

Robot games

Laurent Doyen and Alexander Rabinovich

January 2013

Research report LSV-13-02

Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan 61, avenue du Président Wilson 94235 Cachan Cedex France

Robot Games

Laurent Doyen¹ and Alexander Rabinovich²

¹ LSV, ENS Cachan & CNRS, France
²School of Computer Science, Tel Aviv University, Israel

We introduce robot games, and we give the simplest definition for which decidability is open.

1. Definition. Let $U, V \subseteq \mathbb{Z}^2$ be two finite sets of two-dimensional integer vectors. A *robot game* is played in rounds from an initial configuration $x_0 \in \mathbb{Z}^2$ as follows. In each round, player 2 chooses a vector $v \in V$, then player 1 chooses a vector $u \in U$, and the configuration in the next round is x + v + u where x is the configuration in the current round. The objective of player 1 is to reach the configuration (0,0).

A strategy for player 1 is a function $\sigma: \mathbb{Z}^2 \to U$ and a strategy for player 2 is a function $\pi: \mathbb{Z}^2 \to V$. The play according to σ and π from initial configuration x_0 is the infinite sequence $x_0x_1...$ such that for all $i \geq 0$, we have $x_{i+1} = x_i + v + u$ where $v = \pi(x_i)$ and $u = \sigma(x_i + v)$.

A configuration x_0 is winning for player 1 if there exists a strategy σ such that for all strategies π , in the resulting play from x_0 there exists $i \geq 0$ such that $x_i = (0,0)$.

- **3. Decision problem.** Given an initial configuration $x_0 \in \mathbb{Z}^2$ and two finite sets $U, V \subseteq \mathbb{Z}^2$, the problem is to decide whether x_0 is a winning configuration in the robot game defined by U, V. Whether this problem is decidable and what is its complexity are open questions.
- 4. Extension. Extensions can be considered in several directions:
 - Robot games in dimension d > 3.
 - Reachability objectives can be defined by a (possibly upward-closed) set of target configurations.
 - Players have internal states (e.g., for player 1 the set *U* of available moves may change as the game is played, according to some finite-state machine).
- 5. Partial results. The decision problem is undecidable if the game is played on a graph with states of player 1 and states of player 2, with \mathbb{Z}^2 or \mathbb{N}^2 as the vector space (as in games on VASS, vector-addition systems with states) [1, 3]. The one-player version of robot games (i.e., where $V = \{(0,0)\}$) is decidable by a reduction to linear programming. The robot games defined in one dimension (with $U, V \subseteq \mathbb{Z}$ and $x_0 \in \mathbb{Z}$) are also decidable [2]. The problem is undecidable in dimension $d \geq 9$, and in dimension $d \geq 3$ if player 1 has internal states [4]. In general, robot games in dimension d and internal states for player 1 can be reduced to games in dimension d + 6 and no states [4].

References

- [1] P. A. Abdulla, A. Bouajjani, and J. d'Orso. Deciding monotonic games. In *Proc. of CSL: Computer Science Logic*, LNCS 2803, pages 1–14. Springer, 2003.
- [2] A. Arul and J. Reichert. Personal communication, January 2013.
- [3] T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended vector addition systems with states. In *Proc. of ICALP*, LNCS 6199, pages 478–489. Springer, 2010.
- [4] Y. Velner. Personal communication, June 2011.