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Our Result & Plan

Result
An NP decision procedure for the resolution of sets of equations and
deduction constraints s1, . . . , sm ` t modulo some collapsing equational

theories.

Plan

1. Definition & Motivations (security protocols verification)

2. Syntactic procedure & Properties

3. Related works, extensions
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Deduction Constraints

Given:

• a signature Σ partionned into

Σv (visible / public symbols) and Σp (private symbols),

• a TRSR,

• a set T ⊆ T (Σ) of ground terms,

DR(T ) is the smallest (w.r.t. ⊆) set of ground terms s.t.:

1. T ⊆ DR(T )

2. ∀f ∈ Σv, ∀t1, . . . , tn ∈ DR(T ), f(t1, . . . , tn) ∈ DR(T )

3. DR(T ) is closed under←−−→
∗

R

Deduction Constraint Equation

s1, . . . , sn  t s = t

R-solution is a substitution σ s.t.: tσ ∈ DR(s1σ, . . . , snσ) sσ ←−−→
∗

R
tσ012 345 5 6/7 �



Application

Verification of the unsecurity of cryptographic protocols in systems with:

• a bounded number of honest participants communicating,

• an attacker controlling the communication network,

and whose capacities of deduction are modeled by .

• [D. Dolev, A.C. Yao 1983]
assymetric cryptography: ae(_, _), ad(_, _), pub(_) ∈ Σv _−1 ∈ Σp

ad
(
ae(x, y), y−1

)
→ x, ad

(
ae(x, y−1), y

)
→ x, y−1−1

→ y

symmetric cryptography: se(_, _), sd(_, _) ∈ Σv, sd
(
se(x, y), y

)
→ x

pairs: p(_, _), π1(_), π2(_) ∈ Σv, πi

(
p(x1, x2)

)
→ xi, i = 1, 2.

• The problem is NP-complete in the model of Dolev-Yao.
[M. Rusinowitch, M. Turuani 2001].

• Problem NP-complete in the model of Dolev-Yao + equations for
exclusive or, Diffie-Hellman exponentiation. . .
[Y. Chevalier, R. Kuester, M. Rusinowitch, M. Turuani 2003]. 012 345 5 6/7 6



Application (2)

Our procedure provides:

• a generic method to solve the unsecurity problem for a whole class of

equational theories (but not XOR or DH exponent).

Generic procedure in [H. Comon, R. Treinen 2003],
for the decision of s1, . . . , sn  t when s1, . . . , sn, t are ground,

in class of theories containing e.g. homomorphism

se
(
p(x1, x2), y

)
= p

(
se(x1, y), se(x2, y)

)
.

• the use destructor symbols (ad , sd , π1, π2) and equations in protocol

specifications.

This gives improved expressiveness and permits to capture more

attacks [J. Millen 2003], [C. Lynch, C. Meadows 2004].
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Example: Denning and Sacco Protocol (1981)

Exchange of a signed symmetric key K.

Protocol messages:

0. A → B : p
(
A, ae

(
ae(K, pub(A)−1), pub(B)

))

1. B → A : se(S,K)

A’s process:

� � � K. � � � � (
p
(
A, ae

(
ae(K, pub(A)−1), pub(B)

)))
. � �� �(x). � �� � � � (

sd(x,K)
)

B’s process:

� � � S. � �� �(y). � � � � (
se

(
S, π2(ad(ad(π2(y), pub(B)−1), pub(π1(y))))

))

Attack against 1 agent, playing role B (IK = 0, A,B, pub(A), pub(B)):
{

IK  y; IK , se
(
S, π2(ad(ad(π2(y), pub(B)−1), pub(π1(y))))

)
 x′;x′ = S

}

Solution: {y = p
(
A, ae(0, pub(B))

)
;x′ = S}.

se
(
S, π2(ad(ad(π2(y), pub(B)−1), pub(π1(y))))

)
↓R se

(
S,

∈DR(IK )
︷ ︸︸ ︷

π2(ad(0, pub(A)))
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Amended Denning Sacco Protocol (Lowe 1996)

Protocol messages:

0. A → B : p
(
A, ae

(
ae(p(A, p(B,K)), pub(A)−1), pub(B)

))

1. B → A : se(S,K)

A’s process:

� � � K. � � � � (
p
(
A, ae

(
ae(p(A, p(B,K)), pub(A)−1), pub(B)

))))
. � �� �(x). � �� � � � (

sd(x,K)
)

B’s process:

� � � S. � �� �(y).

� �

π1(y) = π1(π1(ad(ad(π2(y), pub(B)−1), pub(π1(y)))))

� � � � � �

π1(π2(ad(ad(π2(y), pub(B)−1), pub(π1(y))))) = B

� � � � � � � �(
se

(
S, π2(π2(ad(ad(π2(y), pub(B)−1), pub(π1(y)))))

))

� � � �

abort

� � � �

abort
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Public Collapsing Theories

Definition: A TRSR is public-collapsing iff for every rule `→ r ∈ R,

1. r ∈ vars(`) or r ∈ T (Σv) ↓R and r 6= `,

2. if ` = f(`1, . . . , `n) with f ∈ Σv, then

for all i ≤ n, and all subterm g(t1, . . . , tm) of `i with g ∈ Σv,

either g(t1, . . . , tm) ∈ T (Σv) ↓R, or there exists j ≤ m such that tj = r.

Example: sd
(
se(x, y), y

)
→ x, ad

(
ae(x, y), y−1

)
→ x,

ad
(
ae(x, y−1), y

)
→ x, y−1−1

→ y, check
(
x, ad

(
x, y−1), y

)
→ ok .

Theorem: Given s1, . . . , sn, t ∈ T (Σ) ground terms, t ∈ DR(s1, . . . , sn) is de-

cidable in PTIME ifR is convergent and public-collapsing.
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Syntactic Basic Procedure

P ∪
{
e
[
f(u1, . . . , un)

]}
; C; σ �

P ∪ {e[r]}; Cη; ση ∪ η

��� � � �� �	� 


e equation or deduction constraint,

f(`1, . . . , `n)→ r ∈ R (fresh variant),

η = mgu(f(`1, . . . , `n)σ, f(u1, . . . , un)σ)

P ∪ {s = t}; C; σ �

P; Cη; ση ∪ η

�� � � � � � � � � � � � �� � � � �

η = mgu(sσ, tσ)

P ∪ {c}; C; σ �

P; C ∪ {cσ}; σ

� � � � � �	� 


c deduction constraint

P; C; σ ��
P; C[x 7→ t]; σ[x 7→ t] ∪ [x 7→ t]

�� � �� � ��� � � �	� �	� � � � � �

x ∈ vars(C), t ∈ st(C) \ vars(C), x /∈ t

P; C ∪ {s1, . . . , sn  t}; σ �

P; C; σ

 � �! � "

t ∈ DR(s1, . . . , sn)
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Results

Theorem Given a convergent and public-collapsing TRSR, the application

of the inferences of the constraint solving system to P ; ∅; ∅

• terminates (and the depth, branching deg. and dag-size of nodes of

the derivation tree are polynomial in ‖P‖+ ‖R‖),

• is correct,

• is complete.

Lemma (completeness) Let σ be a minimal (w.r.t.�)R-solution of a
well-formed set C of deduction constraints s.t. all the terms in Cσ are in

R-NF. For all x ∈ vars(C), there exists t ∈ st(C) \ vars(C) such that tσ = xσ.

Corollary ForR convergent and public-collapsing,

theR-solvability of well formed sets of equations and DC is NP.

Corollary Protocol insecurity in presence of explicit destructors and R con-

vergent and public-collapsing is NP.
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Further Works

Automatic proof of static non-equivalences 6≈s.

σ 6≈s σ′ iff ∃s, t s.t. sσ =R tσ and sσ′ 6=R tσ′

Extension of the procedure to AC;
XOR theory with AC(+) and the public-collapsing rules:

x + x → 0

x + 0 → x

x + x + y → y

Semantical methods with constrained tree automata, using results of regu-

larity preservation under rewriting.
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