0 ≤ τ ′ ≤ τ , ν+τ ′ |= I(`),

– (discrete transition) (`, ν)
e−→ (`′, ν ′) if e = (`, g, Y, `′) ∈ E is such that ν |=

I(`) ∧ g, ν ′ = [Y ← 0]ν, and ν ′ |= I(`′).

A finite run % of A is a finite sequence of states obtained by alternating delay and
discrete transitions, i.e., % = s0

τ1−→ s′1
e1−→ s1

τ2−→ s′2
e2−→ s2 · · · sn−1

τn−→ s′n
en−→ sn or

more compactly s0
τ1,e1−−→ s1

τ2,e2−−→ s2 · · · sn−1
τn,en−−−→ sn. We write Runs(A, s0) for the

set of finite runs of A from state s0.
Given s ∈ S and e an edge, we denote by I(s, e) = {τ ∈ R+ | s

τ,e−→ s′} and
I(s) =

⋃
e I(s, e). The timed automaton A is said non-blocking whenever for every

state s ∈ S, I(s) 6= ∅.
If s is a state of A and (ei)1≤i≤n is a finite sequence of edges of A, if C is a convex

constraint over n real-valued variables (ti)1≤i≤n, the (symbolic) path starting from
s, determined by (ei)1≤i≤n, and constrained by C, is the following set of runs:

πC(s, e1 . . . en) = {% = s
τ1,e1−−→ s1

τ2,e2−−→ s2 · · · | % ∈ Runs(A, s) and (τi)1≤i≤n |= C 4} .
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If C is equivalent to ‘true’, we write π(s, e1 . . . en), and say it is unconstrained.
Occasionally, we refer to symbolic path for unconstrained symbolic path.

The region automaton abstraction. The well-known region automaton con-
struction is a finite abstraction of timed automata which can be used for verifying
many properties, for instance regular untimed properties [AD94].

Let A be a timed automaton. Define M the largest constant to which clocks
are compared in guards or invariants of A. Two clock valuations ν and ν ′ are said
region-equivalent (written ν ≈ ν ′) whenever the following conditions hold:

– bν(x)c = bν ′(x)c or ν(x), ν ′(x) > M , for all x ∈ X;
– {ν(x)} = 0 iff {ν ′(x)} = 0, for all x ∈ X with ν(x) ≤M ;
– {ν(x)} ≤ {ν(y)} iff {ν ′(x)} ≤ {ν ′(y)}, for all x, y ∈ X with ν(x), ν(y) ≤M .

where, b·c denotes the integral part, and {·} denotes the fractional part.
This equivalence relation on clock valuations has a finite (exponential) index,

and extends to the states of A, saying that (`, ν) ≈ (`′, ν ′) iff ` = `′ and ν ≈ ν ′.
We use [ν] (resp. [(`, ν)]) to denote the equivalence class to which ν (resp. (`, ν))
belongs. A region is an equivalence class of valuations. The set of all the regions is
denoted by RA. If r is a region, we denote by cell(r) the smallest guard defined with
constants smaller than M , and which contains r. We denote cell(R(A)) the set of all
cell(r) for r ∈ RA.

The original region automaton [AD94] is a finite automaton which is the quotient
of the time abstract transition TA by the equivalence relation ≈. Here, we use a slight
modification of the original construction, which is still a timed automaton, but which
satisfies very strong properties.

Definition 2. Let A = (L,X,E, I,L) be a timed automaton. The region automa-
ton of A is the timed automaton R(A) = (Q,X, T, κ, λ) such that:

– Q = L×RA;
– κ((`, r)) = I(`), and λ((`, r)) = L(`) for all (`, r) ∈ L×RA;

– T ⊆ (Q × cell(RA) × E × 2X × Q), and (`, r)
cell(r′′),e,Y−−−−−−→ (`′, r′) is in T iff there

exists e = `
g,Y−−→ `′ in E s.t. there exist ν ∈ r, τ ∈ R+ with (`, ν)

τ,e−→ (`′, ν ′),
ν + τ ∈ r′′ and ν ′ ∈ r′.

We recover the usual region automaton of [AD94] by labelling the transitions ‘e’
instead of ‘cell(r′′), e, Y ’, and by interpreting R(A) as a finite automaton. However,
the above timed interpretation satisfies strong timed bisimulation properties that we
do not detail here. To every finite path π((`, ν), e1 . . . en) in A corresponds a finite
set of paths π(((`, [ν]), ν), f1 . . . fn) in R(A), each one corresponding to a choice in

4 We write (τi)1≤i≤n |= C whenever the system C[ti/τi], obtained by replacing each variable ti in C by
the value τi, is true.
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the regions that are crossed. If % is a run in A, then we write ι(%) for its (unique)
image in R(A). Finally, note that if A is non-blocking, then so is R(A).

In the rest of the paper we assume timed automata are non-blocking, even though
general timed automata could also be handled (but at a technical extra cost). In
all examples, if a state has no outgoing transition, we implicitely add a self-loop on
that state with no constraints, so that the automaton is non-blocking.

3 A Probabilistic Semantics for Timed Automata

In the literature, several models gather probabilities and timed constraints (see [Spr04]
for a survey). Here, we take the model of timed automata, and give a probabilistic
interpretation to delays, so that unlikely events will happen with probability 0.

For the rest of this section, we fix a timed automaton A = (L,X,Σ,E, I,L),
which we assume is non-blocking. For every state s of A, we assume a probability
measure µs over R+ with the following requirements:

1. µs(I(s)) = µs(R+) = 1;5

2. Writing λ for the Lebesgue measure, if λ(I(s)) > 0, µs is equivalent6 to λ on
I(s); Otherwise, µs is equivalent on I(s) to the uniform distribution over points
of I(s).

For every state s of A, we also assume a probability distribution ps over edges, such
that for every edge e, ps(e) > 0 iff e enabled in s (i.e., s

e−→ s′ for some s′).

Remark 3. The above constraints on probability measures are rather loose and are
for instance satisfied by:

(i) the uniform discrete distribution over I(s) if I(s) is a finite set of points,
(ii) the Lebesgue measure over I(s), normalized to have a probability measure, if

I(s) is a finite set of bounded intervals, and
(iii) an exponential distribution if I(s) contains an unbounded interval.

3.1 Definition of a Probability Measure over Finite Paths

Definition 4. Let A be a timed automaton. We define inductively the probability
for an unconstrained symbolic path π(s, e1 . . . en) to be fired (or equivalently for the
sequence e1, . . . , en of transitions in A to be fired from s) as follows:

PA(π(s, e1 . . . en)) =
1

2

∫
t∈I(s,e1)

ps+t(e1) PA(π(st, e2 . . . en)) dµs(t)

where s
t−→ (s+ t)

e1−→ st. We initialize with PA(π(s)) = 1
2
.

5 Note that this is possible, as we assume s is non-blocking, hence I(s) 6= ∅.
6 Two measures ν and ν′ are equivalent whenever for each measurable set A, ν(A) = 0 ⇔ ν′(A) = 0.
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Using Fubini’s theorem, by induction on the length of symbolic paths, we can prove
that PA is well-defined. When clear from the context, we omit subscript A.

The formula for PA can be read as follows: the probability of taking transition
e1 at time t coincides with the probability of waiting t time units and then choose
e1 among the enabled transitions, i.e., ps+t(e1)dµs(t). We need to sum up over all
t’s in I(s, e1) the probability of runs starting by such a move. Normalisation factor
1
2

ensures that the probability of all finite runs be one.7

Let us illustrate the previous definition on an example.

Example 5. Consider the following timed automaton:

`0 `1 `2`3

`4

x≤1, e1x≤2 x≤2, e2

x≤5

We assume a uniform distribution over delays and enabled edges in every state.
Then we can compute that P(π((`0, 0), e1e2)) = 1

64

(
1 − 3 log

(
5
4

) )
as µ(`0,0) = λ

2

(resp. µ(`1,t) = λ
5−t

) is the uniform distribution over [0, 2] (resp. [t, 5]). The complete
computation is presented in the appendix.

Lemma 6. For every state s, PA is a probability measure over the set Runs(A, s).

Proof. We prove by induction on n that the probability of the set of paths of length
n is 1

2n+1 . As we assume the automaton is non-blocking, there are paths of every
length, hence the probability of all paths of finite length is 1. Moreover, for every
s in A, PA(π(s)) = 1

2
. Hence case n = 0 holds. Assume n ≥ 1, and let Runsn(A, s)

be the set of runs in A of length n starting in s. We denote by 1I the characteristic
function of set I ⊆ R+. Then,

PA(Runsn(A), s) =
∑

e1,...,en

PA(π(s, e1, . . . , en))

=
∑

e1,...,en

1

2

∫
t∈I(s,e1)

ps+t(e1) PA(π(st, e2, . . . , en)) dµs(t)

=
1

2

∑
e1

∫
t∈I(s,e1)

ps+t(e1)
∑

e2,...,en

PA(π(st, e2, . . . , en)) dµs(t)

=
1

2

∑
e1

∫
t∈I(s,e1)

ps+t(e1) PA(Runsn−1(A, st)) dµs(t)

=
1

2

∑
e1

∫
t∈I(s,e1)

ps+t(e1)
1

2n
dµs(t) by induction hypothesis

7 Without this factor, for all n, the measure of runs of length n is one. This factor is not completely
satisfactory as it has no ‘physical’ interpretation, but it is not a problem as we are only interested in
qualitative properties.
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=
1

2n+1

∫
t∈I(s)

(∑
e1

ps+t(e1)1I(s,e1)(t)

)
dµs(t)

=
1

2n+1

∫
t∈I(s)

dµs(t)

=
1

2n+1
since µs(I(s)) = 1 (see condition on page 5).

This concludes the proof. ut

We establish that probabilities in A and in R(A) are closely related, provided the
measures we initially assign to A and R(A) are similar. Hence, if µA (resp. µR(A)) is

the measure in A (resp. R(A)), we assume that for every state s in A, µAs = µ
R(A)
ι(s) .8

This is possible as one can easily be convinced that I(s) = I(ι(s)). Similarly, if pA

(resp. pR(A)) is the distribution over edges in A (resp. R(A)), we assume that for

every state s in A, for every t ∈ R+ pAs+t = p
R(A)
ι(s)+t. Under those assumptions, we

have the following result.

Lemma 7. Let A be a non-blocking timed automaton. Assume measures in A and
in R(A) are related as described above. Let π be a symbolic path in A. Then, ι(π)9

is a PR(A)-measurable set of runs in R(A), and PA(π) = PR(A)(ι(π)).

Proof. In this proof we will denote by ei (resp. fi) the transitions of A (resp. R(A)).
We make the hypothesis on pA and pR(A) more precise: if s is a state of A and t ∈ R+,
for every edge e, there is a single corresponding transition f which leaves the state
[s] in R(A) ([s] is the single state of R(A) such that ι(s) ∈ [s]), and such that this
transition f is enabled from ι(s) + t iff e is enabled from s+ t; the hypothesis then

says that pAs+t(e) = p
R(A)
ι(s)+t(f).

The first point of the lemma is obvious. We prove the second property by in-
duction on the length n of symbolic paths. When n = 0, this is obvious as, for
every (`, ν), there is a single state ((`, r), ν) in R(A) such that ν ∈ r, and in that
case, ι(π((`, ν))) = {π(((`, r), ν))}. We assume the induction hypothesis holds for
all paths of length strictly smaller than n. Let π = π(s, e1, . . . , en) be a symbolic
path in A. We need to have some more notations (this will be technical, but rather
simple). If s is a state, we write s+ t for the state reached from s after a delay of t.
If s is a state of A, we write ι(s) for its image in R(A) (as argued before). We recall
that if s is a state of A, then [s] is the region to which s belongs. If q is a state
of the region automaton, we write nq for the number of edges that can be taken
without delay from q in R(A) (or equivalently in A). If e1 is a transition that can
be taken from q without delay, we denote by e1(q) the single image region we reach

8 Here (and in the sequel), we abuse notations and use ι(s) for ι(π(s)).
9 Recall that, if % is a run in A, then ι(%) is the image of % in R(A) (see page 5).
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after firing e1 from q, and we write q |= f1 if f1 is the unique transition with guard
checking that we are in q and corresponding to e1 in R(A).

PA(π) =
1

2

∫
t∈I(s,e1)

pAs+t(e1) PA(π(st, e2, . . . , en)) dµAs (t)

=
1

2

∫
t∈I(s,e1)

pAs+t(e1)
∑

πt∈ι(π(st,e2,...,en))

PR(A)(πt) dµAs (t) by induction hypothesis

=
1

2

∑
q

∫
t∈I(s,e1)

s+t∈q

pAs+t(e1)
∑

πt∈ι(π(st,e2,...,en))

PR(A)(πt) dµAs (t)

=
1

2

∑
q

∫
t∈I(s,e1)

s+t∈q

pAs+t(e1)
∑

(f2,...,fn)∈ι(e1(q),e2,...,en)

PR(A)(π(ι(st), f2, . . . , fn)) dµAs (t)

=
1

2

∑
q

∫
t∈I(ι(s),f1)

s+t∈q

q|=f1

[s]
f1−→e1(q)

p
R(A)
ι(s)+t(f1)

∑
(f2,...,fn)∈ι(e1(q),e2,...,en)

PR(A)(π(ι(s)t, f2, . . . , fn)) dµ
R(A)
ι(s) (t)

by hypothesis on the measures

=
1

2

∑
q|=f1

[s]
f1−→e1(q)

(f2,...,fn)∈ι(e1(q),e2,...,en)

∫
t∈I(ι(s),f1)

p
R(A)
ι(s)+t(f1) PR(A)(π(ι(s)t, f2, . . . , fn)) dµ

R(A)
ι(s) (t)

=
∑
q|=f1

[s]
f1−→e1(q)

(f2,...,fn)∈ι(e1(q),e2,...,en)

PR(A)(π(ι(s), f1, . . . , fn))

= PR(A)(ι(π))

where (f2, . . . , fn) ∈ ι(e1(q), e2, . . . , en) iff (f2, . . . , fn) is a finite sequence of tran-
sitions corresponding to (e2, . . . , en) and which starts in (e1(q)) (this is a state of
R(A)). ut

3.2 Probabilistic Semantics

We consider the logic LTL [Pnu77], defined inductively as:

LTL 3 ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ϕUϕ

where p ∈ AP is an atomic proposition. We use classical shorthands like tt
def
= p∨¬p,

ff
def
= p ∧ ¬p, ϕ1 ⇒ ϕ2

def
= ¬ϕ1 ∨ ϕ2, Fϕ

def
= ttUϕ, and Gϕ

def
= ¬F (¬ϕ).

We interpret LTL formulas over finite runs of a timed automaton. Given a sym-
bolic path π and an LTL formula ϕ, either all concretizations of π (i.e., concrete
runs % ∈ π) satisfy ϕ, or they all do not satisfy ϕ. Hence, it is correct to speak of
the probability PA{% ∈ Runs(A, s0) | % |= ϕ}, which we simply write PA(s0, ϕ).
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Let ϕ be an LTL formula. We say that A almost-surely satisfies ϕ from s0 w.r.t.
PA, and we then write A, s0 |≈P ϕ, if PA(s0, ϕ) = 1.

Remark 8. Our model of timed automata has no accepting locations. This is restric-
tive as some formulas will be trivially wrong (for instance, eventualities). However,
we can deal with accepting locations as well. Let acc be a new atomic proposition

and ψ be an LTL formula characterising the accepting runs, i.e., ψ
def
= FG acc. In-

stead of considering PA(s0, ϕ) we would rather evaluate the conditional probability
PA(s0, ϕ | ψ). Clearly enough, verifying that PA(s0, ϕ | ψ) = 1 in the automaton
without accepting locations corresponds to checking PA(s0, ϕ) = 1 in the automa-
ton where accepting locations are those labelled with acc. Note that this only makes
sense if PA(s0, ψ) 6= 0, however timed automata such that PA(s0, ψ) = 0 can be
considered as degenerated.

Example 9. Consider the timed automaton A depicted below:

`0

x≤1

{p1}

`1

{p1}

`2

{p2}e1, x≤1

e2, x≥2
x:=0

e3, x=3
e4, x≥1

If s0 = (`0, 0) is the initial state, then A, s0 6|= G p1 but A, s0 |≈P G p1. Indeed, in
this example, the transition e3 will unlikely happen, because its guard x = 3 is much
too ‘small’ compared with the guard x ≥ 2 of the transition e2.

Lemma 7 directly implies the following:

Corollary 10. Let A be a non-blocking timed automaton, s a state of A, and ϕ an
LTL formula. Then,

A, s |≈P ϕ ⇔ R(A), ι(s) |≈P ϕ .

4 A Topological Semantics for Timed Automata

In this section, we propose a large semantics for LTL over timed automata. This
large semantics, based on a natural topology on timed automata, asserts that an
LTL formula is largely satisfied if ‘most of the runs’ satisfy it. We use classical
topological tools (including the dimension) to characterise what we mean by ‘most
of the runs’.

4.1 Some Topological Notions

We do not recall classical definitions in topology but refer to [Mun00]. However,
some notions are less common, we thus recall them here. The density notion is
not appropriate to express a ‘most of the runs’ notion, because rather small sets
are dense, e.g. the set Q in R. As already pointed out in [VV06] the notion of
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largeness, and its complement the meagerness are more appropriate. Let (A, T ) be
a topological space. If B ⊆ A, we denote by B̊ (resp. B) the interior (resp. closure)

of B. A set B ⊆ A is nowhere dense if B̊ = ∅. A set is meager if it is a countable
union of nowhere dense sets. Finally, a set is large if its complement is meager.

Example 11. Let R be the set of real numbers equipped with its natural topology
(whose basic open sets are the open intervals). The set of integer numbers Z is
nowhere dense in R. The set of rational numbers Q is dense (in R) however Q is
meager since it can be seen as a countable union of singletons (which are clearly
nowhere dense sets). This implies that R \Q is large.

Although the notion of largeness is quite abstract, it admits a very nice charac-
terisation in terms of a two-player game, known as Banach-Mazur game. A Banach-
Mazur game is based on a topological space (A, T ) equipped with a family B of sub-
sets of A such that: (1) ∀B ∈ B, B̊ 6= ∅ and (2) ∀O ∈ T s.t. O 6= ∅, ∃B ∈ B, B ⊆ O.
Given C a subset of A, players alternate their moves choosing decreasing elements
in B, and build an infinite sequence B1 ⊇ B2 ⊇ B3 · · · . Player 1 wins the play if⋂∞

i=1Bi ∩ C 6= ∅, else Player 2 wins.
Banach-Mazur games are not always determined, even for simple topological

spaces (see [Oxt57, Remark 1]). Still a natural question is to know when the players
have winning strategies. The following result gives a partial answer:

Theorem 12 (Banach-Mazur [Oxt57]). Player 2 has a winning strategy in the
Banach-Mazur game with target set C if and only if C is meager.

4.2 The Dimension of a Symbolic Path

In Rn, open sets are among those sets of maximal dimension. Here, we are not
exactly in Rn, but each symbolic constrained path can be embedded in some Rm.
A notion of dimension of a symbolic path then naturally arises. Before going to the
details, let us explain through an example the intuition behind this notion.

Example 13. Let A be the timed automaton depicted below, let s0 be the state
(`0, 0) and π be the (unconstrained) symbolic path π(s0, e1e2).

`0 `1 `2

`3

x≤2, e1 x≤5, e2

x=3, e3

One can naturally associate a polyhedron of (R+)2 with π:

Pol(π) = {(τ1, τ2) ∈ (R+)2 | % = s0
τ1,e1−−→ s1

τ2,e2−−→ s2 ∈ Runs(A, s0)}
= {(τ1, τ2) ∈ (R+)2 | (0 ≤ τ1 ≤ 2) ∧ (0 ≤ τ1 + τ2 ≤ 5)}
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Pol(π) has dimension 2 in R2. Since it is of maximal dimension, we say the dimension
of the symbolic path π is defined. Consider now the symbolic path π′ = π(s0, e1e3).
The polyhedron Pol(π′) associated with π′ has dimension 1, and is embedded in a
two-dimensional space. In that case, we say that its dimension is undefined.

In general, we need to be careful with singular transitions, i.e., transitions which
do not increase the dimension but play an important role (in the previous example, it
would be the case if the edge e1 was labelled with the guard x = 2; though this guard
is very small, the role of edge e1 is essential in the behaviour of the automaton).

Let πC = πC(s, e1 . . . en) be a constrained path of a timed automaton A. We
define its associated polyhedron as follows:

Pol(πC) = {(τi)1≤i≤n ∈ (R+)n | s τ1,e1−−→ s1 · · ·
τn,en−−−→ sn ∈ πC(s, e1 . . . en)} .

Definition 14. Let A be a timed automaton, and πC = πC(s, e1 . . . en) a constrained
path. For each 0 ≤ i ≤ n, we write Ci for the projection of Pol(πC) over the variables
of the i first coordinates, with the convention that C0 is true. We say that the di-
mension of πC is undefined, and we then write dimA(πC) = ⊥, whenever there exists
some index 1 ≤ i ≤ n such that

dim
(
Pol
(
πCi

(s, e1 . . . ei)
))

< dim
(⋃

e

Pol
(
πCi−1

(s, e1 . . . ei−1, e)
))
.

Otherwise we say that the dimension of πC is defined, and write dimA(πC) = >.

4.3 Definition of a Topology over Finite Paths

For A a timed automaton, and s a state of A, we define a basic open set as a
constrained symbolic path πC = πC(s, e1 . . . en) such that dimA(πC) is defined, and
Pol(πC) is open in Pol(π) for the topology of Rn induced on Pol(π), where π stands
for the (unconstrained) path π(s, e1 . . . en).

We write TA for the topology over Runs(A, s) induced by these basic open sets
and Runs(A, s). Note that the basic open sets πC together with Runs(A, s) form a
base for TA.

Example 15. Let A be the timed automaton of Example 9 and s0 = (`0, 0) be its
initial state. The basic (unconstrained) open sets of Runs(A, s0) are sets of the form
π(s0, (e1e2)

∗) or of the form π(s0, e1(e2e1)
∗). A (constrained) basic open set is then

for instance πC(s0, e1e2) with C = {1
3
< t1 <

1
2
; t1 + t2 > 5}. One can be convinced

that the set of paths of the form π(s0, (e1e2)
∗e3e

∗
4) is meager.

Remark 16. Rather surprisingly, there is no relation between meager and open sets.
Indeed one can identify topological spaces where open sets are meager (non meager
open sets obviously exist). Let us consider the topological space

(
(0, 1), T

)
where

T = {∅} ∪ {(0, 2−n) | n ∈ N}. In this topology all open sets are meager (one can be
convinced that Player 2 can always enforce the (Banach-Mazur) game to converge
to the empty set).
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A topological space in which all non-empty open sets are not meager is called
a Baire space.10 As noticed in the previous remark, not all topological spaces are
Baire spaces. However, non-Baire spaces have strange properties. For instance, in
the set Q of rationals, all sets are both meager and large.

Proposition 17. Let A be a timed automaton, and s a state of A. The topological
space (Runs(A, s), TA) is a Baire space.

Before proving this proposition, we first prove that basic open sets really form a
basis for TA.

Lemma 18. Let A be a timed automaton, and s a state of A. The basic open sets
and Runs(A, s) form a basis for the topological space (Runs(A, s), TA).

We postpone the proof of this technical lemma in the appendix, on page ii.

Proof (of Proposition 17). To prove that (Runs(A, s), TA) is a Baire space, we prove
that every non-empty basic open set in TA is not meager. This is sufficient since
the basic open sets form a basis of the topological space, see Lemma 18. Let πC be
a basic open set. Using Theorem 12, we prove that πC is not meager by proving
that Player 2 does not have a winning strategy for the Banach-Mazur game where
C = πC, and B is the set of basic open sets (once more, this is legal to play with the
basic open sets, because they form a basis of the topological space, see Lemma 18).

Player 1 proceeds as follows: for the first round, she picks π1 = πC. For the
second round, Player 2 picks some π2 ⊆ π1. For the third round, Player 1 must be
careful and cannot take an arbitrary open path included in π2, because Player 1
could manage to choose her moves so that the limit of the intersections be empty
(by analogy in R, the limit of (0, 1

2i ) is the empty set). To avoid this, Player 1 can
first consider a ‘big’ compact set F2 within π2 (‘big’ here means with a non-empty
interior) — note that this is possible as the topology we consider, restricted to
π(s, e1 . . . en), can be embedded in some Rm through the application Pol(·). Then,
she can play with a basic open set π3 included in F2.

By iterating the same process for the strategy of Player 1, we obtain the following
sequence:

πC = π1 ⊇ π2 ⊇ F2 ⊇ π3 ⊇ π4 ⊇ F3 ⊇ π5 ⊇ . . . ⊇ Fi ⊇ π2i−1 ⊇ π2i ⊇ · · ·

We have that
∞⋂
i=1

πi =
∞⋂
i=1

Fi .

By compactness of F2, we can ensure that
⋂∞

i=1 Fi is non-empty (Heine-Borel the-
orem), implying that

⋂∞
i=1 πi is non-empty. Player 2 has thus no winning strategy,

the basic open set πC is thus non-meager, which concludes the proof. ut
10 In modern definitions, a topological space is a Baire space if each countable union of closed sets with

an empty interior has an empty interior. However, the two definitions coincide, see [Mun00, p.295].
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We can now define a topological semantics for LTL based on the notion of large-
ness. Let ϕ be an LTL formula. We say that A largely satisfies ϕ from s, and we
write A, s |≈T ϕ, if the set {% ∈ Runs(A, s) | % |= ϕ} is topologically large. The
topologies in A and in R(A) are equivalent in the following sense.

Lemma 19. Let ι : Runs(A, s) → Runs(R(A), ι(s)) be the projection of finite runs
% in A onto the region automaton (see page 5). Then ι is continuous, and for every

non-empty open set O ∈ TA,
◦

ι(O)6= ∅.

Proof. We first prove that ι is continuous. Let πC = πC(ι(s), f1 . . . fn) be a basic open
set of (Runs(ι(s),R(A)), TR(A)). We will prove that π′ = ι−1(πC) is a basic open set of
(Runs(s,A), TA). First notice that Pol(πC) = Pol(π′). Let γ be the tightest constraint
corresponding to π(ι(s), f1 . . . fn). Then, as πC has a defined dimension (and R(A)
is the region automaton), we can prove by induction on the length of the path,
that there exists an open constraint γ̃ such that Pol(πC) = Pol(πC∧eγ(s, e1 . . . en)).
Moreover, there exists some open set O in Rn such that O∩Pol(π(ι(s), f1 . . . fn)) =
Pol(πC). Then, we get that Pol(π′) = Pol(π(s, e1 . . . en)) ∩ O ∩ Pol(γ̃). The set O ∩
Pol(γ̃) is an open set of Rn, hence Pol(π′) is an open set of π(s, e1 . . . en) for the
induced topology. Moreover, π′ = πC′(s, e1 . . . en) (taking for instance C ′ = C ∧ γ̃),
we write it πC′ for now.

It remains to prove that πC′ has defined dimension in A. Assume it is not the
case. Then there exists some 1 ≤ i ≤ n such that

dim
(
Pol(πC′i)

)
< dim

(⋃
e

Pol(πC′i−1
(s, e1 . . . ei−1e))

)
.

By property of the region automaton, we get that

dim
(
Pol(πCi

)
< dim

(⋃
f

Pol(πCi−1
(ι(s), f1 . . . , fi−1f))

)
.

This contradicts the assumption that π has defined dimension in R(A). We conclude
that π′ is an open set of (Runs(s,A), TA).

We now prove that for every non-empty open set O ∈ TA,
◦

ι(O)6= ∅. Let πC =
πC(s, e1 . . . en) be a basic open set of (Runs(s,A), TA). We have that

ι(πC) =
⋃

f1,...fn

πC(ι(s), f1 . . . fn)

where the (finite) union is taken over all sequences of edges f1, . . . , fn corresponding
to e1, . . . , en. There exists thus some f1, . . . , fn such that

dim(Pol(πC)) = dim
(
Pol
(
πC(ι(s), f1 . . . fn)

))
13



and we write π′C = πC(ι(s), f1 . . . fn). We will prove that π′C is an open set. Note that
C characterizes an open set of Rn, hence π′C is open in π(ι(s), f1 . . . fn). Assume that
it has an undefined dimension. Then, there exists some i such that

dim
(
Pol
(
πeCi

(ι(s), f1 . . . fi)
))

< dim
(⋃

f

Pol
(
πeCi−1

(ι(s), f1 . . . fi−1, f)
))

where C̃i corresponds to the projection on the i first components of the tight-
est constraint defining π′C. Moreover, as Pol(π′C) ⊆ Pol

(
πC
)

and dim(Pol(π′C)) =
dim(Pol(πC)), applying Lemma B, we get that for all i’s, dim(Pol(π′eCi

)) = dim(Pol(πCi
)).

Furthermore,
⋃

f Pol
(
πeCi−1

(ι(s), f1 . . . fi−1f)
)
⊆
⋃

e Pol
(
πCi−1

(s, e1 . . . ei−1e)
)

(this is

a property of the region automaton). Finally, we get that

dim
(
Pol
(
πCi

)
< dim

(⋃
e

Pol
(
πCi−1

(s, e1 . . . ei−1e)
))

which contradicts the hypothesis that π has defined dimension. We deduce that π′

is an open set of (Runs(R(A), ι(s)), TR(A)), hence the result. ut
Corollary 20. Let A be a timed automaton, s a state of A, and ϕ an LTL formula.
Then,

A, s |≈T ϕ ⇔ R(A), ι(s) |≈T ϕ .
Proof. We prove both implications using characterisation of meager sets by Banach-
Mazur games.

Assume Player 2 has a winning strategy in A to avoid JϕKA. We will show that
Player 2 also has a winning strategy in R(A) to avoid JϕKR(A). The first move of
Player 1 is some path πγ1(s, f1 . . . fn), that can be transported in A (thanks to
Lemma 19, this is a legal move of the game on A). Then, Player 2 can play his
own strategy, etc. All moves are legal, thanks to Lemma 19. Finally, the intersection
of all moves is equal to the one in A, hence it does not intersect JϕKR(A) (because,
roughly, up to ι, the same runs are in JϕKR(A) and in JϕKA).

On the contrary, assume that Player 2 has a winning strategy in R(A) to avoid
JϕKR(A). We will show that Player 2 also has a winning strategy in A to avoid JϕKA.
Assume that Player 1 plays πγ(s, e1 . . . en), then applying Lemma 19, Player 2 can
play as if it was πγ(ι(s), f1 . . . fn) in R(A) for some f1, . . . , fn. The game then plays
as in R(A), and all moves are legal thanks to Lemma 19. ut

5 Correspondence of the Two Semantics

In this section we prove our main theorem: probabilistic and topological semantics
coincide! We first relate dimension and probabilities in the region automaton.

Proposition 21. Let A be a non-blocking timed automaton, and π be an uncon-
strained symbolic path in R(A). Then, PR(A)(π) > 0 iff dimR(A)(π) = >.11

11 This is in particular independent of the choice of the probability distributions over delays.
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Proof. Let π = π(s, e1 . . . en) be an unconstrained symbolic path in R(A).
We first prove that PR(A)(π) > 0 implies dimR(A)(π) = >. Towards a con-

tradiction, assume that dimR(A)(π) = ⊥. Following Corollary G in the appendix,
there must exist some index 1 ≤ i ≤ n such that µs′(I(s

′, ei+1)) = 0 for every

s
e1−→ · · · ei−→ s′. Hence, PR(A)(π(s′, ei+1 . . . en)) = 0 by definition of the probability.

Thus, it holds that PR(A)(π(s, e1 . . . en)) = 0.
Assume now dimR(A)(π) = >. Corollary G in the appendix implies that for any

index i ≤ n, any state si reachable from s via e1, . . . , ei−1, satisfies µsi
(I(si, ei)) > 0.

We then use the definition of the probability inductively on suffixes of π starting
in some si to obtain a sequence of integral computation over non negligible set of a
positive function, hence PR(A)(π) > 0. ut

The main result of this paper is the following theorem.

Theorem 22. Let A be a non-blocking timed automaton, s a state of A, and ϕ an
LTL formula. Then,

A, s |≈P ϕ ⇔ A, s |≈T ϕ .

Proof. Thanks to Corollary 10 and Corollary 20, it is equivalent (and hence suffi-
cient) to prove that R(A), ι(s) |≈T ϕ iff R(A), ι(s) |≈P ϕ. Moreover, R(A), ι(s) |≈P ϕ
iff PR(A)(ι(s),¬ϕ) = 0, thus applying Proposition 21, R(A), ι(s) |≈P ϕ iff every sym-
bolic path π in R(A) starting in ι(s) and satisfying ¬ϕ has an undefined dimension.
We finally prove that this last property is equivalent to R(A), ι(s) |≈T ϕ, i.e., to the
fact that J¬ϕK = {% ∈ Runs(R(A), ι(s)) | % 6|= ϕ} is topologically meager.

To prove the first implication, we use a Banach-Mazur game and Theorem 12,
playing with the set B of basic open sets together with the Runs(R(A), ι(s)) (which
form a basis of the topology, as already said in the proof of Proposition 17). The
objective of the game is set to be J¬ϕK. By hypothesis and Proposition 21, J¬ϕK ⊆
∪dimR(A)(π)=⊥π. As every basic open set has defined dimension it holds for every
B ∈ B such that B 6= Runs(R(A), ι(s)), that B ∩ J¬ϕK = ∅. Thus, if the first play of
Player 1 is Runs(R(A), ι(s)), Player 2 picks some path of defined dimension. If the
first play of Player 1 is a path π, then Player 2 just chooses the same path. Then,
Player 2 wins the game by mimicking at each round the choices of Player 1, i.e.,
whatever set B2·j−1 Player 1 chooses in the j-th round, Player 2 answers with the
same choice B2·j = B2·j−1. For such a play we clearly have

⋂∞
i=1Bi ⊂ JϕK, hence⋂∞

i=1Bi ∩ J¬ϕK = ∅, and Player 2 has a winning strategy for the game. Theorem 12
implies that J¬ϕK is meager.

Let us now prove the other implication. For a contradiction we assume that there
exists a symbolic path π in R(A) with defined dimension which does not satisfy ϕ. In
particular {% ∈ Runs(R(A), s0) | % 6|= ϕ} contains an open set, which is not meager
by Proposition 17 ((Runs(A, s0), TA) is a Baire space). Since the notion of being
meager is closed under subset, the set {% ∈ Runs(R(A), s0) | % 6|= ϕ} is not meager.
Hence the set {% ∈ Runs(R(A)) | % |= ϕ} is not large which is a contradiction. ut

15



Remark 23. To handle accepting states in the previous theorem, it would be suffi-
cient to quantify only over paths in R(A) which are accepting.

6 Decidability Issues

Theorem 24. Over finite timed words, the almost-sure and the large LTL model-
checking problems over non-blocking timed automata are PSPACE-Complete.

Proof. The two problems are equivalent, due to Theorem 22. The PSPACE-Hardness
follows from the PSPACE-Hardness of LTL model checking over finite automata. To
describe a PSPACE algorithm, we first color each edge of R(A) as follows: if e is
an edge in R(A), we color it in red whenever µs(I(s, e)) = 0 for some s ∈ q (note
that this property is independent of the choice of s ∈ q, and that it is equivalent to
dim(I(s, e)) < dim(I(s)) thanks to the property of the measure µs, see page 5), and
we color it in blue otherwise.

Lemma 25. Let A be a timed automaton and π = π(s, e1 . . . en) a symbolic path in
R(A). Then, dimR(A)(π) = ⊥ iff at least one of the edges of π is red.

Proof. The proof is a consequence of Lemma F and can be done by induction on
the length n of π.

Case n = 0 is obvious since dimR(A)(π(s)) = > and π(s) surely contains no red
edge.

Assume the induction hypothesis holds for any i ≤ n−1, and let π = π(s, e1 . . . en)
be a path of length n. Let us first consider the case dimR(A)(π) = ⊥. If π has a pre-
fix π(s, e1 . . . ei) of undefined dimension, then some edge in {e1, . . . , ei} is red by
induction hypothesis. Otherwise, thanks to Lemma F, for all configuration s′ such

that s
e1−→ · · · en−1−−→ s′, µs′(I(s

′, en)) = 0. By definition, edge en is thus a red edge.
Consider now that π contains a red edge. If some edge in {e1, . . . , en−1} is red, by
induction hypothesis, some prefix of π has undefined dimension. Since any continu-
ation of a path with undefined dimension has undefined dimension, dimR(A)(π) = ⊥.
Assume now en is a red edge, i.e., µs′(I(s

′, en)) = 0 for all configurations s′ with

s
e1−→ · · · en−1−−→ s′. By Lemma F, we conclude dimR(A)(π) = ⊥. ut

Now, applying Proposition 21, to decide whether A 6|≈P ϕ, it is sufficient to
guess a path in R(A) which has defined dimension (i.e., does not contain any red
edge), and does not satisfy ϕ. Using what precedes, it is thus sufficient to find a
counter-example for ϕ in R(A) restricted to blue edges. Everything can be guessed
non-deterministically in PSPACE. Indeed, there is no need to construct a priori
the whole graph R(A), a counter-example can be guessed on-the-fly. Moreover, to
guess such a path, we only need to store two consecutive locations of R(A) and a
counter bounded by the length of a counter-example. In the case of LTL, the size of
a counter-example can be bounded by a polynom in the size of the graph R(A) and
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exponential in the size of the formula ϕ, hence in that case both exponential in the
original timed automaton and in the size of the formula; it can thus be stored in
polynomial space. The model-checking problem is thus in coNPSPACE =PSPACE.

ut

In the literature, several pieces of work can be found on real-time and proba-
bilistic systems. We report here the most closely related models, and explain the
differences with our approach. Moreover, our probabilistic semantics can somehow
be viewed as a notion of robustness for timed automata. We also review here work
in that direction.

Work on Probabilistic Timed Systems

Probabilistic timed automata. The model of probabilistic timed automata has been
extensively studied by the group developing the PRISM tool [KNP04]. Among oth-
ers, a possible reference for that model is [KNSS02]. Roughly, in this model, no
probability is put on delays, but probabilistic and non-deterministic choices are put
on discrete transitions. This model is thus somehow orthogonal to our model, but
we could as well have a probabilistic choice between discrete transitions (right now,
we assume the choice between transitions is uniform). For the model of probabilis-
tic timed automata, the model-cheking problem for TCTL specifications, a timed
extension of CTL, is decidable, reducing to the model-checking problem of CTL for
(untimed) Markov decision processes.

Continuous-time Markov chains. Continuous-time Markov chains [BHHK03] put
random delays on the edges, but have no structural restrictions (like clock con-
straints), and have only one implicit clock which is reset at each step.

Real-time probabilistic processes. The model of real-time probabilistic processes has
been defined in the early 90’s in [ACD91,ACD92], and this is probably the model
which is the closest to ours. This model gathers a number of independent processes
with a single clock, and when a process is launched, its duration is probabilistically
chosen in the set of all its possible durations. However, all processes are independent,
and a process cannot have a higher priority w.r.t. to another one. In particular, it
means that the choice of the transition to be taken is made before choosing proba-
bilistically a delay. As a consequence, even transitions with very small firing intervals
can have a high probability to be taken, even though events with much larger fir-
ing intervals are possible. This model satisfies intrinsically different properties than
ours, and the authors of the above-mentioned papers solve the qualitative model-
checking problem for TCTL, a timed extension of CTL over infinite timed words.
More recently this model has been used for quantifying test cases [JPQ05].

Work on the Robustness of Timed Systems

Topological acceptance. Let us compare our notion of dimension and the associated
topology with the notion of robust timed automata introduced in [GHJ97] and
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further studied in [HR00]. In [GHJ97], several metrics on finite trajectories12 of
timed automata have been introduced and proved equivalent. These different metrics
induce a topology on the set of finite runs (of a given timed automaton). The basic
open sets of these topologies are called tubes. From this topology, the authors define
the notion of tube acceptance to obtain a robust semantics for timed automata:
under that semantics, a trajectory ω is (robustly) accepted whenever there is a tube
O such that ω ∈ O, and a dense subset of O is classically accepted by the timed
automaton.

We would like to compare the notion of robustness introduced in [GHJ97] with
our topological semantics. First notice that their topology is defined on finite timed
words and we define our topology on the set of finite runs. In particular, as already
mentioned in the introduction, their topology only depends on the language and not
on the automaton, while ours does. This implies that the topologies are ‘incompa-
rable’, more precisely we can find sets that are open for our topology and not for
their topology, and vice-versa.

The timed automaton A1 of Figure 1 accepts robustly no trajectory. Indeed take
any trajectory ω of the form (a, τ1)(a, τ2), clearly ω is accepted by A1 if and only if
τ2 − τ1 = 1, it is thus impossible to find an open set of accepting trajectories (for
any reasonable metric). However the (symbolic) path π starting from (`0, 0) and
ending in `2 has a defined dimension. In this example, the difference between the
two notions heavily relies on the fact that the notion of “robustness” is based on
a topology on (Σ × R+)∗ and not on a topology induced by the trajectories of the
timed automaton.

Let us now consider the timed automaton of Figure 2, where `0 is the initial
location and the three other locations are accepting. The trajectory (a, 1) is robustly
accepted in the sense of [GHJ97], since given ε > 0 any trajectory (a, τ) with
|1 − τ | < ε is also accepted. However the symbolic path π starting from (`0, 0)
and determined by the transition from `0 to `2 (which consists in the unique run
corresponding to the trajectory (a, 1)) has no defined dimension.

`0

x≤1

`1

x≤1

`2
a

x:=0

a ; x=1

Fig. 1. Timed automaton A1

`0

x≤1

`1

`2

`3

a ; x<1

a ; x=1

a ; x>1

Fig. 2. Timed automaton A2

12 A finite trajectory over an alphabet Σ is an element of (Σ × R+)∗.
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Other notions of robustness. Other notions of robustness have been studied, where
the model of timed automata is slightly modified in that clocks can drift or guards are
somehow enlarged [Pur98,DDR04,DDMR04,ALM05,BMR06]. Hence, such a model
accepts more behaviours than the original automaton, and there is absolutely no
link between these “enlarged” (or perturbed, following [ALM05]) models and our
probabilistic semantics. In their framework, various results have been proved, like
the decidability of safety properties [Pur98,DDMR04], the decidability of LTL model
checking over infinite words [BMR06], the determinisability of one-clock perturbed
timed automata [ALM05].

7 Conclusion

In this paper, we have proposed two satisfaction relations for LTL formulas over
timed automata which rule out unlikely (sequences of) events. The first one is based
on a probabilistic semantics of timed automata, and to the best of our knowledge, is
the first attempt to provide a probabilistic interpretation for non probabilistic timed
systems in order to establish linear-time properties assuming ‘fairness’ on actions
and delays. It naturally raises (qualitative) model-checking questions, for instance
whether the probability that an LTL property holds is 1 (almost-sure model-checking
problem). The second one is based on the topological concept of largeness, and yields
a natural large semantics for LTL. We prove that these two interpretations for LTL
coincide. Moreover, we establish that LTL model checking under those non-standard
semantics is not harder than ordinary LTL model-checking (PSPACE-Complete).

The method we have developed here could straightforwardly extend in various
directions. All untimed properties over finite runs, whose truth is invariant by re-
gions, can be treated that way (for instance properties expressed in the logic CTL?

or in the µ-Calculus). It could also be applied to various classes of hybrid systems
with a finite bisimulation quotient [HMR05].

We are currently extending this work to the framework of infinite timed words
which raises even more complex problems, and we plan to extend it further in several
directions, like for properties expressed in a timed logic, or to the quantitative anal-
ysis of this model (for instance, computing the exact, or approximate, probability
of satisfying a given property, etc), or to control problems, etc.
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Technical appendix i

In this appendix, we present some technical results omitted in the core of the paper,
and some tedious computations.

Complements for Section 3

Example of probability computation (Example 5 page 6). In this example, we assume
that the probability distributions over delays and enabled edges are uniform.

`0 `1 `2`3

`4

x≤1, e1x≤2 x≤2, e2

x≤5

We can then compute:

P(π((`0, 0), e1, e2)) =
1

2

∫
t≤1

P(π((`1, t), e2))

2
dµ(`0,0)(t)

=
1

4

∫
t≤1

(1

2

∫
t≤u≤2

P((`2, u))

2
dµ(`1,t)(u)

)
dµ(`0,0)(t)

=
1

16

∫
t≤1

(∫
t≤u≤2

1

2
dµ(`1,t)(u)

)
dµ(`0,0)(t)

=
1

32

∫
t≤1

(∫
t≤u≤2

1

5− t
dλ(u)

)1

2
dλ(t)

=
1

64

∫
t≤1

2− t
5− t

dλ(t)

=
1

64

∫
t≤1

1− 3

5− t
dλ(t)

=
1

64

[
t+ 3 log(5− t)

]1
0

=
1

64

(
1− 3 log

(
5

4

))

because µ(`0,0) = λ
2

(resp. µ(`1,t) = λ
5−t

) is the uniform distribution over [0, 2] (resp.
[t, 5]).

Another example of probability computation. Consider the following timed automa-
ton, and assume uniform probability distributions over both delays and enabled
edges:
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`0 `1 `2

`3

`4

x≤1, e1

x:=0

x=0, e3

x≤1, e2

x≤2, e4

We assume a the uniform distribution over all delays. Then, we can compute

P(π((`0, 0), e1, e2)) =

1

2

(∫ 0

0

P(π((`1, 0), e2))

2
dµ(`0,0)(t) +

∫ 1

0

P(π((`1, 0), e2))dµ(`0,0)(t)

)
=

1

2

(∫ 1

0

(
1

2

∫ 1

0

P(π((`2, u)))

2
dµ(`1,0)(u)

)
dµ(`0,0)(t)

)
=

1

2

(∫ 1

0

(
1

2

∫ 1

0

P(π((`2, u)))

2

1

2
dλ(u)

)
dλ(t)

)
=

1

16

(∫ 1

0

(∫ 1

0

1

2
dλ(u)

)
dλ(t)

)
=

1

32

P(π((`0, 0), e1, e4)) =

1

2

(∫ 0

0

P(π((`1, 0), e4))

2
dµ(`0,0)(t) +

∫ 1

0

P(π((`1, 0), e4))dµ(`0,0)(t)

)
=

1

2

(∫ 1

0

(
1

2

(∫ 1

0

P(π((`4, u)))

2
dµ(`1,0)(u) +

∫ 2

1

P(π((`4, u)))dµ(`1,0)(u)

))
dµ(`0,0)(t)

)
=

1

2

(∫ 1

0

(
1

2

(∫ 1

0

P(π((`4, u)))

2

1

2
dλ(u) +

∫ 2

1

P(π((`4, u)))
1

2
dλ(u)

))
dλ(t)

)
=

1

4

∫ 1

0

(∫ 1

0

1

8
dλ(u) +

∫ 2

1

1

4
dλ(u)

)
dt =

3

32
.

since µ(`0,0) = λ and µ(`1,0) = λ
2
.

Proof of Lemma 18 (Section 4)

Lemma 18. Let A be a timed automaton, and s a state of A. The basic open sets
and Runs(A, s) form a basis for the topological space (Runs(A, s), TA).
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Proof. To prove this lemma, it is sufficient to prove that the intersection of two basic
open sets is still a basic open set.

Lemma A Let πC = πC(s, e1, . . . , en) and πC′ = πC′(s, e1, . . . , en) be two basic open
sets. Then πC ∩ πC′ is a basic open set.

Proof. Let us denote in this proof C ′′ = C ∩ C ′, and π the unconstrained symbolic
path π(s, e1, . . . , en). Write πC′′ for πC ∩ πC′ = πC′′(s, e1, . . . , en).

We first show that Pol(πC ∩ πC′) is open in Pol(π), which is the second condition
for πC ∩ πC′ to be an open set. We have that Pol(πC′′) = Pol(πC) ∩ Pol(πC′). By
assumption both Pol(πC) and Pol(πC′) are open in Pol(π(s, e1, . . . , en)), hence their
intersection too.

We now come to the proof that dimA(πC′′) = >. This relies on Lemma B.

Lemma B Let πC and πC′ be constrained symbolic paths such that πC ⊆ πC′ and
dim(Pol(πC)) = dim(Pol(πC′)). Then for all i ≤ n (where n is the length of both
paths), dim(Pol(πCi

)) = dim(Pol(πC′i))

Proof. Assume there exists an index i ≤ n such that dim(Pol(πCi
)) < dim(Pol(πC′i)).

As dim(Pol(πC)) = dim(Pol(πC′)) there must be an index j, such that Pol(πC) gains
some dimension in the jth direction, whereas Pol(πC′) does not. But this is not
possible since πC ⊆ πC′ and therefore Pol(πC) ⊆ Pol(πC′) ut
Corollary C If Pol(πC) is open in Pol(π), then for all i ≤ n (where n is the length
of both paths), dim(Pol(πCi

)) = dim(Pol(πi)).

Proof. As Pol(πC) is open in Pol(π), dim(Pol(πC)) = dim(Pol(π)). Applying Lemma B
to πC = πC and πC′ = π yields the expected result. ut
Corollary D If πC is a non-empty open set of (Runs(A, s), TA), if πC′ ⊆ πC and
Pol(πC′) open in Pol(π), then dimA(πC′) is defined (or, πC′ is a non-empty open set
of (Runs(A, s), TA)).

Proof. Let πC′(s, e1 . . . , en) be a constrained symbolic path that is contained in the
basic open set πC(s, e1 . . . , en), such that Pol(πC′) is open. By Corollary C we get
dim(Pol(πC′i(s, e1, . . . , ei))) = dim(Pol(πCi

(s, e1, . . . , ei))) = dim(Pol(π(s, e1, . . . , ei))).
As πC is a basic open set it holds that for 1 ≤ i ≤ n: dim(Pol(πC′i(s, e1, . . . , ei))) =
dim(Pol(πCi

(s, e1, . . . , ei))) = dim(
⋃

e Pol(πCi−1
(s, e1, . . . , ei−1, e))). The last expres-

sion is greater than or equal to dim(
⋃

e Pol(πC′i−1
(s, e1, . . . , ei−1, e))) which shows that

πC′ has a defined dimension. ut
We come back to the proof of Lemma A. Since Pol(πC) and Pol(πC′′) are both

convex and open in Pol(π), and because they intersect non trivially, dim(Pol(πC)) =
dim(Pol(πC′′))

13. We now use Lemma B to obtain that for every i ≤ n, dim(Pol(πCi
)) =

dim(Pol(πC′′i)). Hence, for every i ≤ n,

13 We use here the following general topology result: if X is a convex set and O an open set in Rn such
that X ∩O 6= ∅, then dim(X) = dim(X ∩O).
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dim(Pol(πC′′i)) = dim(Pol(πCi
))

= dim(
⋃
e

Pol(πCi−1
(s, e1, . . . , ei−1, e))) since dim(πC) = >

= dim(
⋃
e

Pol(πC′′i−1
(s, e1, . . . , ei−1, e)))

The last equality holds because, if we write πi for the projection of π over the first
i components, the following arguments hold:

– dim(Pol(πi)) = dim
(
Pol
(
πC′′i
))
≤ dim

(
Pol
(
πC′′i−1

(s, e1, . . . , ei−1, ei)
))
≤ dim(Pol(πi))

(the equality holds by Corollary C; and both inequalities hold by inclusion of
polyhedra).

– Also dim
(
Pol(πC′′i )

)
≤ dim

(⋃
e Pol

(
πC′′i−1

(s, e1, . . . , ei−1, e)
))

, taking ei as a wit-

ness for e.
– For every e, the set Pol

(
πC′′i−1

(s, e1, . . . , ei−1, e)
)

is open in Pol
(
πi−1(s, e1, . . . , ei−1, e)

)
,

hence dim
(
Pol
(
πC′′i−1

(s, e1, . . . , ei−1, e)
))

= dim
(
Pol
(
πi−1(s, e1, . . . , ei−1, e)

))
. It

follows that dim
(⋃

e Pol
(
πC′′i−1

(s, e1, . . . , ei−1, e)
))

= dim
(⋃

e Pol
(
πi−1(s, e1, . . . , ei−1, e)

))
.

– As the dimension of π is defined, dim
(
Pol(πi)

)
= dim

(⋃
e Pol

(
πi−1(s, e1, . . . , ei−1, e)

))
.

Gathering everything, we get that dimA(πC′′) = >.
We showed that Pol(πC′′) is open in Pol(π), and that and dimA(πC′′) = >, thus

πC′′ is an open set for our topology. ut

Complements for Section 5

Lemma E Let A be a timed automaton and π(s, e1, . . . , en) be a symbolic path of
R(A). If Pol(π(s, e1, . . . , en)) 6= ∅, then Pol(π(s, e1, . . . , ei)) is exactly the projection
of Pol(π(s, e1, . . . , en)) on the i first coordinates.

Proof. In order to prove this lemma, we have to prove the following equality:

{(τ1, . . . , τi) | s
τ1,e1−−→ s1 · · ·

τi,ei−−→ si ∈ Runs(R(A), s)}
= {(τ1, . . . , τi) | ∃τi+1, . . . ,∃τn s

τ1,e1−−→ s1 · · ·
τi,ei−−→ si · · ·

τn,en−−−→ sn ∈ Runs(R(A), s)}.

Let us first prove that the polyedron Pol(π(s, e1, . . . , ei)) is included in the pro-
jection of Pol(π(s, e1, . . . , en)) on the i first coordinates. Let us first notice that since
Pol(π(s, e1, . . . , en)) 6= ∅, there exists τ1, . . . , τn such that:

s
τ1,e1−−→ s1 · · ·

τi,ei−−→ si · · ·
τn,en−−−→ sn ∈ Runs(R(A), s) .
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Let (τ ′1, . . . , τ
′
i) be in Pol(π(s, e1, . . . , ei)), this means that:

s
τ ′1,e1−−→ s′1 · · ·

τ ′i ,ei−−→ s′i ∈ Runs(R(A), s) .

By definition of R(A), we have that sk ≈t s
′
k (i.e. sk and s′k are region equivalent)

for k = 1, . . . , i. Hence, since the region equivalence is a time-abstract bisimulation,
there exists τ ′i+1, . . . , τ

′
n such that

s
τ ′1,e1−−→ s′1 · · ·

τ ′i ,ei−−→ s′i · · ·
τ ′n,en−−−→ sn ∈ Runs(R(A), s),

with sj ≈t s
′
j for j = 1, . . . , n. In particular, this implies that (τ ′1, . . . , τ

′
i) belongs to

the projection of Pol(π(s, e1, . . . , en)) on the i first coordinates.
The other inclusion is straightforward. ut

Let us notice that Lemma E is only true in the region automaton. Indeed, let A
be the timed automaton depicted below where ei denotes the transition ending in
`i, for i = 1, 2, 3. Let us consider the (unconstrained) symbolic path π(s, e1, e2) We
have that Pol(π(s, e1, e2)) = {(0, 0)}, hence the projection of Pol(π(s, e1, e2)) on the
first coordinate reduce in the single point {0}, although Pol(π(s, e1)) = [0, 1].

`0
x ≤ 1

`1 x ≤ 1

`2

`3

a, x ≤ 1

a, x = 0

a, x = 1

Lemma F Let π = π(s, e1, . . . , en) be a symbolic path in R(A). Then

dimR(A)(π) = > ⇔

{
dimR(A)(π(s, e1, . . . , en−1)) = > and,

∀s′ s.t. s
e1−→ · · · en−1−−→ s′, µs′(I(s

′, en)) > 0

Proof. Assume dimR(A)(π(s, e1, . . . , en)) = >. By Lemma E, we know that in R(A)
the polyedron Pol(π(s, e1, . . . , ei)) is exactly the projection of Pol(π(s, e1, . . . , en)) on
the i first coordinates. This implies that all prefixes of π also have defined dimension.
Hence dimR(A)(π(s, e1, . . . , en−1)) = >. Let s′ be a configuration reachable from s
via the edges e1, . . . , en−1. Assume µs′(I(s

′, en)) = 0. This means that there exists an
edge e 6= en such that dim(I(s′, en)) < dim(I(s′, e)) (thanks to the hypotheses on the
measure µs′). It can only be the case that I(s′, en) is a singleton, and I(s′, e) is an in-
terval, since en can be fired in s′. Hence dim(Pol(π(s′, en))) < dim(Pol(π(s′, e))). This
holds for any configuration s′ reachable from s via e1 . . . en (since the µ measures
are assumed to be equivalent inside a region). Thus dim(Pol(π(s, e1, . . . , en))) <
dim(Pol(π(s, e1, . . . , en−1, e))), which contradicts dimR(A) = >. We therefore con-
clude µs′(I(s

′, en)) > 0.



vi Technical appendix

Assume now dimR(A)(π(s, e1, . . . , en−1)) = > and for all s′ such that s
e1−→

· · · en−1−−→ s′, µs′(I(s
′, en−1)) > 0. Since the dimension of π(s, e1, . . . , en−1) is de-

fined, for all i ≤ n−1, dim(Pol(π(s, e1, . . . , ei))) = dim(
⋃

e Pol(π(s, e1, . . . , ei−1, e))).
It suffices to show that this still holds for i = n. The assumptions on µ yield that,
for any edge e, dim(I(s′, e)) ≤ dim(I(s′, en−1)). Hence dim(Pol(π(s, e1, . . . , en))) ≥
dim(Pol(π(s, e1, . . . , en−1, e))) for all edges e. This concludes the proof. ut

Remark. The previous lemma still holds if we replace ∀s′ with ∃s′, by region equiv-
alence.

The following is an iterated version of Lemma F:

Corollary G Let π = π(s, e1, . . . , en) be a symbolic path in R(A). Then

dimR(A)(π) = > ⇔ ∀i ≤ n ∀si s.t. s
e1−→ · · · ei−1−−→ si, µsi

(I(si, ei)) > 0.

⇔ ∀i ≤ n ∃si s.t. s
e1−→ · · · ei−1−−→ si, µsi

(I(si, ei)) > 0.


