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1.1 Motivation

The recent emergence of electronic voting has created a new need for the verification of crypto-
graphic systems. The main difficulty when analyzing such systems is that there are a wide variety
of requirements to achieve security. For example, in the case of e-voting, the ballot value has to
remain secret, the identities of the voters have to remain anonymous, and there are other needs
which seem to be contradictory: the voters want to be able to test that their votes have been
correctly taken into account but it should not be possible for them to prove to a third person the
value of their ballots (this is required to avoid ballot selling). To achieve these properties, voting
schemes use cryptographic primitives like symmetric encryption: given a message and a key, the
encryption algorithm produces a cipher-text. Using that cipher-text, it is very hard to guess the
message without knowing the key used by the encryption algorithm.

E-voting is an example of cryptographic protocol. A protocol can be seen as a list of rules
that describes correct executions, these rules specify the emissions and receptions of messages by
the actors of the protocols called the agents. The objective is to implement a functionality such
as sharing a secret key between two agents or authenticating an agent to another one. These
protocols are widely used today, from smart cards to wireless networks and typical functionalities
are the transfer of a payment card number or the authentication of a user on a system.
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1.2 Introducing Security Protocols

1.2.1 Some Elements of Cryptography

Security protocols use some cryptographic primitives to ensure their security. These algorithms
are used to protect some secret (encryption schemes), to authenticate some data (digital signature
schemes and symmetric encryption schemes), or to provide fresh values (random number gener-
ators). Details about these schemes, their uses and examples of implementation can be found in
a wide variety of cryptographic surveys [BR03, MvOV96, Sch94, BG01]. In this document, we
mainly consider four different types of cryptographic schemes: asymmetric encryption, symmetric
encryption, digital signature and random number generation.

Asymmetric Encryption Schemes An asymmetric encryption scheme is composed of three
algorithms: the key generation algorithm, the encryption algorithm and the decryption algorithm.
As we consider asymmetric cryptography, the key generation algorithm produces a pair of keys
containing a public key pk and the related secret key sk. The public key is used for encryption and
can be disclosed to anyone whereas the secret key is used for decryption and must remain private.
The encryption algorithm transforms a message m called plain-text into a message c called the
cipher-text. The encryption of plain-text m using public key pk is denoted by:

c = enc(m, pk) = {m}pk

The decryption algorithm takes as input a cipher-text c and a private key sk and outputs the
plain-text if the key used for encryption was pk. In order to show the link between pk and sk, the
secret key related to public key pk can be denoted by pk−1. pk−1 is the inverse key of pk. Then

dec
(
enc(m, pk), pk−1

)
= m

The idea beyond asymmetric cryptography is that everyone can encrypt a message using the public
key. This can be viewed as posting a letter in a box. But to decrypt a cipher-text, the secret key
is required: to get the letter from the box, you must have its key.

Encryption Decryption

Public Key Private Key

cipher-textplain-text plain-text

Symmetric Encryption Schemes Asymmetric encryption schemes have a major disadvan-
tage: algorithms are in general very slow to apply. Symmetric encryption allows faster encryptions
and decryptions but there is only a single shared encryption and decryption key. Therefore, the
key has to be exchanged before using symmetric encryption. A typical use of asymmetric encryp-
tion consists in generating a fresh symmetric key and using the public key to encrypt it and send
it securely. After that, encryption using the fresh symmetric keys can be used.

A symmetric encryption scheme is similar to an asymmetric encryption scheme. It is composed
of three algorithms: the key generation algorithm, the encryption algorithm and the decryption
algorithm. The difference with asymmetric cryptography is that the key generation algorithm only
outputs a single key k instead of a key pair. This key is used by both encryption and decryption.

dec
(
enc(m, k), k

)
= m

Symmetric cryptography can be seen as asymmetric cryptography where the inverse of a key is
itself:

k = k−1

8/229 Verimag — 2006 Laurent Mazaré
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Encryption Decryption

Key Key

cipher-textplain-text plain-text

Digital Signature Schemes Digital signature is used to authenticate some information. It is
the opposite of public key encryption: the roles of the keys are exchanged: the secret key is needed
to transform a plain-text into a sign-text, the public key allows everyone to verify that a signature
is valid. Hence digital signature can be seen as an asymmetric encryption scheme where the public
key (for the encryption scheme) remains secret and the secret key (for the encryption scheme) is
revealed to everyone.

A digital signature scheme is composed of three algorithms: a key generation algorithm that
outputs a signature key sik (or private key) and a verification key vk (or public key). As before,
pairs of keys can be linked by the ·−1 operator. The signature algorithm produces a sign-text
using a plain-text and a signature key. The signature of plain-text m using signature key sik is
the sign-text s given by:

s = sig(m, sik) = {m}sik

Note that it could be possible to guess the plain-text from the sign-text. In general, signature
schemes do not guarantee any form of secrecy. Finally, there are two different flavors of verification
algorithms.

• Selective verification takes as argument the sign-text s, the plain-text m and the verification
key vk and outputs true if the sign-text has been produced from the plain-text using the
matching signing key. false is output in any other cases.

verif
(
sig(m, sik),m, sik−1

)
= true

Signature Verification

Signature Key Verification Key plain-text

sign-textplain-text true/false

• Existential verification takes as argument the sign-text and the verification key and outputs
the corresponding plain-text (if the signature and verification keys match).

verif
(
sig(m, sik), sik−1

)
= m

Signature Verification

Signature Key Verification Key

sign-textplain-text plain-text

The first type of verifier is more general as such a verifier can be simulated using a verifier of the
second type.
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Random Number Generators Random numbers are used to ensure freshness of a messages.
These numbers are also called nonces (for numbers used once). They are generated using a
random number generator. A generator is an algorithm that outputs such random numbers. As
true randomness is difficult to achieve, pseudo-random number generators are commonly used
instead.

1.2.2 Describing Security Protocols

Protocols describe the messages sent between honest participants during a session. A session
is a single run of the protocol. Most protocols allow multiple concurrent sessions. Participant
of the session are called agents and are usually denoted A (for Alice) and B (for Bob). A third
participant C (for Charlie) represents the adversary which tries to break the protocol (for example
by getting some secret information).

A simple way of describing protocols is to use message sequence charts [IT94]. Let us exemplify
this on a part of the Needham-Schroeder public key protocol. This protocol involves two agents
A and B.

1. A→ B : {A,NA}pkB
2. B → A : {NA, NB}pkA
3. A→ B : {NB}pkB

These lines describe a correct execution of one session of the protocol. Each line of the protocol
corresponds to the emission of a message by an agent (A for the first line) and a reception of this
message by another agent (B for the first line).

• In line 1, the agent A is the initiator of the session. Agent B is the responder. Agent A
sends to B her identity and a freshly generated nonce NA, both encrypted using the public
key of B, pkB. Agent B receives the message, decrypts it using his secret key to obtain the
identity of the initiator and the nonce NA.

• In line 2, B sends back to A a message containing the nonce NA that B just received and
a freshly generated nonce NB . Both are encrypted using the public key of A, pkA. The
initiator A receives the message and decrypts it, A verifies that the first nonce corresponds
to the nonce she sent to B in line 1 and obtains nonce NB .

• In line 3, A sends to B the nonce NB she just received encrypted with the public key of B.
B receives the message and decrypts it. Then B checks that the received nonce corresponds
to NB .

The goal of this protocol is to provide authentication of A and B. When the session ends, agent
A is sure that she was talking to B and agent B is sure that he was talking to A. To ensure
this property, when A decodes the second message, she verifies that the person she is talking to
correctly put NA in it. As NA was encrypted by the public key of B in the first message, only
B could have deduced the value of NA. When B decodes the third message, he verifies that the
nonce is NB . As NB only circulated encrypted by the public key of A, A is the only agent that
could have deduced NB . For these two reasons, A thinks that she was talking to B and B thinks
that she was talking to A.

1.2.3 Attacking Security Protocols

More than fifteen years after the first publication of the Needham-Schroeder protocol, Gavin Lowe
found the first flaw of this protocol [Low95]. This flaw has become famous under the name “man
in the middle attack”, it works on the public key version of the protocol. This attack exists in the
symbolic setting introduced by [DY83]. In this setting, messages are represented using algebraic
terms. The adversary is also called the intruder in this model. He is able to intercept and view any
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message that circulates on the network. He can forge new messages and send them to an honest
agent while impersonating the identity of another agent. The messages that an intruder can forge
are described later in this document. Basically, the idea is that if the intruder knows a cipher-text
and the inverse of the encryption key, he can decrypt the message. He can also pair messages
and perform projections. He can encrypt messages using the encryption keys he knows. This flaw
uses two sessions: one between an honest agent A and the intruder C and another between A and
another honest agent B. In this last session, C impersonates agent A and tries to make B believe
that he is talking to A. A condition for this flaw is that an honest agent has to start a session
with the intruder. The unfolding of this flaw is detailed in figure 1.1. In this attack, the intruder

A C(A) B

{A, NA}pkC

{A, NA}pkB

{NA, NB}pkA

{NA, NB}pkA

{NB}pkC

{NB}pkB

Figure 1.1: Man in the middle attack on the Needham-Schroeder protocol

uses the message from his session with A to make B think that he is A. When B receives message
{A,NA}pkC , he uses his secret key to decrypt it and get A and NA. Using the public key of B,
the intruder can forge {A,NA}pkB . When the intruder receives the answer from B, he directly
forwards the message to A as he cannot decrypt this message. A answers message {NB}pkC and
C uses his secret key to get the value of nonce NB . Finally, the intruder forges message {NB}pkB
and sends it to B so that B believes that the execution has correctly terminated.

1.3 Verification of Protocols

Cryptographic protocols are used to ensure some security properties. Hence validation of crypto-
graphic protocols is a deeply investigated domain. The objective of this research field is to prove
formally that a given protocol verifies a given property. Let us first present which properties can
be of interest for a protocol.

1.3.1 Properties

Secrecy The secrecy property concerns a message used by the protocol. This message is typically
a nonce or a secret key that should not become public at the end of the protocol. The word “public”
may have two different meanings: a message can be public if the adversary is able to show its value
or it can be public as soon as the adversary is able to distinguish this message from a randomly
generated message. Hence there are (at least) two distinct flavors for the secrecy property.
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• Weak Secrecy: in this case, the adversary should not be able to produce the whole mes-
sage. This approach is used in the Dolev-Yao model [DY83]. It can also be used in the
computational setting even if strong secrecy makes more sense in this context.

• Strong Secrecy: here, the adversary should not be able to deduce any information on the
secret. This definition of secrecy is used in the spi-calculus model [AG99]. It is also used
in the computational world: for example, the SecNonce property implies that an adversary
should not be able to distinguish an execution where a random bit-string value bs0 is used
from an execution where another random bit-string value bs1 is used, even if the adversary
knows or choses bs0 and bs1. SecNonce ensures that the adversary is not able to deduce
any bit of information on the secret. The SecNonce property was originally introduced
in [CW05].

Authentication There are several variants of authentication. A taxonomy of these have been
proposed by Lowe in [Low97b]. This classification distinguishes four levels of authentication.

1. Aliveness of an agent A: this means that A has executed the protocol.

2. Weak Agreement of agent B with agent A: this signifies that A has executed a session of
the protocol that involved B.

3. Non-injective Agreement of B with A on a set of messages M : this means that A has
executed a session with agent B in which A and B agreed on the value of the set of messages
M .

4. Injective Agreement of B with A on M : this signifies that there is a non-injective agreement
of B with A on M and that each execution of the protocol for B corresponds to a unique
execution for A.

Non-Repudiation Non-repudiation ensures that the author of a message cannot later claim
not to be the author. There is a proof that the sender sent the message. This is an indispensable
property for the electronic commerce protocols, the seller needing to prove to the bank that the
client has really paid. This is often realized using digital signatures.

Fairness Fairness ensures that one of the parties cannot end the protocol part-way through and
gain some unfair advantages over the other party. For example, a contract signing protocol where
either each agent receives the signed contract, or neither receives any.

Anonymity Anonymity ensures that the identity of an agent is protected with respect to the
message that he sent. For example, in a voting protocol the vote must not be linked back to
the voter who cast it. In this case, the messages themselves do not have to be secret, only their
association with a particular agent.

Information Flow Notions Information flows notions can be used to represent more complex
properties. There are plenty of different properties that can be ensured using information flow.
A taxonomy of these properties applied to the case of CCS is given in [FG94b, FG94a]. CCS is
a process algebra introduced by Milner [Mil95] but the taxonomy also holds for various execution
models.

One of the key concept in information flow is non-interference. The idea is that the set of
actions is separated into two sub-sets: low actions and high actions. Low actions are public and
can be seen by the adversary whereas high actions cannot. A process is safe for non-interference if it
is impossible for the adversary to tell anything about high actions just by looking at low actions.
Non-interference notions can be used to model other security properties such as anonymity or
fairness.
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1.3.2 The Two Approaches for Verification

When considering real implementations of security protocols, proofs are very hard to perform.
Therefore the perfect cryptography hypothesis is commonly used to simplify these proofs. When
making that hypothesis, the encryption schemes are supposed to be perfect. Hence it is impos-
sible to deduce a plain-text from its cipher-text without knowing the decryption key. Even with
this hypothesis, idealized protocols may contain some logical flaws. We already presented the
best known example of such flaws which has been found on the Needham-Schroeder public key
protocol. This authentication protocol was designed in 1978 [NS78]. It was commonly admitted
that this protocol was secure. However Gavin Lowe found an attack on this protocol seventeen
years later [Low95] by using a model-checker. Lowe also proposed a corrected version of this
protocol in [Low96]. Following that example, there have been lots of works using formal meth-
ods to verify cryptographic protocols [Mea00, CS02]. This approach is called formal verification
of cryptographic protocols (or symbolic verification). It originates from the work of Dolev and
Yao [DY83]. The essential part of this approach is the perfect cryptography assumption that can
be roughly summarized as follows: messages are represented as algebraic terms, fresh nonce cre-
ation is perfect, that is, nonces range over an infinite domain and freshness is absolute, the same
holds for key creation. Moreover, there is no way to guess a nonce or a key and no information
can be extracted from an encrypted message unless the inverse of the key used to encrypt the
message is known. In this approach there is a single attacker that is modeled as an infinite process
without bounds on its computational resources. Despite the strong assumptions concerning the
cryptographic primitives, it is a difficult task to design correct protocols for symbolic verification.
Some protocols where flaws have been found are listed in the Clark and Jacob survey [CJ97].
The good news about this approach is that a rich collection of automatic verification methods
and tools have been developed [RT01, BLP03b, Son99, GL00, Bla01]. Automatic verification of
protocols is in general an undecidable problem. However, some tools have been designed using
either restrictions on protocols or abstract interpretation. In most of the case, these tools perform
an efficient checking of security protocols.

The symbolic approach is opposed to the computational approach. In this last model, crypto-
graphic primitives operate on strings of bits and their security is defined in terms of high complex-
ity and weak probability of success [GM84, BKR] of any attacker. Protocols as well as attackers
are randomized polynomial-time Turing machines. This computational approach is recognized as
more realistic than the symbolic approach. Adversaries have the whole computing power of Turing
machines and the cryptographic primitives are not idealized. The main drawback of this approach
is its complexity. This makes it very difficult to design automatic verification tools, although
this is still possible [Bla05]. Proofs are very hard to perform in this model, their complexities
make it difficult even to check these proofs. For this reason, some errors can be discovered in
computational proofs even years after their publications [CBH05].

Therefore, results of the type:

If protocol Π uses the cryptographic schemes S1, · · · , SN , if each schema Si is correct
with respect to the security notion Ci and if some additional syntactic conditions are
satisfied by Π then the symbolic model is a safe abstraction of the computational, that
is, correctness of the protocol established in the symbolic model implies its correctness
in the computational one.

are of extreme importance for gaining confidence that a cryptographic protocol is secure.

1.3.3 Bridging the Gap

In the last years, attempts have been made to bridge the gap between these two approaches. The
ultimate objective is to be able to prove security in the symbolic model, then to prove properties
on the encryption scheme and with that to deduce security of the protocol in the computational
model.
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The Passive Case

Abadi and Rogaway were the first to link the symbolic and computational views of cryptography
in [AR00]. They limit themselves to the case of a passive adversary (eavesdropper) that can only
see a single message. Moreover, the only allowed cryptographic primitive is symmetric encryption.
Abadi and Rogaway define a notion of indistinguishability for messages in the symbolic model.
They start by introducing patterns which represent the information that an intruder can deduce
from a message, the idea is to replace encryptions that cannot be opened (i.e. whose decryption key
cannot be deduced) by the black box symbol �. Two messages are indistinguishable if they have
the same pattern (up to renaming). The main result of this paper is that if two messages M and
N are indistinguishable and the encryption scheme used to compute these messages enjoys some
security properties called type-0 security, then the distributions corresponding to computations of
M and N cannot be distinguished by a polynomial time adversary. There is a limitation on M and
N which should not contain any encryption cycles. Let us exemplify their result. The messages
{K1,K2}K and {K1,K1}K have the same pattern �. These messages are indistinguishable for
a symbolic adversary. Therefore computational adversaries cannot distinguish bit-strings that
represent the first message from bit-strings representing the second one. Type-0 security is a
variant of semantic security against chosen plain-text attacks [GM84] (IND-CPA).

This initial work was extended the following year by Abadi and Jürjens in [AJ01]. Instead of
only considering adversaries that observe a single message, they consider general eavesdroppers
which observe the unfolding of a whole protocol. The idea here is that if the protocol is secure
in the symbolic setting, then computational adversaries cannot perform any attack with non-
negligible probability. Of course, the encryption scheme still has to verify some strong security
notions and key cycles are still forbidden.

This work also introduces the notion of confusion-free encryption scheme, which is helpful in
order to prove completeness of the Abadi-Rogaway logic. Completeness is the reciprocal of the
main result stated in [AR00]: if a computational adversary cannot distinguish between the imple-
mentation of M and N , then M and N are equivalent in the symbolic setting. This result was
proved by Micciancio and Warinschi in [MW04a]. Without adding the confusion-freeness hypoth-
esis, the completeness result is false. For some specific secure encryption schemes, implementation
of messages {K1}K2 ,K2 and {K1}K2 ,K3 cannot be distinguished by a computational adversary:
the decryption of the first part of each message always succeeds and returns a key. However, the
adversary cannot compare the result given by decryption with the value of K1 as K1 does not
appear anywhere else in these messages. The confusion-freeness hypothesis states that decryption
with a wrong key should fail most of the time. By adding this hypothesis, the completeness result
can be proved.

The Abadi and Rogaway result was extended in several other directions. An interesting devel-
opment is the case of weak passwords. Abadi and Warinschi considered the case of low entropy
password in [AW05]. The number of possible passwords is low so the adversary can test all of
them. However, the decryption scheme succeeds even when using a wrong password so the adver-
sary cannot be sure that he deduced the right password. For example, if the adversary is given
the encryption of some nonce N using a password W , he can decrypt the cipher-text with any
password W ′. The result is a nonce N ′. If the adversary has another way to know the value of
N , then he can try to decrypt the cipher-text with any possible password W ′ (as their number is
limited) and whenever the resulting nonce N ′ is equal to N the adversary can deduce that W ′ is
equal to W with non-negligible probability. Therefore, the adversary can deduce the value of W ,
this is called a guessing attack. The main idea is that guessing attacks are possible if there are
two different ways of obtaining the value of some messages (the nonce N in the previous case).
Guessing attacks are not fully considered in [AW05]. The main result of this paper is that if
the symbolic adversary cannot deduce a password from a given message then the computational
adversary cannot distinguish the password used in an implementation of this message from a ran-
domly sampled password. This result has been extended to guessing attacks by Abadi, Baudet
and Warinschi in [ABW06]. This work enhances the symbolic equivalence by taking into account
new deductions for the adversary.

14/229 Verimag — 2006 Laurent Mazaré
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Dynamic Cases

Although interesting, the case of passive eavesdroppers cannot be used to represent real-world
attacks. Therefore, there have been numerous efforts to extend the previous results to the case of
a non-passive adversary. Once again, several directions have been explored.

First, it is possible to just prove computational security in the passive setting. Then using
some compiler, one can derive a protocol that is secure in the active setting from the original
protocol (by adding some authentication primitives). This approach has been introduced by Katz
and Yung for group key exchange protocols in [KY03]. In this paper, they introduce a compiler
which given a key exchange protocol that is secure in the passive setting outputs an authentified
key exchange protocol secure in the active adversary model. The main drawback is that this
cannot be used to analyze existing protocols. Moreover the compiler may add some unnecessary
complexities to the protocol.

Micciancio and Panjwani considered the case of adaptive adversaries in [MP05]. The adaptive
setting is a straightforward extension of the Abadi-Rogaway result. A computational adversary
issues sequences of symbolic messages Mi, Ni such that M1, ...,Mi and N1, ..., Ni are equivalent.
The adversary is given implementations of either Mi or Ni and has to decide which is the case.
The interesting point is that the adversary behave in an adaptive way, i.e. after receiving the
implementation of M0 or N0, he can choose messages for M1 and N1 that brings him better
chances of success. These adaptive steps are repeated a polynomial number of times. The only
cryptographic primitive allowed in messages is symmetric encryption. The main result states that
if the encryption scheme is secure, then the adversary has negligible probability to win. This
setting is exemplified on the case of group multicast for which it is particularly well suited.

A restriction of this work is that keys are required to be shared before being used only. Specif-
ically, a key K cannot be sent (even encrypted) after it has been used to encrypt another message.
The origin of the problem is that handling keys in a general way raises issues related to the selec-
tive decommitment problem for which no answer is known today [DNRS99]. This problem always
comes when considering adaptive corruptions, thus to our knowledge, all the works considered
here only use a static corruption model (a “simple” solution could be to consider non-committing
encryption as introduced by Canetti et al. in [CFGN96] , however this has not been explored yet).

Instead of looking at adaptive adversaries, Bogdan Warinschi decided to consider protocol
adversaries in the symbolic Dolev-Yao setting. His first result is a proof of computational safety
for the Needham-Schroeder-Lowe protocol. This result only holds when considering semantic
security against chosen-cipher-text attacks (IND-CCA). The originality of this proof, presented
in [War03], is that computational safety is derived from safety in the symbolic setting. The idea
is to build some adversaries Bi against IND-CCA from an adversary A against the protocol such
that whenever A manages to produce a trace that is impossible in the symbolic setting, then one
of the Bi can win its challenge. Therefore, A’s behavior cannot differ from possible behaviors
in the symbolic setting with non-negligible probability. This paper also proves that the IND-
CPA hypothesis is not sufficient to ensure computational security of the Needham-Schroeder-Lowe
protocol.

This computational soundness result has then been generalized to arbitrary protocols by Mic-
ciancio and Warinschi in [MW04c]. The authors consider protocols that only use public key
encryption. Encryption nesting, message forwarding and sending of secret keys are disallowed.
The hypothesis made on the public key encryption scheme used to implement the protocol is still
IND-CCA. The main result is that if a protocol is secure in the symbolic world, then its imple-
mentation is also secure against computational adversaries. This is done for an authentication
property but the result can be extended to handle any trace property. The proof technique used
in this paper (which is derived from the proof of [War03]) has inspired several further works on
the subject. In particular, section 6.2 of this document uses proofs that are closely related to
this initial one. The principle is always the same: A is an adversary against the protocol, several
adversaries can be built against the different cryptographic primitive (so against IND-CCA for
encryption, selective forgery for signature...). These adversaries use A in such a way that whenever
A produces a trace that cannot be mapped on a possible trace in the symbolic world, then one of
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the new adversaries can win its challenge, hence one of the cryptographic primitive can be broken.
The work of Micciancio and Warinschi suffers from numerous limitations that prevent one

from using it on most of the classical protocols as detailed in Clark and Jacob survey [CJ97] or as
presented in the SPORE archive 1. The limitations on encryption nesting and message forwarding
were removed by Cortier and Warinschi in [CW05]. This paper also allows protocols that use
digital signature and introduces message labels. These labels can be thought as the random coins
used to perform an encryption or a signature: if two identical messages have the same label, then
their implementations are exactly the same. Such notations are useful when one wants to sign an
encryption and send the encryption along for example. Moreover, this work does not limit itself to
trace properties, strong secrecy of nonces (SecNonce) is also considered. The main result is that
if some protocols preserves secrecy of a nonce N in the symbolic world, then an adversary against
the implementation of the protocol cannot, after executing the protocol, differentiate the value of
N from a randomly sampled nonce value.

At the same time, we concurrently proved a similar result for protocols using asymmetric
encryption and digital signature in [JLM05a]. Although we do not handle labels and we only
consider trace properties (and not SecNonce), our main improvement with respect to [CW05] is to
allow sending of secret keys. Our symbolic model is exactly the Dolev-Yao model, hence several
automatic verification tools can be used to verify properties in the symbolic setting. After that, we
added symmetric encryption (which can be thought of as authenticated encryption [BN00]) and
hashing in [JLM05b]. Several problems arise when considering emission of secret keys as message
cannot be entirely parsed when they are received, this is detailed in section 6.2. A solution to
this is to ask new requirements on cryptographic primitive as Romain Janvier does in his PhD
thesis [Jan06] (but these requirements are not linked – for now – to classical security requirements).
Hashing raises similar problems, however to the best of our knowledge we are the only ones to
consider hashing in the standard model and not in the Random Oracle Model (ROM).

The Reactive Approach

An impressive work has been achieved in a sequence of papers by Backes, Pflizmann et
al [PSW00, BPW03a, BPW03b, BPW04]. Their different works are not based on the classical
Dolev-Yao model but adopt a more realistic approach in the symbolic setting. Both their sym-
bolic and computational models are built upon a cryptographic library which is called by the
protocol participants each time they want to perform a cryptographic operation. Agents do not
really have access to the bit-strings representing the different messages but use handles on these
bit-strings in order to perform their operations. Handles and their values are stored within the
cryptographic library which contains all the messages that are exchanged during the protocol
execution.

In the symbolic setting, the library is centralized. Each message is linked to its type and to
the agents that can access it. Whenever an agent wants to encrypt a message using some key,
he submits a handle to the message and an handle to the key, the library checks that the agent
can access both the message and the key. If this is the case, the library creates a new handle and
stores the encryption at this position, the handle is returned to the agent. Operations are hence
made symbolically. This model is closed to [THG99] where knowledge of each agent is considered
instead of just considering the knowledge of the adversary (which is usually done in the Dolev-Yao
model). In the computational setting, the library is distributed to each agent. Operations are
performed on bit-strings even if the operations are the same as the one of the symbolic version of
the library.

In both models, agents interact with the library but there is also an adversary, representing
dishonest agents, that uses the library. Adversaries and agents are both polynomial time Turing
machines and agents use the same symbolic operations in both setting. Adversaries can use the
cryptographic library. In the computational setting, they can also access the bit-strings stored
by the library and submit new bit-strings to replace them. Therefore such adversaries can use

1Security Protocols Open Repository http://www.lsv.ens-cachan.fr/spore

16/229 Verimag — 2006 Laurent Mazaré
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the whole computing power of polynomial-time Turing machine on the implementations of the
different messages.

The main result is the following: for any honest agents H and any computational adversary
Ac, if the cryptographic primitives are secure for some criteria, then there exists a symbolic
adversary As such that H cannot distinguish whether it uses the computational library with
Ac or the symbolic library with As. This means that if a protocol is secure with respect to
symbolic adversaries using the symbolic library, then it is also secure when implemented with the
computational library. These results were first given for a cryptographic library that only handles
asymmetric cryptography and digital signatures, this was done in [BPW03a]. Then these results
were extended to handle symmetric cryptography in [BP04] and to handle message authentication
codes in [BPW03b]. Security requirements are similar to the ones required by other approaches,
that is IND-CCA for asymmetric encryption, IND-CPA and existential forgery for symmetric
encryption and existential forgery for digital signature and message authentication code.

The results of Backes et al. have several advantages compared to the approach proposed in
this document, in [CW05] or in [Jan06].

1. First, they handle an unbounded number of sessions, this is also done in [CW05] for asym-
metric encryption and digital signature. For symmetric encryption, results of chapter 8
should make the classical proof work but this has yet to be written.

2. They also have a weaker requirement for the digital signature scheme. To ensure that their
simulator works, messages should be entirely parsed at reception time. If we also require
messages to be parseable at reception time, we should also be able to consider this weaker
requirement.

3. Message authentication code is considered as a cryptographic primitive but adding this to
our model seems to be pretty straightforward.

4. Finally, their reactive frameworks makes it possible to consider more complex properties.
Although opacity as detailed in chapter 9 also handles complex properties, its computational
soundness has only been studied in the passive setting.

The disadvantages of these results with respect to ours is that some protocols cannot be considered,
especially when a key is sent after being used to encrypt a message. The reactive simulatability
approach cannot handle such late commitments. Moreover, their symbolic model is not exactly
the Dolev-Yao model, hence it is not sure that it could be automatically verified. As we consider
the Dolev-Yao model, we have access to a wide variety of tools that prove diverse properties
on protocols. Finally, they do not consider hashing or modular exponentiation as cryptographic
primitives. The case of hashing is even worse than that: Backes et al. also proved recently
in [BPW06] that adding hashing is not possible in their framework without considering the random
oracle model or without allowing only hashing of single nonces.

In [BP05b], Backes et al. consider new computational notions of secrecy specifically adapted to
cryptographic keys and to “non-cryptographic” data like some English texts. A data is symboli-
cally secret if the adversary does not know the handle that refers to that data in the cryptographic
library. Computational indistinguishability implies that the data should, at the end of the proto-
col, be indistinguishable from a randomly sampled value. For nonces and non-cryptographic data,
this notion is close to SecNonce as introduced in [CW05]. For symmetric cryptography, a key can
only be secret if it has not been used to perform encryptions that are viewable by the intruder.
As the encryption scheme might be key-revealing, it is easy for the adversary to distinguish the
real key from a random key if he has access to some cipher-text. For this reason, we introduce
the SecKey property in section 6.3 which states that a key can still be secure although some
information on this key might be known by the adversary.

The works of Canetti [Can01, Can04] are close to those of Backes but add the notion of
universal composability. This consists in defining an idealized version of the function that has
to be implemented, and then in showing that it is impossible to distinguish the implementation
from its idealized version. If this result holds for a single execution, then indistinguishability also
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holds when considering multiple executions in any environment. The cryptographic primitives
considered in [Can01] are only asymmetric cryptography and digital signature. As in our work,
the security requirements on these primitives are respectively semantic security against chosen-
cipher-text attacks and unforgeability. Symmetric cryptography and key sending were studied
in [CK01]. In [Can04], Canetti corrects a proof of construction of the digital signature scheme.
This illustrates once more the difficulties when reasoning in the computational model.

Compared to our work, Canetti’s results have the advantage of composability: it is sufficient
to prove security for one execution then it holds for multiple concurrent executions even if the
number of such executions is polynomial. However the composability approach may make the
property harder to satisfy than in our model.

Peter Laud [Lau04] defined a transformation technique on protocols which allows one to verify
whether the protocol preserves secrecy or not. His requirement on asymmetric encryption schemes
is still semantic security against chosen-cipher-text attacks. The main result is that if a protocol
preserves secrecy in the symbolic setting, then it verifies strong secrecy in the computational world.
In particular, he authorizes encryption cycles. His results only apply in the case of a bounded
number of sessions and on secrecy properties.

1.4 Thesis Contributions

In this thesis, we propose to extend previous results originating from the work of Micciancio and
Warinschi [MW04c]. The objective is here to handle a wider class of protocols than were first
authorized and to remove some of the original limitations.

The contributions of this thesis focuses in two directions. First we extend the soundness result
in order to be able to use various cryptographic primitives: asymmetric encryption, symmetric
encryption, digital signature and hashing. Second, three possible extensions are proposed: addition
of modular exponentiation, unbounded number of challenges (with adaptive corruptions) and
handling of opacity properties.

1.4.1 Soundness of Formal Analysis

First, we focus on removing some limitations inherent to [MW04c]. For this purpose, we introduce
a formalism in order to describe security criteria like IND-CCA. We then propose a partition
theorem which allows, under some conditions, to break a criterion into multiple smaller criteria.
Finally, using newly defined criteria, we prove a computational soundness result for protocols
involving multiple different cryptographic primitives.

Criterion Formalism The first contribution of this thesis is to define formally what is a security
criterion. This formalism can be used to represent most of the security criteria present in the
literature like IND-CCA or selective forgery. Moreover, it is easy to build new criteria, either from
scratch or by composing previously existing criteria. In particular, we define a new criterion for
hashing (which is satisfied in the ROM by using the Random Oracle as a hash function). We
also create new criteria that mix IND-CCA for asymmetric encryption, IND-CPA for symmetric
encryption and selective forgery for digital signature and for symmetric encryption. This criterion
represents joint security of the various primitives.

Criterion Partition Theorem By using patterns, we are able to define security criteria ex-
tending classical criteria. Instead of just allowing bit-strings in requests, patterns can be used to
insert secret information under encryptions as soon as this does not create encryption cycles. In
order to prove equivalence between these new criteria and classical ones, we propose two criterion
partition theorems. These theorems can be used to prove joint security of multiple cryptographic
primitives using security for each of the primitive. This can only be done under some acyclicity
restrictions.
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Linking Computational and Symbolic Security Finally, using our new criteria, we are
able to prove computational soundness of security protocols involving asymmetric encryption,
symmetric encryption and digital signature. The main result is that if a protocol is secure in the
symbolic model, then it is also secure in the computational model. Properties considered here are
trace properties but we also study nonce strong secrecy (SecNonce) and a variant adapted to keys
called SecKey.

1.4.2 Extensions

We propose three possible extensions for the previous results. These extensions are orthogonal,
hence we did not try to merge them.

Modular Exponentiation The first extension consists in adding modular exponentiation as
a cryptographic primitive. Modular exponentiation is typically used as in a Diffie-Hellman key
exchange scheme. The usual assumption concerning Diffie-Hellman is the Decisional Diffie-Hellman
problem (DDH). We propose a dynamic polynomial extension of DDH called 3DH and prove it
equivalent to DDH. Using this, we are able to prove computational soundness of a symbolic
equivalence relation defined as an extension of the equivalence relation from [AR00].

Unbounded Challenges Previous chapters only involved a bounded number of sessions. We
propose to extend this to the case of an unbounded number of sessions. This is done by defining
new criteria holding a polynomial number of challenges and by giving a partition theorem for
such criteria. In particular, a nice side effect of unbounded criteria is to directly handle adaptive
corruptions without having to suppose non-commiting encryption as in [CFGN96].

Opacity Finally, we look at more complex properties than authentication or strong secrecy. Thus
we define symbolic opacity in a very general framework and provide some decidability results. In
particular, we specialize this notion in the case of an eavesdropper observing a protocol unfolding
and prove that symbolic opacity implies computational indistinguishability, this can be seen as an
extension of the original Abadi-Rogaway result to more complex properties than just equivalence.

1.5 Organization of this Document

The first two chapters introduce the basic definitions needed in the symbolic and computational
settings.

In chapter 2, we present our symbolic model for protocols. This model is used to describe pro-
tocols that can be interpreted afterward with the symbolic or computational semantics. Symbolic
semantics are also given in this chapter.

In chapter 3, we recall some preliminaries necessary for the computational setting. In par-
ticular, we define polynomial time probabilistic Turing machine and the different cryptographic
primitives. We also give classical criteria for usual cryptographic primitives are given. Then we
show how proofs are typically performed on these criteria. These proofs could be done more
quickly by using the partition theorems introduced in the following.

The following two chapters properly define security criteria, state the partition theorems and
show how these theorems can be applied. Then the following chapter uses these results to prove
computational soundness of symbolic protocol analysis.

In chapter 4, we give a standard formalism that can be used to properly define classical secu-
rity criteria. Examples of classical criteria are given, we also introduce new criteria: these criteria
either allow encryption of secret information or represent joint security of multiple primitives. The
objective of the next chapter is to prove that the new criteria are equivalent to classical ones.

In chapter 5, our two partition theorems are proven using an argument close to the commonly
used hybrid argument. These theorems can be used to relate different criteria without having to
design new adversaries as this is usually done. We apply our partition theorems to criteria defined
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previously. Hence, we are able to prove that security of our combined criteria is implied by classical
security assumptions.

In chapter 6, we make the link between the symbolic and computational analysis of proto-
cols. First the computational semantics of security protocols are introduced. We then prove that
computational adversaries cannot produce traces that are not possible in the symbolic setting with
non negligible probability. We assume some restrictions over protocols and some security require-
ments for cryptographic primitives. Finally, we use the previous result in order to prove that if
some properties are verified by a protocol in the symbolic setting, then computational version of
these properties are verified in the computational setting. In particular, this is the case for all
trace properties like authentication but also for secrecy of nonces and keys.

Finally, the last three chapters describe possible extensions of the previous link. Each of these
chapters can be read independently from the other two.

In chapter 7, modular exponentiation is added as a cryptographic primitive. This allows us to
extend our results to Diffie-Hellman like protocols. For this purpose, we introduce a new security
criteria for modular exponentiation called 3DH and prove it equivalent to DDH. We believe that
the 3DH criterion is interesting on its own as it can be used to verify protocols directly in the
computational setting.

In chapter 8, previous definitions are generalized to the case of an unbounded number of
challenges. As adversaries are polynomial time, only a polynomial number of challenges can be
used. We introduce criteria generalizing classical criteria to an unbounded number of challenges
and add oracles to handle adaptive corruption. Generalization of our partition theorems allows us
to prove computational soundness results even within the adaptive corruption setting.

In chapter 9, we define opacity in the symbolic setting. Opacity is the symbolic version
of indistinguishability: a predicate is opaque if an adversary cannot guess its value from some
observations. We define various flavor of opacity and investigate their decidability. We also prove
that in the passive setting, symbolic opacity and security of the cryptographic primitives imply
computational indistinguishability.
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In this chapter, we introduce the symbolic model for security protocols. This model has
first been described by Dolev and Yao in [DY83] and has been well studied from then (see for
example [Rya01], [CJM98], [CLC03], [CLC02] or [GL00]). Its main advantage is that it is possible
to perform fully automatic verification of protocols [BLP03a, Low97a, DM00] within this model.
However to allow this, the symbolic model abstracts many things like the underlying cryptographic
primitives or the way random numbers are generated. For example, the “perfect cryptography
hypothesis” implies that it is impossible from a cipher-text to deduce any information on the
encoded plain-text without knowing the secret key.

Messages are a key concept in this modeling. They represent the information that circulates
between the different agents during the protocol execution. Whereas in the real world (and in
the computational model) messages are bit-strings, here messages are first order terms. Constants
can be nonces, keys or agents identities. Functions are concatenation, asymmetric and symmetric
encryption or digital signature. Chapter 7 also considers modular exponentiation.

During the protocol execution, honest agents exchange messages according to a protocol spec-
ification. The intruder is able to interfere with this exchange in order to gain some information,
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authenticate as another agent or perform any other type of attack. The intruder is defined by a
deduction relation which represents the messages that the intruder can deduce when he has ob-
served some other messages. In this model, the intruder has a complete control over the network,
he observes all the messages that are exchanged by honest agents: whenever an agent sends a new
message, this message becomes part of his knowledge. Whenever he wants to, he can prevent a
message from reaching its destination. He can also forge new messages (according to his knowledge
and his deduction relation) and send them to an agent impersonating another agent.

A security protocol is composed of different roles. These roles are executed by different agents
(although the same agent can play different roles simultaneously). Parallel composition of the roles
detailed by a protocol is called a session of a protocol. In order to differentiate two occurrences
of a same role, role have some parameters which are generally instantiated by identities or some
keys. Multiple sessions of the same protocol can occur simultaneously. For example, if we consider
a protocol with two roles R1 and R2, it is possible to execute in parallel a session where agent A
has role R1 and B has role R2 with a session where A has role R2 and C has role R1.

2.1 Terms and Messages

In order to formally describe messages, we first introduce three disjoint sets of constants which
are also called atomic messages. These three sets are infinite and countable.

1. AN contains agent names. These represent the identities of the different agents. Typical
agent names are A1, A2...

2. N contains nonces. Nonces can be thought as random numbers. As it is impossible to guess
the value of a nonce, it could be used to ensure freshness of a message. Nonces are usually
denoted by N1, N2...

3. K contains keys which are used by the different cryptographic primitives. As we consider
three different cryptographic primitives, there are several different sorts of keys. For the
asymmetric encryption scheme, there are two sorts of keys: PubK for public keys and
PrivK for private keys. For the symmetric encryption scheme, the only sort is SymK.
For the digital signature scheme, there is a sort SignK for secret signature keys and a sort
V erifK for public verification keys.

As we want to be able to associate a matching pair of keys, there is a bijection from PubK to
PrivK and from V erifK to SignK associating each key k to its inverse k−1. This bijection is
extended from PrivK to PubK and from SignK to V erifK by taking k−1−1 = k. It is also
extended to SymK by k−1 = k. Therefore, the inverse function is defined for any key.

The set of atomic messages AN ∪ N ∪ K is denoted by AM. In order to define the set T of
terms, we introduce some function symbols that can be used to compose atomic messages.

1. enca : T × PubK → T
The term enca(t, k) is also denoted {t}ak, it represents the asymmetric encryption of term t
using key k.

2. encs : T × SymK → T
The term encs(t, k) is also denoted {t}sk, it represents the symmetric encryption of term t
using key k.

3. encg : T × SignK → T
The term encg(t, k) is also denoted {t}gk, it represents the digital signature of term t using
signature key k.

4. pair : T × T → T
〈t1, t2〉 is used for pair(t1, t2), this denotes the concatenation of term t1 and term t2. The
tuple 〈t1, . . . , tn〉 is defined using the pair operator as term pair(t1, . . . , pair(tn−1, tn))
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Let X be an infinite countable set of variables (disjoint from all the previously introduced sets).
First order terms over the previous signature are referred to as message terms. Ground terms, i.e.
variable free terms, are called messages.

We define the function vars over message terms such that vars(t) returns all the variables that
occur in t.

2.2 Description of Security Protocols

Protocols are usually described using a simple syntax that gives the sequence of messages ex-
changed in a single session. This way of specifying protocols has first been introduced in [BAN96]
and then has been widely used in latter theoretical works about cryptographic protocols like the
Clark and Jacob survey [CJ97]. For example, the classical Needham-Schroeder public key proto-
col [NS78] is described by:

A→ B : {〈A,NA〉}pkB
B → A : {〈NA, NB〉}pkA
A→ B : {NB}pkB

This description does not make any difference between roles and identities. There are two roles
A and B. The protocol has three steps: in the first one, A sends to B a message which is the
encryption of its identity (A) and a nonce (NA) by the public key of B (pkB). In the second
step, after receiving this message B answers with the encryption of the nonce sent by A and a
fresh nonce (NB) using key pkA. Finally when A receives this last message, he answers nonce NB
encrypted using pkB . The main advantage of this BAN syntax is that it is easy to read, however
there are some drawbacks that makes it unsuitable for our purpose. For example as the protocol
description does not use variables, assignment of the different parameters of a role is not clear: in
the second step, B sends a message encoded by pkA, does it always use that key or is it because
B just received a message containing identity A ?

2.2.1 Roles

A role is the description of the actions performed by an agent in a protocol. During the protocol
execution, an agent may receive some messages, accept them if they match a given pattern, send
other messages and verify some signatures. We detail here a very simple syntax for roles that
does neither include tests nor control points. The syntax is kept as restricted as possible so that
further results given in this document are easier to understand and prove, however most of our
results can be adapted when considering a more expressive role model.

Formally, a role is a finite sequence of actions. Actions and roles are defined by the following
grammar:

action ::= Recv(t) | Send(t) | Veri(t1, t2, t3)
role ::= action.role | ε

Where t, t1, t2 and t3 range over message terms. Each action has an intuitive signification.

1. Recv(t): reception of a message that matches term t, this can affect the value of some
variables from t for the rest of the role.

2. Send(t): emission of a message t, all variables in t must have been assigned to before.

3. Veri(t1, t2, t3): this last action is related to signature, it tests that t2 is a valid signature of
t1 using verification key t3. t1, t2 and t3 must have been assigned to before.
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Usually roles depend on several arguments (e.g. the identity of the agent that plays the role in the
protocol, its public and secret keys). Thus, instead of using directly roles, we use functions from
tuples of messages to roles. These functions are called parametrized roles. A role can be seen as a
parametrized role that takes no arguments.

Example 2.1 The Needham-Schroeder protocol given above contains two parametrized roles, R1

(played by agent A in the previous description) and R2 (played by B in the previous description):

R1(xA, xpkA, xB , xpkB) : Send({xA, NA}xpkB ) . Recv({NA, y}xpkA) . Send({y}xpkB )
R2(xB , xpkB , xA, xpkA) : Recv({xA, z}xpkB ) . Send({z,NB}xpkA) . Recv({NB}xpkB )

2.2.2 Protocols and Scenarios

A protocol definition contains a list of roles, but this is not sufficient. The protocol also has to
make precise which roles have to be executed simultaneously and how their parameters have to
be initialized. This is done via scenarios. Once more, the syntax given here is quite restricted as
it only allows parallel composition. More expressive syntaxes are commonly used when analysing
symbolic security of protocols (including for example sequentialisation). However, we stick to our
simplified model. Scenarios are given by the following grammar:

scenario ::= prole(m1, ...,mn)‖scenario | ε

Where prole is a parametrized role that takes n arguments, therefore prole(m1, ...,mn) is a role.
Note that it is also possible to use a role instead of a parametrized role, this role will have no
arguments in the scenario’s description. A single scenario can contain multiple sessions executed
simultaneously as the same role can occur more than once in the scenario.

Example 2.2 We still consider the Needham-Schroeder protocol. The famous “man-in-the-
middle” attack [Low95, Low96] uses two parallel sessions, one involving an honest agent A and
the intruder C, the other one involving A and another honest agent B. Therefore, the related
scenario is:

S = R1(A, pkA, C, pkC)‖R1(A, pkA, B, pkB)‖R2(B, pkB , A, pkA)
Notice that the role R2 instantiated by the intruder C is not present in this scenario as the intruder
has total control over the network (details on this point appear in section 2.4). Moreover role R1

from the session between A and B is useless in this attack thus it is possible to define a simpler
scenario on which the attack can still be performed.

S = R1(A, pkA, C, pkC)‖R2(B, pkB , A, pkA)

A scenario defines how the different roles are instantiated during the protocol execution. However,
it does not tell us which information are known by the intruder and which are not. For example, an
intruder may share a key with an honest agent in a session and have no information on a key used
by two honest agents in another session. Therefore, a protocol description contains a scenario and
a finite set of atoms from that scenario. This set represents the initial knowledge of the intruder.
First, we introduce the function atoms defined on message terms, roles and scenarios that returns
the atoms that the intruder may know in a message term, in a role or in a scenario. This function
returns all the atoms that appear in its argument or whose inverses appear in its argument.

Let t be a message term, the set atoms(t) contains all the closed atoms a (identities, nonces
and keys) from t such that either a or its inverse a−1 (in the case of keys) appears in t.

The set atoms(R) is inductively defined on roles by:

atoms(ε) = ∅
atoms(Recv(t).R) = atoms(t) ∪ atoms(R)
atoms(Send(t).R) = atoms(t) ∪ atoms(R)

atoms(Veri(t1, t2, t3).R) = atoms(t1) ∪ atoms(t2) ∪ atoms(t3) ∪ atoms(R)
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The set atoms(S) is inductively defined on scenarios by:

atoms(ε) = ∅
atoms(R(m1, ...,mn)‖S) =

( ⋃
1≤i≤n

atoms(mi)
)
∪ atoms(R) ∪ atoms(S)

Then a protocol is composed of a scenario S and a subset IK of atoms(S). The set IK represents
the initial knowledge of the intruder. It usually contains all the identities and public keys (for
asymmetric encryption and digital signature) from scenario S, IK also usually contains secret
keys related to dishonest agents and symmetric keys that are shared with a dishonest agent.

Example 2.3 It is now possible to define formally the Needham-Schroeder protocol. Notice that
we do not really define the exact Needham-Schroeder protocol but rather a protocol that involves
two sessions of Needham-Schroeder. This protocol Π is defined by Π = (S, IK) where S has already
been defined in example 2.2 and IK contains identities A, B and C, public keys pkA, pkB and
pkC and the secret key of the intruder skC = pk−1

C .

2.3 Protocol Semantics

In the symbolic setting, there are two different semantics for security protocols. Semantics for a
“normal” execution of the protocol are described in this section whereas semantics for execution
of the protocol opposed to an active intruder are detailed in section 2.4. Before introducing the
semantics, we first define what kind of protocols we consider as there are protocols that are not
executable.

2.3.1 Executable Protocol

A role is said to be executable if it fulfills some simple conditions. First any variable that is used in
the protocol has to be defined (by a reception or as a parameter of the role) before being used in
any emission or signature verification. Second, signature verification can only have a very specific
form. Then a protocol is said executable if it only contains executable roles. Let us formulate
these restrictions in more details. Π is executable if for any parametrized role R(x1, ..., xn) in Π
that has the form inst1 · inst2 · · · instn,

1. If insti = Send(t1) and a variable x occurs in vars(t1), then there exists j < i such that
instj = Recv(t2) and x occurs in vars(t2) or there exists k such that x = xk (i.e. x is a
parameter of the role).

2. If insti = Veri(t1, t2, t3) and a variable x occurs in vars(t1) or in vars(t2) or in vars(t3),
then there exists j < i such that instj = Recv(t4) and x occurs in vars(t4) or there exists
k such that x = xk.

3. If insti = Veri(t1, t2, t3), then t2 is a variable and t3 is either a variable or a signature
verification key.

The first two restrictions are classical: in order to be able to execute a program, variables must be
properly defined before sending them, thus any variable that occurs in an emission or a verification
statement must have been initialized before by a reception statement. The last restriction is
intuitive, there is no use in testing that a message is a signature if this message has just been
forged by the same agent, therefore the second parameter must be a variable. As the last parameter
stands for the verification key, it has to be either a variable (if the agent received in a previous
message the verification key) or a constant verification key.

We only put restrictions on variables, however we do not ensure that an agent has the necessary
knowledge in order to execute its role. For example, to execute Recv({x}apk) an agent has to be
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able to deduce the inverse key of pk. We are not interested in these conditions as we do not ask
protocols to be implementable in the real life but rather want to ensure that simulation of the
protocol is possible.

2.3.2 Executing a Protocol

The execution of a protocol produces a trace. As this is principally what an outside observer can
see from the execution, a trace is a role that contains only emissions and receptions of messages,
signature verifications cannot be observed by an outside observer.

Definition 2.1 Traces are given by the following grammar where m ranges over (closed) messages.

trace ::= ε

| Send(m).trace
| Recv(m).trace

Therefore, a trace is a finite list of actions which can either be emission or reception of a (closed)
message.

A protocol has multiple possible traces depending on which interleaving of the different role is
chosen. The initial knowledge does not play any role in defining possible traces as we only consider
passive observers. Semantics are defined by a rewriting systems between scenarios. Rewriting
S −→ 〈t〉S′ denotes that the trace t is possible for scenario S and leads to scenario S′

In order to keep the semantics simple, the parallel composition is assumed to be an associative
and commutative operator in the following three rules. The first rule allows an agent to send a
message, even if this message is not received by any other agent.

Send(m).R‖S −→ 〈Send(m)〉R‖S

The second rule connects a send action to a receive action. The emission of the message has to
occur before the reception, emission and reception are not synchronized. Let t be a message term
and m be a message. Let σ be the most general unifier of t and m, then σ is applied to the rest
of the role where the reception is performed (variables are not shared between the different roles
executed in parallel).

S −→ 〈Send(m)〉Recv(t).R‖S′

S −→ 〈Send(m)Recv(m)〉Rσ‖S′

The last rule defines the behavior of signature verification. Every message has to be instantiated
and of course we ask the second message to be a signature of the first one. The signature key has
to be the inverse of the third message. In this case, no action is output in the trace.

Veri(m, {m}gk, k−1).R‖S −→ 〈ε〉R‖S

Then an execution of a scenario S is a sequence of rewriting:

S −→ 〈t1〉 · · · −→ 〈tn〉S′

The corresponding trace is t1 · · · tn. It is now easy to define the set of possible traces for a protocol
Π whose attached scenario is S.

Definition 2.2 Let Π be a protocol (S, IK). Then the set of possible traces corresponding to
correct executions (i.e. no intruder except a passive eavesdropper) ctraces(Π) is defined by:

ctraces(Π) =
{
t1 · · · tn

∣∣∃S1, · · · , Sn such that S −→ 〈t1〉S1 · · · −→ 〈tn〉Sn
}
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Note that possible traces for a protocol do not depend on the initial knowledge of this protocol.
Hence, we also use notation ctraces(S) instead of ctraces(S, IK).

These semantics authorize that a role sends a message to itself. For example, a possible trace
for scenario Send(a).Recv(x) is Send(a).Recv(a). The only other possible trace is Send(a).

Example 2.4 Consider the following scenario S where roles R1 and R2 have been properly defined
in previous examples and represent participants to the Needham-Schroeder protocol.

S = R1(A, pkA, B, pkB)‖R2(B, pkB , A, pkA)

This scenario represents the correct behavior of the protocol involving two honest agents A and B.
Then a possible trace is:

Send({A,NA}pkB ).Recv({A,NA}pkB ).
Send({NA, NB}pkA).Recv({NA, NB}pkA).
Send({NB}pkB ).Recv({NB}pkB )

2.3.3 Interleavings and Simplified Protocols

The main complexity of the semantics introduced in the previous section comes from the number
of possible interleavings. Thus if we consider a scenario that is composed of a single role its
semantics can be expressed in a much simpler way. We first define possible substitutions for a role
R. Intuitively, a substitution σ is possible if the trace obtained by applying σ to R and deleting
verifications is correct.

As multiple receives in a sequence may block the execution of a role, we only consider alternated
roles. Let R be a role a1 · · · an. Then R is alternated if each reception corresponds to exactly
one emission. Formally for any i between 1 and n where ai is a reception, let j be the maximal
index lower than i such that aj is an emission, then for all the indexes strictly between j and i
the corresponding action is a signature verification. Moreover, we ask the first reception to occur
after an emission and the last emission to occur before a reception. Hence role R has the form

Veri()∗.Send(m1).Veri()∗.Recv(n1).Veri()∗.Send(m2) . . .Recv(nu).Veri()∗

Then a substitution σ is possible for a length k if for any i ≤ k:

1. If ai = Veri(t1, t2, t3), then t2σ = {t1σ}gt3σ.

2. If ai = Recv(t), let j be the greatest integer lower than i such that aj = Send(t′), then
t′σ = tσ. Moreover, there does not exist any k between j and i such that ak is a receive
action.

Then the set ctraces′ of possible traces is obtained by projection of a1σ · · · akσ on emissions and
receptions, i.e. one has to cut the role to length k, apply σ and delete the Veri() statements.

Proposition 2.1 For any alternated role R, the two sets of possible traces ctraces(R) and
ctraces′(R) are equal.

Proof: This proof is performed using an induction on the number u of emissions/receptions of R.

1. If u = 0, R only contains signature verifications, as the protocol is executable R does not
contain any variable. Therefore ctraces′(R) contains the possible prefixes of R. Moreover
rewritings R can only produce the prefixes of R, hence ctraces(R) is equal to ctraces′(R).

2. Else, R has the following form:

R′.Send(mu).Veri()∗.Recv(nu).Veri()∗

where role R′ involves u − 1 emissions/receptions. The induction hypothesis applies to R′,
thus ctraces(R′) and ctraces′(R′) are equal. In both semantics, new traces can be obtained
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by adding Send(m) where m is the only possible instantiation of σ (there is only one such
instantiation as R is executable) and by adding Send(m).Recv(m) if all the signature
verifications hold. Hence we get that ctraces(R) and ctraces′(R) are equal.

The number of possible traces for a role R can be bounded by the length of R.

Proposition 2.2 Let R = a1 · · · an be a role, then

|ctraces′(R)| ≤ n+ 1

Proof: This follows directly from the definition of ctraces′.
Let S be a scenario R1‖ · · · ‖Rn where each Ri is the role ai1 · · · aini . Then a possible (but

maybe incomplete) interleaving for S is a role defined by a function ψ from [1, k] to [1, n] such
that k is lower than n1 + · · ·+ nn. This function tells which role of S is supposed to be executed
at the jth step (ψ(j)). The corresponding role is denoted by IL(S, k, ψ). The IL function can be
recursively defined by:

IL(R1‖ · · · ‖Rn, 0, ψ) = ε

IL(R1‖ · · · ‖Rn, k, ψ) = a
ψ(i)
1 .IL

(
R1‖ · · · ‖aψ(i)

2 · · · aψ(i)
nψ(i)
‖ · · · ‖Rn, k − 1, x→ ψ(x− 1)

)
The set of possible interleavings for a scenario S is denoted by IL(S), it contains every IL(S, k, ψ)
for any possible values of k and ψ. Knowing the set of possible interleavings of a scenario, the set
of possible traces for any protocol with this scenario can be obtained as the union of the possible
traces for each interleaving.

Proposition 2.3 Let S be a scenario, then

ctraces(S) =
⋃

R∈IL(S)

ctraces′(R)

This last proposition gives us the idea that in some cases, it is possible to consider protocols
with a single role without loss of generality. Namely if one wants to prove that a property φ holds
on any possible traces of a scenario that verifies φ′, then one just have to verify that this is true
for single role protocols and that if φ′ is true for a scenario, it is also true for any of its possible
interleavings.

Protocols with a single role are called linear protocols. We proved here that semantics in
the case of an eavesdropper can be related to semantics of the possible interleavings. This can
be generalized to the semantics for an active intruder. In order to prove that, we first have to
introduce the active intruder model.

2.4 The Intruder Model

In this section, we describe the classical model of intruder introduced by Dolev and Yao in [DY83].
In the symbolic model, there is a single adversary that attacks the protocol. This adversary is
called the intruder. It has total control over the network, therefore it can intercept any message
sent over the network and prevent it from reaching its destination. It can also forge new messages
using its deduction relation and send these messages to some agent using another agent’s identity.
There are no restrictions on the time used by the intruder and on the size of the messages he
can produce. However as cryptography is perfect, the intruder cannot deduce the content of an
encrypted message without knowing the decryption key and cannot guess any nonce.
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2.4.1 The Deduction Relation

The intruder is represented by the set of messages he knows which is denoted by E. We do not
suppose here that E is finite as an intruder can generate an unbounded number of fresh nonces.
At the beginning of the protocol execution, the intruder has an initial knowledge (for example
identities and public keys). Whenever a message is sent by an agent, this message is added to the
intruder’s knowledge. Whenever an agent waits for a message, the intruder can give any deducible
message.

The deduction relation defines the messages an intruder can produce from the set of messages
E, it is denoted using the entailment relation `. Let m be a message, E ` m reads as message m
is deducible from E. This relation is inductively defined using the following rules:

1. If m ∈ E, then E ` m.

2. If E ` m1 and E ` m2, then E ` 〈m1,m2〉.

3. If E ` m and E ` pk where pk ∈ PubK, then E ` {m}apk.

4. If E ` m and E ` k where k ∈ SymK, then E ` {m}sk.

5. If E ` m and E ` sik where sik ∈ SigK, then E ` {m}gsik.

6. If E ` 〈m1,m2〉, then E ` m1 and E ` m2.

7. If E ` {m}apk and E ` pk−1, then E ` m.

8. If E ` {m}sk and E ` k, then E ` m.

9. If E ` {m}gsik, then E ` m.

The intruder can deduce any message that appears in his knowledge, he can compose messages
using pairing, encryption or signature. He can also perform projections on messages or decrypt
them if he knows the related secret key (for asymmetric encryption) or the encryption key (for
symmetric encryption). Finally, as usual algorithms for digital signature do not ensure secrecy of
the signed message, we consider signature with message recovery: the intruder can deduce from a
signature which message was signed.

2.4.2 Semantics with an Intruder

The second possible symbolic semantics for a protocol is semantics where an intruder can interact
with the protocol. This semantics with an intruder defines a new set of possible traces denoted
by traces(Π) for a protocol Π. Note that, whereas the set of honest traces does not depend on
the initial knowledge set of Π, this set of traces heavily depends on the initial knowledge.

Parallel composition is still assumed to be an associative and commutative operator in the
following. The semantics is described by a new rewriting system −→. This rewriting system is
defined over protocols as the knowledge of the intruder is modified during the execution: in a
protocol (S,K), S represents the current scenario of the protocol (which is the state of honest
agents) and K represents the knowledge of the intruder (i.e. his state). The interpretation of
(S,K) −→ 〈t〉(S,K ′) is that from scenario S, if the intruder has knowledge K, he can make the
scenario evolve to S′ and his new knowledge will be K ′, this modification produces a trace t.

The first rule allows an agent to send a message, even if this message is not received by any
other agent. We consider that the intruder intercepts this message, that is why this message is
appended to the knowledge of the intruder.

(
Send(m).R‖S,K

)
−→ 〈Send(m)〉

(
R‖S,K ∪ {m}

)
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The second rule describes the behavior of the receive statement. The received message is forged
by the intruder using its deduction relation. If t and t′ are two message terms that can be unified,
let mgu(t, t′) be their most general unifier.

K ` m σ = mgu(m, t)(
Recv(t).R‖S,K) −→ 〈Recv(m)〉

(
Rσ‖S,K

)
The last rule defines the behavior of signature verification, it is the same rule as for “normal
executions”, i.e. every message has to be instantiated and the second message must be a signature
of the first one with the inverse of the third message. In this case, no action is output in the trace
and the intruder knowledge is not modified.(

Veri(m, {m}gk, k−1).R‖S,K
)
−→ 〈ε〉

(
R‖S,K

)
Then an execution of a scenario S is a sequence of rewriting:

S −→ 〈t1〉 · · · −→ 〈tn〉S′

The corresponding trace is t1 · · · tn. It is now easy to define the set of possible traces for a protocol
Π.

Definition 2.3 Let Π be a protocol (S, IK). Then the set of possible traces corresponding to
executions with an intruder traces(Π) is defined by:

traces(Π) =
{
t1 · · · tn

∣∣∃(S1,K1), · · · , (Sn,Kn) such that Π −→ 〈t1〉(S1,K1) · · · −→ 〈tn〉(Sn,Kn)
}

Example 2.5 (Needham-Schroeder) We exemplify the semantics by detailing the well-known
attack on the Needham-Schroeder protocol. We consider two honest agents A and B, the intruder
is denoted by C. To perform the attack, we assume that there are in parallel a session between A
and C and another session between A and B, role R1 in the second session is not described here
as it is useless for the attack. Scenario S is defined by:

S = R1(A, pkA,C, pkC)‖R2(B, pkB,A, pkA)

The instantiated versions of roles R1 and R2 are:

R1(A, pkA,C, pkC) : Send({A,NA}pkC) . Recv({NA, y}pkA) . Send({y}pkC)
R2(B, pkB,A, pkA) : Recv({A, z}pkB) . Send({z,NB}pkA)

Then the attack on the Needham-Schroeder protocol can be obtained using the previous semantics.

Simple Properties of the Semantics First, there is a simple link between the “normal”
semantics and the semantics with an intruder. The intruder can decide to correctly forward the
messages. In this case, the produced traces are also valid traces for “normal” semantics.

Proposition 2.4 For any protocol Π, the set of traces for “normal” executions is included in the
set of traces for execution with intruder, i.e.:

ctraces(Π) ⊆ traces(Π)

Proof: This comes directly because if m appears in K, then m is deducible from K.
As before, it is sufficient to consider the different possible interleavings of the scenario:

Proposition 2.5 Let S be a scenario and IK be an initial knowledge, then

traces(S, IK) =
⋃

R∈IL(S)

traces(R, IK)

This last proposition also leads us to think that it is sufficient to consider linear protocols.
In the rest of this document except in the remaining of this chapter, we only consider linear
protocols. However we strongly believe that our results can be generalized to protocols using
parallel composition. This restriction allows us in particular to keep the computational semantics
as simple as possible.
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2.5 Protocol Properties

Here, we present some properties over protocols that can be formulated and verified within our
model. Some of them can be verified by fully automatic tools as we only consider a bounded
number of roles. These properties correspond to the intuitive definition of security for a protocol.
What does it mean that a protocol is secure ? Depending on the objective of the protocol, it may
mean that an intruder can never get some information (for example a secret key), this is secrecy.
It may also mean that whenever an agent reaches some point in the execution of the protocol, this
agent can be sure that he is talking to another honest agent, this property is called authentication.
More complicated properties based on opacity are detailed in chapter 9.

2.5.1 Secrecy

Let Π be a protocol composed of a scenario S and a role R. A message m is kept secret by Π
if it is not possible that after executing the protocol, the intruder can deduce message m. An
important remark is that if any of the atoms of m does not occur neither in S nor in IK, then m
is not deducible by the intruder. Hence we only considers message m such that every atom of m
occur in S or in IK.

Definition 2.4 (Secrecy) A protocol Π = (S, IK) preserves secrecy of message m if for all
act1(m1) · · · actn(mn) in traces(Π), it is not possible to deduce m from the initial knowledge and
the exchanged messages:

IK,m1, . . .mn 0 m

The intuitive meaning of secrecy is that a protocol does not preserve secrecy of message m if there
exists a way for the intruder to run the protocol in order to deduce m. The intruder chooses which
messages to exchange, he can also choose the interleaving.

Proposition 2.6 Let Π = (S, IK) be a protocol that does not preserve secrecy of a message m,
then there exists R in IL(S) such that protocol (R, IK) does not preserve secrecy of m. The
reciprocal is also true: if a protocol has an interleaving that does not preserve secrecy, then the
whole protocol does not preserve secrecy.

Proof: This is a direct consequence of proposition 2.5.
A classical result is that for bounded protocols (which is the case here), secrecy is a decidable

problem. This result has been given in [RT01] and in [AL00]. The following proposition is a
consequence of the more general results given in section 2.6.

Proposition 2.7 Let Π be a protocol and m be a message. Determining whether Π preserves
secrecy of m is a decidable (and co-NP complete) problem.

Extensions of this result have been developed recently. The main idea is to generalize this result
when adding equational theories like exclusive-or (associativity, commutativity, neutral element,
nilpotency) [CKRT03a, CLS03].

2.5.2 A Trace Property: Authentication

The symbolic model presented here does not handle control points, hence authentication cannot
be expressed directly. Thus we model authentication as a trace property: if Π is a protocol, then
we consider a set of traces for Π that represents executions where authentication is verified.

Then the authentication property is verified for Π in the active setting if there are no traces
in traces(Π) that does not appear in the previous set of traces.
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2.6 Dolev-Yao Constraints

A possible way to prove decidability of secrecy (proposition 2.7) is to consider constraints based
on the deduction relation [MS01, Maz04a]. The ` operator when used in E ` m means that
the message m is deducible from knowledge E. Then, a Dolev-Yao constraint is a conjunction
of atomic relations involving the ` operator. The question of how to build constraints from
protocol specifications has widely been discussed before and can be found in [MS01], [CLS03] or
in [AL00]. The idea is to test any possible interleavings of the different sessions (which are in finite
number as the number of sessions is itself finite). For each interleaving, secrecy is equivalent to a
constraint. The main point is that constraints built from a protocol are always in a very specific
class of constraints called well-formed constraints. Thus, satisfiability of well-formed constraints
has quickly been proven NP-complete but there are no such results for more general constraints.

In this section, we prove that satisfiability remains NP-complete when considering any possible
constraint. When verifying a property on a protocol, three distinct constraints appear: the first
one specifies the initial state of the intruder (or of any agent), the second describes the unfolding
of the protocol and the last one gives the property that we want to prove. The second constraint
is well-formed so previous studies omitted the first constraint and forced the last constraint to be
a unique E ` m constraint where E was the final knowledge of the intruder. Our results allow
us to use general constraints for the first and the third constraint. Thus, we can verify properties
that cannot be expressed using well-formed constraints only and this allows verification of a larger
class of properties.

For the sake of simplicity, we only consider here the case of symmetric encryption. Encryption
of m using k is denoted by {m}k in order to shorten notations.

2.6.1 Constraints and their Verification

Constraints are equations where the deduction relation is allowed and denoted by . The logical
and operator is also used to build conjunctions. For example, pk, a  x ∧ pk, a, x  y denotes a
constraint where x is deducible from pk and a and y is deducible from pk, a and x.

Definition 2.5 (Constraints) The set DY C of Dolev-Yao constraints is defined by C in the
following grammar where T is a finite set of message terms and t is a message term.

C ::= C ∧ C | C ∨ C | > | ⊥ | CA
CA ::= T  t

Given a constraint C, a model of C is a substitution σ that defines any free variable of C such
that Cσ is a true predicate. Note that, in our case we are limited to the atomic key model: keys
are atoms and cannot be composed of messages.

Definition 2.6 (Models) A substitution σ is said to be a model for a constraint C iff Cσ is
closed and σ |= C where |= is defined using the usual inference rules extended by:

Tσ ` tσ
σ |= T  t

A model σ is said valid for a constraint C if for any message m in Cσ, m is correctly typed.

Another important definition is well-formed constraints. These constraints are well-known
in the protocol analysis community because secrecy for a protocol with a bounded number of
sessions is equivalent to satisfiability of a well-formed constraint. To introduce these constraints,
two hypotheses need to be made whereas there are no assumption on constraints in DY C. More
precisely, a constraint C in DY C is said to be well formed iff none of the environment is empty
and for any conjunction Co composing C in disjunctive normal form, the two following conditions
hold:

• If T  t and T ′  t′ are in Co, then T ⊆ T ′ or T ′ ⊆ T (Environment Inclusion).
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• If T  t ∈ Co and x ∈ var(T ), then there exists T ′  t′ ∈ Co such that x ∈ var(t′) and
T ′ ⊆ T (Variable Introduction).

If constraint C has at least one valid model, constraint C is said to be satisfiable. In the rest
of this section, we prove that the satisfiability problem is decidable and NP-complete. However,
this result is already well-known for well-formed constraints even in the case of composed keys,
see for example [AL00, RT01] and even with the XOR operator [CKRT03a, CLS03] or modular
exponentiation [CKRT03b]. Satisfiability of these constraints is exactly equivalent to the secrecy
problem. The next theorem is a generalisation of this result to general constraints.

Theorem 2.1 Satisfiability for constraints in DY C is decidable and is a NP-complete problem.

2.6.2 Proving Decidability

The goal of this section is to prove theorem 2.1. A first result is that if a constraint C is satisfiable,
then it has a model whose atoms all occur in C. Let keys(C) denote the keys (atoms and
variables) used by a constraint C (the keys operation is easily defined on messages and extended
to constraints).

Proposition 2.8 Let C be a constraint in DY C such that atoms(C) is not empty and C is
satisfiable, then there exists a model σ of C such that:⋃

x∈var(C)

atoms(xσ) ⊆ atoms(C)

So,in particular, ⋃
x∈var(C)

keys(xσ) ⊆ atoms(C)

Proof: As C is satisfiable and atoms(C) is not empty, let σ′ be a model of C and a an element of
atoms(C). Then let σ′′ be the substitution that associates a to each atom of atoms(Cσ)\atoms(C)
and σ = σ′σ′′. Hence, atoms(xσ) ⊆ atoms(C). Moreover, Tσ′ ` mσ′ implies Tσ ` mσ.

The condition that atoms(C) must not be empty is not very restrictive as satisfiability of C is
equivalent to satisfiability of C ∧ a  a for some fresh atom a.

Moreover, as we only use atomic keys, checking satisfiability of a constraint in DY C is equiv-
alent to checking satisfiability of some constraints C in DY C such that keys(C) does not contain
any variable.

Proposition 2.9 Let C be a constraint in DY C such that atoms(C) is not empty, then there
exists a subset Γ of DY C such that:

• For all C ′ in Γ, keys(C ′) ⊆ AM and there exists σ that associates atoms to keys(C) ∩ X
such that C ′ = Cσ.

• |Γ| ≤ |card(atoms(C))|n where n = |keys(C) ∩ X |.

• C is satisfiable iff there exists C ′ in Γ such that C ′ is satisfiable.

Proof: This proof can be made by using an induction on the value of n.

• If n = 0, then Γ = {C} verifies the proposition.

• Else if n > 0, let x be an element of keys(C) ∩X. Consider Γ′ defined by

Γ′ = {C[x\a1], ..., C[x\am]}

Where a1 to am are the atoms occurring in C. Then C is satisfiable iff a constraint C ′ ∈ Γ′

is satisfiable. Hence, the induction hypothesis can be applied to any element in Γ′ and this
gives the awaited result by taking the union of the constraints sets.
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Moreover, given a constraint C, the set Γ can be computed. So without loss of generality we
can consider only constraints C such that keys(C) ⊆ A, i.e. these constraints only use atoms as
keys.

To check satisfiability, our first step is to test all possible unifications. Then we test all the
possible orders in which the keys can be compromised. For this purpose, we introduce the notation
T ` m[U ] which means that m is deducible from T using keys in U .

Definition 2.7 Let T be a finite set of closed messages, m be a closed message, and U be a finite
set of atoms. Then T ` m[U ] is defined using classical Dolev-Yao inferences where the decode rule
is replaced by:

T ` {m}u[U ] u ∈ U
T ` m[U ]

The set DY C is trivially extended by adding the atomic constraint T  m[U ] where T and m are
potentially not closed but U is still a set of atoms.

The quantification upon the order in which keys are compromised is expressed in the following
property.

Proposition 2.10 Let T  m be an atomic constraint, then we have that the next predicate is a
tautology.

T  m⇔
⋃

{a1,...,an}⊆K

T  a1[] ∧ T  a2[a1] ∧ ... ∧ T  an[a1, ..., an−1] ∧ T  m[a1, ..., an]

Where K is the set of all keys in T and m, namely keys(T ) ∪ keys(m).

Proof: ⇐: trivial.
⇒: let σ be a substitution such that Tσ ` mσ. Then there exists a minimal (for height) proof of
Tσ ` mσ that only uses keys from K. The last step is to consider the order among keys ≺ such
that k1 ≺ k2 means that k1 was deduced before k2 in our minimal proof. As the proof is minimal,
≺ does not have any cycle, hence it is possible to define a total order < among keys compatible
with ≺. This order gives a1 (minimal for <) to an.

Thus, using the former property, satisfiability of a constraint in DY C is equivalent to satisfi-
ability of a constraint using only atomic predicates of the form T  m[U ]. Such constraints are
called quantified constraints. In order to check satisfiability of such constraints, we introduce a
rewriting system between constraints.

Definition 2.8 The rewriting system ↪→ is defined over quantified constraints by:

T  〈m,n〉[U ] ↪→ T  m[U ] ∧ T  n[U ]
T  {m}n[U ] ↪→ T  m[U ] if n ∈ U

Normal forms for the former rewriting system use only atomic constraints like T  a[U ] where a
is an atom, T  x[U ] where x is a variable or T  {m}k[U ] where k is an atom that does not
appear in U .

Proposition 2.11 The rewriting system ↪→ over quantified constraints is correct, complete and
terminates. So every constraint is equivalent to a constraint in normal form.

After rewriting the constraint to its normal form, each atomic constraint is decomposed by looking
at which atoms, variables and encryptions can be obtained given an environment T and a set of
keys U and by looking at which are needed given a message m and a set of keys U .
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Definition 2.9 (Split) The split function is recursively defined over closed messages by the fol-
lowing lines where U is a finite set of atoms.

split(a, U) = {a}
split(〈m,n〉, U) = split(m,U) ∪ split(n,U)
split({m}u, U) = split(m,U) if u ∈ U
split({m}v, U) = {{m}v} if v /∈ U

This function can also be used on sets of messages. Applying split to a set of messages T returns
the union of sets obtained by applying split on elements t of T .

split(T,U) =
⋃
t∈U

split(t, U)

Then, the following equivalences are tautologies. And thus, constraints can be transformed to
constraints involving ∈, ⊆ and split (as these are constraints, split can be applied to message
terms).

T  a[U ]⇔
(
a ∈ S ∨

∨
x∈split(T,U)

a ∈ split(x,U)
)

T  {m}n[U ]⇔
(
{m}n ∈ S ∨

∨
x∈split(T,U)

{m}n ∈ split(x, U)
)

T  x[U ]⇔
(
split(x, U) ⊆ S ∪

⋃
y∈split(T,U)

split(y, U)
)

Where S contains all the atoms and messages from split(T,U) (i.e. S is obtained by removing
variables from split(T,U)). It is now easy to prove a restricted version of the first theorem.

Proposition 2.12 Let C be a constraint in DY C. If for all atomic constraint T  m occurring
in C, m is a closed message, then satisfiability of C is decidable.

Proof: Checking satisfiability of constraint C is equivalent to checking satisfiability of a finite
number of conjunctions involving atomic constraints of two forms: a ∈ split(x, U) and {m}n ∈
split(x, U) where {m}n is a closed message. If there is a non-empty conjunction, it is clearly
satisfiable by using for any variable x the pairing of all the atoms and encryptions that occur in
the conjunction.

xσ = 〈a1, ..., aα, {m1}n1 , ..., {mβ}nβ 〉

For example if the non-empty conjunction is:

a ∈ split(x,U) ∧ b ∈ split(x, U) ∧ b ∈ split(y, U) ∧ {m}n ∈ split(y, U)

This conjunction is satisfied by:

xσ = 〈a, b, {m}n〉
yσ = 〈a, b, {m}n〉

Hence satisfiability is decidable.
In the rest of this section, we prove theorem 2.1. This proof uses a finite model argument.

First, let us introduce the norm which allows us to bound the size of the minimal model. Let us
call C the constraint (in normal form) we study and C ′ be the equivalent constraint using the
split notation.
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Definition 2.10 Let {u}v be a message, σ be a substitution, then σ[{u}v\u] is the substitution
defined by:

x(σ[{u}v\u]) = (xσ)[{u}v\u]

I.e. every occurrence of {u}v in xσ is replaced by u.

Note that, in general, the following property is false.

m(σ[{u}v\u]) = (mσ)[{u}v\u]

This can be noticed by taking m = {u}v and σ = Id. However, when considering only messages
satisfying a specific property, this becomes true. This is expressed in the following two properties.

Proposition 2.13 Let m, n and {u}v be three messages, U be a finite set of atoms such that
m ∈ split(n,U) and m 6= {u}v, then:

m[{u}v\u] ∈ split(n[{u}v\u], U)

Proof: This proof can easily be achieved using an induction on the definition of split(n,U).

• If n is an atom a, then split(n,U) = {a}, hence m = a. Moreover n[{u}v\u] and m[{u}v\u]
are both equal to a so we have that:

m[{u}v\u] ∈ split(n[{u}v\u], U)

• If n is a pair 〈n1, n2〉, then split(n,U) = split(n1, U) ∪ split(n2, U). Let us consider that
m appears in split(n1, U) (the other case is symmetrical), then using our induction, we get
that:

m[{u}v\u] ∈ split(n1[{u}v\u], U)

As n[{u}v\u] = 〈n1[{u}v\u], n2[{u}v\u]〉 we obtain:

m[{u}v\u] ∈ split(n[{u}v\u], U)

• If n is an encryption {n1}k where k appears in U , split(n,U) = split(n1, U). We have that:

m[{u}v\u] ∈ split(n1[{u}v\u], U)

If n is equal to {u}v, then n1[{u}v\u] is equal to n1, hence

m[{u}v\u] ∈ split(n1, U) = split(n[{u}v\u], U)

Else n[{u}v\u] = {n1[{u}v\u]}k and so,

m[{u}v\u] ∈ split(n[{u}v\u], U)

• If n is an encryption {n1}k where k does not appear in U , split(n,U) = {n} so m and n are
equal. Hencem[{u}v\u] and n[{u}v\u] are also equal. Asm is different from {u}v, n[{u}v\u]
is equal to {n1[{u}v\u]}k hence split(n[{u}v\u], U) contains only element n[{u}v\u], so we
finally get that

m[{u}v\u] ∈ split(n[{u}v\u], U)

Proposition 2.14 Let m, u and u′ be three messages, U be a finite set of atoms and σ be a
substitution such that there does not exist any sub-term n of m satisfying nσ = u. Then, the [·]
operator is associative, i.e. (

mσ
)
[u\u′] = m

(
σ[u\u′]

)
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Proof: This can be achieved using an induction on the structure of m.
This allows us to remove the unused encryptions in a model. For this purpose, we intro-

duce a norm over models that is minimal when considering models that have only the necessary
encryptions.

Definition 2.11 The split norm | · |s is defined over messages and extended to substitutions by
the two following equalities for any message m and substitution σ.

|m|s =
∑
n∈split(m,∅) height(n) |σ|s =

∑
x∈dom(σ) |xσ|s

We can now express our main property. It states that a minimal (for the former norm) solution
is composed of sub-terms of the initial constraint. Knowing that, the main theorem is easy to
deduce by trying to pair any sub-terms and checking whether the constraint is satisfied or not
(this is of course decidable). As we only have conditions upon split (for the “smallest” variable),
we only have to try with one copy of each sub-terms and this can be achieved in a finite time.

Proposition 2.15 Let σ be a model of C ′ such that |σ|s is minimal. Then for any variable x of
C ′ and for any message {u}v in split(xσ, ∅), there exists a sub-term b of C ′ such that {u}v = bσ.

Proof: Suppose that the proposition is not verified. Then there exists a variable z from C ′ such
that {u}v appears in split(zσ, ∅) and for all b sub-message of C ′, {u}v 6= bσ. We consider a new
substitution σ′ defined by σ′ = σ[{u}v\u]. To shorten notations, [{u}v\u] will be denoted using
[..] in the following.

A first step is to verify that σ′ is a model of C ′. For this purpose, we consider the three possible
cases of atomic constraints.

• a ∈ split(xσ, U): using proposition 2.13, we have a ∈ split
(
(xσ)[..], U

)
and by definition,

xσ′ = (xσ)[..]. Thus a ∈ split(xσ′, U).

• {m}nσ ∈ split(xσ, U): proposition 2.13 gives ({m}nσ)[..] ∈ split
(
(xσ)[..], U

)
. However,

proposition 2.14 can be applied as there are no sub-term of {m}n that is unified with {u}v
using σ.

• split(xσ′, U) ⊆ Sσ ∪
⋃
i split(xiσ,U): let m′ be a message from split(xσ′, U). Then if there

exists a message m such that m[..] = m′ and m ∈ split(xσ, U), there are two cases:

– If m ∈ split(xiσ,U), we have m′ ∈ split(xiσ′, U).

– Else, m = sσ for some s ∈ S. Moreover, {u}v 6= s′σ for any s′ sub-message of s and
m′ = (sσ)[..]. Hence m′ = cσ′ and so m′ ∈ Sσ′.

If a such message m does not exist, then u is an encryption of message m′ using an arbitrary
number of keys from U , u1 to uγ . We can deduce that {u}v ∈ split(xσ, U) and so {u}v ∈
split(xiσ,U) for some i ({u}v cannot be in Sσ). Hence m′ ∈ split(xiσ′, U).

The conclusion is that σ′ is a model of C ′ and |σ′|s < |σ|s, thus there is a contradiction with the
minimality of σ.

2.6.3 NP-completeness

We now discuss the complexity of our approach. First, satisfiability of well-formed constraints is
NP-hard (see for example [CKRT03a] or [RT01]). This is the case for well-formed constraints that
only involve . And as all of these constraints are in the set of constraints that we are studying,
our satisfiability problem is NP-hard. To show that this satisfiability problem is in NP and thus
NP-complete, we rely on the results presented in [RT01]. The authors of this paper proved that
given a satisfiable well-formed constraint, there exists a model whose size is polynomial in the size
of the constraint. The size used here is the number of different sub-terms. The same result holds
for our method. In the former part, we proved that minimal models are made by pairing sub-terms
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of the initial constraint. Thus, the number of distinct sub-terms for any xσ is clearly bounded.
That is why, the DAG size (number of distinct sub-terms) of our model remains polynomial in the
size of the initial problem. The last thing to notice is that checking whether a closed constraint is
satisfied or not is PTIME. This well-known property comes from the locality theorem stated by
McAllester [McA93] and satisfiability of Horn clauses. And so, we can conclude that satisfiability
of our constraints is NP-complete. A direct consequence of this result is that secrecy in the
symbolic setting is a NP-complete problem when considering a bounded number of sessions.
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In this whole document, η is the security parameter used by the different cryptographic
schemes. The higher η is, the more secure the cryptographic primitives are. For example, the
length of keys is generally linear in η, thus brute force attacks (by trying any possible value for
the key) have a complexity that is exponential in η. Nonces which are implemented by random
numbers in the computational world are also assumed to have a size that is linear in η. Hence the
complexity of guessing a nonce by trying every possibility is also exponential in η.

3.1 Negligible Functions

A cryptographic scheme is said to be secure if any adversary has a low probability to break it. In
this context, low means that the probability has to be negligible in η.

Definition 3.1 (Negligible and p-Negligible Functions) A function g : R → R is negligi-
ble, if it is ultimately bounded by x−c, for each positive c ∈ N, i.e., for all c ≥ 0 there exists Nc
such that |g(x)| < x−c, for any x > Nc.

A function g : R→ R is p-negligible, if for all c > 0 there exists Nc such that g(x) < x−c, for
all x > Nc.
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As these two notions are equivalent for positive functions, we use indifferently the two terms when
considering functions that are always positive, for example probabilities. A typical use of negligible
function is to measure the probability that an adversary breaks a cryptographic scheme. More
precisely, as an adversary acting randomly may have a chance to break the scheme, we measure
the difference between the probability for the adversary to win and the probability for the best
random acting adversary to win. This difference is called the advantage of the adversary. As it
might be possible to design adversaries that always lose, the advantage of such adversaries can
be negative and non-negligible. For this reason, we introduce p-negligible functions. Our security
requirement is then that the advantage of any adversary has to be p-negligible.

3.1.1 Basic Properties of Negligible Functions

When computing the probability for an adversary to win, negligible functions can be combined
in various ways. Thus it is important to verify that such combinations give as results negligible
functions. The main results concerning the set of negligible functions are this set is stable under
multiplication, exponentiation by a strictly positive constant and linear combination.

Proposition 3.1 Let f and g be two negligible functions, then

1. f.g is negligible.

2. For any k > 0, fk is negligible.

3. For any λ, µ in R, λ.f + µ.g is negligible.

The same kind of properties hold for p-negligible functions. The only difference lies in linear
combination: as subtraction may produce a negative function, the multiplicative factors have to
be positive.

Proposition 3.2 Let f and g be two p-negligible functions, then

1. f.g is p-negligible.

2. For any k > 0, fk is p-negligible.

3. For any λ, µ in R+, λ.f + µ.g is p-negligible.

Moreover, composing a negligible function with a positive polynomial produces a negligible func-
tion. The same hold for p-negligible functions.

Proposition 3.3 Let f be a negligible function, g be a p-negligible function and P be a polynomial
that is ultimately positive. Then f ◦ P is a negligible function and g ◦ P is a p-negligible function.

3.2 Cryptographic Schemes

Security protocols can use several different encryption schemes. Classical schemes include encryp-
tion which is used to ensure secrecy of a message and signature which is used to ensure authenticity
of a message.

We briefly introduce these schemes in the introduction. In this section, we formalize the
definition of such cryptographic schemes.

An asymmetric encryption scheme AE = (KG, E ,D) is defined by three algorithms. The key
generation algorithm KG is a randomized function which given a security parameter η outputs a
pair of keys (pk, sk), where pk is a public key and sk the associated secret key. The encryption
algorithm E is also a randomized function which given a message and a public key outputs the
encryption of the message by the public key. Finally the decryption algorithm D takes as input a
secret key and a cipher-text and outputs the corresponding plain-text, i.e., D(E(m, pk), sk) = m if
the pair (pk, sk) has been produced by KG. If the message is not a correct encryption or if the keys
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do not match, the decryption algorithm outputs ⊥. The execution time of the three algorithms is
assumed polynomially bounded by the security parameter η.

A symmetric encryption scheme SE = (KG, E ,D) is defined by three algorithms. The key
generation algorithm KG is a randomized function which given a security parameter η outputs a
key k. The encryption algorithm E is also a randomized function which given a message and a key
outputs the encryption of the message by this key. Finally the decryption algorithm D takes as
input a key and a cipher-text and outputs the corresponding plain-text, i.e., D(E(m, k), k) = m.
If the message is not a correct encryption, the decryption algorithm outputs ⊥. The execution
time of the three algorithms is also assumed polynomially bounded by η.

A signature scheme SS = (KG,S,V) is also defined by three algorithms. The key generation
algorithm randomly generates pairs of keys (sik, vk), where sik is the signature key and vk is the
verification key. The signature algorithm S randomly produces a signature of a given message by
a given signature key. The verification algorithm V is given a message m, a signature σ and a
verification key vk and tests if σ is a signature of m with the signature key corresponding to vk.
Hence, V(m,S(m, sik), vk) returns true for any message m and any pair of keys (sik, vk) generated
by KG. We say that σ is a valid signature under sik if there exists m such that V(m,σ, vk) returns
true. We still assume that the algorithms have a polynomial complexity.

Finally, a cryptographic library CL is a finite collection of cryptographic schemes (asymmetric
encryption, symmetric encryption and digital signature). Hence security of the cryptographic
library is defined as joint security of its components.

Security protocols also use nonces. Nonces are not really defined by a cryptographic scheme.
However, the algorithm generating nonces depends on η and has to fulfill a basic no-collision
restriction, therefore nonce generation is formulated as a cryptographic scheme that is defined by
a single algorithm G. This algorithm takes as argument the security parameter η and returns
a bit-string (usually of size η). As the restriction on nonce generation scheme does not use any
adversary, it is possible to formulate it now. Let G be a nonce generation algorithm, this algorithm
is said to be resistant against collisions iff the probability p to find a collision is negligible where
p is properly defined by:

p = Pr[bs1 := G(η) ; bs2 := G(η) ; bs1 = bs2]

Various notions of security have been introduced for pseudo-random number generators. How-
ever, in the following we consider that nonce generation is perfect: the generation scheme is
implemented by an algorithm G such that G(η) randomly generates a bit-string of length η with
uniform probability. This scheme is trivially resistant against collisions.

3.2.1 On Encryption Size

An encryption scheme is designed to preserve secrecy. However for most of them the cipher-text
leaks some information on the size of the embedded plain-text. The usual solution consists in
padding the message up to a fixed size but this cannot be done for arbitrary message size. As
we want to consider potentially unbounded messages, this leak cannot be avoided, therefore it
might be possible to deduce the size of a bit-string bs from its encryption. However, we add
some restrictions on the cryptographic schemes considered here as we do not want the size of the
cipher-text to leak other information on the plain-text than its size. Our hypothesis on encryption
schemes is called fixed encryption size hypothesis. It can be stated as follows:

Let ` be the function on bit-strings such that `(bs) is the length (in bits) of bs. Let (KG, E ,D) be
an encryption scheme (either symmetric or asymmetric). Then for any pair of bit-strings bs0, bs1
of same length, i.e. `(bs0) = `(bs1) their encryption also have the same length(for a fixed value
of η): let k and k′ be two keys generated using KG (either public keys or symmetric keys), then
`(E(bs0, k)) = `(E(bs1, k′)). In this document, we principally consider encryption schemes that
are non-deterministic, however we always assume that the function associating to a bit-string the
length of its encryption is a deterministic function. Moreover, we ask the length of public keys
and the length of private keys to be constant, for a fixed value of η (of course these lengths change
whenever η changes).
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In the following, we assume that all the encryption schemes verify the fixed encryption size
hypothesis.

3.2.2 Cyclic Groups

Cyclic groups are often used by protocols which perform Diffie-Hellman like key exchanges.

Definition 3.2 (Group) A group (G, ∗) is composed of a set G and a binary operator ∗ on G
which satisfy the three following axioms:

∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c Associativity
∃e ∈ G, ∀a ∈ G, e ∗ a = a ∗ e = a Neutral Element
∀a ∈ G, ∃b ∈ G, a ∗ b = b ∗ a = e Inverse Element

In the last equation, b is called the inverse of a and is denoted by a−1.

In the following, the binary operator ∗ is omitted from the group definition and we use the
multiplicative notation to represent this operator.

A group G is cyclic if it can be generated by a single element: there exists an element g of G
such that every element of the group is a power of g.

Definition 3.3 (Cyclic Group) A group G is cyclic if G is finite and there exists an element
g of G such that:

∀a ∈ G, ∃n ∈ N, a = gn

Element g is called a generator of group G.

Note that we only consider finite cyclic groups. The order of a cyclic group G is its number of
elements q. Alternatively, a cyclic group of order q can be defined as a group which is isomorphic
to (Zq,+).

A family of cyclic groups G is a function that associates to each security parameter η a cyclic
group G(η) of order q(η). We often ask q(η) to be large (i.e. exponential in η). By abuse of
notation, we also use G to denote G(η). Moreover, we make no difference between the group and
its computational implementation.

3.3 Probabilistic Turing Machines

Adversaries are a central notion in the computational model. As we want the adversary to be
realistic, it is modeled as a probabilistic Turing machine. Therefore, the adversary is able to
perform any computation he wants, for example brute-force attack on an encryption whereas in
the Dolev-Yao model, only a few operations were allowed. Probabilistic Turing machines are an
extension of classical Turing machines.

3.3.1 Turing Machines

To simplify the notations, Turing machines are never represented formally in this document (i.e.
we do not describe tapes or transition systems) but we rather use pseudo-code to describe a Turing
machine. Of course, execution of a pseudo-code can be simulated using a Turing machine.

Our pseudo-code syntax is inspired by usual iterative programming languages. Semantics are
not given formally here, they are kept intuitive to preserve simplicity. The basic statements are
specified thereafter.

1. x := e denotes the assignment of expression e to variable x.

2. if e then br1 else br2, if e is evaluated to true, then br1 is executed, else br2 is executed.
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3. while e do br done, pseudo-code br is executed in loop while e is evaluated to true.

4. br1 br2 denotes the sequence of pseudo-code br1 and pseudo-code br2. br1 is executed first
then br2 is executed.

5. return e, expression e is evaluated, the result is returned by the Turing machine.

Our Turing Machines are used to manipulate computational substitutions. A computational
substitution is a mapping that links some names to bit-string values. Typical implementations
of such substitutions can be done using associative lists. There are three ways to use such a
substitution that corresponds to three new notations in our pseudo-syntax.

1. θ := [], this statement creates a new substitution θ, θ is initialized to the empty substitution.

2. xθ := e, this statement evaluates expression e and x is linked to this value in θ. If x was
previously linked in θ, the old value is erased and replaced by the result of the evaluation of
e. This statement does not change the value of variables other than x in θ.

3. In an expression, xθ denotes the value of x in θ. This statement raises an error if x is not
defined in θ.

Moreover sup(θ) denotes the set of variables that are defined in θ.
Finally, we also allow the use of the classical lambda notation to denote functions: an algorithm

that takes as input x and returns f(x) can be denoted by λx.f(x).

3.3.2 Probabilistic Turing Machines

In order to enhance the capabilities of adversaries, we want them to be able to generate random
numbers. For this purpose, we add a new instruction x

R← [1, n], this instruction randomly
generates a natural number between 1 and n with uniform probability (the probability to obtain
any i in [1, n] is 1/n).

As an adversary can only generate a polynomial number of random integers, probabilities
here hold on a finite space. For this reason, it is easy to represent probabilities as an additional
argument (or an additional tape) of a Turing machine.

Let us first consider Turing machines such that the only allowed probabilistic instruction is
b
R← [0, 1] (i.e. b is a randomly sampled bit). In this situation, a probabilistic Turing machine is

a Turing machine that takes an additional input representing randomness. As we only consider
polynomial machines, the length of this last input is bounded. Let p be a probabilistic polynomial
Turing machine that has a single input x. Let α be the bound on the execution of p, hence p
cannot sample more than α different bits. The deterministic implementation of p is denoted by
pd, it is also denoted by p when no confusion is possible. This implementation takes as argument
the same argument x as p (x) and a vector of random bits ~r. The length of ~r is α. Then to ensure
determinism in pd, the probabilistic actions b R← [0, 1] are interpreted by b takes as value the ith

component of ~r and i is incremented where i designates a global counter.
Then the probability that machine p applied to x returns o is given by:

Pr[p(x) = o] =

∣∣{~r ∈ [0, 1]α/pd(x,~r) = o
}∣∣

2α

The distribution of probability of outputs of p is the function that associates to each possible
output o the probability Pr[p(x) = o]. Two machines p1 and p2 have similar behavior if for any
argument x, the distribution of outputs of p1(x) is exactly the same as the distribution of outputs
of p2(x).

Integer α is defined as a bound on the execution of p. It is not important to choose the smallest
bound because the probability with two different bounds is the same: let α and α′ be two bounds
on the execution of p, then∣∣{~r ∈ [0, 1]α/pd(x,~r) = o

}∣∣
2α

=

∣∣{~r ∈ [0, 1]α
′
/pd(x,~r) = o

}∣∣
2α′

Laurent Mazaré Ph.D Thesis 45/229



Chapter 3. Preliminaries for the Computational Model

Formalizing Probabilistic Turing Machine In this paragraph, we give a quick glimpse at
how probabilistic Turing machines can be described formally. First, as the Turing machine for-
malism is complicated and too “low-level”, we use a Turing powerful language: lambda calcu-
lus [Bar84]. A Turing machine corresponds to a lambda term, thus a probabilistic Turing machine
also corresponds to a lambda term. The general form of this term is:

p = λarg1...λargn.λr.t

Then for any lambda terms a1 to an (representing parameters) and any lambda term o (represent-
ing the result), the probabilistic Turing machine corresponding to p has the following probability
to output o when using a1 to an as inputs.

Pr[p(a1, ..., an)→ o] =

∣∣{~r ∈ [0, 1]α/p a1 ... an ~r
β∗−→ o

}∣∣
2α

Where ~r designates a vector of α bits, hence ~r can be represented by a number between 0 and
2α−1 and can be converted to a lambda term using the classical Church coding.

Authorizing x
R← [1, q] Statements For this point, the interested reader is referred to section

7.4 of [Sho99]. If q is a power of 2, 2k then the k bits from x can be obtained by generating
random bits. The difficulty occurs when q does not have the form 2k, simulation of such state-
ment is impossible when using only x

R← [0, 1] statements. However, it is possible to “correctly
approximate” the x R← [1, q] statement by using only a polynomial number of random coins. A
simple idea to achieve this is to consider the integer k such that 2k−1 ≤ q < 2k then we use the
following algorithm:

do

x
R← [1, 2k]

while x > q

This algorithm only terminates in constant time on average.

3.4 Security of Cryptographic Schemes

Safety for a cryptographic scheme is defined as weak probability for a reasonable time adversary to
break this scheme. Brute force attacks like testing any possible key may be possible, that is why we
usually do not ask a scheme to be secure for unbounded time adversaries. Weak probability means
that the probability of success has to be negligible in the parameter of security η. Reasonable
time means that there is a bound on the execution time of the adversary that is polynomial in η.
Therefore adversaries are represented by polynomial time random Turing machines (PRTM).

3.4.1 Asymmetric Encryption, IND-CPA

In this section, we recall the classical notion of indistinguishability against chosen plain-text attacks
(IND-CPA, which was called polynomial security by Micali and Goldwasser in [GM84]). Let
(KG, E ,D) be an asymmetric encryption scheme. This encryption scheme is secure for IND-CPA
if any adversary (i.e. PRTM) has a negligible probability to win in the following game: first a
bit b is chosen randomly; a pair of keys (pk, sk) is generated using KG; the adversary receives
pk and has to produce two bit-strings bs0 and bs1 (these two bit-strings have to have the same
size); bit-string bsb is encrypted using pk. The resulting bit-string is returned to the adversary
which has to deduce what the value of b is. As guessing the value of b at random leads to non-
negligible probability of success, the adversary has to have a better probability of success than
when answering randomly. An adversary that outputs a random bit has a probability of 1/2 to
guess the challenge bit.
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Formally, an adversary is constituted of two parts A1 and A2 which are two PRTM. A long
term store denoted by mem is used by the adversary as a shared memory between A1 and A2,
mem is given by A1 to A2. Then the game GbA1,A2

is defined as following:

Game Gb
A1,A2

(η):
(pk, sk) := KG(η)
bs0, bs1,mem := A1(η, pk)
bs := E(bsb, pk)
return A2(mem, bs)

Note that the previous game depends on the challenge bit b, on the security parameter η, on
the adversary (A1,A2) and on the encryption scheme (KG, E ,D). All these dependencies are not
made explicit so that notations are kept as simple as possible. The advantage of an adversary
(A1,A2) measures how much the adversary wins the game compared to how much it loses it. The
advantage is given by:

AdvIND−CPA(A1,A2)
= Pr[G1

A1,A2
(η) = 1]− Pr[G0

A1,A2
(η) = 1]

Definition 3.4 (IND-CPA) An asymmetric encryption scheme is said to be secure against IND-
CPA if for any adversary (A1,A2), AdvIND−CPA(A1,A2)

is a negligible function in η.

There are example of algorithms that have been proven secure against IND-CPA under the
hypothesis that some computational problem is hard to solve. For example, in [FOPS01], algorithm
RSA-OAEP is proven secure against IND-CCA if the RSA problem is supposed hard.

Sample Attacks

Let us illustrate how an adversary can try to attack IND-CPA. Suppose that the encryption
scheme used here is deterministic. Then consider the adversary such that A1 returns 0, 1, pk. A2

receives as argument his memory pk and the bit-string E(b, pk). A2 just has to forge E(0, pk) and
E(1, pk) and as the encryption scheme is supposed deterministic, he can deduce the value of bit b.
Formally, adversary A2 proceeds as follows:

Adversary A2(mem, bs):
pk := mem
bs0 := E(0, pk)
bs1 := E(1, pk)
if bs = bs0 then return 0
else return 1

As E(0, pk) is different from E(1, pk), we have AdvIND−CPA(A1,A2)
= 1. Hence an algorithm secure

against IND-CPA cannot be deterministic. The number of possible encryptions for a given bit-
string and a given public key cannot even be polynomially bounded in η.

Extensions

The notion of IND-CPA as introduced here can be extended in several ways. First, the adversary
can be allowed to submit multiple pairs bs0, bs1 and be returned the encryption of bsb. These pairs
can even be chosen adaptively, i.e. after receiving the encryption of bsb, the adversary chooses
which pair bs0, bs1 to submit next. This can be done by giving to the adversary access to an oracle
that takes as argument a pair bs0, bs1 and returns E(bsb, pk). This oracle is called the left-right
encryption oracle and is commonly used in indistinguishability criteria.

Another extension is the multi-user setting. In this situation, N pairs of keys are generated, the
adversary has access to all the public keys and to N oracles λ(bs0, bs1).E(bsb, pki). This security
criterion is called N -IND-CPA. A classical result in provable cryptography is the equivalence
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between IND-CPA (or 1-IND-CPA where the “left-right oracle” is called only once) and N -IND-
CPA. This result appears in [BBM00] and the proof given in this paper uses the famous hybrid
argument.

Proposition 3.4 Let N be an integer. An asymmetric encryption scheme is secure for N -IND-
CPA iff it is secure for IND-CPA.

Proof: See [BBM00]. All these notions of IND-CPA security are equivalent hence in the
following IND-CPA is used as a shorthand for 1-IND-CPA, that is in IND-CPA the adversary is
allowed to perform multiple calls to the left-right encryption oracle.

Finally a last extension is indistinguishability against chosen cipher-text attacks (IND-CCA).
In this case, a single key pair is generated, the adversary has access to the public key and to the
left-right encryption oracle but he also has access to a decryption oracle λbs.D(bs, sk). However,
as we do not want the game to be too easy, the decryption oracle cannot be called on any bit-
string that has been output by the left-right oracle. This game is easier to win than the classical
IND-CPA game.

Proposition 3.5 If an asymmetric encryption scheme is secure against IND-CCA, then it is also
secure against IND-CPA.

However, the converse of the previous proposition is false if we suppose the existence of an
algorithm that is secure against IND-CPA.

Proposition 3.6 If there exists an asymmetric encryption scheme secure against IND-CPA, then
there exists an asymmetric encryption scheme that is secure against IND-CPA but not secure
against IND-CCA.

Proofs for the previous propositions cannot be achieved here as adversaries using oracles have
not been defined properly. Thus these proofs are delayed to section 5.4.1.

3.4.2 Digital Signature, UNF

A digital signature scheme has to guarantee an unforgeability property. However there are several
variants of this property, some of them are presented in [GMR88]. The main idea is that it should
be hard for any adversary to produce a valid signature using in some cases only the verification
key and in the other cases other signatures. Therefore, there are two kinds of attacks: key only
attacks where the adversary only has access to the verification key and message attacks where the
adversary has access to the verification key and to signatures of some messages.

Of course, there are several different flavors of message attacks. In known message attacks the
adversary knows the signature of some bit-strings bs1, · · · , bsn as well as the bit-strings themselves,
in directed chosen message attacks, the adversary has access to the verification key, he chooses n
bit-strings and receives their signatures. Finally in adaptive chosen message attacks, the adversary
can choose each bit-string after seeing the signature of the previous bit-string he has chosen.

In order to win his game, the adversary has to satisfy existential forgery, he has to be able to
produce a fresh signature even if he does not know which bit-string is signed.

Here, we are interested in adaptive chosen message attacks, this is denoted by UNF in the
following. Let (KG,S,V) be a digital signature scheme. Let A be an adversary against UNF, then
the game involving A is defined by:

Game Gb
A(η):

(sik, vk) := KG(η)
s := 0
mem := vk, η
while s = 0 do

s, bssig,mem := A(mem)
mem := S(bssig, sik),mem
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return s

The game proceeds as follows: first a signature key pair (sik, vk) is randomly generated using
the key generation algorithm KG. Then the initial memory of the adversary mem is created. It
contains the security parameter η and the verification key vk. The adversary is executed and can
ask for signature of a bit-string bssig. The resulting signature is appended to his memory before
the next call of the adversary. Finally, the adversary outputs a bit-string s different from 0 which
should be a valid signature for verification key vk. The condition that A’s execution time has to
be polynomially bounded is not sufficient to ensure termination of this experiment. Thus, the only
adversaries considered here are those for which the execution of the whole game is polynomially
bounded in η.

Then the advantage of A is defined by the probability for A to produce a valid signature at
the end of game G such that this signature has not been produced by the S algorithm used in
game G:

AdvUNFA = Pr[bs := Gb
A(η) where bs is a valid signature for vk not produced in G]

Definition 3.5 (UNF) A digital signature scheme is said to be secure against UNF if for any
adversary A, AdvUNFA is a negligible function in η.

There exist some signature schemes that are strongly believed to be secure against UNF,
see [GMR88] for example.

3.4.3 Symmetric Encryption

In order to be secure, a symmetric encryption scheme has to preserve secrecy of the encrypted
messages in a similar way as IND-CPA but it also has to prevent production of new encryptions as
UNF. Therefore, security of a symmetric encryption scheme is a mix between IND-CPA and UNF.
In this case, the term authenticated encryption can be used instead of symmetric encryption.
Such a mix of unforgeability and indistinguishability has been proposed under the name IND-
CPA∧INT-CTXT in [BN00].

Criterion IND-CPA has to be modified as there is only one key in symmetric encryption and
this key has to remain secret. The adversary only has access to the left-right encryption oracle
and has to guess the value of the challenge bit b. Criterion UNF also has to be modified, the
adversary only has access to a signature oracle, this oracle is implemented using the encryption
algorithm.

In the following, we are interested in proving the security of a whole cryptographic library
that contains at least an asymmetric encryption scheme, a symmetric encryption scheme and a
digital signature scheme. Security of symmetric encryption has introduced the need for mixing
security criteria. This is generalized in the following chapter but in order to do this properly, we
first introduce a formal definition for security criterion.

3.5 Relating Security of Different Criteria to IND-CPA

In this section, we recall classical results comparing different criteria for asymmetric encryption.
The objective is to show that these proofs are often complicated, hard to understand and difficult
to check. This has also been underlined by Victor Shoup in the introduction of [Sho04]: security
proofs in the computational world often “become so messy, complicated, and subtle as to be
nearly impossible to understand”. Since the main difficulty lies in the design of new adversaries,
we introduce in chapter 5 a theorem allowing one to compare different criteria without having to
describe such new adversaries.

Criteria introduced in this section are commonly used in provable cryptography. The first
criterion is real-or-random security [BDJR97]: is it impossible for an intruder to distinguish the
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encryption of a text he has chosen from the encryption of a random text. The second criterion,
more complex, is called non-malleability [BDPR98].

3.5.1 Real-or-Random Security

Let AE be an asymmetric encryption scheme (KG, E ,D). Safety of this encryption scheme can be
characterized by the IND-CPA criterion. Another possible way of describing safety of asymmetric
encryption schemes is to consider Real-or-Random Attacks (RRA). An encryption scheme is secure
for RRA if any adversary has a negligible probability to win in the following game: first a key pair
(pk, sk) is generated, then a first part of the adversary, A1, has to compute a bit-string bs, A1 has
access to the public key pk and the security parameter η. At this point, there are two possible
cases, either bs is encoded using pk, or a random bit-string (but whose length is the same as the
length of bs) is encoded using pk. The resulting cipher-text is given to the second part of the
adversary, A2. Finally, A2 has to return 1 if he thinks bs was encoded or 0 if he thinks a random
bit-string was encoded in order to win the challenge.

Formally, an adversary is composed of a first part A1 and a second part A2. The adversary
can be faced to two different games. In the first one, the bit-string output by A1 is really used in
the encryption whereas a random bit-string is used in the second case. The length of bit-string bs
is still denoted by `(bs).

Game GReal
A1,A2

(η):
(pk, sk) := KG
bs,mem := A1(η, pk)
bs′ := E(bs, pk)
return A2(mem, bs′)

Game GRand
A1,A2

(η):
(pk, sk) := KG
bs,mem := A1(η, pk)
r
R← [0, 1]`(bs)

bs′ := E(r, pk)
return A2(mem, bs′)

Then the advantage of an adversary (A1,A2) is defined by:

AdvRR(A1,A2)(η) = Pr[GReal
A1,A2

(η) = 1]− Pr[GRand
A1,A2

(η) = 1]

Definition 3.6 (Real-or-Random Security) An encryption scheme AE is said secure against
Real-or-Random Attacks (RRA) if the advantage of any pair of adversaries (A1,A2) is p-negligible
in η.

The main result concerning real-or-random security is that it is equivalent to IND-CPA security.
This result and its proof appear in [BDJR97].

Proposition 3.7 An asymmetric encryption scheme AE is secure against IND-CPA if and only
if it is secure against RRA.

Proof:

IND-CPA ⇒ RRA We start by proving that an encryption scheme secure against IND-CPA
is secure against RRA. Let AE be an encryption scheme secure against IND-CPA and (A1,A2) be
an adversary against RRA. Then we build an adversary (A′1,A2) against IND-CPA. The second
component of this adversary is unchanged whereas the first one is modified in order to generate a
random bit-string:

Adversary A′1(η, pk):
bs,mem := A1(η, pk)
bs′

R← [0, 1]`(bs)

return (bs′, bs),mem
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Then after unfolding the definition of A′1, it is easy to note that games GReal
A1,A2

and G1
A′

1,A2
are

semantically the same:

Game GReal
A1,A2

(η):
(pk, sk) := KG
bs,mem := A1(η, pk)
bs′ := E(bs, pk)
return A2(mem, bs′)

Game G1
A′

1,A2
(η):

(pk, sk) := KG
bs,mem := A1(η, pk)
bs′

R← [0, 1]`(bs)

bs′′ := E(bs, pk)
return A2(mem, bs′′)

The only difference is that a random bit-strin bs′ is generated in game G1 but is not used.
This game uses more random coins but we get that the probability of success is the same, i.e.:

Pr[GReal
A1,A2

(η) = 1] = Pr[G1
A′

1,A2
(η) = 1]

The same thing can be done to relate games GRand
A′

1,A2
and G0

A′
1,A2

and this leads to:

Pr[GRand
A1,A2

(η) = 1] = Pr[G0
A′

1,A2
(η) = 1]

Therefore the advantage of (A1,A2) against RRA is equal to the advantage of (A′1,A2) against
IND-CPA. As the encryption scheme is secure against IND-CPA, the advantage of (A′1,A2) is
p-negligible and so the advantage of (A1,A2) is also p-negligible. The encryption scheme is also
secure against RRA.

RRA ⇒ IND-CPA Let (A1,A2) be an adversary against IND-CPA. Then the adversary
(A′1,A′2) against RRA is built from this adversary by randomly selecting one of the two bit-strings
output by A1:

Adversary A′1(η, pk):
b
R← [0, 1]

bs0, bs1,mem := A1(η, pk)
return (bsb, b.mem)

The second component A′2 verifies that A2 correctly deduced the value of b. If this is the case, it
outputs 1 (as the adversary assumes that this correct guess is linked to the Real oracle), otherwise,
it outputs 0.

Adversary A′2(b.mem, bs):
b′ := A2(mem, bs)
return b′ = b

Once more, the result is obtained by comparing the two games.
Game GReal

A′
1,A′

2
(η):

(pk, sk) := KG
b
R← [0, 1]

bs0, bs1,mem := A1(η, pk)
bs′ := E(bsb, pk)
b′ := A2(mem, bs)
return b′ = b

Game Gb
A1,A2

(η):
(pk, sk) := KG
bs0, bs1,mem := A1(η, pk)
bs := E(bsb, pk)
return A2(mem, bs)

Thus, game G1
A1,A2

is equivalent to game GReal
A′

1,A′
2
(η) when the bit b (generated by A′1) equals

1. Game G0
A1,A2

is equivalent to game GReal
A′

1,A′
2
(η) when the bit b (generated by A′1) equals 0

except that the output are opposite (the output of A2 in the first game and its negation in the
second one). Hence we get the following equalities on probabilities::

Pr[GReal
A′

1,A′
2
(η) = 1 | b = 1] = Pr[G1

A1,A2
(η) = 1]

Pr[GReal
A′

1,A′
2
(η) = 1 | b = 0] = 1− Pr[G0

A1,A2
(η) = 1]
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By adding these two lines, we have that:

2Pr[GReal
A′

1,A′
2
(η) = 1]− 1 = AdvIND−CPAA1,A2

(η)

Let us now compare the game Rand when the randomly generated bit b from GRand is equal to
1 with the same game when this bit is equal to 0.

Game GRand
A′

1,A′
2
(η) | b = 1:

(pk, sk) := KG
bs0, bs1,mem := A1(η, pk)
r
R← [0, 1]`(bs1)

bs′ := E(r, pk)
b′ := A2(mem, bs)
return b′ = 1

Game GRand
A′

1,A′
2
(η) | b = 0:

(pk, sk) := KG
bs0, bs1,mem := A1(η, pk)
r
R← [0, 1]`(bs0)

bs′ := E(r, pk)
b′ := A2(mem, bs)
return b′ = 0

The two games are equivalent except that, once more their output are opposite. Thus we have
that:

Pr[GRand
A′

1,A′
2
(η) = 1 | b = 1] + Pr[GRand

A′
1,A′

2
(η) = 1 | b = 0] = 1

2Pr[GRand
A′

1,A′
2
(η) = 1] = 1

By combining this with the previous equality, we get the following relation on advantages:

2AdvRRA′
1,A′

2
(η) = AdvIND−CPAA1,A2

(η)

The encryption scheme AE is assumed to be secure against RRA, so the advantage of (A′1,A′2)
is negligible. Hence the advantage of any adversary (A1,A2) against IND-CPA is also negligible
and the encryption scheme is secure against IND-CPA.

There exist several other variants of real-or-random security. For example, in the case of real-
or-zero security, there are two games: the “real” game is implemented as in the case of RRA,
the “rand” game is replaced by a zero game where instead of encrypting a random bit-string,
a sequence of 0 (which has the right size `(bs)) is encrypted using pk. Real-or-zero security is
equivalent to security for RRA and to security for IND-CPA.

3.5.2 Non-malleability

Non-malleability is a security notion for encryption schemes that was introduced in [DDN91].
The definition used here corresponds to the NM-CPA variant as introduced by Bellare et al.
in [BDPR98]. The idea beyond non-malleability is that it is impossible to transform a cipher-text
into another different cipher-text such that the corresponding plain-texts are meaningfully related.
More precisely, starting from a cipher-text bs′ which is the encryption of bs, it is not possible to
output a cipher-text bs′1 different from bs′ but whose included plain-text bs1 can be related to bs.
An adversary is composed of two stages A1 and A2. The first stage is given a public key pk and
outputs a PRTM M (which describes a bit-string space). All the possible outputs of M must have
the same length. Then a random bit-string bs is drawn from M and its encryption bs′ using pk
is given to A2. A2 has to produce a polynomial Turing machine R and a vector of bit-strings ~bs′

such that: bs′ does not occur in ~bs′ and if ~bs is obtained by decrypting bit-strings from ~bs′ (using
sk) then R(bs, ~bs) has to output 1 more frequently than R(bsf , ~bs) where bsf is a fresh bit-string
generated using M .

Let AE be an asymmetric encryption scheme (KG, E ,D). The adversary can be faced to two
different games, one where R is evaluated on bs and one where R is evaluated on bsf .

52/229 Verimag — 2006 Laurent Mazaré
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Game GNM
A1,A2

(η):
(pk, sk) := KG(η)
M,mem := A1(η, pk)
bs := M(η)
bs′ := E(bs, pk)
R, ~bs′ := A2(mem, bs′)
~bs := D( ~bs′, sk)
return bs 6∈ ~bs ∧ ⊥ 6∈ ~bs ∧R(bs, ~bs)

Game GNMf
A1,A2

(η):
(pk, sk) := KG(η)
M,mem := A1(η, pk)
bs := M(η)
bs′ := E(bs, pk)
R, ~bs′ := A2(mem, bs′)
~bs := D( ~bs′, sk)
bsf := M(η)
return bs 6∈ ~bs ∧ ⊥ 6∈ ~bs ∧R(bsf , ~bs)

Then the advantage of an adversary (A1,A2) is defined by:

AdvNM−CPA
(A1,A2)

(η) = Pr[GNM
A1,A2

(η) = 1]− Pr[GNMf
A1,A2

(η) = 1]

Definition 3.7 (NM-CPA) An encryption scheme AE is said secure against Non Malleable
Chosen Plain-text Attacks (NM-CPA) if the advantage of any pair of adversaries (A1,A2) is p-
negligible in η.

The main result concerning non-malleability is that security against NM-CPA implies security
against IND-CPA. A generalized version of this result is proven in [BDPR98]. Therefore, the
proof of the following proposition is not detailed here.

Proposition 3.8 If an asymmetric encryption scheme AE is secure against NM-CPA then it is
secure against IND-CPA.
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The usual definition for safety is that it should be impossible for any adversary to break some
property. However, in the computational world, brute force attacks may lead to success (but with
high time complexity). Thus safety of a cryptographic library is defined as the low probability for
any (reasonable time) adversary to win some security game. Reasonable time means polynomial
time in the security parameter η which characterizes the strength of the cryptographic library. The
intuition of security games is simple: some secret challenges are generated, then the adversary tries
to guess something on the challenges. For this purpose, the adversary (which is represented by a
PRTM) has access to some oracles. The adversary can submit queries to the oracles and receives
their outputs. We are interested in quantifying the probability that an adversary can gain some
information on his challenges (and thus win the game) by querying the oracles.

We first have to introduce adversaries that can access oracles, this is done in section 4.1.
Then section 4.2 gives some formal definitions for security games. These definitions are exempli-
fied through section 4.3. Section 4.4 gives some simple properties for security criteria. Finally,
section 4.5 applies the criterion formalism on extensions of classical security requirements.
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4.1 Adversaries

Adversaries are polynomial-time random Turing machines (PRTM) with oracles. Oracles are also
PRTM. In order to make precise the oracles an adversary can query, oracle names are given in a
similar way as arguments are given to a procedure. Hence in our pseudo-syntax, the definition of
an adversary A starts with a line of the form:

AdversaryA/O1,O2, ...,On

Here, the adversary has access to n oracles whose names are O1 to On. Let us give a simple
example of this:

Adversary A/O1,O2:
s := O1(0)
t := O2(s)
return t

This adversary A has access to two oracles. Queries can be made to the oracles using names O1

and O2. In this situation, when executing this adversary A, we use the notation A/F1, F2 where
F1 and F2 are two PRTM to denote that oracle names O1 and O2 are respectively implemented
with procedures F1 and F2.

We use the standard λ-notation to concisely describe PRTM obtained from others by fixing
some arguments. For instance, let G be a PRTM that has two inputs. Then, we write λs.G(s, θ) to
describe the machine that is obtained from G by fixing the second argument to the value θ. Thus,
A/λs.G(s, θ) denotes the machine A that may query an oracle obtained from G by instantiating
its second argument by θ. The argument θ of G is defined in the context of A and may not be
known by A. So typically, A may be trying to compute some information on θ through successive
queries to the oracle.

Moreover, adversaries are often used as sub-routines in other adversaries. Consider the follow-
ing description of a randomized algorithm with oracles.

Adversary A′/O1:
θ2:=...
s:=A/O1,

λs.F2(s, θ2)

Here adversary A′ uses A as a sub-routine. Adversary A′ may query oracle O1. On its turn A
may query the same oracle O1 and additionally the oracle λs.F2(s, θ2). The latter is obtained
from F2 by fixing the second argument to θ2 which is generated by A′.

An important remark is that Turing machines that can access oracles can be simulated using
standard Turing machines. Let us suppose, without loss of generality, that A is a Turing machine
that has access to a single oracle O (there is no loss of generality as multiple oracles O1, · · · ,On
can be grouped in a single oracle λ(i, bs).Oi(bs)). Then, instead of writing A/F to denote the
execution of adversary A where the oracle is implemented by F , it is possible to replace calls to
the oracle by return code. This is done in the following code:

mem := 0
end := 0
answer := 0
while !end do

result, end,mem := A(mem, answer)
if !end then answer := F (result)

done
return result
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Of course, adversary A has to be slightly modified because of his arguments and values he has to
return. This translation is called a trampoline in compilation. The main advantage of the oracle
model is that its syntax is easier to use.

4.2 Security Criteria

Section 3.4 has introduced different security criteria. Each of these criteria corresponds to a game
that an adversary tries to win. These games can be separated in three steps:

1. In the first step, some challenges are generated by a random algorithm. For example, in the
case of IND-CPA a pair of keys (pk, sk) and a random bit b are randomly sampled.

2. In the second step, the adversary is executed and can access some oracles. Oracles can use
the different challenge generated during the first step. In IND-CPA, there is one oracle for
the public key and one for left-right encryption.

3. In the third step, the output of the adversary is analyzed to check if he wins his game. The
challenges generated in step one are also helpful here to verify the correctness of the output.
In IND-CPA, the adversary has to output the value of bit b.

As this three-steps scheme seems general, we introduce a formal notion of security criterion based
on it. The objective is to allow one to formally describe security criterion without having to
entirely describe the experiment performed on the adversary. This notion of criterion was first
introduced in [JLM05a] but in a more complex and less general way.

4.2.1 Definition of Criteria

A security criterion is defined as a game involving an adversary (represented by a PRTM). The
game proceeds as follows. First some parameters θ are generated randomly using a PRTM Θ. The
adversary is executed and can query an oracle F which depends on θ. At the end, the adversary
has to answer a string of bits whose correctness is checked by an algorithm V which also uses θ
(e.g. θ includes a bit b and the adversary has to output the value of b). Thus, a criterion is given
by a triple consisting of three randomized algorithms:

• Θ is a PRTM that randomly generates some challenge θ which is represented by a substitution
from challenge names to bit-strings.

• F is a PRTM that takes as arguments a string of bits s and a challenge θ and outputs a new
string of bits. F represents the oracles that an adversary can call to solve his challenge.

• V is a PRTM that takes as arguments a string of bits s and a challenge θ and outputs either
true or false. It represents the verification made on the result computed by the adversary.
The answer true (resp. false) means that the adversary solved (resp. did not solve) the
challenge.

As a quick example consider an asymmetric encryption scheme and consider the IND-CCA security
notion. Then, Θ generates a challenge bit b and a pair of keys (pk, sk); F represents the public-key,
the left-right oracle, and the decryption oracle; and V checks whether the returned bit equals b.

Note that Θ can generate several challenges and F can represent several oracles. Technically,
the different Θi are called one after another to create a substitution θ (which is the union of the
basic substitutions θi created by each Θi). Oracle F can be used to access oracles F1 through Fm
by adding a parameter i which denotes the index of the oracle that the adversary tries to query.
The code of F is given by λ(i, bs).Fi(bs). Thus, it is possible to define criteria with multiple Θ
and F . Such criteria are denoted by (Θ1, . . . ,Θn;F1, . . . Fm;V ). In this case, F is called a meta-
oracle. The extensions to multiple challenge generators and to multiple oracles are straightforward.
However the case of multiple verifiers is more complex and is only detailed further in this section.
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4.2.2 Experiments and Advantages

Let γ be a criterion (Θ, F, V ). The advantage of an adversaryA against γ measures the information
that A gains by using oracle F . The execution of A with oracle F is performed through a game
Gγ
A(η). This game is a Turing machine defined by:

Game Gγ
A(η):

θ:=Θ(η)
d:=A(η)/λs.F (s, θ)
return V (d, θ)

During the game, a challenge θ is randomly generated using Θ, then A is executed and can query
oracle F . At the end of its execution, A outputs a bit-string d which is tested using verifier
V . Adversary A wins the game if verifier V returns true, thus if the game itself returns true.
Otherwise, A loses the game.

In order to define the advantage of A, we first have to introduce the best probability an
adversary can get to win the game without being able to use F . Oracle F is replaced by a new
oracle ε which does not use its inputs and always outputs the empty bit-string. Let γ′ be the
criterion (Θ; ε;V ) then PrRandγ(η) is defined by:

PrRandγ(η) = max
A

(
Pr[Gγ′

A (η) = true]
)

where A ranges over any possible PRTM.
The advantage of adversary A against γ is defined by:

AdvγA(η) = 2
(
Pr[Gγ

A(η) = true]− PrRandγ(η)
)

Intuitively, the advantage of A is the probability that it wins minus the probability that an
adversary playing at random (i.e. using an uninformative oracle) wins. The factor 2 is here in
order for the advantage to be the same as the classical indistinguishability advantage as proved in
proposition 4.2.

In some cases, PrRand is easy to compute. For example if the adversary has to guess the value
of a randomly chosen element, the probability is given by the following proposition.

Proposition 4.1 Let γ = (Θ, F, V ) be a criterion where Θ generates a random element x from a
finite set E (with uniform probability) and the verifier V returns true if its argument s is equal to
x then

PrRandγ =
1
|E|

Proof: Let γ = (Θ, ε, V ) be a criterion such that Θ generates a random element x from [1, n] with
uniform probability (1/n), and V tests that the adversary guessed x. Let A be an adversary. As
A does not have access to any oracle, he can be represented by his probability pi to answer i.

Pr[Gγ
A(η) = true] =

1
n

n∑
i=1

Pr[Gγ
A(η) = true|x = i]

=
1
n

n∑
i=1

pi

=
1
n

Therefore the probability for any adversary to win is 1/n and so PrRandγ = 1/n.
Using this proposition, we relate our new definition of advantage with the classical definition

of advantage for indistinguishability. Let us consider a criterion where a random bit b is generated
and the adversary tries to deduce the value of b. For this classical definition, the advantage is the
probability that the adversary outputs 1 when the value of b was really 1 minus the probability
that the adversary outputs 1 when the value of b was 0.
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Proposition 4.2 Let γ = (Θ, F, V ) be a criterion where Θ generates a random bit b (with uniform
probability) and V returns true if its argument s is equal to b. Let A be an adversary whose output
can only be 0 or 1. Then

AdvγA(η) = Pr[θ := Θ ; A(η)/λs.F (s, θ) = 1 | bθ = 1]
−Pr[θ := Θ ; A(η)/λs.F (s, θ) = 1 | bθ = 0]

Proof: By applying proposition 4.1, it is easy to get that PrRandγ = 1/2. Using that, let us
compute the advantage of A:

AdvγA(η) = 2
(
Pr[Gγ

A(η) = true]− 1/2
)

= 2
(
Pr[θ := Θ ; A(η)/λs.F (s, θ) = bθ]

)
− 1

= Pr[θ := Θ ; A(η)/λs.F (s, θ) = 1 | bθ = 1]
+Pr[θ := Θ ; A(η)/λs.F (s, θ) = 0 | bθ = 0]− 1

= Pr[θ := Θ ; A(η)/λs.F (s, θ) = 1 | bθ = 1]
−Pr[θ := Θ ; A(η)/λs.F (s, θ) = 1 | bθ = 0]

The last equality is true only for adversaries that must output either 0 or 1 as the opposite of
event “A outputs 0” is event “A outputs 1”. This restriction on the outputs of A is not really
strong as one can interpret outputs different from 0 and 1 to be 0.

Criteria with Multiple Verifiers Let γi = (Θ;F ;Vi) be n criteria (i ranges between 1 and n).
The challenge generators Θ and the oracles F provided by these criteria are the same. Hence it is
natural to introduce a criterion that combines all these basic criteria. This criterion γ is denoted
by (Θ;F ;V1, ..., Vn) and is said to be a multiple verifiers criterion. In this case, the advantage of
an adversary A is defined by:

AdvγA(η) = max
1≤i≤n

(
Adv(Θ;F ;Vi)

A (η)
)

A criterion γ is said safe iff the advantage of any adversary against γ is p-negligible. Then an
immediate consequence of the definition is stated in the following proposition.

Proposition 4.3 A criterion (Θ;F ;V1, ..., Vn) is safe if and only if all the sub-criteria (Θ;F ;Vi)
are safe (for i from 1 to n).

Note that this property is also true when the different Vi represent multiple verifiers instead of
just single verifiers.

Oracle Memory An important point about criteria is that frequently an oracle has to store some
information that will be useful for further use of this oracle, other oracles or even the verifier. For
example in the case of IND-CCA, the adversary cannot query the decryption oracle with outputs
of the encryption oracle. To model this, the challenge generator Θ can generate mutable fields
and these fields can be read and modified by oracles and the verifier. For example, in the case of
IND-CCA, Θ generates an empty (mutable) list mem in substitution θ by using instruction:

memθ := []

The left-right encryption oracle appends its output to the list whenever it is called. This is done
by the following statement:

memθ := out :: memθ

Finally, the decryption oracle has to test that its argument bs does not appear in list mem. If bs
appears, then the decryption oracle returns an error, for example bit 1. The test has the form:

if bs ∈ mem then return 1

An important point is that as for challenge generated by Θ and stored in θ, the adversary does not
have any access to the mutable fields (except using his oracles). In particular, he cannot corrupt
these fields between oracle calls.
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4.3 Examples

This section illustrates criteria on simple examples. The first two examples are based on two
classical problems that are assumed to be hard to solve. The first problem is: given two large
prime integers p and q, it is hard to obtain p and q from their product p.q, i.e. factorization is hard.
The second problem is discrete logarithm, given the modular exponentiation gx, it is difficult to
obtain x. A problem is said to be hard to solve, if the probability of success of any polynomial
time adversary is negligible. The third example is based on “one time padding”. The last example
is a very simple version of a classical board game called master mind 1.

4.3.1 Factoring Large Integers

Let Prime(n) be an efficient algorithm that randomly generates a prime number between 2 and
n such that each prime number between 2 and n has the same probability to be generated. The
advantage of an adversary A is the probability that A manages to factor a product of two large
prime integers:

AdvFA(η) = Pr
[
p := Prime(2η) ; q := Prime(2η) ; A(p.q) = (p, q)

]
A classical assumption in cryptography is that the advantage of any adversary A is negligible in
η.

4.3.2 Discrete Logarithm

Let G be a cyclic group of prime order q and let g be a generator of G. The operation of the group
applied to x and y is denoted by x.y. The exponentiation of an element x is denoted by xn. The
order q is assumed large, i.e. its number of digits is linear in η. We suppose that everyone knows
g, G and q. The discrete logarithm problem is said hard if for any adversary A, the probability
that A deduces x from gx is negligible. Formally, the advantage AdvDLA (η) is negligible for any
adversary η where the discrete logarithm advantage is defined by:

AdvDLA (η) = Pr
[
x
R← [1, q] ; A(g, q, gx) = x

]
This criterion can be described using our formalism. Let γ = (Θ;F ;V ) be a criterion such

that:

1. Θ randomly generates an element x between 1 and q.

2. Oracle F does not use its argument and returns g, q and gxθ, F (bs, θ) = (g, q, gxθ).

3. Verifier V tests that A correctly guessed x, V = λbs.bs = x.

Application of proposition 4.1 allows us to deduce that PrRandγ is negligible. Therefore it is easy
to deduce that safety using the two definitions of advantage are equivalent.

Proposition 4.4 The advantage AdvDLA (η) of any adversary A against discrete logarithm is
negligible if and only if the advantage of any adversary B against criterion γ is negligible.

4.3.3 One Time Padding

The One Time Pad (OTP) algorithm is a symmetric encryption scheme that is unbreakable when
correctly used. Even brute force attacks are useless against OTP. The principle is to have key
which length is the same as the length of the message that has to be encrypted. Let us consider
that this fixed length is η. Then the key generation of OTP consists in randomly sampling a
bit-string of length η. This bit-string k is the key or pad. Encryption of bit-string bs is given by

1See the board game section of http://en.wikipedia.org/wiki/Mastermind for details.
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bs ⊕ k. Decryption of bit-string bs returns bs ⊕ k, hence applying decryption to bs ⊕ k returns
bs ⊕ k ⊕ k = bs. Let us characterize the safety of OTP through a simple indistinguishability
criterion γ defined by: challenge generator Θ randomly samples a bit b and a bit-string of length η
denoted by k. Oracle F can only be called once, it takes as argument a pair of bit-string 〈bs0, bs1〉
of length η and returns the encryption of bsb using key k. In order to ensure that F is only called
once, Θ generates a mutable boolean ac (for already called). This boolean is initialized to false.
When F is called, if ac is false then ac is set to true and F answers its query, if ac is true then F
outputs the empty bit-string. Finally, verifier V checks that the adversary correctly guessed the
value of bit b. As we suppose that random number generation is perfect, OTP cannot be broken.

Proposition 4.5 Let A be an adversary against γ that can only output 0 or 1, then the advantage
of A against γ is null.

∀η,AdvγA(η) = 0

Proof: Let A be an adversary which output is either 0 or 1 Using proposition 4.2, the advantage
of A is given by:

AdvγA(η) = Pr[k R← [0, 1]η ; A(η)/
(
λ〈bs0, bs1〉.bs1 ⊕ k

)
= 1]

−Pr[k R← [0, 1]η ; A(η)/
(
λ〈bs0, bs1〉.bs0 ⊕ k

)
= 1]

As k is randomly sampled, the output of the oracle is the uniform distribution over bit-strings
of length η. Hence the output is the same in both cases, thus the probability to answer 1 is the
same. We finally get that:

∀η,AdvγA(η) = 0

Note that if F can be called twice (or more), it is easy to break OTP. For this purpose, let
us consider adversary A that submits 〈0η, 1η〉 to his oracle. This adversary receives bη ⊕ k. Then
A submits 〈0η, 0η〉 to its oracle, the resulting bit-string is k. Hence, by computing bη ⊕ k ⊕ k, A
obtains bη and thus can deduce the value of b.

4.3.4 The Mastermind Board Game

Here we describe a simple model of the classical mastermind game. This model is given using our
criterion formalism. The main interest of this example is to illustrate that an adversary can act
adaptively: he can choose new queries according to the results he received for previous queries.

A game session involves two players: the code-maker chooses an initial combination and the
code-breaker tries to guess it. At the beginning of the game, the code-maker chooses a pattern. This
pattern consists in a vector of four colors, each of these colors is chosen amongst six possibilities.
Therefore, the number of possible patterns is 1296. The code-breaker can make ten guesses to find
the pattern. Each of his guesses is itself a pattern. When the code-breaker submits a guess, he
wins the game if the guess is correct. Otherwise, the code-maker tells him the number of correct
colors he has in his pattern and the number of correct colors that occur at the correct place.
Using this information, the code-breaker can try to make a new guess. If the code-breaker does
not manage to win in ten guesses, then the code-maker wins the game.

Let us now describe this game using our formalism. The code-breaker is the adversary and
the code-maker is represented by a random pattern generator. The set of patterns is [0, 5]4. The
game can be represented by a criterion γ which is composed of:

• A challenge generator Θ, this algorithm randomly samples a pattern ~p among the 1296
possibilities.

• An oracle F , this oracle takes as argument a pattern ~q issued by the code-breaker. It returns
two integers, the number of correct colors cc and the number of correctly placed colors cp.
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These numbers can be obtained by the following functions:

cp(~q, ~p) =
∣∣{i ∈ [0, 3]|~p[i] = ~q[i]

}∣∣
cc(~q, ~p) = max

σ∈Σ

(
cp(~q, ~pσ)

)
Where σ ranges over the set Σ of permutations of vectors of length 4. Oracle F may only be
called ten times. To ensure this, Θ also generates a mutable integer which stores the number
of calls made to F . Oracle F has to update this integer value and when it reaches ten, F
always outputs the empty bit-string.

• A verifier V that takes as argument a pattern ~q and returns true iff patterns ~p and ~q are
identical.

4.4 Basic Properties

We introduce here some very simple and intuitive properties on advantages. First, if we consider
a game with no oracles, the advantage for any adversary is negative.

Proposition 4.6 Let γ be the criterion (Θ; ε;V ), for any adversary A,

AdvγA(η) ≤ 0

Proof: By definition of PrRandγ , for any adversary A,

Pr[Gγ
A(η) = true] ≤ PrRandγ

The same thing occurs when considering a game where the oracles and the verifier use two
independent parts of the challenge. In this case, the adversary cannot get any useful information
by using his oracles.

Proposition 4.7 Let γ be the criterion (Θ1,Θ2;F ;V ) such that F does not depend on the part
of the challenge generated by Θ2 and V does not depend on the part of the challenge generated by
Θ1. Then for any adversary A we have that:

AdvγA(η) ≤ 0

Proof: Let A be an adversary against γ and let γ′ be the criterion (Θ2; ε;V ). We build an
adversary A′ against γ′ using A.

Adversary A′(η):
θ1 := Θ1(η)
out := A(η)/λbs.F (bs, θ1)
return out

Then after unfolding the definition of A′ it is easy to notice that the game involving A′ against γ′

and the game involving A against γ are exactly equivalent. Let us describe these games precisely:
Game Gγ′

A′(η):
θ2 := Θ2(η)
θ1 := Θ1(η)
out := A(η)/λbs.F (bs, θ1)
return V (out, θ2)

Game Gγ
A(η):

θ1 := Θ1(η)
θ2 := Θ2(η)
out := A(η)/λbs.F (bs, θ1)
return V (out, θ2)

Therefore, the probability of success of A and A′ are the same:

Pr[Gγ′

A′(η) = true] = Pr[Gγ
A(η) = true]
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Moreover, the two PrRand are equal as these games have the same verifier: any adversary against
(Θ1,Θ2; ε;V ) can be used against (Θ2; ε;V ) with the same probability of success and the opposite
is also true.

Advγ
′

A′(η) = AdvγA(η)

The previous proposition tells us that the advantage of A′ is negative so the advantage of A is
also negative.

Let us consider two games γ and γ′ with the same challenge generator and verifier. If there is
a way to transform the oracle from γ′ into the oracle from γ, then any adversary against γ can be
transformed into an adversary for γ′ that has the same advantage. The “transformation” between
oracles has to be computable in polynomial time.

Proposition 4.8 Let γ = (Θ;F ;V ) and γ′ = (Θ;F ′;V ) be two criteria. Assume that there exists
a PRTM G such that for any bit-string bs and any challenge θ, the following equality holds:

F (bs, θ) = G
(
F ′(bs, θ)

)
Then for any adversary A, there exists an adversary A′ such that

AdvγA(η) = Advγ
′

A′(η)

Proof: Adversary A′ against γ′ can be built using A:

Adversary A′(η)/O:
bs:=A(η)/λs.G

(
O(s)

)
return bs

Then by definition of G, experiments Gγ
A(η) and Gγ′

A′(η) are equivalent. Moreover, PrRandγ
′

is equal to PrRandγ as both games have the same challenge generator and verifier. Hence, we
obtain that:

AdvγA(η) = Advγ
′

A′(η)

A reformulation of this proposition is the following : if we consider a game with oracle F ′

and another game whose oracle can be built from the output of F ′, then adversaries against
the second game can be transformed into adversaries against the first game. Let us give some
immediate corollaries for the previous proposition. First, if the advantage against γ′ is p-negligible
for any adversary, then this is also true for γ.

Corollary 4.1 Let γ = (Θ;F ;V ) and γ′ = (Θ;F ′;V ) be two games such that there exists a PRTM
G such that for any bit-string bs and any challenge θ, F (bs, θ) = G

(
F ′(bs, θ)

)
. If criterion γ′ is

safe, then criterion γ is also safe.

It is also possible to extend the previous corollary to an equivalence: if there is also a way to
transform the oracle from γ into the oracle from γ′ then safety for the two games are equivalent.

Corollary 4.2 Let γ = (Θ;F ;V ) and γ′ = (Θ;F ′;V ) be two games. We suppose that there exist
PRTM G and PRTM H such that for any bit-string bs and any challenge θ, F (bs, θ) = G

(
F ′(bs, θ)

)
and F ′(bs, θ) = H

(
F (bs, θ)

)
. Criterion γ is safe if and only if criterion γ′ is safe.

The former proposition proves the relation between criteria where one oracle can be obtained from
another by adding a computation layer. The computation layer may also occur directly on the
arguments of the oracle.

Proposition 4.9 Let γ = (Θ;F ;V ) and γ′ = (Θ;F ′;V ) be two games. If there exists a PRTM G
such that for any bit-string bs and any generated challenge θ,

F (bs, θ) = F ′(G(bs), θ
)

Then for any adversary A, there exists an adversary A′ such that

AdvγA(η) = Advγ
′

A′(η)
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Proof: Adversary A′ against γ′ is built using A as a sub-routine.

Adversary A′(η)/O:
s:=A(η)/, λs.O(G(s))
return s

Then by definition of G, experiments Gγ
A(η) and Gγ′

A′(η) are exactly the same. Moreover,
PrRandγ

′
is equal to PrRandγ as both games have the same challenge generators and verifiers.

Hence, we get that:
AdvγA(η) = Advγ

′

A′(η)

This proposition can also be reformulated in order to produce two corollaries similar to the
previous ones.

Corollary 4.3 Let γ = (Θ;F ;V ) and γ′ = (Θ;F ′;V ) be two criteria. We suppose that there exists
a PRTM G such that for any bit-string bs and any generated challenge θ, F (bs, θ) = F ′(G(bs), θ

)
.

If criterion γ′ is safe, then criterion γ is also safe.

It is also possible to reformulate this proposition as an equivalence: if there is also a way to
transform the oracle from γ into the oracle from γ′ then safety for the two games are equivalent.

Corollary 4.4 Let γ = (Θ;F ;V ) and γ′ = (Θ;F ′;V ) be two criteria. Let us suppose that there
exist a PRTM G and a PRTM H such that for any bit-string bs and any generated challenge θ,

F (bs, θ) = F ′(G(bs), θ
)

F ′(bs, θ) = F
(
H(bs), θ

)
Criterion γ is safe if and only if criterion γ′ is also safe.

Finally it is possible to generalize propositions 4.8 and 4.9 by allowing G to use F ′ as an oracle.
In this case, oracle F can be simulated by using algorithm G which makes possibly many queries
to F ′. However mutable fields from θ must have the same values after calling F or after executing
G which queries to F ′.

Proposition 4.10 Let γ = (Θ;F ;V ) and γ′ = (Θ;F ′;V ) be two games. If there exists a PRTM
G such that for any bit-string bs and any generated challenge θ,

F (bs, θ) = G(bs)/λbs′.F ′(bs′, θ)

and the mutable fields from θ have the same values after executing both algorithms. Then for any
adversary A, there exists an adversary A′ such that

AdvγA(η) = Advγ
′

A′(η)

Proof: Adversary A′ against γ′ is built using A as a sub-routine.

Adversary A′(η)/O:
s:=A(η)/λs.(G(s)/O)
return s

Then by definition of G, experiments Gγ
A(η) and Gγ′

A′(η) are exactly the same. Moreover,
PrRandγ

′
is equal to PrRandγ as both games have the same challenge generators and verifiers.

Hence, we get that:
AdvγA(η) = Advγ

′

A′(η)

Corollaries similar to the previous one can also be written for this generalized proposition.
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Formal Treatment of Probabilities In this chapter, probabilities have not been considered
when performing the proofs. The proofs considered in this document can usually be carried out
when formally considering probabilities. In order to illustrate this, the following result and its proof
provide an explicit use of probabilities as introduced in section 3.3.2. Moreover, the complexity
arguments have always been hidden in previous proof, the next proof also deals with complexity.
The next proposition is close to previous propositions. Its only interest relies in its proof which
illustrates arguments that are usually hidden in the other proofs.

Proposition 4.11 Let γ = (Θ;F ;V ) and (Θ;F ′;V ) be two criteria. Let us suppose that there
exist two PRTM G and H such that for any bit-string bs and for any θ generated by Θ, the
probabilistic distributions G(F ′(H(bs), θ)) and F (bs, θ) are identical. Then for any adversary A
against γ, there exists an adversary A against γ′ such that:

∀η, AdvγA(η) = Advγ
′

A′(η)

Proof: Let A be an adversary against γ. To simplify the proof, we consider that A always flips
rA random coins and only calls the F oracle once. We also consider that the F and F ′ oracles
always flip rF and rF ′ coins respectively and that the G and H algorithms always flip rG and rH
coins. Finally, the challenge generator Θ uses rΘ coins and the verifier is deterministic. From now
on, the random argument of probabilistic Turing machines is made explicit.

The equality between probabilistic distributions of G ◦ F ′ ◦H and F is defined by:

∀out,

∣∣∣{(RH , RF ′ , RG)
∣∣out = G(F ′(H(bs,RH), θ, RF ′), RG)

}∣∣∣
2rG.rF ′ .rH

=

∣∣∣{RF ∣∣out = F (bs,RF )
}∣∣∣

2rF

Adversary A′ uses rA′ random coins where rA′ = rA + rG + rH . This new adversary uses A
and is defined by:

Adversary A′(~r)/O:
s:=A(~rrA′−rA..rA′ )/λs.G

(
O(H(s, ~r1..rH )), ~rrH+1..rH+rG

)
return s

Then the advantage of adversary A′ is given by:

Advγ
′

A′ = 2

∣∣{(RΘ, RA′ , RF ′)
∣∣V (A′(RA′)/λs.F ′(s,Θ(RΘ), RF ′))

}∣∣
2rΘ+rA′+rF ′

− 2PrRandγ
′

= 2

∣∣{(RΘ, RA, RH , RG, RF ′)
∣∣V (A′(RG, RH , RA)/λs.out) ∧ out = F ′(s,Θ(RΘ), RF ′)

}∣∣
2rΘ+rA′+rF ′

−2PrRandγ

Thus by using the equality of distributions

= 2

∣∣{(RΘ, RA, RH , RG, RF ′)
∣∣V (A(RA)/λs.G(out,RG)) ∧ out = F ′(H(s,RH),Θ(RΘ), RF ′)

}∣∣
2rΘ+rA′+rF ′

−2PrRandγ

= 2

∣∣{(RΘ, RA, RF )
∣∣V (A(RA)/λs.out′) ∧ out′ = F (s,Θ(RΘ), RF )

}∣∣
2rΘ+rA′+rF ′

− 2PrRandγ

= AdvγA

The proof presented here is quite complicated even with all the restrictive hypothesis we made.
Handling probabilities is a very heavy but systematic task. Therefore, in the rest of this document,
some probabilities are not considered explicitly. For example,

∀bs, θ, G(F ′(H(bs), θ)) = F (bs, θ)

denotes equality of the two distributions G(F ′(H(bs), θ)) and F (bs, θ).

Laurent Mazaré Ph.D Thesis 67/229



Chapter 4. Characterizing Computational Safety

4.5 Security Criteria for Encryption and Signature Schemes

We present here some variants of classical criteria. The main difference is the addition of patterns.
Patterns allow the use of secret information with the oracle: for example, an adversary can ask
for encryption of a secret key with another key, this cannot be achieved with classical oracles.
We introduce pattern because in the protocols we consider, messages can contain such secret
information. Therefore allowing the adversary to manipulate these information helps us to simply
the soundness proof given later in this document.

4.5.1 Asymmetric Encryption: N-PAT-IND-CCA

The classical way to define safety of an asymmetric encryption scheme was given in section 3.4.
Criterion IND-CCA is extended in this section in such a way that the attacker can ask for the
encryption of a secret key. As the IND-CCA requirement is very strong, the intuition is that the
adversary cannot get non-negligible advantage by using these new requests. We will see in the
following that this is true if and only if we do not allow key cycles.

Let (KGa, Ea,Da) be an asymmetric encryption scheme that is used in the different oracles
and in the challenge generator. Let N be an integer. In criterion N -PAT-IND-CCA, N pairs of
keys are generated, these keys are numbered from 1 to N . Key pair number i is composed of the
public part pki and the secret part ski.

As we want the adversary to be able to manipulate secret keys but we do not want the
adversary to be given the secret keys, the adversary does not submit bit-strings to his oracles
anymore. Instead, the adversary uses patterns where he can ask for inclusion of the secret keys.

Patterns

Pattern terms are a mix between symbolic messages and bit-strings: indeed these are messages
where atoms can be either a bit-string or a pattern variable. These variables represent the different
challenge secret keys and are denoted by [i], variable [i] asks the oracle to replace the pattern
variable by the bit-string value of secret key number i, i.e. ski. Variables can be used as atomic
messages (data pattern) or at a key position (key pattern). When a left-right oracle is given a
pattern term, it replaces patterns by values of corresponding keys and encodes the so-obtained
bit-string. More formally, patterns are given by the following grammar where bs is a bit-string
and i is an integer.

pat ::= 〈pat, pat〉 | bs | [i]
| {pat}abs | {pat}a[i] asymmetric encryption

This grammar defines asymmetric patterns as the only cryptographic scheme that can be used by
patterns in this section is asymmetric encryption. Further in this document, we define more general
patterns that can use symmetric encryption, digital signature or even a whole cryptographic
library. An important remark is that any encryption performed in a pattern has to use the same
security parameter η. This restriction is necessary as we want to be able to control the length of
the evaluation of a pattern.

The computation (also called concretization) made by the oracle is easily defined recursively.
It uses a context θ associating bit-string values to the different keys. For an integer i, there exists
a related encryption key pki and a related decryption key ski in θ. The concretization produces
a bit-string and it uses the encryption algorithm Ea of the asymmetric encryption scheme and
the computational version of concatenation which is denoted by operator “·”. The concretization
algorithm is detailed thereafter:

Algorithm concr(pat, θ) :
match pat with

bs→ return bs
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[i]→ return skiθ
〈p1, p2〉 → return concr(p1, θ) · concr(p2, θ)
{p}a[i] → return Ea(concr(p, θ), pkiθ)
{p}abs → return Ea(concr(p, θ), bs)

endmatch

A key k is asked by a pattern pat if applying the concr algorithm to pat uses kθ. Indeed a
public key pki is asked by pat if [i] occurs at a key position in pat and a secret key ski is asked
by pat if [i] appears elsewhere in pat. In order for concr not to produce an error on pat and θ, all
the keys asked by pat have to be in sup(θ).

Patterns and Encryption Size When defining IND-CCA, a natural restriction is that when-
ever the adversary submits a pair of bit-strings 〈bs0, bs1〉 to his left-right encryption oracle, bs0 and
bs1 must have the same length, otherwise the oracle does not answer correctly. It is not possible
to apply the same restriction on patterns as pattern length is not properly defined. Therefore
equivalent patterns are introduced: the idea is that if two patterns are equivalent, then their con-
cretizations have the same size when using an encryption scheme that satisfies the fixed encryption
size hypothesis. Then the restriction on the left-right encryption oracle is that the two submitted
patterns must be equivalent in order for the oracle to answer correctly.

Definition 4.1 (Equivalent Patterns) Two patterns pat0 and pat1 are equivalent if pat0 ≈
pat1 where the ≈ relation is inductively defined by the following rules: two bit-string are equivalent
if they have the same length.

`(bs0) = `(bs1)
bs0 ≈ bs1

bs

Two pairs or encoding are equivalent if the underlying patterns are equivalent:

pat0 ≈ pat1 pat′0 ≈ pat′1
〈pat0, pat′0〉 ≈ 〈pat1, pat′1〉

pair
pat0 ≈ pat1

{pat0}au ≈ {pat1}av
enc

Finally, pattern variables are always equivalent:

[i] ≈ [j]
pat

The asymmetric encryption scheme used here (KGa, Ea,Da) is assumed to verify the fixed encryp-
tion size hypothesis. Therefore, it is possible to deduce that the concretization of two equivalent
patterns leads to two bit-strings that have the same length.

Proposition 4.12 Let pat0 and pat1 be two patterns such that pat0 ≈ pat1, then for any θ such
that sup(θ) contains all the keys asked by pat0 and pat1, the concretizations of pat0 and pat1 have
the same length:

`
(
concr(pat0, θ)

)
= `

(
concr(pat1, θ)

)
Proof: The proof proceeds by induction upon the proof structure of pat0 ≈ pat1. Let us consider
the different case for the last deduction rule.

1. If the last rule is bs, then pat0 = bs0, pat1 = bs1 and `(bs0) = `(bs1). As concr(bs, θ) returns
bs for any bit-string bs, we immediately get that concr(bs0, θ) and concr(bs1, θ) have the
same length.

2. If the last rule is pat, then pat0 = [i] and pat1 = [j]. Thus we have that concr(pat0, θ) = skiθ
and concr(bs1, θ) = skjθ. As part of the fixed encryption size hypothesis, the length of secret
keys is constant.
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3. If the last rule is pair, then pat0 = 〈pat′0, pat′′0〉 and pat1 = 〈pat′1, pat′′1〉 where pat′0 and pat′1
are equivalent and pat′′0 and pat′′1 are also equivalent. The induction argument tells us that:

`
(
concr(pat′0, θ)

)
= `

(
concr(pat′1, θ)

)
and `

(
concr(pat′′0 , θ)

)
= `

(
concr(pat′′1 , θ)

)
As concatenation preserves length equalities, we get the result.

4. Finally, if the last rule is enc, then pat0 = {pat′0}u and pat1 = {pat′1}v where pat′0 and
pat′1 are equivalent. As the security parameter η is fixed, applying the fixed encryption size
hypothesis gives us the awaited result.

Acyclicity Condition Key cycles are a well-known problem in cryptography. It appears that
for some real encryption schemes like DES, encrypting a key with itself can lead to information
leaks. Moreover, the IND-CCA criterion and similar criteria are not strong enough to prevent
such leaks. This limitation has already been stated for IND-CPA in [AR00]. To avoid cycles,
we put the following restriction on patterns submitted to the left-right oracle. When asking for
encryption of pattern pat with key pki, pat must not contain any pattern variable [j] for j lower
than i or equal to i. The end of next section explains why this restriction is necessary.

Oracles and Criterion

Criterion N -PAT-IND-CCA is defined by (Θ;F ;V ). The challenge generator Θ produces N pairs
of keys using KGa and outputs a substitution θ linking pki to the public part of the ith key and
ski to its secret part. It also creates for each key a mutable field mema

i which is used to store the
output of the left-right oracle. A bit b is also randomly generated, adversaries try to guess the
value of this bit b.

Algorithm Θ(η) :
θ := []
bθ

R← [0, 1]
for i from 1 to N

(bspk, bssk) := KGa(η)
pkiθ := bspk
skiθ := bssk
mema

i θ := []
endfor
return θ

The oracle part F is composed of 3 oracles for each key pair (thus F contains 3.N oracles).
The first one is the left-right encryption oracle. This oracle receives a pair of patterns 〈pat0, pat1〉.
It checks that these patterns verify the acyclicity condition and are equivalent. If so, it selects
either pat0 or pat1 according to the value of bit b from θ, concretizes it using θ and encrypts the
result using public key pki from θ. As the decryption oracles should not accept to work on the
outputs of this oracle, the result of the encryption is stored in the list mema

i .

Oracle ELRai (〈pat0, pat1〉, θ) :
if ∃j ∈ var(〈pat0, pat1〉), j ≤ i or not pat0 ≈ pat1 then

return 1
else
bs := concr(patbθ, θ)
out := Ea(bs, pkiθ)
mema

i θ := out :: mema
i θ

return out
endif
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The second oracle is the decryption oracle related to key i. This algorithm first verifies that
its argument has not been produced by the left-right encryption oracle before, if this is not the
case it decrypts its argument using secret key ski from θ.

Oracle Di(bs, θ) :
if bs ∈ mema

i θ then
return 1

else
return Da(bs, skiθ)

endif

The last oracle related to key i simply returns the bit-string value for key pki, it does not
depend on its argument bs.

Oracle PKi(bs, θ) :
return pkiθ

Finally, verifier V tests that the adversary correctly deduced the value of bit b. The algorithm
that implements V is simple:

Verifier V (bs, θ) :
return bs = bθ

An adversary wins against N -PAT-IND-CCA if he manages to deduce the value of the challenge
bit b.

Definition 4.2 (Pattern Semantic Security) An asymmetric encryption scheme is said to be
N -PAT-IND-CCA if it is safe for N -PAT-IND-CCA, i.e. the advantage of any adversary against
our criterion using this encryption scheme is negligible.

Note that, although close, 1-PAT-IND-CCA and IND-CCA are different criteria. Indeed, in 1-
PAT-IND-CCA, an adversary can submit patterns like 〈bs, bs′〉 to his left-right encryption oracle
whereas it is not possible in IND-CCA.

It is easy to relate IND-CCA and N -PAT-IND-CCA in one way.

Proposition 4.13 Let N be an integer greater than 0. If an asymmetric encryption scheme
(KGa, Ea,Da) is safe for N -PAT-IND-CCA, then it is also safe for IND-CCA.

Proof: The sketch of the proof is easy to understand: let A be an adversary against IND-CCA.
This adversary can be used against N -PAT-IND-CCA with the same advantage. In this situation,
A queries the oracles related to the first key. As the asymmetric encryption scheme is safe for
N -PAT-IND-CCA, the advantage of A against N -PAT-IND-CCA is negligible. Consequently, the
advantage of A against IND-CCA is negligible and so the encryption scheme is safe for IND-CCA.
As this is the first proof of this type, we describe the different steps thereafter.

When formalizing the proof, the only difficulty is that A cannot be used against N -PAT-IND-
CCA: queries made by A have to be redirected to the oracles corresponding to one of the key (the
first one for example). Queries made by A to the left-right oracle are pairs of bit-strings that can
also be used as a pair of patterns. Hence, if A is an adversary against IND-CCA then B is an
adversary against N -PAT-IND-CCA that uses A as a sub-routine.

Adversary B(η)/Opk1 ,OLR1 ,OD1 , ...,O
pk
N ,OLRN ,ODN :

bs := A(η)/Opk1 ,OLR1 ,OD1
return bs

By using proposition 4.2, we get that the advantage of B is given by:

AdvγB(η) = Pr[θ := Θ ; B(η)/λs.F (s, θ) = 1 | bθ = 1]
−Pr[θ := Θ ; B(η)/λs.F (s, θ) = 1 | bθ = 0]
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Where γ = (Θ, F, V ) is criterion N -PAT-IND-CCA. Let obi be the three oracles related to the pair
of keys (pki, ski) where b is the challenge bit generated by Θ and used by the left-right oracles.
Hence by developing Θ and F , the advantage of B becomes:

AdvγB(η) = Pr[(pk1, sk1) := KG(η), ..., (pkN , skN ) := KG(η) ; B(η)/o11, ..., o
1
n = 1]

−Pr[(pk1, sk1) := KG(η), ..., (pkN , skN ) := KG(η) ; B(η)/o01, ..., o
0
n = 1]

Now it is possible to replace B by its implementation that uses A.

AdvγB(η) = Pr[(pk1, sk1) := KG(η), ..., (pkN , skN ) := KG(η) ; A(η)/o11 = 1]
−Pr[(pk1, sk1) := KG(η), ..., (pkN , skN ) := KG(η) ; A(η)/o01 = 1]

Running the adversary A does not use any other key pair than (pk1, sk1). Thus, we finally get
that:

AdvγB(η) = Pr[(pk1, sk1) := KG(η) ; A(η)/o11 = 1]− Pr[(pk1, sk1) := KG(η) ; A(η)/o01 = 1]

= AdvINDA (η)

Hence for any adversary A against IND-CCA, there exists an adversary B against N -PAT-IND-
CCA that has the same advantage. The encryption scheme is safe for N -PAT-IND-CCA thus
AdvγB is negligible and so AdvINDA is also negligible. Therefore the encryption scheme is safe for
IND-CCA.

The converse of this proposition is also true. However its proof is far more complicated and
uses the partition theorem introduced in chapter 5. There is a simple proof in the case N = 1 as
the oracles from 1-PAT-IND-CCA can be simulated using oracles from IND-CCA.

Proposition 4.14 An asymmetric encryption scheme (KGa, Ea,Da) is safe for 1-PAT-IND-CCA
if and only if it is safe for IND-CCA.

Proof: A first implication comes from proposition 4.13. Safety against 1-PAT-IND-CCA implies
safety against IND-CCA. The converse is less trivial, queries to the left-right oracle can be pairs
of patterns instead of just pairs of bit-strings. However, the acyclicity of patterns ensures that
patterns must have the following form:

pat ::= 〈pat, pat〉 | {pat}abs | bs

There are no variables in these patterns. Thus, applying the concr algorithm with an empty
environment produces a bit-string. It is possible to apply proposition 4.9. Let γ′ denote criterion
IND-CCA defined by the triple (Θ;F ′;V ) and γ denote criterion 1-PAT-IND-CCA defined by
(Θ;F ;V ). Then the public keys and decryption oracles from F and F ′ are identical. The left-
right encryption oracle FLR from γ is linked to the left-right encryption oracle F ′LR from γ′ by
the following relation:

∀pat0, pat1, FLR
(
〈pat0, pat1〉, θ

)
= F ′LR(

concr(〈pat0, pat1〉, []), θ
)

By applying proposition 4.9, we get that for any adversary A against 1-PAT-IND-CCA (γ), there
exists an adversary A′ against IND-CCA (γ′) such that:

AdvγA(η) = Advγ
′

A′(η)

Criterion IND-CCA is supposed to be verified by our asymmetric encryption scheme. As a con-
sequence, the advantage of A′ is negligible and so the advantage of A is also negligible. The
encryption scheme is also safe for 1-PAT-IND-CCA.
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More on Key Cycles

In this paragraph, we assume that there exists an encryption scheme AE that is safe for IND-CCA.
Our objective here is to show that key cycles create insecurity. Let N -PATc-IND-CCA be exactly
the same criterion has N -PAT-IND-CCA except that the left-right encryption oracle is modified
in order to allow cycles of length greater than c. Formally, the acyclicity restriction from N -PAT-
IND-CCA is relaxed in N -PATc-IND-CCA. The ≺ order is defined as follows: if the adversary
queries the encryption oracle related to key pkj with a pattern that contains [i], then we have that
j ≺ i. The restriction is that the adversary should not create cycles for ≺ which length is lower
than or equal to c (a cycle of length c is i1 ≺ i2 ≺ · · · ≺ ic), otherwise the oracle outputs the
empty bit-string. Then this new criterion is not equivalent to IND-CCA, more precisely:

Cycles of Length 1 The idea is to build an encryption scheme such that patterns of the
following form are easy to distinguish. {

sk
}
pk

We assume that there exists a polynomial-time algorithm Inv such that Inv(sk, pk) returns true
iff sk is the secret key related to pk. We build another asymmetric encryption scheme AE ′ =
(KG, E ′,D′) using AE .

Algorithm E ′(m, pk) =
if Inv(m, pk)

return 0 ·m
else

return 1 · E(m, pk)

Algorithm D′(m, sk) =
if m = 0 ·m

return m
else if m = 1 · n

return D(n, sk)
The asymmetric encryption scheme we just defined is a counter-example to the assumption

that 1-PAT1-IND-CCA where cycles are allowed is equivalent to IND-CCA.

Proposition 4.15 If AE is secure against IND-CCA, then AE ′ is also secure against IND-CCA.

Proof: Let A′ be an adversary against IND-CCA using AE ′ (γ′). Then the adversary A against
IND-CCA using AE (γ) is defined by:

Adversary A(η)/Opk,OLR,OD:
pk := Opk
E′
LR := λ(m0,m1).if Inv(m0, pk), deduce sk

else if Inv(m1, pk), deduce sk
else 1 · OLR(m0,m1)

D′ := λm. if m = 0 · n, n
else m = 1 · n, OD(n)

d := A′(η)/pk,E′
LR, D

′

return d

If A deduces sk, it is clear that it wins its challenge. Consequently if A′ wins its challenge, then
A also wins its challenge.

Pr[Gγ′

A′(η) = true] ≤ Pr[Gγ
A(η) = true]

Moreover, as both criteria have the same generator and verifier, their PrRand is equal. Hence,

Advγ
′
(A′) ≤ Advγ(A)

As AE is IND-CCA and A is a PRTM, the advantage of A is negligible. Hence, the advantage of
A′ is also negligible and AE ′ is also IND-CCA.

Proposition 4.16 AE ′ is not secure against 1-PAT1-IND-CCA.
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Proof: Let us consider the adversary A that simply queries his left-right encryption oracle with
([1], 0n(η)) where n(η) is the length of a secret key for security parameter η. Then A can easily
deduce the value of the challenge bit b: if the result of the oracle call starts with 0, b equals 0 else
b equals 1. Formally adversary A is described as follows:

Adversary A(η)/Opk,OLR,OD:
bs := OLR([1], 0n(η))
if bs[0] = 0 then return 0
else return 1

The advantage of A is non-negligible (the only case where A fails if is the secret key generated in
the experiment is 0n(η) and this has only negligible probability to happen).

By combining the two previous results, it is clear that an encryption scheme can be IND-CCA
and not verify 1-PAT1-IND-CCA. Therefore, we get the following corollary.

Corollary 4.5 IND-CCA does not imply 1-PAT1-IND-CCA.

An immediate consequence is that key cycles represent real security problems, thus such cycles
should not occur in correctly designed protocols.

Cycles of Length 2 The idea is to build an encryption scheme such that patterns of the
following form are easy to distinguish. {

{sk1}pk2 , sk2

}
pk1

We build another asymmetric encryption scheme AE ′ = (KG, E ′,D′) using AE .
Algorithm E ′(m, pk) =

if m = 〈u, v〉 and Inv(D(u, v), pk)
return 0 · 〈u, v〉

else
return 1 · E(m, pk)

Algorithm D′(m, sk) =
if m = 0 · 〈u, v〉

return 〈u, v〉
else if m = 1 · n

return D(n, sk)

Proposition 4.17 If AE is secure against IND-CCA, then AE ′ is also secure against IND-CCA.

Proof: Let A′ be an adversary against IND-CCA using AE ′ (γ′). Then the adversary A against
IND-CCA using AE (γ) is defined by:

Adversary A(η)/Opk,OLR,OD:
pk := Opk
E′
LR := λ(m0,m1).if m0 = 〈u, v〉 and Inv(D(u, v), pk), deduce sk

else if m1 = 〈u, v〉 and Inv(D(u, v), pk), deduce sk
else OLR(m0,m1)

D′ := λm. if m = 0 · n, n
else m = 1 · n, OD(n)

d := A′(η)/pk,E′
LR, D

′

return d

If A deduces sk, it is clear that he wins his challenge. And consequently, A wins its challenge
more often than A′ does.

Pr[Expγ
′

A′(η) = true] ≤ Pr[ExpγA(η) = true]

Moreover, as both criteria have the same generator and verifier, their PrRand is equal. Hence,

Advγ
′
(A′) ≤ Advγ(A)

As AE is IND-CCA and A is a PRTM, the advantage of A is negligible. Hence, the advantage of
A′ is also negligible and AE ′ is also IND-CCA.
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Proposition 4.18 AE ′ is not secure against 2-PAT2-IND-CCA.

Proof: An adversary can ask for the encryption of [sk1] using the left-right oracle related to pk2.
Let bs be the result. Then he asks the encryption of 〈bs, [sk2]〉 using the left-right oracle related
to pk1. If the final result starts with a 0, then b = 0 else b = 1.

By combining the two previous results, it is clear that an encryption scheme can be IND-CCA
and not verify 2-PAT2-IND-CCA.

Corollary 4.6 IND-CCA does not imply 2-PAT2-IND-CCA.

We did not really prove that cycle of length 2 are a security threat. Indeed we use a cycle of length
1 but use two oracle queries to build it. Hence from the oracle point of view, cycles of length 1
are forbidden but it is still possible to build such cycles as cycles of length 2 are authorized. Let
us now generalize this result to a length n.

Generalization to Arbitrary Length Let n be the cycle length. Then it is possible to gen-
eralize previous results by distinguishing such patterns:{

...
{
{sk1}pk2 , sk2

}
pk3
..., skn

}
pk1

The main result is:

Proposition 4.19 Let m and n be two strictly positive integers, IND-CCA does not imply m-
PATn-IND-CCA.

Key Dependent Message (KDM) Security

In N -PAT-IND-CCA, the only operation that is allowed on secret keys is to copy their value. This
operation is sufficient when considering security protocols however it is possible to define a more
general criterion where an adversary can ask for any operations on secret keys. Thus KDM security
has been introduced in [BRS01] as an extension of IND-CPA. However this can be adapted to the
case of IND-CCA in a straightforward way. Hence we define N -KDM-IND-CCA in our criterion
model as criterion (Θ;F ;V ) where Θ and V are the same as in N -PAT-IND-CCA. F still contains
the decryption oracle and the public key oracle but its left-right encryption oracle is modified: it
does not operate on patterns any more but on functions. Indeed, the left-right encryption oracles
receive two functions f0 and f1 (represented by two PRTM) such that for any bit-string bs, f0(bs)
and f1(bs) have the same length. The oracle applies fb to secret keys and encrypt the result.
Formally,

Oracle ELRai (〈f0, f1〉, θ) :
bs0 := f0(pk1θ, sk1θ · · · pkNθ, skNθ)
bs1 := f1(pk1θ, sk1θ · · · pkNθ, skNθ)
if `(bs0) 6= `(bs1) then return 1
out := Ea(bsb, pkiθ)
mema

i θ := out :: mema
i θ

return out

Definition 4.3 (Key Dependent Semantic Security) An asymmetric encryption scheme is
said to be N -KDM-IND-CCA if it is safe for N -PAT-IND-CCA, i.e. the advantage of any adver-
sary against our criterion using this encryption scheme is negligible.

Note that, although close, 1-PAT-IND-CCA and IND-CCA are different criteria. Indeed, in This
criterion is very close to N -PAT-IND-CCA but more general as it allows any operations on keys,
not just concatenation and encryption.
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Proposition 4.20 Let AE be an asymmetric encryption scheme. If AE is safe for N -KDM-IND-
CCA then it is safe for N -PAT-IND-CCA.

Proof: Let AE be an asymmetric encryption scheme that is safe for N -KDM-IND-CCA. Let A
be an adversary against criterion N -PAT-IND-CCA (denoted by γ in the following). We build an
adversary B against N -KDM-IND-CCA that has the same advantage. Criterion N -KDM-IND-
CCA is denoted by δ. In order to give a simple definition of adversary B, we only consider the
oracles related to one key. The description proposed here can easily be adapted to the case of
N keys. The only difference between γ and δ is that requests to the left-right encryption oracles
differ. However, pattern requests (made by A) can be converted to function requests so queries
made by A can be converted into queries that B can perform. This conversion is made by function
p2f which is described below (and can be represented by a PRTM).

Adversary B(η)/OLR,OD,OPK
d := A/λ〈pat0, pat1〉.OLR(〈p2f(pat0), p2f(pat1)〉)

OD
OPK

return d

The pattern to function conversion function p2f is given by:

Algorithm p2f(pat):
return λ(pkv1 , sk

v
1 , ...).concr

(
pat, {pk1 → pkv1 , sk1 → skv1 , ...}

)
Then the behavior of the pattern encryption oracle confronted to pat is identical to the behavior
of the function encryption oracle confronted to p2f(pat). The game where B is confronted to δ is
the same as the game where A is confronted to γ. Therefore the advantages of A and B are equal.
As AE is secure against N -KDM-IND-CCA, the advantage of B is negligible so the advantage of
A is also negligible. As this is true for any adversary A, it is possible to conclude that AE is secure
against N -PAT-IND-CCA.

In the next chapter, we prove that if we assume an acyclicity hypothesis, then criterion IND-
CCA and N -KDM-IND-CCA are equivalent. This hypothesis prevents the adversary from asking
any operation on keys skj to the oracle related to key number i when j ≤ i. We assume that
this acyclicity hypothesis is part of the criterion in the following, thus we use a new left-right
encryption oracle:

Oracle ELRai (〈f0, f1〉, θ) :
bs0 := f0(pki+1θ, ski+1θ · · · pkNθ, skNθ)
bs1 := f1(pki+1θ, ski+1θ · · · pkNθ, skNθ)
if `(bs0) 6= `(bs1) then return 1

out := Ea(bsb, pkiθ)
mema

i θ := out :: mema
i θ

return out
endif

Then the oracle related to key pki can only manipulate keys (pkj , skj) for j greater than i.

4.5.2 Digital Signature: N-UNF

TheN -UNF criterion is an extension of the UNF criterion detailed before. This extension considers
a multi-user setting instead of having just a single user.

The main requirement is that an adversary should not be able to forge a pair containing a
bit-string bs and the signature of bs using the secret signature key. An N -UNF adversary A is
given N verification keys and has to produce a message and its signature under one of the keys.
The adversary also has access to N signature oracles Ssiki(.).
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Formally, the N -UNF criterion uses a signature scheme SS = (KGg,S,V). This criterion
is defined by (Θ;F ;V ) where Θ generates N signature key pairs using algorithm KGg, it also
generates a list memg

i for each key pair in order to store the outputs of the signature oracles.

Algorithm Θ(η) :
θ := []
for i from 1 to N

(bssk, bsvk) := KGg(η)
sikiθ := bssk
vkiθ := bsvk
memg

i θ := []
endfor

Meta-oracle F contains two oracles for each signature key pair: the first one allows to sign any
string of bits. It has to store the result in memg

i as the adversary can only win if he finds a
signature that has not been created by a signature oracle.

Oracle SIGNi(bs, θ) :
out := S(bs, sikiθ)
memg

i θ := out :: memg
i θ

return out

The second oracle allows the adversary to access the verification key. It does not use its
parameter bs.

Oracle V Ki(bs, θ) :
return vkiθ

Meta-verifier V is composed of N verifiers, one for each key. Each verifier checks that the
output of the adversary is a valid signature that has not been produced by the related signature
oracle.

Verifier Vi(bs, θ) :
if bs ∈ memg

i then
return 0

else
return ∃bs′.V(bs′, bs, vkθ)

endif

An adversary wins againstN -UNF when he succeeds in producing a bit-string and its signature.

Definition 4.4 A signature scheme SS is said N -UNF if the advantage of any adversary against
criterion N -UNF is negligible and PrRandUNF is also negligible.

When N = 1, N -UNF can be written UNF.

4.5.3 Symmetric Encryption: N-PAT-SYM-CPA

In some sense a symmetric encryption scheme includes both aspects, indistinguishability and
authentication, which are present in asymmetric encryption and message signature respec-
tively [BN00]. Therefore, our criterion for symmetric encryption is in a combination of IND-CPA
and UNF. Indeed, a symmetric encryption should be secure in two ways. The first one is related
to IND-CPA, any adversary should not be able to guess any information from messages encoded
with an unknown key. The second one is related to UNF; any adversary should not be able to
forge an encoding without knowing the key. Hence, oracles are similar to those presented in IND-
CPA (except that no oracles output the public key), but there are two different ways to win the
challenge.
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Patterns

The challenge generation algorithm creates N symmetric keys using KGs. These keys are stored
in θ under the names ki for i ranging from 1 to N . This criterion cannot use asymmetric patterns
as there are only symmetric keys in θ. Instead we define symmetric patterns using the following
grammar:

pat ::= 〈pat, pat〉 | bs | [i]
| {pat}sbs | {pat}s[i] symmetric encryption

For these patterns, the concr algorithm replaces [i] by the value of ki in θ. The concr algorithm
is modified in order to handle symmetric patterns.

Algorithm concr(pat, θ) :
match pat with

bs→ return bs
[i]→ return kiθ
〈p1, p2〉 → return concr(p1, θ) · concr(p2, θ)
{p}s[i] → return Es(concr(p, θ), kiθ)
{p}sbs → return Es(concr(p, θ), bs)

endmatch

The hypothesis of acyclicity regarding keys still holds: the encryption oracle related to key i
works only on pair of symmetric patterns 〈pat0, pat1〉 such that for any j in vars(〈pat0, pat1〉),
i < j.

Oracles and Criterion

The N -PAT-SYM-CPA criterion uses a symmetric encryption scheme SE = (KGs, Es,Ds). It is
defined by (Θ;F ;VIND, VUNF ). Algorithm Θ generates N symmetric keys using KGs, a challenge
bit b and a memory for each key used to store the outputs of the left-right oracle.

Algorithm Θ(η) :
θ := []
bθ

R← [0, 1]
for i from 1 to N

kiθ := KGs(η)
mems

i θ := []
endfor

The meta-oracle F only contains one oracle for each key: a left-right encryption oracle that
takes as argument a pair of symmetric patterns 〈pat0, pat1〉 and outputs patb completed with the
secret keys (concr(patb, θ)) and encoded with ki. As before, the acyclicity condition is checked
and if it is not verified, 1 is returned. The oracle also checks that the two patterns are equivalent.

Oracle ELRsi (〈pat0, pat1〉, θ) :
if ∃j ∈ var(〈pat0, pat1〉), j ≤ i or not pat0 ≈ pat1 then

return 1
else
bs := concr(patbθ, θ)
out := Eg(bs, kiθ)
mems

i θ := out :: mems
i θ

return out
endif
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Finally, the verifier is composed of two parts: VIND returns true when the adversary returns
bit b.

Verifier VIND(bs, θ) :
return bs = bθ

The second part of the verifier VUNF returns true when the adversary outputs a message encoded
by one of the symmetric key and this message has not been produced by an encryption oracle. As
in the case of digital signature, it is composed of N verifiers, one for each key.

Verifier VUNF,i(bs, θ) :
if bs ∈ mems

i then
return 0

else
return Dg(bs, kiθ) 6= ⊥

endif

Definition 4.5 A symmetric encryption scheme SE is said N -PAT-SYM-CPA the advantage of
any adversary against the criterion given above is negligible and if PrRandΘ;F ;VUNF,i is negligible
for any i.

When N = 1, criterion 1-PAT-SYM-CPA is also denoted by SYM-CPA.
The criterion related to IND (Θ;F ;VIND) (resp. to UNF (Θ;F ;VUNF )) is denoted by N -PAT-

SYM-CPA/IND (resp. N -PAT-SYM-CPA/UNF).
Let N -PAT-SYM-CCA be the same criterion as N -PAT-SYM-CPA but where the adversary

also have access to a decryption oracle (with the usual restrictions). Then this criterion is equiv-
alent to N -PAT-SYM-CPA.

Proposition 4.21 Let N be an integer and SE be a symmetric encryption scheme such that the
PrRand linked to SYM-CPA is negligible. Then SE is N -PAT-SYM-CPA iff it is N -PAT-SYM-
CCA.

Proof: One of the two implication is immediate. Let A be an adversary against N -PAT-SYM-
CPA. Oracles from N -PAT-SYM-CCA include the oracles from N -PAT-SYM-CPA. Hence ad-
versary A can be used against N -PAT-SYM-CCA and we get that for any security parameter
η,

AdvN−PAT−SYM−CCA
A (η) = AdvN−PAT−SYM−CPA

A (η)

Therefore, safety for N -PAT-SYM-CCA implies safety for N -PAT-SYM-CPA.
The reciprocal is less trivial. Let A be an adversary against N -PAT-SYM-CCA. We want to

design an adversary B against N -PAT-SYM-CPA. The problem is that queries made by A to the
decryption oracle cannot be simulated. This can be solved because queries made to the decryption
oracle must be fresh encryptions and such encryptions may allow adversary B to win against the
unforgeability part of the symmetric criterion.

Adversary B(η)/Opk1 ,OLR1 , ...,OpkN ,OLRN :
bs := A/Opk1 ,OLR1 , λq.return q

...
OpkN ,OLRN , λq.return q

return bs

The adversary B represented here is simplified as B should check that queries to decryption oracles
are fresh (i.e. not in mem) before returning them.

It is now possible to relate the advantage of B to the advantage of A. Let D(A) denote the
event where A queries his decryption oracle with a fresh encryption, the related probability is
denoted by p. In this case, adversary B wins against the UNF part of his criterion. Let γ and
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γ′ be respectively criterion N -PAT-SYM-CCA and N -PAT-SYM-CPA. Criterion γIND represents
the indistinguishability part of γ whereas γUNF represents the unforgeability part.

AdvγUNFA (η) = 2
(
Pr

[
GγUNF
A

]
− PrRandγUNF

)
= 2

(
p.Pr

[
GγUNF
A |D(A)

]
+ (1− p).P r

[
GγUNF
A |¬D(A)

]
− PrRandγUNF

)
The same computation can be done for the indistinguishability part.

AdvγINDA (η) = 2Pr
[
GγIND
A

]
− 1

= 2p.Pr
[
GγIND
A |D(A)

]
+ 2(1− p).P r

[
GγIND
A |¬D(A)

]
− 1

When event D(A) occurs, B always wins his challenge against UNF whereas when D(A) does not
occur, then A and B produce the exact same result. Therefore, the advantage of B against UNF
is:

Advγ
′
UNF

B (η) = 2
(
p+ (1− p).P r

[
Gγ′UNF
A |¬D(A)

]
− PrRandγ

′
UNF

)
The two PrRand for γUNF and γ′UNF are the same and are negligible. Probability p is hence
negligible and we have that:

Advγ
′
UNF

B (η) ≥ AdvγUNFA (η)

Hence the advantage of A against the UNF part is negligible. For the IND part, the advantage of
B is given by:

Advγ
′
IND

B (η) = 2Pr
[
Gγ′IND
B

]
− 1

= 2(1− p).P r
[
GγIND
A |¬D(A)

]
− 1

Hence we have the following inequality:

Advγ
′
IND

B (η) + 2p ≥ AdvγINDA (η)

The advantage of B and p are negligible so the advantage of A against IND is also negligible.
We have that the advantage of A is negligible for any adversary A, consequently the encryption
scheme is safe for N -PAT-SYM-CCA.

Proposition 4.22 Let N be an integer. If a symmetric encryption scheme SE is N -PAT-SYM-
CPA then SE is SYM-CPA/IND and SYM-CPA/UNF.

Proof: This proof is easy to perform by using the same argument as in the proof of proposi-
tion 4.13.

As previously, the converse of this proposition is also true but its proof is only provided later
in this document.

Building a SYM-CPA Encryption Scheme

It is possible to build a SYM-CPA symmetric encryption scheme by using a digital signature
scheme safe for UNF and an asymmetric encryption scheme safe for IND-CPA. This scheme
is really inefficient as it uses public key cryptography to simulate symmetric key cryptography
whereas in reality protocols use public key cryptography to safely exchange a symmetric key and
after that use symmetric key cryptography as encryptions are much faster to compute in the
symmetric case. However the existence of this algorithm allows us to prove that:

Proposition 4.23 If there exist an asymmetric encryption scheme safe for IND-CPA and a dig-
ital signature scheme safe for UNF, then there exists a symmetric encryption scheme that is safe
for SYM-CPA.

80/229 Verimag — 2006 Laurent Mazaré
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Moreover, we later prove that N -PAT-SYM-CPA is equivalent to SYM-CPA for any integer N .
This allows us to deduce the existence of a symmetric encryption scheme safe for N -PAT-SYM-
CPA under the (reasonable) hypothesis that there exists an IND-CPA encryption scheme and an
UNF signature scheme.

Let (KGa, Ea,Da) be an asymmetric encryption scheme that is safe for IND-CPA. Let
(KGg,Sg,Vg) be a digital signature scheme that is safe for UNF. Then the symmetric encryp-
tion scheme (KGs, Es,Ds) is build by combining these two primitives in the following way: the
key generation algorithm uses KGa and KGg to generate a pair of asymmetric keys and a pair of
signature keys. The symmetric key is constituted by the pairing of these two key pairs.

Algorithm KGs(η) :
(pk, sk) := KGa(η)
(sik, vk) := KGg(η)
return (pk, sk, sik, vk)

The encryption of a bit-string bs is obtained by concatenation of the encryption bs1 of bs using
the asymmetric encryption scheme and the signature of bs1. The encryption provides the secrecy
and the signature provides the authentication of the symmetric encryption.

Algorithm Es(bs, (pk, sk, sik, vk)) :
bs1 := Ea(bs, pk)
bs2 := S(bs1, sik)
return (bs1, bs2)

The decryption algorithm is designed in order to check that the signature is correct. In this case,
it decrypts the message.

Algorithm Ds((bs1, bs2), (pk, sk, sik, vk)) :
if V(bs1, bs2, vk) then return Da(bs1, sk)
else return ⊥

The first thing one wants to verify on our algorithm is that for any bit-string bs and any symmetric
key k = (pk, sk, sik, vk) then Ds(Es(bs, k), k) returns bs. It is easy to see that this property is
verified.

Now we want to check that our new symmetric encryption scheme is safe for SYM-CPA. Let
A be an adversary against SYM-CPA. We want to prove that the advantage of A is negligible.
This is done by building some adversaries against IND-CPA and UNF using A. We first build an
adversary B against IND-CPA (for the asymmetric encryption scheme) that uses A such that:

Adv(η)(Θ;F ;VIND)
A = Adv(η)IND−CPAB

As the asymmetric encryption scheme used here is supposed safe for IND-CPA, the advantage of
B is negligible and so the advantage of A against the indistinguishability part is also negligible.
Let us make precise the construction of adversary B. This adversary has access to two oracles, O1

is the left-right encryption oracle and O2 is the public key oracle.

Adversary B(η)/O1,O2 :
(sik, vk) := KGg(η)
out := A(η)/λ(bs0, bs1).bs := O1(bsb);

return (bs,Sg(bs, sik))
return out

The experiments involving A against SYM-CPA/IND and B against IND-CPA are equivalent and
PrRand is the same in both criteria. Thus the advantages of A and B are equal.

To deal with the UNF part of the symmetric criterion, we introduce an adversary C against
UNF (for the signature scheme) that also uses A such that:

Adv(η)(Θ;F ;VUNF )
A = Adv(η)UNFC + f(η)
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Where f is a negligible function. As the digital signature scheme used here is supposed safe for
UNF, the advantage of C is negligible and so the advantage of A against the unforgeable part is
also negligible. Let us describe the construction of adversary C. This adversary can query two
oracles, O1 is the signing oracle and O2 is the verification key oracle.

Adversary C(η)/O1,O2 :
(pk, sk) := KGa(η)
b
R← [0, 1]

out := A(η)/λ(bs0, bs1).bs := Ea(bsb, pk);
return (bs,O1(bs))

return out

The experiments involving A against SYM-CPA/UNF and C against UNF are equivalent.
Furthermore, PrRandSYM−CPA/UNF ≤ PrRandUNF thus as PrRandUNF is negligible,
PrRandSYM−CPA/UNF is also negligible. Thus the advantages of A and C are equal up to a
negligible function.

As the advantages of A against the indistinguishability part and the unforgeable part are
negligible, the advantage of A against SYM-CPA is negligible. Our new encryption scheme is safe
for SYM-CPA.

4.5.4 Cryptographic Library: N-PASS

Criterion N -PASS is a mix of previous criteria: N -PAT-IND-CCA, N -UNF and N -SYM-CPA. It
is used to verify safety of a whole cryptographic library that contains an asymmetric encryption
scheme, a symmetric encryption scheme and a digital signature scheme. As this criterion combines
the three previous ones, N signature, symmetric and asymmetric keys are generated as long as a
single challenge bit b. The adversary can access oracles he was granted in the previous criteria
(left-right encryption, public key and decryption for the asymmetric scheme) and can win either
by deducing the value of b, by forging a fresh encryption with a challenge symmetric key or by
forging a fresh signature using a challenge signature key.

Patterns

In this section, we define general patterns, general patterns are an extension of asymmetric patterns
and symmetric patterns. Authorized operations are asymmetric encryption, symmetric encryption,
digital signature and concatenation. There are also three different types of pattern variables: [i]a

asks for the inclusion of the ith secret key, [i]s for the inclusion of the ith symmetric key and [i]g

for the ith verification key.

pat ::= 〈pat, pat〉 | bs
| [i]a | [i]s | [i]g

| {pat}abs | {pat}a[i] asymmetric encryption
| {pat}sbs | {pat}s[i] symmetric encryption

| {pat}gbs | {pat}
g
[i] digital signature

The concr algorithm is once more extended in order to handle general patterns. Note that this
concr algorithm could have been used for asymmetric patterns and symmetric patterns if we
rename pattern variables ([i]a → [i] and [i]s → [i] respectively).

Algorithm concr(pat, θ) :
match pat with

bs→ return bs
[i]a → return skiθ
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[i]s → return kiθ
[i]g → return sikiθ
〈p1, p2〉 → return concr(p1, θ) · concr(p2, θ)
{p}a[i] → return Ea(concr(p, θ), pkiθ)
{p}s[i] → return Es(concr(p, θ), kiθ)
{p}g[i] → return S(concr(p, θ), sikiθ)
{p}abs → return Ea(concr(p, θ), bs)
{p}sbs → return Es(concr(p, θ), bs)
{p}gbs → return S(concr(p, θ), bs)

endmatch

The acyclicity condition still holds on both primitives. However, we authorize patterns using
symmetric keys and signature keys when accessing left-right oracles from the asymmetric part.
Hence signatures, signature keys, symmetric encryptions and symmetric keys can be used under
asymmetric encryptions but the converse is forbidden. We also authorize signature and signature
keys to appear under symmetric encryptions.

Oracles and Criterion

Criterion N -PASS applies on a cryptographic library CL which has to contain an asymmetric
encryption scheme (KGa, Ea,Da), a symmetric encryption scheme (KGs, Es,Ds) and a digital
signature scheme (KGg,Sg,Vg). The criterion is defined as (Θ;F ;V ). Algorithm Θ generates a
challenge bit b, N pairs of asymmetric keys using KGa which are stored in θ linked to names
(pki, ski), N symmetric keys using KGs which names are ki and N pairs of signature keys which
names are (siki, vki). Memory is also created for every key using names mema

i , mem
s
i and memg

i .

Algorithm Θ(η) :
θ := []
bθ

R← [0, 1]
for i from 1 to N

(pkiθ, skiθ) := KGa(η)
mema

i θ := []
kiθ := KGs(η)
mems

i θ := []
(sikiθ, vkiθ) := KGg(η)
memg

i θ := []
endfor

Meta-oracle F contains all the oracles described before. Let us recall informally what they do:

1. ELRai is the left-right encryption oracle for asymmetric encryption.

2. Di is the decryption oracle for asymmetric encryption.

3. PKi returns the bit-string value of public key pki.

4. SIGNi is the signature oracle.

5. V Ki returns the bit-string value of public verification key vki.

6. ELRsi is the left-right encryption oracle for symmetric encryption.

Multiple verifiers are used to check the answer of the adversary. These verifiers are the same
as the one given above:

1. VIND checks that the adversary deduced the bit b.
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2. V gUNF,i checks that the output of the adversary is a valid signature using vki that has not
been produced by SIGNi.

3. V sUNF,i checks that the output is a valid symmetric encryption using ki that has not been
produced by ELRsi

A cryptographic library is safe for N -PASS if the advantage of any adversary against the
criterion where the cryptographic primitives are implemented using CL, is negligible.

Proposition 4.24 Let CL be a cryptographic library that contains an asymmetric encryption
scheme AE, a symmetric encryption scheme SE and a digital signature scheme SS. If CL is safe
for N -PASS, then AE is safe for IND-CCA, SE is safe for SYM-CPA and SS is safe for UNF.

Proof: This proof is close to previously done ones. If we consider an adversary A against one
of the sub-criteria, IND-CCA for example, then A can be used against N -PASS with the same
advantage (provided that N is greater or equal to 1). Hence this safety implication is immediate.

The challenge bit b is common to symmetric and asymmetric encryptions, thus it is non trivial
to prove that IND-CCA, UNF and SYM-CPA are equivalent to N -PASS-CCA. For this reason,
we introduce criterion partition theorems which prove joint security using security of each of the
primitives.
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In this chapter, we present the criterion partition theorem. This theorem allows one to prove
safety of a criterion γ under the condition that a sub-criterion of γ and an indistinguishability
criterion derived from γ are safe. As the proof of this theorem is quite complicated, we first
illustrate how things work on a simple example. This example consists in proving the equivalence
between the 2-PAT-IND-CPA criterion and IND-CPA. Then two different versions of the criterion
partition theorem are presented. Application of these theorems is afterwards illustrated on the
security criteria that we introduced in the previous chapter.

5.1 Example of Partition

In this section, we detail the application of the partition theorem on a simple but non-trivial
example. As we are interested in checking safety of an asymmetric encryption scheme, let AE
be such an encryption scheme composed by the key generation algorithm KG, the encryption
algorithm E and the decryption algorithm D.

5.1.1 The 2-KDM-IND-CPA Criterion

The 2-KDM-IND-CPA criterion is an extension of IND-CPA using key dependent messages as
presented in section 4.5.1. In this criterion, two keys are generated along with the challenge bit b.
These keys are denoted by (pk1, sk1) and (pk2, sk2). The challenge generator Θ is defined by:
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Algorithm Θ(η) :
θ := []
bθ

R← [0, 1]
(pk1θ, sk1θ) := KG(η)
(pk2θ, sk2θ) := KG(η)

The adversary has to deduce the value of b. For this purpose, he has access to two oracles for each
key pair: a public key oracle and a left-right encryption oracle. The particularity of this criterion
is that the left-right encryption oracle takes as argument a pair of functions (f0, f1) instead of a
pair of bit-string. These functions are represented by two PRTM.

Oracle ELRi((f0, f1), θ) :
bs := fbθ(pk1θ, sk1θ, pk2θ, sk2θ)
return Ea(bs, pkiθ)

For the sake of simplicity, this oracle does not explicitly verify that f1 and f2 return bit-strings of
equal length. We have an acyclicity hypothesis: ELRi can only use pkjθ and skjθ if i < j. Thus,
arguments of ELR2 cannot use any pkiθ or skiθ and arguments of ELR1 can only use pk2θ and
sk2θ. With this restriction, oracle ELR1 and ELR2 can be detailed.

Oracle ELR1((f0, f1), θ) :
bs := fbθ(pk2θ, sk2θ)
return Ea(bs, pk1θ)

Oracle ELR2((f0, f1), θ) :
bs := fbθ()
return Ea(bs, pk2θ)

Oracles giving access to the public keys are implemented by:

Oracle PKi(bs, θ) :
return pkiθ

The verifier V only has to check that the adversary correctly guessed the value of bit b. Formally,
we have as usual that V (bs, θ) = return (bs = bθ). Criterion 2-KDM-IND-CPA is denoted by
γ = (Θ;PK1, PK2, ELR1, ELR2;V ). It is clear that it is possible from an adversary against
IND-CPA to build an adversary against criterion γ, this justifies the following proposition.

Proposition 5.1 If an asymmetric encryption scheme AE is safe for 2-KDM-IND-CPA then AE
is safe for IND-CPA.

Proof: Let A be an adversary against IND-CPA. Adversary B is built from A by using the
first oracle of B (denoted by O1 which returns pk1θ) and the third oracle of B (corresponding to
ELR1). The only slight problem is that A submits bit-string to its left-right oracle whereas B has
to submit functions. Hence λ().bs denotes the function that takes no arguments and returns bs.

Adversary B(η)/O1,O2,O3,O4:
bs := A(η)/O1,

λ〈bs0, bs1〉.O3((λ().bs0, λ().bs1))
return bs

Let γ′ denote criterion IND-CPA. The game involving A against γ′ and B against γ are equivalent.
Hence,

Pr[Gγ′

A = true] = Pr[Gγ
B = true]
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Moreover both criteria consist in guessing the value of a randomly generated bit b, so the two
PrRand are equal to 1/2. Thus, we get that the advantage of A against γ′ is equal to the
advantage of B against γ. If AE is safe for 2-KDM-IND-CPA, then the advantage of B against γ
is p-negligible and so is the advantage of A against γ′. Therefore AE is also safe for IND-CPA.

Our objective in this section is to prove the converse of this proposition.

5.1.2 Reducing to IND-CPA

In this subsection, we give a proof of the following result:

Proposition 5.2 If an asymmetric encryption scheme AE is safe for IND-CPA then AE is safe
for 2-KDM-IND-CPA.

The proof of this result is non-trivial. We use a proof technique that is generalized under the name
“partition theorem” in the rest of this chapter. Let A be an adversary against γ (i.e. 2-KDM-
IND-CPA). The usual method to prove this kind of implication is to build an adversary A′ against
IND-CPA whose advantage would bound the advantage of A. Hence, if the encryption scheme is
safe for IND-CPA, the advantage of A′ is p-negligible and so is the advantage of A. As this is true
for any adversary A, it is possible to conclude that the encryption scheme is safe for γ. However,
in our situation designing the adversary A′ is a difficult task. A simple idea is to use the challenge
key of A′ for key pair (pk2, sk2) and to generate two other key pairs inside A′ in order to answer
queries that A makes to oracle ELR2. A bit b′ is also generated in order to answer such queries
as the challenge bit b is (of course) not known to A′. Adversary A′ is formally described by:

Adversary A′(η)/O1,O2:
b′

R← [0, 1]
(pk′2, sk

′
2) := KG(η)

(pk1, sk1) := KG(η)
bs := A(η)/λbs.pk1,

O1,
λ(f0, f1).E(fb′(pk′2, sk′2), pk1)
λ(f0, f1).O2(f0(), f1()),

return bs

Where O1 is the public-key oracle and O2 is the left-right encrytion oracle. Adversary A′ simulates
A confronted to decorrelated oracles, queries made by A to his first left-right oracle are not
answered using the right bit b and the right key pair (pk2, sk2). The advantage of A′ cannot be
compared directly to the advantage of A. For this reason, we introduce a new adversary B against
criterion IND-CPA. The intuition is that whenever the challenge bit b′′ of adversary B is equal to
1, the game involving B is equivalent to the game involving A against γ whereas when b′′ equals
0, the game involving B is equivalent to the game involving A′ against IND-CPA. Adversary B
generates two challenge bits b and b′ and two key pairs (pk2, sk2) and (pk′2, sk

′
2). In order to answer

queries made by A to oracles related to the first key pair, B uses bit b and key pair (pk2, sk2).
For queries made by A to oracles related to the second key pair, B forwards queries for the public
key to its public key oracle, queries (f0, f1) to the left-right encryption oracle are converted to
queries of the form 〈fb′(pk′2, sk′2), fb(pk2, sk2)〉. Thus according to the value of its challenge bit b′′,
the game involving B simulates either the game involving A′ or the game involving A. Finally, if
A guesses the value of bit b, B answers 1 as A has better chances to win with non decorrelated
oracles, whereas if A fails, B assumes that A was confronted to decorrelated oracles and returns
0.

Adversary B(η)/O1,O2:
b
R← [0, 1]

b′
R← [0, 1]

(pk2, sk2) := KG(η)
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(pk′2, sk
′
2) := KG(η)

bs := A(η)/O1,
λbs.pk2,
λ(f0, f1).O2(〈fb′(pk′2, sk′2), fb(pk2, sk2)〉)
λ(f0, f1).E(fb(), pk2),

return bs = b

Let γ′ denote criterion IND-CPA. The game involving B in the case where its challenge bit is equal
to i is denoted by Gγ′

B |b′′θ = i (by abuse of notation, the challenge bit of B in γ′ is denoted by
b′′ instead of b, the challenge key pair is denoted by (pk1, sk1)). Then we describe the different
games to put the focus on their equivalence.

Game Gγ′

B (η)|b′′θ = 1:
(pk1, sk1) := KG(η)
b
R← [0, 1]

b′
R← [0, 1]

(pk2, sk2) := KG(η)
(pk′2, sk

′
2) := KG(η)

bs := A(η)/λbs.pk1,
λbs.pk2,
λ(f0, f1).E(fb(pk2, sk2), pk1),
λ(f0, f1).E(fb(), pk2)

return bs = b

Game Gγ
A(η):

b
R← [0, 1]

(pk1, sk1) := KG(η)
(pk2, sk2) := KG(η)
bs:=A(η)/λbs.pk1,

λbs.pk2,
λ(f0, f1).E(fb(pk2, sk2), pk1),
λ(f0, f1).E(fb(), pk2)

return bs = b

Thus as the two games presented here are equivalent, we get that:

Pr[Gγ′

B (η) = true|b′′θ = 1] = Pr[Gγ
A(η) = true]

In a very similar way, when considering the case b′′ = 0, it is easy to obtain that:

Pr[Gγ′

B (η) = true|b′′θ = 0] = Pr[Gγ′

A′(η) = true]

Thus, by applying proposition 4.2 the advantage of B is given by:

Advγ
′

B (η) = Pr[Gγ
A(η) = true]− Pr[Gγ′

A′(η) = true]

Criteria γ and γ′ are both indistinguishability criteria, hence PrRandγ and PrRandγ
′

are both
equal to 1/2. Thus, we get that:

Advγ
′

B (η) = Pr[Gγ
A(η) = true]− PrRandγ

−
(
Pr[Gγ′

A′(η) = true]− PrRandγ
′)

The advantages of the three adversaries A, A′ and B can now be related by:

AdvγA(η) = 2Advγ
′

B (η) + Advγ
′

A′(η)

This relation allows us to conclude. If AE is safe for IND-CPA, then the advantages of B and A′
are p-negligible. So the advantage of A is also p-negligible. Thus, AE is safe for 2-KDM-PAT-
IND-CPA.

5.2 Simplified Partition Theorem

Consider a criterion γ = (Θ1,Θ2;F1, F2;V1), composed of two challenge generators Θ1 and Θ2,
two oracles Fi, and a verifier V1 (which can represent multiple verifiers). Assume that oracle F1

and verifier V1 do not depend on θ2. Because of these assumptions, it is possible to define with
a slight abuse of notation a criterion γ1 = (Θ1;F1;V1). We are going to relate the advantages
against γ and γ1. To do so, let us consider the game Gγ

A(η) of an adversary A against γ:
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Game Gγ
A(η):

θ1:=Θ1(η)
θ2:=Θ2(η)
bs:=A(η)/λs.F1(s, θ1),

λs.F2(s, θ1, θ2)
return V1(bs, θ1)

Using A as a sub-routine, we build an adversary A′ that randomly generates θ′1 and θ2 in order
to answer queries made by A to his second oracle:

Adversary A′(η)/O1:
θ′1:=Θ1(η)
θ2:=Θ2(η)
bs:=A(η)/O1,

λs.F2(s, θ′1, θ2)
return bs

Adversary A′ plays against γ1. He tries to imitate the behavior of A except that A′ computes
himself the answer of queries to the second oracle of A (and most probably computes wrong
answers). Therefore, we can consider the game Gγ1

A′(η) given by:

Game Gγ1
A′(η):

θ1:=Θ1(η)
θ′1:=Θ1(η)
θ2:=Θ2(η)
s:=A(η)/λs.F1(s, θ1),

λs.F2(s, θ′1, θ2)
return V1(s, θ1)

In this game, A is confronted to decorrelated oracles. When applying the theorem, one wants to
bound the advantage of A by a function using the advantage of A′. For this purpose, our aim is
to provide a bound on:

Pr[Gγ
A(η) = true]− Pr[Gγ1

A′(η) = true]

To do so, we construct an adversary B that tries to distinguish game Gγ
A(η) and game Gγ1

A′(η),
i.e. B tries to distinguish the case where A uses correlated oracles (i.e. the same θ1 and θ2 are
used by F1 and F2, F1(., θ1) and F2(., θ1, θ2)) from the case where A uses decorrelated oracles (i.e.
θ1 is used by F1 and a different θ′1 with θ2 is used by F2, F1(., θ1) and F2(., θ′1, θ2) see figure 5.1).
That is, we would like to define a new indistinguishability criterion γ2 that uses a challenge bit b
and a distinguisher B such that the following equations hold:

Pr[Gγ2
B = true | bθ = 1] = Pr[Gγ

A(η) = true] (5.1)

Pr[Gγ2
B = true | bθ = 0] = Pr[Gγ1

A′(η) = true] (5.2)

Indeed, these equations allow us to derive the following bound:

Pr[Gγ
A(η) = true]− Pr[Gγ1

A′(η) = true] = Advγ2B
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Figure 5.1: Correlated and Decorrelated Oracles

Construction of the Distinguisher In the following, we give a method that tells us how to
construct the indistinguishability criterion γ2 and the adversary B. To do so, we need the follow-
ing assumption: there exist three probabilistic random functions (implementable using PRTM)
f , g and f ′ such that oracle F2’s implementation consists of two parts: λs.f(g(s, θ1), θ2) and
λs.f ′(s, θ2). The first part depends on both θ1 and θ2 whereas the second depends only on θ2.

The idea when introducing two parts for oracle F2 is to separate the oracles contained in F2

that depend really on both θ1 and θ2 (these oracles are placed in f(g(...))) from the oracles that
do not depend on θ1 (placed in f ′). Given F2, there are multiple possible choices for f , g and f ′

(for example, a choice that is always possible is to take an empty f ′, g(s, θ1) returns both s and
θ1 and f is F2). However, different choices lead to different partitions and some choices can lead
to non-interesting partitions.

Adversary B plays against an indistinguishability criterion. He has access to two oracles: Ô1

is implemented by the left-right oracle f ◦ LRb defined by f ◦ LRb(〈m0,m1〉, θ2) = f(mb, θ2) and
Ô2 is simply implemented by f ′. Notice now that we have the following equations:

f ◦ LRb(〈g(s, θ′1), g(s, θ1)〉) = f(g(s, θ1), θ2), if b = 1
f ◦ LRb(〈g(s, θ′1), g(s, θ1)〉) = f(g(s, θ′1), θ2), if b = 0

The first line corresponds to the f part of F2(s, θ1, θ2) whereas the second corresponds to
F2(s, θ′1, θ2). More formally, our γ2 criterion is given by γ2 = (b,Θ2; f ◦ LRb, f ′; vb), where vb
just checks that the bit returned by the adversary equals b, i.e. vb(bs, θ) = return (bs = bθ).

We are now ready to give a distinguisher B such that equation (5.1) and equation (5.2) hold:

Adversary B(η)/Ô1, Ô2:
θ1:=Θ1(η)
θ′1:=Θ1(η)
s:=A(η)/λs.F1(s, θ1), // oracle F1

λs.Ô1(〈g(s, θ′1), g(s, θ1)〉), // part f of oracle F2

Ô2 // part f ′ of oracle F2

b̂ := V1(s, θ1)
return b̂

Thus, B uses A as a sub-routine. Recall that A may query three oracles: F1, part f of oracle F2

and part f ′ of oracle F2 while B may query the left-right oracle f ◦LRb and f ′. Therefore, B uses
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Θ1 to generate θ1 and θ′1. It is important to notice that θ1 and θ′1 are generated independently.
Then, B uses A as a sub-routine using λs.F1(s, θ) for A’s first oracle, and the two functions
λs.Ô1(〈g(s, θ′1), g(s, θ1)〉) and f ′ for F2.

We can now describe the game corresponding to B and γ2:

Game Gγ2
B (η):

b
R←[0, 1]

θ2:=Θ2(η)
b̂ :=B(η)/λs.f(LRb(s), θ2),

λs.f ′(s, θ2)
return vb(b̂)

Comparing the Games Let us now check that equations (5.1) and (5.2) are verified. To do
so, assume first that b = 1. Then, Game Gγ2

B |b = 1 is obtained by replacing the definition of B
within the game:

Game Gγ2
B (η)|b = 1:

θ2:=Θ2(η)
θ1:=Θ1(η)
θ′1:=Θ1(η)
s:=A(η)/λs.F1(s, θ1)

λs.f(g(s, θ1), θ2),
λs.f ′(s, θ2)

b̂:=V1(s, θ1)
return v1(b̂)

After the hypothesis we made about the decomposition of oracle F2, and when detailing B,
this game can be rewritten as follows, and rigorously compared to the game played by adversary
A against criterion γ:

Game Gγ2
B (η)|bθ = 1:

θ1:=Θ1(η)
θ′1:=Θ1(η)
θ2:=Θ2(η)
s :=A(η)/λs.F1(s, θ1),

λs.F2(s, θ1, θ2)
b̂:=V1(s, θ1)
return v1(b̂)

Game Gγ
A(η):

θ1:=Θ1(η)
θ2:=Θ2(η)
s:=A(η)/λs.F1(s, θ1),

λs.F2(s, θ1, θ2)
return V1(s, θ1)

The difference between these games lies in the generation of challenge θ′1. However, this can be
taken into account in the calculus of B’s probability to win, i.e. to output 1. Let p = Pr[Gγ2

B (η) =
true|bθ = 1].

p = Pr[θ1 := Θ1, θ
′
1 := Θ1, θ2 := Θ2, s := A/F1, F2 : V1(s, θ1)]

=
∑

θ̃1:=Θ1

Pr[θ1 := Θ1, θ
′
1 := Θ1, θ2 := Θ2, s := A/F1, F2 : V1(s, θ1)|θ′1 = θ̃1]

.P r[θ̃1 := Θ1]

=
∑

θ̃1:=Θ1

Pr[θ1 := Θ1, θ2 := Θ2, s := A/F1, F2 : V1(s, θ1)].P r[θ̃1 := Θ1]

since the execution of A does not depend on θ′1.

p = Pr[θ1 := Θ1, θ2 := Θ2, s := A/F1, F2 : V1(s, θ1)].1
= Pr[Gγ

A(η) = true]
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We now compare B’s game when b = 0 and A′’s, after having detailed B’s behavior for easier
comparison.

Game Gγ2
B (η)|bθ = 0:

θ2:=Θ2(η)
θ1:=Θ1(η)
θ′1:=Θ1(η)
s :=A(η)/λs.F1(s, θ1),

λs.F2(s, θ′1, θ2)
b̂:=V1(s, θ1)
return v0(b̂)

Game Gγ1
A′(η):

θ1:=Θ1(η)
θ′1:=Θ1(η)
θ2:=Θ2(η)
s:=A(η)/λs.F1(s, θ1),

λs.F2(s, θ′1, θ2)
return V1(s, θ1)

It is easy to see that, this time, the games played are the same. Adversary B wins anytime A′
loses, and thus:

Pr[Gγ1
A′(η) = false] = Pr[Gγ2

B (η) = true|bθ = 0]

We can therefore compute our distinguisher’s advantage :

Advγ2B (η) = 2
(
Pr[Gγ2

B (η) = true]− PrRandγ2
)

= 2Pr[Gγ2
B (η) = true|bθ = 1]Pr[b = 1] +

2Pr[Gγ2
B (η) = true|bθ = 0]Pr[b = 0]− 2PrRandγ2

= Pr[Gγ
A(η) = true] + Pr[Gγ1

A′(η) = false]− 1
since PrRandγ2 = 1

2 , considering it is a as coin flip
= Pr[Gγ

A(η) = true]− Pr[Gγ1
A′(η) = true]

as criteria γ and γ1 have the same verifier V1, PrRandγ = PrRandγ1 so
= Pr[Gγ

A(η) = true]− PrRandγ

+PrRandγ1 − Pr[Gγ1
A′(η) = true]

=
1
2
AdvγA(η)− 1

2
Advγ1A′(η)

Let us now sum up what we have proved, this is done in the simplified partition theorem. This
theorem is simplified as the verifier can only depend on the output of Θ1.

Theorem 5.1 (Criterion Partition) Let γ be the criterion (Θ1,Θ2;F1, F2;V1) where :

1. V1 and F1 only depend on the challenge generated by Θ1, denoted by θ1.

2. There exist some PRTM f , f ′ and g such that F2 is constituted of two parts: λs.f(g(s, θ1), θ2)
and λs.f ′(s, θ2)

Then, for any adversary A against criterion γ, there exist two adversaries B and A′, such that :

∀η,AdvγA(η) = 2Advγ2B (η) + Advγ1A′(η)

where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) is an indistinguishability criterion and γ1 = (Θ1;F1;V1).

Multiple Verifiers A quick generalization of this theorem consists in allowing sets of verifiers
for V1 instead of just one verifier. Let us verify that the theorem is still true. Let γ be the criterion
(Θ1,Θ2;F1, F2;V 1

1 , . . . , V
α
1 ) where :

1. For any i in [1, α], V i1 and F1 only depend on the challenge generated by Θ1, denoted by θ1.

2. There exist some PRTM f , f ′ and g such that F2 is constituted of two parts: λs.f(g(s, θ1), θ2)
and λs.f ′(s, θ2)
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5.3. Partition Theorem

Let γi denote criterion (Θ1,Θ2;F1, F2;V i1 ) and A be an adversary against criterion γ. The advan-
tage of A is defined by:

AdvγA(η) = max
1≤i≤α

Advγ
i

A

Then theorem 5.1 can be applied to each criteria γi. Hence for each i, there exist two adversaries
Bi and A′i, such that:

∀η,AdvγiA (η) = 2Advγ2Bi(η) + Advγ
i
1
A′
i
(η)

where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) does not depend on i and γ1 = (Θ1;F1;V i1 ).
The important point here is that by construction, adversary A′i does not depend on i. Let

us call A′ this adversary. Hence by applying the max operation, the advantage of A against γ is
bounded by:

∀η,AdvγA(η) = 2 max
1≤i≤α

(
Advγ2Bi(η)

)
+ Advγ1A′(η)

Let B be the adversary Bi whose advantage is the largest of the advantages of all the Bi. Then
we get:

∀η,AdvγA(η) = 2Advγ2B (η) + Advγ1A′(η)

Therefore, theorem 5.1 is still true when considering that V1 is a set of verifiers instead of just a
verifier.

Another generalization is to consider that in the set of verifiers, some of them depend only on
θ1 and some of them depend only on θ2. In this case, the result has to be modified and this leads
to the (not-simplified) partition theorem.

5.3 Partition Theorem

We can generalize the partition theorem to the case where the verifier V has two parts V1 and V2

such that Vi only depends on challenge θi generated by Θi. The advantage related to the part of
the criterion using V1 can be bounded by the simplified partition theorem whereas the advantage
related to V2 has a very simple (yet interesting) bound. This theorem is useful when considering
criteria like N -SYM-CPA where there is a common verifier (that checks the challenge bit b in
N -SYM-CPA) and some challenge related verifiers (that check for forgeability in N -SYM-CPA).

Theorem 5.2 (Extended Criterion Partition) Let γ be the criterion (Θ1,Θ2;F1, F2;V1, V2)
where :

1. V1 and F1 only depend on the challenge generated by Θ1, denoted by θ1. V2 only depends on
θ2 (challenge generated by Θ2).

2. There exist some PRTM f , f ′ and g such that F2 is constituted of two parts: λs.f(g(s, θ1), θ2)
and λs.f ′(s, θ2)

Then, for any adversary A against criterion γ, there exist three adversaries B, A′ and A′′, such
that :

∀η,AdvγA(η) = 2Advγ2B (η) + Advγ1A′(η) + Advγ3A′′(η)

where γ3 = (Θ2; f, f ′;V2) is the criterion related to V2, γ2 = (Θ2, b; f ◦ LRb, f ′; vb) is an indistin-
guishability criterion and γ1 = (Θ1;F1;V1) is the main criterion.

Proof: Let A be an adversary against γ. Even if V1 and V2 are themselves sets of verifiers, the
advantage of A against γ is given by:

AdvγA(η) = max
(
Advγ,V1

A (η),Advγ,V2
A (η)

)
When considering the advantage of A against verifier V1, theorem 5.1 applies. Hence there exists
an adversary A′ against γ1 and an adversary B against γ2 such that:

AdvγA(η) = max
(
2Advγ2B (η) + Advγ1A′(η),Advγ,V2

A (η)
)
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Let us now define an adversary A′′ against criterion γ3 that also uses A as a sub-routine. Adversary
A′ simulates the oracles related to Θ1 by generating its own challenge.

Adversary A′′(η)/ O1,O2:
θ1:=Θ1(η)
bs:=A(η)/λs.F1(s, θ1), // oracle F1

λs.O1(g(s, θ1)), // part f of oracle F2

O2 // part f ′ of oracle F2

return bs

Then the game that involves A against γ, V2 and the game that involves A′′ against γ3 are the
same. Moreover, the PrRand of these two criteria are identical. Hence,

Advγ,V2
A (η) = Advγ3A′′(η)

Therefore the advantage of A against γ is given by:

AdvγA(η) = max
(
2Advγ2B (η) + Advγ1A′(η),Advγ3A′′(η)

)
The last step is easy to achieve. The advantage of A is either given by the first argument of the
max or by the second argument. Let us first consider that:

AdvγA(η) = 2Advγ2B (η) + Advγ1A′(η)

Then instead of using the A′′ defined above, we consider the adversary A′′ whose advantage is
null (such adversary exist according to the definition of PrRand). We get that:

AdvγA(η) = 2Advγ2B (η) + Advγ1A′(η) + Advγ3A′′(η)

In the other case, the advantage of A is equal to the advantage of A′′. Hence we use two adversaries
A′ and B whose advantages are null in order to get the same equality.

This theorem still holds when V1 and V2 are not verifiers but sets of verifiers.

5.4 Proving the Equivalence of Different Criteria

5.4.1 Proofs that do not use the Partition Theorem

In this section, we give the proofs for some results from previous sections. These proofs relate
different criteria but do not use the partition theorem introduced above. Instead, a direct argument
is used. The two first propositions we want to prove were stated in chapter 3.

Proposition 3.5 If an asymmetric encryption scheme is secure against IND-CCA, then it is also
secure against IND-CPA.

Let A be an adversary against IND-CPA. Then the game involving A against IND-CCA and
the game involving A against IND-CPA are equivalent as A does not call the decryption oracle.
So the probabilities of success are the same:

Pr[GIND−CCA
A (η) = true] = Pr[GIND−CPA

A (η) = true]

As both PrRand are equal to 1/2, A has the same advantage in both cases:

AdvIND−CCAA (η) = AdvIND−CPAA (η)

If the asymmetric encryption scheme used here is secure against IND-CCA, then the advantage
of A against IND-CCA is negligible and so is the advantage of A against IND-CPA. Thus, it is
possible to conclude that the encryption scheme is secure against IND-CPA.
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Proposition 3.6 If there exists an asymmetric encryption scheme secure against IND-CPA, then
there exists an asymmetric encryption scheme that is secure against IND-CPA but not secure
against IND-CCA.

Let AE be an asymmetric encryption scheme (KG, E ,D) secure against IND-CPA. Then it is
possible to create from AE an encryption scheme that is still secure against IND-CPA but which
is insecure against IND-CCA. We consider the encryption scheme AE ′ = (KG′, E ′,D′), where the
different components are defined by:

1. The key generation algorithm KG′ is the same as KG.

2. The encryption algorithm E ′ uses E and appends a random bit to the output of E .

Algorithm E ′(bs, pk) :
bs := E(bs, pk)
b′

R← [0, 1]
return bs.b′

3. The decryption algorithm D′ is defined in order to correctly decrypt cipher-texts produced
by E ′. This algorithm does not take the last bit value into account.

Algorithm D′(bs.b, sk) :
return D(bs, sk)

Then encryption scheme AE ′ is not secure against IND-CCA as it is possible to build an ad-
versary A which has a non-negligible advantage. This adversary submits the pair 〈0, 1〉 to his
encryption oracle. He receives the encryption E(b, pk) appended to a random bit b′. Then A
submits E(b, pk).b′′ where b′′ is the opposite of b′ to its decryption oracle. This bit-string has not
been produced by the encryption oracle hence the decryption oracle returns b and A is able to win
its challenge. Thus the advantage of A is 1 and AE ′ is not secure against IND-CCA.

Now let us verify that encryption schemeAE ′ is secure against IND-CPA. LetA be an adversary
against IND-CPA that uses AE ′. Then we build an adversary A′ against IND-CPA (but IND-CPA
for AE). This adversary uses A as a sub-routine and generates the random bit needed at the end
of encryptions.

Adversary A′(η)/O1,O2 :
bs := A/O1

λs.b′
R← [0, 1];

return O2(s).b′

return bs

Then the games involving A and A′ are the same, thus the advantages of A and A′ are also
the same. As AE is secure against IND-CPA, then the advantage of A is negligible and so is
the advantage of A′. Encryption scheme AE ′ is secure against IND-CPA and insecure against
IND-CCA.

5.4.2 Using the Partition Theorem

The partition theorem introduced above can be used in a wide variety of situations. As a first
example of its use, we consider the proposition that motivated the theorem. This proposition
states the equivalence between IND-CPA and 2-KDM-IND-CPA. This result was already proved
as an example of partition in section 5.1, however the partition theorem allows us to prove the
proposition without having to describe the different adversaries. These adversaries descriptions
are embedded in the proof of the theorem.
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Proposition 5.3 Let AE be an asymmetric encryption scheme. If AE is secure against IND-CPA
then AE is secure against 2-KDM-IND-CPA.

Proof: In this proof, we describe precisely how the partition theorem is applied. Further proofs
using the theorem will be made more quickly.

Let AE be an asymmetric encryption scheme composed of the key generation algorithm KG,
the encryption algorithm E and the decryption algorithm D.

Let γ denote criterion 2-KDM-IND-CPA and A be an adversary against γ. The verifier of
γ only depends on a single challenge: bit b, hence we use the simplified version of the partition
theorem (theorem 5.1). Two key pairs (pk1, sk1) and (pk2, sk2) are generated. The left-right
encryption oracle related to pk1 takes as argument functions that can use the values of pk2 and
sk2. Hence the idea is to generate key pair (pk1, sk1) in Θ2 and the other key pair in Θ1, thus the
oracle related to pk1 can use pk2 and sk2 whereas the oracle related to pk2 cannot use pk1 or sk1.
As challenge bit b is used by both left-right oracles, this bit is generated in Θ1. Let us consider
the partition of γ that is given by (Θ1,Θ2;F1, F2;V1) where:

1. Θ1 randomly generates a key pair (pk2, sk2) using KG, it also randomly samples the challenge
bit b. The output of Θ1 is denoted by θ1 in the following.

2. Θ2 randomly generates a key pair (pk1, sk1) using KG. The output of Θ2 is denoted by θ2
in the following.

3. F1 contains the oracles related to key pair (pk2, sk2). Acyclicity implies that F1 only depends
on θ1.

4. Oracle F2 contains the oracles related to key pair (pk1, sk1). Hence this oracle can be split
in two parts:

λs.f(g(s, θ1), θ2) and λs.f ′(s, θ2)

The f ′ part contains the public key oracle. Therefore f ′ only depends on θ2.

The other part is separated in two layers and is used for the left-right encryption oracle.
The g layer is submitted a pair of functions 〈f0, f1〉. It returns the result given by applying
function fb to the different keys from θ1. Thus this layer only depends on θ1 and is formally
defined by:

g(〈f0, f1〉, θ1) = fbθ1(pk2θ1, sk2θ1)

Layer f performs the encryption part:

Algorithm f(bs, θ2) :
out := E(bs, pk1θ2)
return out

Note that f takes a bit-string as argument and that it only depends on θ2.

5. Verifier V1 checks that the adversary correctly output the value of challenge bit b from θ1.
Hence V1 only depends on θ1.

Note that it is possible to place the public key oracle from F2 in the first part. However after
applying the theorem, this would lead to criteria that cannot be related to IND-CPA. The advan-
tage of adversaries against these new criteria is not negligible hence it is impossible to conclude
that the advantage of adversary A is negligible.

The partition described above is valid and theorem 5.1 can be applied. Thus there exist two
adversaries B and A′ such that:

∀η,AdvδNA (η) = 2Advγ2B (η) + Advγ1A′(η)

where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) is an indistinguishability criterion and γ1 = (Θ1;F1;V1).
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5.5. Relating our Security Criteria to Classical Ones

In criterion γ2, a key pair (pk, sk) is randomly generated along with a challenge bit b. The
adversary has access to an oracle f ′ that outputs a public key and to another oracle f ◦LRb that
performs left-right encryption. Finally, an adversary has to deduce the value of b to win its game.
Hence this criterion is exactly IND-CPA. As we assumed that AE is secure against IND-CPA, the
advantage of B is negligible.

Criterion γ1 is close to IND-CPA, however it is not exactly the same thing. A key pair and
a challenge bit are generated in both cases. The adversary still has access to a public key oracle
and has to find the value of the challenge bit. But the left-right encryption oracles are different:
in the case of IND-CPA, this oracle takes as input a pair of bit-strings whereas in the case of γ1,
it takes as argument a pair of functions (that are applied to zero arguments because of acyclicity).
Let C be an adversary against γ1, it is easy to design an adversary C′ against IND-CPA whose
advantage is the same:

Adversary C′(η)/OLR,OD,OPK :
d := C(η)/λ〈f0, f1〉.OLR

(
〈f0(), f1()〉

)
OD
OPK

return d

The games involving C′ against IND-CPA and C against γ1 are the same thus the advantages of
these two adversaries are equal. Hence security against IND-CPA implies security against γ1. We
suppose that AE is secure for IND-CPA, then it is secure for γ1 and the advantage of adversary
A′ is negligible.

Finally, we proved that the advantage of A is negligible for any adversary A. Therefore, it is
possible to conclude that AE is secure for 2-KDM-IND-CPA.

This example is used to show how a previous proof can be done using the partition theorem.
However it does not fully take advantage of the theorem as the partition technique is only applied
once. A typical use of the partition theorem is to break a criterion involving N keys into N
criteria using a single key. This can be used for example to relate N -PAT-IND-CCA to IND-CCA
as shown in the following section.

5.5 Relating our Security Criteria to Classical Ones

The aim of this section is to relate the different criteria that we introduced in section 4.5 to
classical criteria in provable cryptography. Classical criteria were introduced in chapter 3. For
this purpose, we use the partition theorems introduced previously in this chapter.

5.5.1 Asymmetric Encryption

Concerning asymmetric encryption schemes, we use the simplified partition theorem in order to
prove two different results. The first one states that an asymmetric encryption scheme is secure
against IND-CCA iff it is secure against N -PAT-IND-CCA (for N > 0). The second one relates
IND-CCA to cycle free KDM: an encryption scheme is secure against N -KDM-IND-CCA iff it is
secure against IND-CCA.

N-PAT-IND-CCA is Equivalent to IND-CCA

Using our partition theorem, we are interested in proving the following proposition.

Proposition 5.4 Let N be an integer. If an asymmetric encryption scheme AE is IND-CCA,
then AE is N -PAT-IND-CCA.

We want to establish first that an IND-CCA asymmetric encryption scheme turns out to be
an N -PAT-IND-CCA secure one. We use the criterion partition theorem on N -PAT-IND-CCA
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(denoted by δN ). We now consider δN = (Θ1,Θ2;F1, F2;V1), where the criterion partition has
been performed the following way:

• Θ1 randomly generates the challenge bit b and N − 1 pairs of matching public and secret
keys (pki, ski) for i between 2 and N along with their related memories (i.e. mutable fields).

• Θ2 randomly generates the first key pair (pk1, sk1) and the related mutable field mem1.

• F1 contains the oracles related to Θ1, i.e. ELRai , Di and PKi for i between 2 and N ; hence
as neither pk1 or sk1 can be asked to this oracle (because of acyclicity), F1 does not depend
on Θ2.

• F2 contains the oracles related to key pair 1, i.e. ELRa1 , D1 and PK1, it uses θ1 (generated
by Θ1) for the bit b and the different keys needed to fill in patterns.

• V1 compares the output to b, and therefore only depends on θ1.

This splitting complies with the first hypothesis of theorem 5.1. Let us then check whether the
second hypothesis holds. The decryption and public key oracles D1 and PK1 included in F2

only depend on θ2 (generated by Θ2), we place them in f ′. We let the encryption oracle be
λs.f(g(s, θ1), θ2) where g(〈pat0, pat1〉, θ1) = concr(patbθ1 , θ1) plays the role of a left-right oracle:
it uses the challenge bit b included in θ1 to select pattern patb, then this pattern is evaluated using
the concr function. Moreover, the acyclicity hypothesis implies that pattern variables related to
key pair (pk1, sk1) cannot occur in the patterns, hence the result of the application of the concr
function is a bit-string. The second layer f performs the encryption itself and stores the result in
mem1:

Algorithm f(bs, θ2) :
out := E(bs, pk1θ2)
mem1θ2 := out :: mem1θ2
return out

This is the original encryption oracle: the bit-string is encrypted and the result is stored in mem1.
The theorem can now be applied. It thus follows that for any adversary A against criterion

δN , there exist two adversaries B and A′, such that :

∀η,AdvδNA (η) = 2.Advγ2B (η) + Advγ1A′(η)

where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) and γ1 = (Θ1;F1;V1). In criterion γ2, the challenge generator
randomly produces a key pair (pk1, sk1) and a challenge bit b. The adversary has to guess the
value of bit b and can use three oracles: the left-right encryption oracle related to pk1, a decryption
oracle using sk1 (that does not work on outputs of the encryption oracle) and a public key oracle
that outputs pk1. Criterion γ2 is the classical IND-CCA criterion. In criterion γ1, the challenge
generator produces N − 1 key pairs, their relating memories and a bit b. The adversary also has
to guess the value of bit b and can use for each key a left-right encryption oracle, a decryption
oracle and a public key oracle. The left-right encryption oracle works on pairs of acyclic patterns,
hence γ1 is criterion δN−1.

∀η,AdvδNA (η) = 2.AdvIND−CCAB (η) + AdvδN−1
A′ (η)

An easy recursion on N gives us that for any adversary A, there exist an adversary A′ and N
adversaries B1 to BN such that:

AdvδNA (η) = 2.
N∑
i=1

AdvIND−CCABi (η) + Advδ0A′(η)

Criterion δ0 is composed of a challenge generator which randomly produces a bit b, no oracle and
to win, an adversary has to guess the value of b. Using proposition 4.6, we get that this advantage
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is negative (in fact, this advantage is 0 if we consider adversaries whose final output can only be
0 or 1). The advantage of A can now be bounded by:

AdvδNA (η) = 2.
N∑
i=1

AdvIND−CCABi (η)

The asymmetric encryption scheme used here is IND-CCA, so the advantage of any adversary
against IND-CCA is p-negligible. As the sum of a fixed number of p-negligible functions is
p-negligible, we have that the advantage of A is p-negligible. We can now conclude that the
asymmetric encryption scheme used here is also safe for N -PAT-IND-CCA.

Cycle Free N-KDM-IND-CCA is equivalent to IND-CCA

KDM security has been introduced in section 4.5.1. In this section, we prove that under the
hypotheses of acyclicity, security against N -KDM-IND-CCA is equivalent to security against IND-
CCA if N is a strictly positive integer. This is formalized by the next proposition.

Proposition 5.5 Let AE be an asymmetric encryption scheme. Then for any strictly positive
integer N , AE is secure against IND-CCA iff it is secure against N -KDM-IND-CCA.

Proof: Proposition 4.20 states that if AE is secure against N -KDM-IND-CCA, then it is secure
against N -PAT-IND-CCA. Moreover proposition 4.13 proves that if AE is secure against N -PAT-
IND-CCA then AE is secure from IND-CCA. Hence it is easy to conclude that if AE is secure
against N -KDM-IND-CCA then it secure against IND-CCA.

The converse is more interesting and we use the simplified partition theorem 5.1 to prove it. We
proceed using an induction over N . Let N be an integer and let AE be an asymmetric encryption
scheme that is secure against IND-CCA. Let δN denote criterion N -KDM-IND-CCA and A be an
adversary against δN . A possible partition of δN is (Θ1,Θ2;F1, F2;V1) where:

1. Challenge generator Θ1 randomly generates a bit b along with N − 1 key pairs (pk2, sk2) to
(pkN , skN ) (using the key generation algorithm from AE) and their related mutable fields
mem2 to memN . Substitution θ1 designates the output of Θ1.

2. Challenge generator Θ2 randomly generates a key pair (pk1, sk1) (using the key generation
algorithm from AE) and the related mutable field mem1. Substitution θ2 designates the
output of Θ2.

3. Oracle F1 contains all the oracles related to the N − 1 key pairs from θ1. The acyclicity
requirement prevents pk1 and sk1 from being used by functions submitted to these oracles,
F1 only depends on Θ1.

4. Oracle F2 contains the oracle related to key pair (pk1, sk1). Hence this oracle can be split
in two parts:

λs.f(g(s, θ1), θ2) and λs.f ′(s, θ2)

The f ′ part contains the decryption and public key oracles. Therefore f ′ only depends on
θ2.

The other part is separated in two layers and is used for the left-right encryption oracle.
The g layer is submitted a pair of functions 〈f0, f1〉. It returns the result given by applying
function fb to the different keys from θ1. Thus this layer only depends on θ1 and is formally
defined by:

g(〈f0, f1〉, θ1) = fb(pk2θ, sk2θ · · · pkNθ, skNθ)
Layer f performs the encryption part:

Algorithm f(bs, θ2) :
out := E(bs, pk1θ2)
mem1θ2 := out :: mem1θ2
return out
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Note that f takes bit-strings as arguments and that it only depends on θ2.

5. Verifier V1 checks that the adversary correctly guessed the value of b.

We have built a valid partition of criterion δN , thus the simplified version of the partition theorem
can be applied. Hence there exist an adversary B and an adversary A′ such that:

∀η,AdvδNA (η) = 2.Advγ2B (η) + Advγ1A′(η)

where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) is an indistinguishability criterion and γ1 = (Θ1;F1;V1).
In criterion γ2, a key pair (pk1, sk1) is randomly generated along with a challenge bit b. The

adversary has access to an oracle f ′ containing the public key and decryption oracles and to
another oracle f ◦ LRb that performs left-right encryption. Finally, an adversary has to deduce
the value of b to win its game. Hence this criterion is exactly IND-CCA. As we assumed that AE
is secure against IND-CCA, the advantage of B is p-negligible.

Criterion γ1 is constituted as follows: N−1 challenge key pairs and a random bit b are randomly
sampled. Then the adversary has access to the classical KDM oracles for these key pairs. Verifier
V1 checks that the adversary correctly guessed the value of the challenge bit b. Hence γ1 is criterion
δN−1.

Let us suppose that the encryption scheme is secure against (N − 1)-KDM-IND-CCA, then it
is secure for criterion γ1 and so the advantage of A′ is also p-negligible. In this case the advantage
of A is p-negligible and it is possible to conclude that AE is secure against N -KDM-IND-CCA.

A quick induction gives the awaited result: in criterion δ0, a random bit is generated and the
adversary has to guess its value without any oracle. Therefore, the advantage of any adversary
against δ0 is null and so is p-negligible. Encryption scheme AE is secure against 0-KDM-IND-CCA.
Moreover, if AE is secure against (N −1)-KDM-IND-CCA then it is secure against N -KDM-IND-
CCA. Therefore, for any N , AE is secure against N -KDM-IND-CCA.

An immediate corollary of this proposition is an extension of proposition 4.20: safety for N -
KDM-IND-CCA and safety for N -PAT-IND-CCA are equivalent.

Corollary 5.1 Let AE be an asymmetric encryption scheme and N and M be two strictly positive
integers. Then AE is secure against N -KDM-IND-CCA (with the acyclicity requirement) iff it is
secure against M -PAT-IND-CCA.

An important restriction of our results is that the number of challenge keys N is fixed and does not
depend on the security parameter η. Thus an interesting extension detailed in chapter 8 consists
in allowing a polynomial number of challenge keys.

5.5.2 Digital Signature

The third result that we want to prove in this section is related to digital signature. This result
says that a signature scheme that is secure in a single user setting (for the UNF criterion) is also
secure in the multi-user setting (i.e. criterion N -UNF).

Proposition 5.6 Let N be an integer. If a signature scheme SS is UNF, then SS is N -UNF.

There are two different ways to prove this result. As the different oracles do not share any
knowledge (e.g. there is no common challenge bit or no shared memory across oracles), it is
possible to perform the proof in a straightforward way without using our partition theorem. This
proof is done in the following subsection.

However, as the objective of this section is to illustrate the use of the extended criterion
partition theorem (theorem 5.2), it is also possible to use this result in order to prove the former
proposition. The extended version of the theorem is required here as the verifiers depend on all the
generated challenges. The main advantage of using the theorem in this case is that no adversary
has to be detailed. However although it applies, the partition theorem is not perfectly suited as
it creates an indistinguishability criterion.

Both cases use a digital signature scheme SS composed of a key generation algorithm KG, a
signing algorithm S and a verification algorithm V.
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Classical Proof

Oracles related to the different signature keys are totally decorrelated, hence it is possible to
simulate them perfectly. Let A be an adversary against N -UNF. Let i be an integer between 1
and N and Bi be N adversaries against UNF which use A as a subroutine. Oracles that Bi can
access are used for the ith key of A. Other keys are perfectly simulated using algorithms from SS.
Adversaries Bi can access one signature oracle denoted by O1 in the following and one verification
key oracle denoted by O2. Formal definition of Bi is given by the algorithm described thereafter.

Adversary Bi(η)/O1,O2:
for i from 1 to N

(siki, vki) := KG(η)
d := A(η)/λs.S(s, sik1)

λ().vk1

. . .
λs.O1(s)
λ().O2()
. . .

return d

Let us denote criterion N -UNF by γN . We also denote by γN , Vi the N -UNF criterion where Vi
is the only considered verifier. The game where B plays against γN , Vi is the same as the game
where Bi plays against UNF. Then the advantage of B is defined by:

AdvγNB (η) = max
1≤i≤n

AdvγN ,ViB (η)

= max
1≤i≤n

Advγ1Bi(η)

We suppose that the signature scheme is safe for UNF, hence the advantages of all the different
Bi are negligible. As there are only a fixed number of Bi, there is a common negligible bound to
the advantages of the Bi. Thus the advantage of B is negligible and SS is safe for N -UNF.

Proof Using the Partition Theorem

We use theorem 5.2 to prove the result. Let δN denote criterion N -UNF. We consider the following
partition of δN :

• Θ1 randomly generates key pair (sik1, vk1) using KG and the related memory memi.

• Θ2 randomly generates the other key pairs (sik2, vk2) to (sikN , vkN ) using KG as well as
their related memories mem2 to memN .

• F1 contains the signature oracle related to sik1.

• F2 contains the other signature oracles.

• V1 contains the verifier related to vk1

• V2 contains the other verifiers.

As F1 depends only on θ1 and F2 depends only on θ2, we consider that F2 is only composed of an
f ′ part (the f part is not required since F2 does not depend on θ1).

Applying theorem 5.2, we get that for any adversary A against δN , there exist three adversaries
B, A′ and A′′, such that:

∀η,AdvδNA (η) ≤ 2 ·Advγ2B (η) + Advγ1A′(η) + Advγ3A′′(η)
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Criterion γ3 = (Θ2; f ′;V2) is composed by a challenge generator that creates N−1 key pairs using
KG and their related memories. It contains the signature oracles for the previous keys. To win,
the adversary has to produce a fresh valid signature for vki where i ≥ 2. Hence this criterion
actually represents (N − 1)-UNF. In criterion γ2 = (Θ2, b; f ′; vb), an adversary has to guess the
value of bit b but none of the oracles use bit b, thus using proposition 4.7 the advantage of any
adversary is negative. Finally, γ1 = (Θ1;F1;V1) is a criterion where a key pair is generated (and
its related memory), there is a signing oracle and a verification key oracle for that key pair and
the adversary has to produce a valid fresh signature. Hence this is the classical UNF criterion.

AdvδNA (η) ≤ AdvUNFA′ (η) + AdvδN−1
A′′ (η)

By iterating this, we get that there exist N adversaries A1 to AN such that:

AdvδNA (η) ≤
N∑
i=1

AdvUNFAi (η)

If the signature scheme used here SS is safe for UNF, then the advantages of the different Ai are
p-negligible. Hence, the advantage of A is also p-negligible and signature scheme SS is safe for
N -UNF.

5.5.3 Symmetric Encryption

Using the partition theorem, it is possible to reduce criterion N -PAT-SYM-CPA to criterion IND-
CPA and criterion UNF. Hence, we aim at proving the following proposition:

Proposition 5.7 Let N be an integer. If a symmetric encryption scheme SE is IND-CPA and
UNF, then SE is N -PAT-SYM-CPA.

This time, we want to reduce the N -PAT-SYM-CPA criterion, denoted by δN , to SYM-CPA
security. We need the extended version of the partition theorem: as defined in subsection 4.5.3,
an adversary can indeed win by forging a fresh encryption for any pair of challenge keys, the
hypothesis following which the verifier V only depends on challenges generated by Θ1 is thus too
restrictive.

The criterion partition can be achieved as follows:

• Θ1 randomly generates the bit b, the N − 1 challenge keys k2 to kN and the related mutable
fields mem2 to memN . Key generation is achieved using KG.

• Θ2 randomly generates the first key k1, thanks to KG, it also creates a mutable field mem1.

• F1 contains the oracles related to θ1. Because of acyclicity, F1 does not depend on θ2.

• F2 contains the oracles related to key k1, it uses the bit b and the different keys, needed to
fill in patterns, that are contained in θ1.

• V1 contains N verifiers. The first one compares the output of the adversary to b, the N − 1
other ones test whether a fresh encryption has been forged using key k2 to kN . Hence all
the verifiers from V1 only depend on θ1.

• V2 tests that the output of the adversary is a fresh encryption using k1, it only depends on
θ2.

Before applying the extended theorem 5.2, let us describe the partition of oracles we choose so
that the theorem hypothesis hold. The public key oracle from F2 only depends on θ2, we let it
constitute f ′. The encryption oracle can be written as λs.f(g(s, θ1), θ2), with g(〈pat0, pat1〉, θ1) =
concr(patbθ1 , θ1) standing, as previously, for the composition of our concretization algorithm concr
that fills in patterns and a left-right oracle depending on the challenge bit b included in θ1, and
with f(bs, θ2) = E(bs, pk1), standing for the original encryption oracle.
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Applying theorem 5.2 thus allows us to deduce that for any adversary A against criterion δN ,
there exist three adversaries B, A′ and A′′, such that :

∀η,AdvδNA (η) ≤ 2 ·Advγ2B (η) + Advγ1A′(η) + Advγ3A′′(η)

Criterion γ3 = (Θ2; f, f ′;V2) actually represents 1-PAT-SYM-CPA/UNF. Indeed, patterns are not
used as arguments of f because of the acyclicity assumption. Moreover, V2 stands for a verifier
checking whether the adversary has forged a fresh encryption using key k1; this is why criterion
γ3 is claimed to be SYM-CPA with respect to unforgeability. Criterion γ2 = (Θ2, b; f ◦LRb, f ′; vb)
is in fact 1-PAT-SYM-CPA/IND, that is, 1-PAT-SYM-CPA with respect to indistinguishability,
since the verifier only checks on the value of the challenge bit b. Finally, γ1 = (Θ1;F1;V1) is meant
to be criterion (N − 1)-PAT-SYM-CPA.

To conclude, a recursion can be done as previously. Adversaries playing against 0-PAT-SYM-
CPA actually have a null advantage. Hence any symmetric encryption scheme is secure against
0-PAT-SYM-CPA. Moreover, if a symmetric encryption scheme SE is secure against (N−1)-PAT-
SYM-CPA and against SYM-CPA, then it is secure against N -PAT-SYM-CPA. Thus we get that
if SE is secure against SYM-CPA, it is also secure against N -PAT-SYM-CPA.

5.5.4 Combining all the Cryptographic Primitives

As a last application of the partition theorem, we consider the N -PASS criterion that defines safety
of a cryptographic library composed of an asymmetric encryption scheme, a symmetric encryption
scheme and a digital signature scheme.

We aim at proving that safety of the whole cryptographic library is implied by safety of the
asymmetric encryption scheme for IND-CCA, safety of the symmetric encryption scheme for SYM-
CPA and safety of the digital signature scheme for UNF. Thus the combination of secure primitives
allows one to constitute a secure library.

Proposition 5.8 Let N be an integer. If an asymmetric encryption scheme AE is IND-CCA,
a symmetric encryption scheme SE is SYM-CCA and a signature scheme SS is UNF, then the
composition (AE ,SE ,SS) is N -PASS.

The acyclicity condition on N -PASS is more complex than the previous conditions for N -PAT-
IND-CCA or N -PAT-SYM-CPA. There is an acyclicity condition for asymmetric keys, another
acyclicity condition for symmetric keys and a global restriction: asymmetric encryption keys and
asymmetric encryptions can only occur in patterns that are given to the left-right oracle for an
asymmetric encryption key. Thus symmetric encryptions and symmetric keys can occur encrypted
by an asymmetric encryption but the converse is forbidden.

This condition leads to a simpler proof than when considering a global acyclicity condition.
The proof is modular and uses the propositions that were previously proved in this section. Let
(AE ,SE ,SS) be a cryptographic library. We first prove that safety of this cryptographic library
is implied by safety of AE for N -PAT-IND-CCA and by safety of (SE ,SS) for a new criterion
N -PSS (criterion that combines symmetric encryption and digital signature). Then safety for
N -PAT-IND-CCA is implied by safety for IND-CCA (see proposition 5.4). We also prove that
safety of (SE ,SS) for N -PSS is implied by safety of SE for N -PAT-SYM-CPA and safety of SS
for N -UNF. Propositions 5.6 and 5.7 can then be used: safety of SE for N -PAT-SYM-CPA is
implied by safety of SE for SYM-CPA and safety of SS for N -UNF is implied by safety of SS for
UNF.

Breaking N-PASS into N-PAT-IND-CCA and N-PSS

Let us first define criterion N -PSS. This criterion involves a symmetric encryption scheme SE
and a digital signature scheme SS. First N symmetric keys and N signature keys are randomly
generated. A challenge bit b is also generated. Adversaries have access to a left-right encryption
oracle for each symmetric key and to two oracles for each signature key: one that gives access to
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the verification key and a signature oracle. In order to win his game, the adversary can guess the
value of b or can forge either a fresh symmetric encryption or a fresh signature. Formal definitions
of the previous oracles appear in section 4.5.

The result of this section is stated in the following proposition: safety of (AE ,SE ,SS) is implied
by safety of AE for N -PAT-IND-CCA and by safety of (SE ,SS) for the new N -PSS criterion.

Proposition 5.9 Let N be an integer, AE be an asymmetric encryption scheme, SE be a symmet-
ric encryption scheme and SS be a digital signature scheme. If AE is secure for N -PAT-IND-CCA
and (SE ,SS) is secure for N -PSS, then cryptographic library (AE ,SE ,SS) is secure for N -PASS.

Proof: Let us suppose that AE is secure for N -PAT-IND-CCA and (SE ,SS) is secure for N -PSS.
Let us use γ to denote criterion N -PASS. A partition of γ can be achieved in the following way,
γ = (Θ1,Θ2;F1, F2;V1) where:

1. Θ1 generates the challenge bit b, the N challenge signature key pairs and the N challenge
symmetric keys (and the related memories). Let θ1 denote the challenge generated by Θ1.

2. Θ2 generates the N challenge asymmetric key pairs (and the related memories). Let θ2
denote the challenge generated by Θ2.

3. F1 contains all the oracles related to signature and symmetric encryption. As symmetric
encryption or signature of asymmetric keys is forbidden, oracle F1 only depends on θ1.

4. F2 contains all the oracles related to asymmetric encryption, i.e. left-right encryption oracles,
public key oracles and decryption oracles. F2 depends on θ1 and on θ2. F2 is constituted of
two parts:

λs.f(g(s, θ1), θ2) and λs.f ′(s, θ2)

The first part contains the left-right encryption oracles. Layer g consists in applying the
concr function and selecting either the left or right pattern according to the value of g.
Formally, g(〈pat0, pat1〉) returns concr(patb, θ1) where b’s value is found in θ1. Applying
g does not always produce a bit-string but can produce a pattern as variables requesting
asymmetric keys are not filled in g. Layer f completes the pattern and applies the encryption
using the corresponding public key (and stores the output bit-string in the related memory).
The second part f ′ contains the different public key and decryption oracles, so f ′ only
depends on θ2.

5. V1 contains all the verifiers, i.e. verifier for challenge bit b, for fresh signatures and for fresh
encryptions. Therefore V1 only depends on θ1.

This partition is valid hence theorem 5.1 applies: for any adversary A against criterion γ, there
exist two adversaries B and A′ such that :

∀η,AdvγA(η) = 2.Advγ2B (η) + Advγ1A′(η)

where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) and γ1 = (Θ1;F1;V1).
Criterion γ2 works as follows: N asymmetric key pairs are randomly sampled in Θ2 (this is done

using the key generation algorithm from AE). Memories used to store the encryptions produced
by the left-right oracle and a random bit b are also generated. The adversary has access to oracle
f ◦ LRb. Function f takes as argument a pattern and returns its encryption using a specified
challenge key (the output bit-string is also stored). Thus f ◦ LRb takes as argument a pair of
patterns 〈pat0, pat1〉 and returns the encryption of patb, this is exactly the left-right encryption
oracle of PAT-IND-CCA. Oracle f ′ contains the decryption oracles and the public keys oracles for
all the challenge keys. Finally, the verifier vb checks that the adversary correctly guessed the value
of b. Hence γ2 is criterion N -PAT-IND-CCA. The hypothesis of safety of AE for N -PAT-IND-CCA
implies that the advantage of B is negligible.
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In criterion γ1, a challenge bit b, N symmetric keys and N signature key pairs are generated.
Oracle F1 allows access to the different verification keys, to the signature oracle and to the left-
right encryption oracle for symmetric keys. Finally, verifier V1 allows the adversary to win in
multiple ways: by guessing the challenge bit b, by forging a fresh signature or by forging a fresh
encryption. Hence γ1 is criterion N -PSS. The hypothesis of safety of (SE ,SS) for N -PSS implies
that the advantage of A′ is negligible.

Thus we finally get that for any adversary A, the advantage of A against γ is negligible. So
cryptographic library (AE ,SE ,SS) is secure for N -PASS.

Full Decomposition of N-PASS

The second step to prove proposition 5.8 consists in showing that safety of (SE ,SS) for N -PSS
is implied by safety of SE for N -PAT-SYM-CPA and safety of SS for N -UNF. This is formally
stated in the next proposition.

Proposition 5.10 Let N be an integer, SE be a symmetric encryption scheme and SS be a
digital signature scheme. If SE is secure for N -PAT-SYM-CPA and SS is secure for N -UNF,
then cryptographic library (SE ,SS) is secure for N -PSS.

Proof: Let SE be a symmetric encryption scheme that is secure for N -PAT-SYM-CPA. Let SS
be a digital signature scheme that is secure for N -UNF. Let us consider an adversary A against
N -PSS (designated by γ in the following). Symmetric keys can be used to protect signatures
however signature of symmetric keys is forbidden. Therefore when partitioning criterion γ, Θ1 is
related to signature whereas Θ2 is related to symmetric encryption (as oracle F1 can only use the
output of Θ1 and oracle F2 may use the outputs of both Θ1 and Θ2). Formally criterion γ can be
partitioned in (Θ1,Θ2;F1, F2;V1, V2) where:

1. Θ1 generates the N challenge signature keys. The output of Θ1 is denoted by θ1.

2. Θ2 generates the challenge bit b and the N signature keys. The output of Θ2 is called θ2.

3. F1 contains all the signature oracles and the verification key oracles. Hence F1 only depends
on θ1.

4. F2 contains the left-right encryption oracles for symmetric keys. As patterns may ask for
the encryption of a signature key, F2 depends on both θ1 and θ2. As there are no oracle
in F2 that only depends on θ2, F2 is only constituted of a single part with two layers:
λs.f(g(s, θ1), θ2). The g layer consists in the concr function. Formally its argument is a pair
of patterns 〈pat0, pat1〉 and it returns a pair of patterns 〈concr(pat0, θ1), concr(pat1, θ1)〉.
Layer f takes as argument a pair of patterns 〈pat0, pat1〉 and returns the encryption of the
concretization of patb. Encryption is done using the corresponding symmetric key and the
result of the encryption is also stored (so as the verifier can check that the adversary forged
a fresh encryption).

5. V1 is the verifier related to θ1, i.e. it checks that the adversary forged a fresh signature.

6. V2 is the verifier related to θ2, the adversary can win either by guessing challenge bit b or
by forging a fresh symmetric encryption using one of the challenge keys.

This partition is valid thus it is possible to apply the extended version of the partition theorem
(theorem 5.2). Then, there exist three adversaries B, A′ and A′′, such that:

∀η,AdvγA(η) = 2.Advγ2B (η) + Advγ1A′(η) + Advγ3A′′(η)

where γ3 = (Θ2; f ;V2) is the criterion related to V2, γ2 = (Θ2, b; f ◦LRb; vb) and γ1 = (Θ1;F1;V1).
In criterion γ3, a challenge bit b and N symmetric keys are randomly generated (using the key

generation algorithm from SE). Oracle f is the classical left-right encryption oracles for patterns
and the adversary can win this game in two ways: by guessing the value of b and by forging a
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fresh symmetric encryption. Therefore γ3 is criterion N -PAT-SYM-CPA. The hypothesis of safety
of SE for N -PAT-SYM-CPA implies that the advantage of A′′ is negligible.

Criterion γ2 works as follows: a challenge bit b′ is generated by Θ2, another challenge bit b
is generated. N symmetric keys are also randomly generated using the key generation algorithm
from SE . The adversary has to guess the value of challenge bit b. For this purpose he has access
to oracle f ◦ LRb. Therefore the adversary submits pairs of pairs of patterns of the form:〈

〈pat00, pat10〉, 〈pat01, pat11〉
〉

The LRb layer first selects the pair 〈pat0b , pat1b〉. Then the f layer returns the encryption (after
concretization) of patb

′

b . Let C be an adversary against this criterion, it is possible to build an
adversary C′ against N -PAT-SYM-CPA/IND that has the same advantage. This adversary C′ is
trivially obtained from C as described below:

Adversary C′(η)/O1, ...,ON :
b′

R← [0, 1]
d := C/λ

〈
〈pat00, pat10〉, 〈pat01, pat11〉

〉
.O1(〈patb

′

0 , pat
b′

1 〉)
...
λ
〈
〈pat00, pat10〉, 〈pat01, pat11〉

〉
.ON (〈patb′0 , patb

′

1 〉)
return d

Then the games involving C against γ2 and C′ against N -PAT-SYM-CPA/IND are exactly the
same. Thus for any adversary C against γ2, there exists an adversary C′ against N -PAT-SYM-
CPA/IND that has the same advantage. So safety for γ2 is implied by safety for N -PAT-SYM-
CPA/IND. Therefore the hypothesis of safety of SE for N -PAT-SYM-CPA can be used once more
ensuring that the advantage of B is negligible.

In criterion γ1, N signature key pairs are generated (using the key generation algorithm from
SS). F1 is composed by the signature oracles related to the different challenge keys. Finally, V1

allows the adversary to win by forging a fresh signature. Thus γ1 is exactly criterion N -UNF and
as the N -UNF hypothesis has been made for SS, the advantage of A′ is negligible.

Thus we finally get that for any adversary A, the advantage of A against γ is negligible. So
cryptographic library (SE ,SS) is secure for N -PSS.
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Chapter 6

Linking the Computational and
Symbolic Worlds

Contents

6.1 Computational Semantics for Security Protocols . . . . . . . . . . . 107

6.1.1 Execution Without Adversary (Passive Adversary Semantics) . . . . . . 108

6.1.2 The Computational Model (CM) of Adversaries . . . . . . . . . . . . . . 110

6.1.3 Protocol Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Linking Symbolic and Computational Traces . . . . . . . . . . . . . . 116

6.2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 Considering only Asymmetric Encryption in the ACM . . . . . . . . . . 118

6.2.3 Adding more Cryptographic Primitives . . . . . . . . . . . . . . . . . . 125

6.2.4 Considering the General Model . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.5 Extending the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Relating Symbolic and Computational Properties . . . . . . . . . . . 136

6.3.1 Trace Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.2 Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

In this chapter, we state the main result of this thesis: computational soundness of the symbolic
model for security protocols. In a first section, we introduce the computational semantics for
security protocols and give various simplified models in order to make the main proof easier
to understand. Then we state our main result: the probability for a polytime computational
adversary to produce a trace that cannot be abstracted on a valid trace in the symbolic model
is negligible. This result essentially holds on traces. Thus in the last section, we show how this
result can be applied on some classical properties like authentication and how we can adapt the
proof of the main result for strong secrecy for nonces and keys.

6.1 Computational Semantics for Security Protocols

Computational semantics are far more realistic than symbolic semantics: as in real life, messages
sent over the network are bit-strings and the adversary is modeled as a polynomial-time random
Turing machine that can interact with the protocol.

Computational semantics of a protocol depends on a cryptographic library CL that contains
an asymmetric encryption scheme (KGa, Ea,Da), a digital signature scheme (KGg,S,V) and a
symmetric encryption scheme (KGs, Es,Ds). These cryptographic primitives are used to implement
the protocol: if an agent has to send message {m}apk, then the bit-string value bs1 for m is
computed, the bit-string value bs2 for pk is retrieved and the bit-string that is sent over the
network is obtained by evaluating Ea(bs1, bs2).
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6.1.1 Execution Without Adversary (Passive Adversary Semantics)

In this section, the adversary has no control over the network, he cannot intercept, block, modify
or send any message. His only ability is to observe the exchanged messages. Hence this model is
referred to as the Passive Adversary model (PAM). The semantics for execution of the protocol
is the usual semantics when no adversary is present: this is detailed later in this section. After
executing the protocol, the resulting computational trace is given to the adversary.

Definition 6.1 A computational trace is a sequence of emissions and receptions of bit-strings.
Therefore computational traces are given by the following grammar where bs ranges over bit-strings.

ct ::= ε

| Send(bs).ct
| Recv(bs).ct

Passive adversary semantics are given for linear protocols. These semantics defines the possible
computational traces for a protocol in the PAM. Possible traces for a general protocol Π = (S, IK)
can be defined as the union of the possible traces of (R, IK) where R ranges over the inter-leavings
of S. Let Π = (R, IK) be a linear protocol. In a first step, the different atoms that occur in R
have to be generated. Then to execute a protocol, an algorithm that produces bit-strings from
symbolic messages is described. Finally, the execution algorithm is given and explains precisely
the computational semantics.

To describe these different algorithms, let msgt be a type that represents the possible nature
of a message. An element of msgt can be noncet for nonces, apkeyt for asymmetric public keys,
askeyt for asymmetric secret keys, gskeyt for signature keys, gvkeyt for verification keys, skeyt
for symmetric keys, aenct for asymmetric encryptions, gsigt for signatures, senct for symmetric
encryptions and pairt for pairs. We assume the existence of some simple algorithms (which can
easily be implemented with a polynomial time complexity in η):

1. atoms: this algorithm takes as argument a role R and returns a list of nonces and keys. A
nonce N is in atoms(R) if N occurs in R, a public key pk is in atoms(R) if pk or pk−1 occurs
in R, a symmetric key k is in atoms(R) if k appears in R and finally a signature verification
key vk is in atoms(R) if vk or vk−1 appears in R. Hence atoms(R) does not contain any
secret key, it only contains public keys, symmetric keys, verification keys and nonces.

2. type: this algorithm takes as argument a symbolic (closed) message and returns a msgt
describing the type of m.

3. inv: this algorithm takes as argument a symbolic atom which has to be a key and returns
the inverse key (which is also a symbolic atom).

Generating the Atoms

Generating the different atoms of a protocol is done by the init algorithm. This algorithm takes
as argument a security parameter η and a role R. It returns a computational substitution that
links atoms of R to freshly generated values. The algorithms from the cryptographic library are
used to generate the different values. For nonces, random bit-strings of size η are generated.

init(η,R) :
θ := []
for a in atoms(R)

if type(a) = noncet then

aθ
R← [0, 1]η

else if type(a) = apkeyt then
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(aθ, a−1θ) := KGa(η)
else if type(a) = gvkeyt then

(aθ, a−1θ) := KGg(η)
else if type(a) = skeyt then

aθ := KGs(η)
endif

endfor
return θ

The init algorithm is close to a challenge generator as described in our criterion formalism: it
generates some values, the adversary has access to some computations performed on these values
and has to produce an output according to these values.

Forging and Parsing Messages

Execution of the protocol heavily uses two auxiliary algorithms. The concr algorithm takes as
argument a symbolic message m and a computational substitution θ. It randomly generates a
possible bit-string value for m. For this purpose, it uses the different encryption and signature
algorithms from the cryptographic library CL. This algorithm is described recursively on the
structure of its argument m. This algorithm can fail and produce an error in two cases: if a
variable or an atom is not defined by θ and if a cryptographic primitive that it uses produces an
error.

concr(t, θ) :
match t with

[x] Variable
return xθ

[a] Atoms (Keys, Nonces, Identities)
return aθ

[enca(t1, t2)] Asymmetric Encryption
return Ea(concr(t1, θ), concr(t2, θ))

[encs(t1, t2)] Symmetric Encryption
return Es(concr(t1, θ), concr(t2, θ))

[encg(t1, t2)] Digital Signature
return S(concr(t1, θ), concr(t2, θ))

[pair(t1, t2)] Pairing
return concr(t1, θ) · concr(t2, θ)

The second auxiliary algorithm is the parse algorithm which achieves parsing. This algorithm
takes as arguments a bit-string bs, a message term t and a computational substitution θ. It tries
to parse bit-string bs using as prototype term t. For this purpose it uses the decryption algorithms
provided by the cryptographic library. Parsing may fail and produce a parse error. This is the
case when t is a signature as signature verification is achieved using the Veri() statement. An
error can also occur if a variable or an atom is already defined in θ with a different value. Finally,
the decryption algorithms can produce some errors.

parse(bs, t, θ) :
match t with
[x] Variable or Atom

if x ∈ sup(θ) then
if xθ = bs then return θ
else raise parse-error

else xθ := bs
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[enca(t1, t2)] Asymmetric Encryption
parse

(
Da(bs, concr(t2, θ)), t1, θ

)
[encs(t1, t2)] Symmetric Encryption

parse
(
Ds(bs, concr(t2, θ)), t1, θ

)
[encg(t1, t2)] Digital Signature

raise parse-error
[pair(t1, t2)] Pairing

parse(pr1(bs), t1, θ)
parse(pr2(bs), t2, θ)

Executing Protocols

Possible computational traces are given by the possible executions of a (random) algorithm. This
algorithm denoted by PAMexec takes as argument a security parameter η, a computational
substitution θ and a protocol (R, IK) (note that IK is not used by this algorithm). Variable
trace is used to store the trace and its value is returned at the end of the execution. Variable bs
stores the last bit-string that has been sent over the network.

PAMexec(η, θ, (inst1 . . . inst`, IK)) :
trace := [] Initialisation
for i from 1 to `

match insti with
[[Veri(t1, t2, t3)]] Signature verification

if V(concr(t1, θ), concr(t2, θ), concr(inv(t3), θ))) = 0
then raise test-failed

[Recv(t)] Message reception
θ := parse(bs, t, θ)
trace := trace :: Recv(bs)

[Send(t)] Message emission
bs := concr(t, θ)
trace := trace :: Send(bs)

endmatch
endfor
return (trace, θ)

This algorithm outputs the trace that has been produced by the execution of the protocol. It also
outputs the updated version of substitution θ (the updates take place during parsing).

Using the PAMexec algorithm, it is now easy to define possible traces in the PAM model.

Definition 6.2 (PAMtraces) The set PAMtraces of possibles traces in the PAM model con-
tains all possible outputs for PAMexec for all possible values of θ generated by init.

PAMtraces(R, IK) =
{
t
∣∣θ := init(η,R) , (t, ) := PAMexec(η, θ, (R, IK))

}
6.1.2 The Computational Model (CM) of Adversaries

We want to let the adversary have arbitrary control over the network, as in the symbolic model,
and hence we eliminate the network. Moreover, the adversary drives the computation by sending
messages to the other players and receiving messages from them. In the computational model, the
messages that are exchanged are bit-strings (and depend on the security parameter η). We define
three separate models: the computational model is the more general one, the adversary exchanges
bit-strings with the protocol. The second model is less realistic, the adversary also uses bit-strings
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to communicate with the protocol but it also has to provide justifications for its bit-string: the
adversary has to specify how the bit-string can be parsed. In the third model, we put a restriction
on the general model: variables can only be assigned to with atoms (keys, nonces or identities).
Hence it is forbidden for a protocol to receive a message in a variable x that can be a composed
message like a pair, an encryption or a signature. In particular, message forwarding is impossible
in this model. Proofs in the last two models are easier to design but the drawback is that it lacks
the generality of the first model. Execution of the protocol is performed in the same way for all
the models.

Executing the Protocol

The CMexec algorithm given here is close to the PAMexec algorithm that was detailed earlier.
The distinction is that an adversary A interacts actively with the protocol. This algorithm takes
four arguments: the first one is a security parameter η, the second one is a computational adversary
A, the third one is a computational substitution θ and the last one is a protocol Π. It produces a
trace that is possible for protocol Π. The variable trace is used as in PAMexec. The variable mem
stores the memory of the adversary. Whenever the adversary is called, it takes mem as argument
and returns a new value for mem, this means that the adversary can modify its memory. When a
receive statement Recv(t) is reached, the adversary is called and output a bit-string bs. This bit-
string is parsed using t as prototype and the protocol continues. When a send statement Send(t)
is reached, a bit-string value for t is generated using the concr algorithm. This value is appended
to the trace and to the memory of the adversary. The initial memory of the adversary contains
the values for the parameters that appear in IK. The cut algorithm is used here, it takes as
arguments a computational substitution θ and a list l and returns the restriction of θ to elements
of l.

CMExec(η,A, θ, (inst1 · · · inst`, IK)) :
trace := []; mem := cut(θ, IK); Initialisation
for i from 1 to `

match insti with
[[Veri(t1, t2, t3)]] Signature verification

if V(concr(t1, θ), concr(t2, θ), concr(inv(t3), θ))) = 0
then raise test-failed

[Recv(t)] Message reception
(bs,mem) := A(mem)
θ := parse(bs, t, θ)
trace := trace :: Recv(bs)

[Send(t)] Message emission
bs := concr(t, θ)
trace := trace :: Send(bs)
mem := mem :: bs

endmatch
endfor
return (trace, θ,mem)

This algorithm outputs the trace that has been produced by the execution of the protocol. It also
outputs the updated version of substitution θ (the updates take place during parsing) and the
final memory of the adversary. This memory is useful when defining properties of a protocol: the
adversary has to win a game thus it is called one more time with its final memory and outputs its
final guess for its challenge.
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The Simplified Computational Models

The main advantage of the computational model is its realism. However, the proof relating the
computational and the symbolic model (see section 6.2) is hard to achieve in this setting. The
idea of the proof is to build an adversary B against cryptographic primitives using an adversary A
against the protocol. Hence adversary B has to correctly simulate the execution of the protocol,
i.e. the CMExec algorithm, and B wins his challenge whenever a non-deducible message (for
Dolev-Yao) is produced. The main difficulty when describing B is to correctly parse messages: if
B receives a bit-string bs, parses it according to the protocol and later in the protocol the same
bit-string is parsed as a non-deducible message, then it is possible that B cannot win its challenge
anymore. To exemplify this, let us consider the following protocol:

Recv(x).Send({x}k).Send(N).Recv({N}k)

A possible execution is that the adversary sends the bit-string value bsN associated to N , however,
this bit-string is parsed as x, then the adversary receives two bit-strings bs1 and bs2 and outputs
bs1 as the bit-string necessary to complete the protocol. At this point, B knows that bs1 can be
parsed as {N}k hence the first bit-string can be parsed as N . Therefore the related symbolic trace
is:

Recv(N).Send({N}k).Send(N).Recv({N}k)

This trace is not possible but the problem for B is that it only understands that the trace is impos-
sible when receiving the last bit-string. At this point, it is too late for B to break cryptographic
schemes because he already had to output the value of N . More details on this sort of problems
appear in the next section. However there are two simple solutions so that this problem cannot
occur anymore. For both solutions, we first ask computational messages to be strongly typed (i.e.
it is possible from bs to know its type using some computational function).

• The first possibility is to only accept variables for nonces, keys and identities in the protocol
and to forbid message forwarding. In this situation, when receiving a new bit-string bs, it
is possible to test its equality with all the atoms in the protocol that have the same type.
This is called the Atomic Computational Model (ACM) in the following.

• Another possibility is to ask the adversary A playing against the protocol to justify any bit-
string he has produced. Whenever he sends a bit-string, A has to send the formal version
of this bit-string and all the necessary atoms (and random coins) such that it is possible to
verify that A does not lie. This model is called the Justified Computational Model (JCM)
in the following.

ACM The main advantage of ACM is that the semantics of protocols are not changed compared
to the general computational model, the CMExec algorithm does not have to be modified. The
drawback is that message forwarding is not allowed anymore, hence our results cannot be applied
to some protocols. For example let us detail the case of the symmetric version of Needham-
Schroeder protocol (this protocol is described in [NS78], an attack against authentication is given
in [DS81]).

1 A→ S : A,B,Na

2 S → A : {Na,B,Kab, {Kab,A}Kbs}Kas
3 A→ B : {Kab,A}Kbs
4 B → A : {Nb}Kab
5 A→ B : {dec(Nb)}Kab

In the description above, pairing is not explicitly detailed in order to simplify notations. The dec
operator used here is decrementing. This operator is not present in our protocol syntax, however
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it can be simulated using encryption by a key Km that every agent knows. The final line of the
protocol becomes:

5 A→ B : {{Nb}Km}Kab

This last operation is not important for our example thus we omit the last line of the protocol in
the following and consider only lines 1 to 3. The important point is between line 2 and line 3.
Agent A receives a message that contains a sub-message {Kab,A}Kbs that it cannot test (as key
Kbs is shared between B and S), hence the correct way to describe this protocol in our syntax is
given by the following in the case of a single session involving agents A, B and S.

1 Send(A,B,Na).Recv(A,B, x).
2 Send({x,B,Kab, {Kab,A}Kbs}Kas).Recv({Na,B,Kab, x}Kas).
3 Send(x).Recv({Kab,A}Kbs)

In this description, x is a variable which is assigned to with a composed message (an encryption
in this case). Therefore it is impossible to express this protocol without message forwarding.

Although the ACM is as realistic as the general model, there are some protocols that cannot
be expressed in this model. The main interest of this model is that it is possible to test every
received bit-string, even when authorizing key sending. Thus the computational soundness proof
is less technical in this model.

JCM The JCM model is another way to simplify the general computational model. The idea
is that whenever the adversary sends a bit-string, he has to justify its content: he has to give
the symbolic message related to this bit-string and also has to give enough information so that
it is possible to check that he does not lie. In the following, we focus on the ACM, hence we do
not give formal definitions for the JCM. Compared to the ACM, the JCM can be applied to all
the protocols on which the general computational model applies, there are no restrictions like “no
message forwarding”. However this model cannot be implemented in practice as we do not want
the agents involved in a protocol to have to justify for their messages: in this case, honest agents
would have to reveal their secret keys.

6.1.3 Protocol Properties

Properties in the symbolic model were defined using possible (symbolic) traces for the protocol.
There is an attack against these properties as soon as one of this possible traces leads to an
attack. However in the computational setting, it is possible that a trace leads to an attack but
the protocol is safe for the property. This is the case for brute-force attacks or when an adversary
tries to guess the value of a secret nonce for example. This is why a protocol is declared as not safe
for the property only if there exists an adversary that can create an attack with a non-negligible
probability (in η).

We present here how simple properties can be described in the computational model. This is
done for secrecy and for trace properties. These definitions hold for all the different adversary
models described previously, the only difference is the execution algorithm that is called. Relating
these properties to properties in the symbolic model and security of the cryptographic library is
a difficult task, the idea of a simple proof for this result was first given in the work of Bogdan
Warinschi [War03] for the Needham-Schroeder-Lowe protocol. It was later generalized to other
protocols in [MW04c]. An adaptation of this proof is detailed in section 6.2 and is used in
section 6.3.

Secrecy Properties: SecNonce

This SecNonce property has been introduced in [CW05]. It is a way to define strong secrecy for a
nonce during a protocol execution. Let Π = (R, IK) be a linear protocol and N be a nonce that
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occurs in Π. The challenge is the following: a random bit b is generated and two bit-strings of
length η are generated. These bit-strings are denoted by bs0 and bs1. The exec algorithm is called
and the value used for N is bs0 if b equals 0 and bs1 if b equals 1. Finally, the adversary is given
bs0 and bs1 and has to output the value of b.

Formally, the advantage of the adversary in the passive setting is defined by:

AdvPAM−SN(Π,N)
A (η) = Pr[ θ := init(η,R)

(t, θ) := PAMexec(η, θ,Π)

bs
R← [0, 1]η

A(t, cut(θ, IK), bs,Nθ) = 1]
−Pr[ θ := init(η,R)

(t, θ) := PAMexec(η, θ,Π)

bs
R← [0, 1]η

A(t, cut(θ, IK), Nθ, bs) = 1]

In the first case, the adversary has output 1 and it was given a pair containing a random bit-string
and the value used for N so the adversary solved his challenge whereas in the second case, it
has output 1 and was given a pair containing the value used for N first and in second a random
bit-string, therefore the adversary failed in solving his challenge. The adversary has access to
the computational trace produced by PAMexec and to the bit-string values used for elements of
his initial knowledge IK. The definition of advantage for the CM is exactly similar. The only
difference is that the exec procedure outputs the memory of the adversary. When asked the value
of bit b, the adversary has access to this memory.

AdvCM−SN(Π,N)
A (η) = Pr[ θ := init(η,R)

(t, θ,mem) := CMexec(η,A, θ,Π)

bs
R← [0, 1]η

A(mem, bs,Nθ) = 1]
−Pr[ θ := init(η,R)

(t, θ,mem) := CMexec(η,A, θ,Π)

bs
R← [0, 1]η

A(mem,Nθ, bs) = 1]

Definition 6.3 (SecNonce) Protocol Π verifies SecNonce for nonce N if the advantage of any
adversary A is negligible in η. This defines three flavors of SecNonce: SecNonce in the passive
adversary model, SecNonce in the Computational Model and SecNonce in the Simplified Compu-
tational Models.

There are some trivial implications between the different SecNonce properties. The most important
one is that if a protocol Π verifies SecNonce for N in the CM, the it also verifies SecNonce for N
in the PAM.

The SecNonce property can be described using our criterion formalism. However we stick with
this definition as our semantics are not given in terms of oracles.

Trace Properties

As in the case of the symbolic model, trace properties are easy to formulate here. The computa-
tional and symbolic versions of these properties are usually quite close.
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Authentication Authentication properties are not directly related to the knowledge of the
adversary: the adversary does not have to output anything at the end of its execution. However
in authentication, we want to check that some actions of the protocol must have occurred before.

Let us now illustrate how authentication can be modeled in the computational setting. With
this aim in view, we consider the case of non-injective agreement of role B with role A on message
m. We have to consider all the linear protocols Π that represent possible interleavings of A and
B. Then in these protocols, let us consider that x and y (which can be either variables or atoms)
represent the idea that A and B respectively have of message m. Then authentication holds if
for any adversary A, the probability to produce a trace where x and y have different bit-string
representations is negligible. This probability p is properly defined in the case of the CM by:

p(η) = Pr[ θ := init(η,R)
(t, θ,mem) := CMexec(η,A, θ,Π)
xθ 6= yθ]

The case of simplified computational models is not detailed here as the exec algorithms are the
same as in the general computation model. Concerning the passive setting, adversaries cannot
attack authentication, thus we are not interested by the PAM. Other flavors of authentication can
be described in a similar way.

Weak Secrecy Weak secrecy is a version of secrecy weaker than SecNonce. Whereas in SecNone,
the adversary has to distinguish the use of bs0 from the use of bs1 for nonce N , in secrecy the
adversary has to output the bit-string value used for N . The challenge that defines weak secrecy
of nonce N in protocol Π = (R, IK) is the following. Initial values are generated using init, then
the protocol is executed according to the adversary model. Finally, the adversary has to produce
the bit-string that was used for nonce N . The advantage in the case of the PAM is defined by:

AdvPAM−WS(Π,N)
A (η) = Pr[ θ := init(η,R)

(t, θ) := PAMexec(η, θ,Π)
bs := A(t, cut(θ, IK))
bs = Nθ]

In the case of the CM, the adversary has access to the last memory output when playing against
the protocol.

AdvCM−WS(Π,N)
A (η) = Pr[ θ := init(η,R)

(t, θ,mem) := CMexec(η,A, θ,Π)
bs := A(mem)
bs = Nθ]

Definition 6.4 (Weak Secrecy) Protocol Π verifies Weak Secrecy for nonce N if the advantage
of any adversary A is negligible in η. As for SecNonce, this defines three flavors of Weak Secrecy:
Weak Secrecy in the passive adversary model, Weak Secrecy in the Computational Model and Weak
Secrecy in the Simplified Computational Models.

There are also some easy implications between these weak secrecy notions.
An interesting point is that this secrecy property can be considered as a trace property. For this

purpose, the idea is to add a statement Recv(N) at the end of R. However this is not sufficient as
an adversary might be able to deduce the value of N without being able to complete the protocol
execution (e.g. the adversary is not able to forge the signature of some message). Hence the
Recv(N) statement has to be placed after each possible statements. IfR is composed of statements
inst1 · · · inst`, then weak secrecy of N is equivalent to the ability of an adversary to complete any
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of the protocols (Recv(N), IK), (inst1.Recv(N), IK) to (inst1 · · · inst`.Recv(N), IK). Then
weak secrecy can be verified only by observing the trace produced by the execution. For this
reason, weak secrecy can be considered as a trace property. Note that defining weak secrecy as a
trace property has the advantage that this definition can also be used for any composed messages
including for example keys or digital signatures.

6.2 Linking Symbolic and Computational Traces

In this section, we aim at proving that under some restrictions on cryptographic primitives and
on security protocols, the symbolic model is a safe abstraction of the computational model. The
main result is that the probability that a computational adversary outputs a trace that cannot be
abstracted to a correct symbolic trace is negligible. Thus the symbolic model correctly abstracts
the computational model with overwhelming probability.

The proof presented here originates from the work of Bogdan Warinschi. It was first stated
only in the case of the Needham-Schroeder-Lowe protocol in [War03]. The next year, Micciancio
and Warinschi extended this result to the case of general protocols [MW04c]. However severe
restrictions prevent these results from applying to real-life protocols: in particular, message for-
warding is not allowed, the only cryptographic primitive is asymmetric encryption and secret keys
cannot be sent. Another restriction is that only trace properties are considered, allowing to de-
scribe authentication or weak versions of secrecy. In [CW05], Cortier and Warinschi generalized
the previous results by considering protocols with asymmetric encryption and digital signature.
Emission of secret keys is still forbidden but message forwarding is allowed. Moreover, although
the main result holds on traces, the proof is adapted to describe strong secrecy of nonces (using
the SecNonce property). The proof of the main theorems of these three papers have a common
structure which is also used here.

This section is structured as follows. In the first part, the restrictions over protocols and
cryptographic primitives are made explicit. Then the second part formulates the main result and
its proof in a simple case: the ACM model where only asymmetric encryption is considered. The
following part generalizes this result to ACM protocols that also involves symmetric encryption
and digital signature. Part four describes how the proof can be extended to bypass the ACM
limitation and finally the last part deals with possible extensions.

6.2.1 Hypotheses

Different restrictions are needed in order to prove the main result of this section. These restrictions
can be split in two distinct categories: restrictions over protocols only depend on the protocol that
is considered, such restrictions are expressed in the symbolic setting; restrictions over cryptographic
primitives, such restrictions ensure that the different schemes used to implement the protocol are
safe, hence they are formulated in the computational setting.

Hypotheses over Protocols, Acyclicity

First, let us describe the restrictions on protocols. Let Π be a protocol that is composed of a
linear scenario R and an initial knowledge IK. This protocol is said to be valid if it satisfies the
following conditions:

1. The protocol is executable.

2. Any public key from R appears in IK.

3. Any agent identity from R appears in IK.

4. Correct traces do not contain any encryption cycle. Secret keys cannot appear encrypted
using symmetric cryptography.
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The first requirement is easily understandable: only executable protocols are of interest. Other
protocols cannot be used properly. The second and third requirement indicates that public keys
and agent identities are known by the adversary. The security of a protocol should not rely on the
secret of such atoms hence this restriction is always met in practice. The last restriction is more
technical, it already appeared in [AR00].

Key Cycles Let us detail a little more the last restriction. As stated earlier, this restriction
comes from a real vulnerability of IND-CCA algorithms. Therefore this restriction is necessary
when using such encryption schemes (another solution would be to consider KDM security).

We propose two versions of this acyclicity restriction. The first version is harder to satisfy but
easier to formulate and understand. For the two versions, we suppose that R contains α public
keys and β symmetric keys. We also assume that there exist a total order among public keys from
R pk1 ≺ pk2 ≺ ... ≺ pkα and a total order among symmetric keys k1 ≺ k2 ≺ ... ≺ kβ . Let m be a
message contained in a correct trace t of the protocol, SecK be the set of secret and symmetric
keys that are not deducible from IK and the messages in t. This set contains all the keys whose
secrecy is preserved during the protocol execution.

The strict version of the requirement consists in saying that for every occurrence of a secret key
sk, the most external encryption that protects this occurrence of sk is performed using a public
key pk′ such that pk′ ≺ sk−1 (the encryption using pk′ is said to protect the occurence of sk if
pk′−1 is in SecK). Formally, if atom pk−1

i from SecK appears in message m at a position p. Then
let p′ be the smallest prefix of p such that m|p′ is an encryption using a public pkj which inverse
is in SecK. The restriction asks j to be (strictly) lower than i. The same restriction holds for
symmetric keys. Let ki be a symmetric key from SecK. If ki appears in m, then let kj be the most
external key from m that protects ki such that kj is in SecK. Then either kj is an asymmetric
encryption key and there are no restrictions or kj is a symmetric key and j has to be (strictly)
lower than i.

Example 6.1 Let us exemplify our strict acyclicity requirement on some simple examples. For
this purpose, we consider the following messages in the case where all the symmetric keys used by
the protocol appear in SecK.

m1 = {k1}k1 m2 = 〈{k1}k2 , {k2}k1〉 m3 =
{
{k2}k2

}
k1

m4 =
{{
{k2}k2

}
k1

}
k2

Message m1 contains the most simple example of key cycle. In message m2, key k1 is protected
by key k2 and k1 ≺ k2, hence this is also an encryption cycle. Message m3 contains a cycle using
key k2. However this cycle is “protected” by key k1. Therefore, message m3 satisfies the strict
requirement of acyclicity. Finally, in message m4, the most external layer protecting k2 is k2 itself.
Therefore, this message contains a cycle.

Let us now explain how the acyclicity restriction can be relaxed. The idea is that the condition
we asked on the most external protecting key can be asked to hold on one of the protecting keys.
This can be formalized as follows: If atom pk−1

i from SecK appears in message m at position p,
then there exists a prefix p′ of p such that p′ is a encryption with pkj such that:

1. pk−1
j is in SecK hence pkj “protects” pki.

2. j is strictly lower than i

With the first notion, message m = {{k2}k1}k2 is a cycle whereas it is not the case when using
the second notion. Note that message m can be concretized using the classical pattern encryption
oracles: first we ask for encryption of pattern [2] using key k1. The resulting bit-string is bs, then
we submit bs to the encryption oracle which uses k2. Hence we obtain a valid concretization of
message m.

The interested reader should consult the key cycle chapter of [Jan06] where further details are
available.
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Hypotheses on Cryptographic Primitives

The computational semantics of a security protocol depends on the cryptographic library CL that
is used to implement the protocol. This cryptographic library has to implement an asymmetric
encryption scheme AE , a symmetric encryption scheme SE and a signature scheme SS. Such a
cryptographic library is said to be safe if all the primitives contained in the library are safe. Thus
CL is safe if the following requirements are met:

1. The asymmetric encryption scheme AE is secure against IND-CCA.

2. The symmetric encryption scheme SE is secure against SYM-CPA.

3. The digital signature scheme SS is secure against UNF.

Using IND-CPA instead of IND-CCA would not be adequate. Let us consider an IND-CPA
encryption scheme AE composed of key generation algorithm KG, encryption algorithm E and
decryption algorithm D. Then it is possible to build another asymmetric encryption scheme AE ′
such that AE ′ is also secure against IND-CPA and for any public key pk and any bit-strings bs
and bs′ of length η,

E ′(bs.bs′, pk) = E(bs, pk).E(bs′, pk)

Then let us consider the protocol composed of the following role R and the initial knowledge IK
that contains pk.

R = Send({〈N,N〉}pk).Recv({N}pk)

Then it is not possible to execute the two actions of R in the symbolic world. However, in the
computational setting, the second message can be deduced from the first one. Thus there exists
an adversary that produces an incorrect trace with probability 1. For this reason, IND-CPA is
not sufficient and we ask the encryption scheme to be resistant against IND-CCA.

6.2.2 Considering only Asymmetric Encryption in the ACM

In this section, we consider protocols that only involve asymmetric encryption. Hence the proof is
easier to understand than the proof in the general case. Moreover as we want the proof to be as
simple as possible, the computational model used here is the ACM and we use the strict restriction
over cycles.

A symbolic trace tf may have multiple possible concretizations for a computational substitution
θ. This multiplicity can occur because of the non-determinism of encryption or because θ does not
define every atom from tf . Therefore, given a symbolic trace tf , we denote by Concr(tf , θ) the set
of computational traces obtained by applying concr(·, θ′) on each symbolic message of tf where θ′

is a mapping from bit-strings to symbolic messages that extends θ. Then the soundness theorem
is that the probability for an adversary to produce a trace that is not a possible concretization of
a possible symbolic trace is negligible.

Theorem 6.1 Let Π be a valid protocol that uses an IND-CCA asymmetric encryption scheme
AE. Let A be an adversary. Then, the following probability is negligible as a function of η:

Pr[6 ∃tf ∈ Traces(Π) · CMExec(A,Π, θ) ∈ Concr(tf , θ)]

Where CMExec(A,Π, θ) gives the computational trace produced by an active adversary A against
protocol Π, Traces(Π) the possible symbolic traces for Π and Concr(tf , θ) the possible concretiza-
tions of symbolic trace tf .

Protocol Π is composed of a role R and an initial knowledge IK. Let N denote the number of
different atoms that occur in Π. Then the number of asymmetric keys used by Π is lower than
N , the number of different nonces is also lower than N . This bound is not tight however this is
sufficient to achieve the proof.
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The proof of this theorem is by reduction to the security of the underlying cryptographic
schemes. That is, let A be an adversary interacting with the protocol, we build an adversary B
playing against the asymmetric encryption scheme AE , more precisely against a N -PAT-IND-CCA
criterion such that the above probability is bounded by the advantage of B. As the encryption
scheme AE is supposed to satisfy IND-CCA, this advantage is negligible (this is immediate when
applying proposition 5.4). This proof is an adaptation from the proofs that appear in [War03,
MW04c]. However, these proofs only worked for protocols where secret keys cannot be sent in
messages. This hypothesis is not required in this section.

The Adversary B

Let us now explain the construction of adversary B. As this adversary plays against the N -PAT-
IND-CCA criterion, so he has access to the following oracles for each key:

1. A left-right pattern encryption oracle

2. A public key oracle

3. A decryption oracle

Intuitively the idea underlying the construction of B is as follows. First, the adversary B randomly
guesses which keys are going to remain secret and which keys are not. As the number of keys is
bounded by N , the probability that B correctly guesses the set CK of secret keys is 2−N and is
not negligible. Keys whose inverses are in SecK correspond to challenge keys and the oracles from
N -PAT-IND-CCA are used on these keys.

Then B uses the protocol adversary A as a subroutine. To do so, B has to answer A’s queries
to the protocol. Since B does not have the challenge keys to answer these queries, he uses the
different oracles given by the N -PAT-IND-CCA criterion. While doing so, B checks that the
computational trace in construction corresponds to a symbolic trace. When this is not the case,
B analyzes the produced messages and answers one of the challenges of the N -PAT-IND-CCA
criterion, i.e., guesses the bit b. We consider that B also outputs a final status. The possible final
status are:

1. DY means that B managed to executeA confronted to the protocol, and thatA has produced
a correct symbolic trace. In this situation, B tries to randomly guess the challenge bit.

2. NDY means that A has produced an incorrect symbolic trace and B has managed to use
that in order to deduce the value of bit b.

3. Nonce Collision means that B found a collision between two nonces. The probability of
this event is proved to be negligible later in this document.

State of B Besides the list of instructions of the protocol, B uses two mappings and a symbolic
trace:

1. θ is a mapping that associates bit-strings with symbolic atoms. Thus, θ is a partial con-
cretization relation from symbolic terms to computational values. At the beginning, B
randomly generates values for nonces, public keys that are not challenge keys and agent
identities and stores them in θ. This initial value of θ, completed with the public keys from
N -PAT-IND-CCA, is available to A exactly as in Exec (i.e. A can observe the value of
messages from his initial knowledge).

2. σ is a mapping from variables to symbolic messages. This is used in order to construct the
symbolic trace and check whether it is valid or not.

3. tf is the valid symbolic trace whose concretization corresponds to the computational trace
produced so far.
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4. For each challenge key, B stores the list of oracle requests and the returned values.

When B executes a send statement, θ is used to generate the bit-string corresponding to the
symbolic message. When B executes a receive statement, the bit-string returned by A is parsed
according to θ. If a new variable is assigned to during this statement, θ and σ are updated.
Moreover, as we consider the ACM, this variable is assigned an atom. Hence B can compare the
bit-string bs corresponding to the variable y with all the different bit-strings that are stored in θ.
If bs already occurs in θ where it is linked to an atom a, then B stores in σ that y is linked to
a. During the execution of each statement, tf is updated by adding a new element to the trace.
This element corresponds to the current statement after application of substitution σ. Thus, tf
always stores a symbolic trace that correctly abstracts the computational trace produced by the
interaction of A with the protocol. Finally, the list of oracle queries is useful because B cannot ask
decryption of outputs of the left-right encryption oracle. Thus if B produces a bit-string bs using
this oracle and gives it to A, suppose that A sends bs back to B then B cannot parse it using his
decryption oracle. However B knows what is in bs as he has forged it with his oracles.

Choosing challenge nonces and challenge keys Adversary B also randomly chooses a subset
of the keys CK used in the protocol. These keys are called challenge keys and B uses its oracles
to compute messages related to these keys.

Let N1, · · · , Nn be the nonces in atom(Π) \ IK. These nonces are originally not known by the
adversary. The idea is that if the adversary manages to produce an incorrect symbolic trace, then
either he guessed the value of one of these nonces (and this nonce always circulated protected by
a key whose inverse is not deducible) or he guessed the value of one of the secret keys. Before
starting the execution of A and the protocol, B randomly chooses one of these nonces. This nonce
Ni is called the challenge nonce and B’s guess is that he will get the value of Ni if A produces an
incorrect trace. Thus adversary B generates two random bit-string values Ni0 and Ni1 for nonce
Ni. These values are used to construct the messages that are submitted to left-right oracles, Ni0
for left messages and Ni1 for right messages. Now, if Ni0 = Ni1 then B aborts immediately and
answers Nonce Collision. He also generates a random bit as his output. Otherwise, B proceeds
by considering the different actions of the protocol.

B’s behavior Before describing the behavior of B, we have to introduce the following notation.
Consider a symbolic substitution σ as above. Then we denote by C(σ) the extension of σ to all
variables, i.e. C(σ) is a variable assignment that coincides with σ on σ’s domain and assigns a
nonce Nx to each variable x 6∈ sup(σ).

We now describe the actions of B for each instruction inst of the protocol. As B does not
know all the secret keys nor the challenge bit b, B uses the procedures concr′ and parse′ explained
below. If B finishes normally with all instructions, he returns DY and tries to randomly guess the
value of bit b, thus his output is a random bit b′.

As we only investigate the case of asymmetric encryption, the only possible actions are sending
and reception of messages (signature verification is not used).

1. Consider the case of an input instruction Recv(t). Suppose that the bit-string sent by A
is bs. Then, tf is updated as follows tf := tf · Recv(t). Moreover, B calls the procedure
parse′(bs, t) given below. If parse′(bs, t) returns abnormally then B assigns back to tf its
initial value, i.e. cancels the last concatenation Recv(t), and returns DY.

2. The other type of instruction to consider is an output Send(t). B computes concr′(t),
outputs concr′(t) and updates tf as follows tf := tf · Send(t).

The procedure parse′ Procedure parse′ first checks whether the types of bs and t are com-
patible. If it is not the case then it aborts and adversary B returns DY as final status. The
behavior of parse′ is close to the behavior of parse the main difference is that whenever parse′

has to associate a value bs to a variable for the first time, it tests the equality between bs and any
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variable or atom from θ. If one of such equalities holds, the symbolic substitution σ is updated in
order to reflect this equality. Moreover, parse′ also tests the equality between bs and Ni0 and bs
and Ni1. If one of this equality holds, B uses this to deduce the value of bit b: if the first equality
holds, B outputs 0. Respectively, if the second equality holds, B outputs 1. Adversary B can also
win his challenge if t is the inverse of a challenge key.

Algorithm parse′(bs, t, θ, σ) :
if t = Ni then

if bs = Ni0 then B outputs NDY, 0
if bs = Ni1 then B outputs NDY, 1
else raise parse-error

if t is the inverse of one of the challenge keys then
B outputs the value NDY and the value of the challenge bit

if type(bs) and t are compatible then
match t with
[x] Variable or Atom

if x ∈ sup(θ) then
if bs = xθ then return θ
else raise parse-error

else xθ := bs
if bs ∈ range(θ) then xσ := find(bs, θ)

[enca(t1, t2)] Asymmetric Encryption
if t2 is not a challenge key then

parse′
(
Da(bs, concr(η, t2, θ)), t1, θ

)
else if bs was not produced by the left-right oracle

parse′
(
Ot2(bs), t1, θ

)
else

t is unified with the symbolic message that lead to use the left-right oracle
σ and θ are modified according to this

Oracle Ot2 designates the decryption oracle related to key from t2.
The advantage of the ACM model appears clearly in this procedure: as variables are only used

to store atoms, it is possible to easily test that a fresh atom value is “really” fresh and if it is not
the case we just have to store in σ that there is an equality between the value of two atoms. When
considering the standard computational model, parsing is more complicated. For example, B can
receive a bit-string bs that he links to a variable x. Later B can realize that bs is an encryption
using a key whose inverse was not known by B previously. The information encrypted in bs might
have been useful to B in order to win his challenge when he received bs but this information can
be useless when B receives the decryption key that allows him to understand the structure of bs.
This is called the late commitment problem and is very difficult to handle.

Example 6.2 Let us give a concrete example of this late commitment problem. Thus let us
consider the protocol that contains the following role;

Recv(x).Send(N).Recv(y).Recv({N}y−1)

Then let us consider that adversary A against the protocol plays as follows. He sends a bit-string
bs which is linked to x. B has to give him the value of N . After that, A sends a secret key sk and
once more the bit-string bs. At this point B parses bs as the encryption of N using the public key
related to sk. The corresponding trace is:

Recv({N}pk).Send(N).Recv(sk).Recv({N}pk)

This trace is not valid in the symbolic world. However it is difficult for B to win. Indeed B cannot
use N as his challenge nonce as he has to send N in the second action.
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The JCM also allows us to get rid of this problem as the adversary A has to give all the components
that are used in the produced bit-string. Thus it is not possible that B learns some informations
on the bit-string too late.

The procedure concr′ Let us first introduce some notations. We let p(θ, t) denote the pattern
obtained from t by replacing each variable x in t by θ(x) and each non-challenge atomic message
a by θ(a). Notice that since the protocol is executable, θ(x) must be defined. As we suppose that
the protocol satisfies the acyclicity condition, the obtained pattern does not contain cycles.

Now, there are the following cases according to t:

1. If t is a variable x, then concr′ returns θ(x).

2. If t is an atom a that is not the challenge nonce and not a challenge key, then concr′ returns
θ(a).

3. If t is an encryption enca(t1, t2). The following cases can be considered:

(a) t1 does not contain any challenge (either the challenge nonce or a secret challenge key)
as sub-message. Then concr′ can compute the bit-string value of t1 using a simple
recursive function, i.e. it outputs Ea(concr′(t1), concr′(t2)).

(b) t1 contains a challenge as sub-message and t2 is a challenge key. Then, concr′ computes
two new patterns p0, respectively p1, by substituting in p(θ, t1) nonce Ni by Ni0,
respectively Ni1. Note that if the challenge nonce does not appear in t1, patterns p0

and p1 are equal. Then, it calls the left-right encryption oracle corresponding to t2 on
〈p0, p1〉. Finally, concr′ outputs the result produced by the left-right oracle.

(c) t1 contains a challenge as sub-message and t2 is not a challenge key. Then, concr′

proceeds using a simple induction: let bs1 := concr′(t1) and bs := Ea(bs1, concr′(t2)).
concr′ returns bs.

4. There are no other cases as symmetric encryption and digital signature are forbidden for
now.

It is important to note that the concr′ function may fail. For example, if it is called on the
challenge nonce or on a secret challenge key. This means that B made an incorrect guess when
generating his challenge keys and nonces.

Now that we have properly defined the parse′ and the concr′ function, the behavior of B can
be detailed. This is done in figure 6.1.

Example 6.3 To illustrate the behavior of adversary B, we give a first example. This example is
one of the simplest protocols one can imagine consisting of the action Recv(N).

Initially θ and σ are the empty mappings and tf is the empty sequence. The only possible
challenge nonce is N . To perform the simulation, B randomly generates Ni0 and Ni1. Adversary
B executes instruction Recv(N) therefore he waits for A to output a bit-string bs. Suppose first
that bs = Ni0. Now, B sets tf := [Recv(N)], which is obviously not a valid symbolic trace,
and calls parse′(bs,N). The first test of parse′ (comparing the bit-string bs to Ni0) is a success.
Hence B outputs 0 as he thinks that Ni0 was used in the protocol and a cryptographic primitive
was broken by A. However since no left-right oracle has been called, B does not get any significant
advantage. This case has a negligible probability to happen as this means that random nonce has
been guessed by A without any information on it.

Assume now that bs 6= Ni0, Ni1. Then, parse′ is applied again but here B aborts (as bs does
not have a value that is compatible with N). This is the right thing to do as tf is obviously not a
valid symbolic trace.
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Adversary B(η):
randomly generate CK and Ni
generate Ni0 and Ni1
initialize all the remaining nonces and keys
for i from 1 to k

match insti with
[Recv(t)] Message reception

(bs,mem) := A(mem)
θ := parse′(bs, t, θ, σ)
trace := trace :: Recv(t)

[Send(t)] Message emission
trace := trace :: Send(t)
mem := A(concr′(t, θ),mem)

endmatch
endfor

Figure 6.1: Adversary B

Advantage of B

The objective is now to relate the advantage of B to the probability that A creates an invalid
symbolic trace. The intuition is that whenever A outputs a trace that cannot be abstracted to a
correct symbolic trace, there is (at least) one possible choice of challenge keys and of the challenge
nonce that allows B to deduce challenge bit b. This is the reason why B produces a symbolic trace
tf . If B has to append a non-deducible message to this trace, he is able to win his challenge.

Non-Dolev-Yao Messages Whenever the parse′ function is called, adversary B tests that
the resulting message is deducible from previously exchanged messages and his initial knowledge.
According to the hypotheses we made over protocols, the initial knowledge of the intruder contains
every public keys and agent identities. Hence, let m be a non-deducible message. Then m contains
a nonce N that has always been encrypted in previously sent messages. The idea is that with non-
negligible probability, this nonce is the trapped nonce Ni. Thus, by getting the value Ni0 or Ni1,
B is able to deduce bit b and to win his challenge. Another possibility is that m contains a secret
key pk−1 that was always encrypted by secure keys in the previously exchanged message. The
idea here is that pk is a challenge key with non negligible probability. Knowing pk−1, adversary
B can easily deduce the challenge bit b and win his challenge.

Let us formalize this in the following proposition.

Proposition 6.1 Let m, m1,... ,mk be k+1 messages. Let IK be a set that contains every public
keys and identities that appear either in m or in one of the mi.

Let us suppose that m is not deducible from E = IK,m1, ...,mk. Then there exists a position
p such that m|p is either a nonce, or a secret key which is not deducible from E. Moreover, for
any prefix p′ of p, m|p′ is not deducible from E.

Proof: This proof can be done using a structural induction on m. For this purpose, we study the
following different cases:

1. If m is an atom a, then as IK contains all the identities and public keys m is either a nonce
or a secret key. a is not deducible from E thus the conclusion is immediate by taking p = ε.

2. If m is a pair 〈m0,m1〉, then either m0 or m1 is not deducible from E. By symmetry, let us
suppose that m0 is not deducible. The induction hypothesis applies to m0, hence we get a
position p in m0 that is suitable for m0. Hence position 0.p0 fits for m. Then we just have
to verify that mε is not deducible and this is true as mε is m.
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3. If m is an asymmetric encryption {n}pk, then as pk appears in IK, n is not deducible
(otherwise m would also be deducible). Therefore, the induction hypothesis applies on n
which has a suitable position p. Let us consider position 0.p for m. Then we just have to
verify that mε is not deducible. However mε is m hence it is not deducible.

Thus if a message is non-deducible, it contains (with non-negligible probability) a secret that
allows B to guess the value of challenge bit b. Furthermore, any encryption that could hide this
secret is non-deducible, thus such encryptions have not been forged by the encryption oracles and
the decryption oracles can be used to recover the secret.

Probabilities Let us define the following sets of events corresponding to the different outputs
of B:

1. E0: DY, the execution behaved correctly but the final tf is a valid symbolic trace.

2. E1: NDY, adversary A produced a non-deducible message, tf is not a valid symbolic trace
but bit b has been found.

3. E2: Nonce Collision, two nonces (generated in the initialization of B) have the same
bit-string representation.

As each of these events corresponds to a possible output of B, these events are disjoint and we
have that:

Pr[E0] + Pr[E1] + Pr[E2] = 1

Hence in the case of E0 and E1, the nonces generated by B have to be different one from another.
As detailed later in this section, the probability of nonce collision is negligible hence Pr[E2] is
negligible. Let us now detail the advantage of B: B correctly guesses the value of challenge bit b
when event E1 occurs. For the two other events, B uses a random bit as its output. Hence the
advantage of B against N -PAT-IND-CCA (denoted by γN ) is given by:

AdvγNB (η) = 2Pr[E1] + Pr[E0] + Pr[E2]− 1
= Pr[E1]

We suppose that the asymmetric encryption scheme used to implement the protocol is secure
against IND-CCA. Then according to proposition 5.4, this encryption scheme is also secure against
N -PAT-IND-CCA. Therefore the advantage of B against the N -PAT-IND-CCA criterion is negli-
gible and the probability of E1 is also negligible.

Let us know consider the probability p that A produces a trace that is incorrect in the symbolic
setting. Probability p is defined by:

p = Pr[6 ∃tf ∈ Traces(Π) · Exec(A,Π, θ) ∈ Concr(tf , θ)]

Then p is the probability of an event E which denotes that A faced to Π produced a trace that
cannot be abstracted to a valid symbolic trace. In this case, as trace tf output by B is a correct
abstraction, the last message received by B is not deducible from previous ones. According to
proposition 6.1, B wins his challenge in such cases. However, this only occurs if B has correctly
chosen the challenge keys and the challenge nonce but this happens with non-negligible probability.

Pr[E1] ≥
1

2NN
p

This relation is not an equality as multiple choices of challenge keys and the challenge nonce can
lead to the victory of B. Finally, we get that p can be bounded by:

p ≤ 2N .N.AdvγNB (η)

As p is positive, this probability is negligible in η. This concludes the proof of theorem 6.1.
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Nonces are Probably Different We consider that anytime a computational adversary picks
up some nonces, they are different one from another. The adversary can only get a number m of
nonces that is polynomial in η and we suppose that the number n of possible nonces is exponential
in η (so m < n). Let P be the probability that the adversary gets twice the same nonce.

1− P =
n

n

n− 1
n

...
n− (m− 1)

n

Thus, we have the following inequalities:

0 ≤ P ≤ 1−
(
1− m− 1

n

)m

Proposition 6.2 For any x ∈ [0, 1[ and a ≥ 1,(
1− x

)a ≥ 1− x.a

Proof: Consider the function f(x) =
(
1− x

)a − 1 + x.a. Derive it twice to get the result.
Applying the proposition, we get:

0 ≤ P ≤ m.(m− 1)
n

As m is polynomial and n is exponential in η, P is negligible in η. When considering an adversary
that has a non-negligible advantage against something, this adversary still has his advantage if we
consider only executions where nonces are distinct.

6.2.3 Adding more Cryptographic Primitives

In this section, we generalize the result from the previous section to a more general class of pro-
tocols. This is done by considering more cryptographic primitives such as symmetric encryption.
However we still consider the ACM to simplify things. Within the ACM, considering digital sig-
nature is useless: variables can only be used to receive atoms, hence it is not possible to receive
new signatures. The only verification that can be done by a role involves a signed message that is
forged by the same role, therefore the result of the verification can be statically determined. For
this reason, we only consider the addition of symmetric encryption.

Theorem 6.2 Let Π be a valid protocol that uses a safe cryptographic library CL. Let A be an
adversary. Then, the following probability is negligible as a function of η:

Pr[6 ∃tf ∈ Traces(Π) · Exec(A,Π, θ) ∈ Concr(tf , θ)]

The proof of this theorem is very close to the proof given for theorem 6.1.
Let us use the same notations: protocol Π is composed of a role R and an initial knowledge

IK. Integer N denotes the number of different atoms that occur in Π. We still have that the
number of asymmetric keys used by Π is lower than N , the number of different nonces and the
number of symmetric keys used by Π are also lower than N .

As earlier, the proof of this theorem is done by reduction to the security of the underlying
cryptographic schemes. Let A be an adversary interacting with the protocol, we build an adver-
sary B playing against the N -PASS criterion (for cryptographic library CL) such that the above
probability is bounded by the advantage of B.

The cryptographic library used to implement the protocol is composed by an asymmetric
encryption scheme AE , a symmetric encryption scheme SE and a digital signature scheme SS. As
CL is supposed to be safe, AE is secure against IND-CCA, SE is secure against SYM-CPA and
SS is secure for UNF (although SS is not used in this situation). By using proposition 5.8, we
get that the cryptographic library is secure for N -PASS.
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Adversary B The design of adversary B is similar to the one proposed in the previous section.
However functions parse′ and concr′ have to be adapted in order to handle symmetric encryptions.
The main difference with respect to asymmetric encryption is that there are no decryption oracles
for symmetric keys that the parse′ function may use. Remember that the decryption oracle
was used whenever the protocol had to parse an encryption using one of the challenge key and
this encryption had not been produced by the left-right encryption oracle. In this situation for
symmetric encryption, there is no need to decrypt the message: as this message is a fresh encryption
using a challenge key, this allows adversary B to win his challenge against forgeability of symmetric
encryption.

The concr′ algorithm has to be modified in order to use the left-right encryption oracle for
symmetric keys from CK. When concr′ is called on a symmetric encryption {t1}t2 where t2 is
a challenge key (i.e. appears in CK), then concr′ generates two patterns corresponding to t1 in
the case where Ni is instantiated with Ni0 and in the case where it is instantiated with Ni1.
These patterns are submitted to the left-right encryption oracle and concr′ returns the resulting
bit-string.

Non-deducible Messages and Probabilities Whenever B has to append a non-deducible
bit-string to trace tf , B is able to win by either guessing the value of challenge bit b or by forging a
fresh symmetric encryption. There are different possibilities that can make B guess b: the message
can be non-deducible because of a nonce (and with non-negligible probability, this is nonce Ni).
It can be non-deducible because of a secret or symmetric key then it is easy to get the value of b.

The following proposition describes why a message can be non-deducible.

Proposition 6.3 Let m, m1,... ,mk be k+1 messages. Let IK be a set that contains every public
keys and identities that appear either in m or in one of the mi.

Let us suppose that m is not deducible from E = IK,m1, ...,mk. Then there exists a position
p such that m|p is either a nonce, a symmetric key, a secret key or a symmetric encryption which
is not deducible from E. Moreover, for any prefix p′ of p, m|p′ is not deducible from E.

Proof: This proof can be done using a structural induction on m. For this purpose, we study the
different following cases:

1. If m is an atom a, then as IK contains all the identities and public keys m is either a nonce,
a symmetric key or a secret key, a is not deducible from E thus the conclusion is immediate
by taking p = ε.

2. If m is a pair 〈m0,m1〉, then either m0 or m1 is not deducible from E. By symmetry, let us
suppose that m0 is not deducible. The induction hypothesis applies on m0, hence we get a
position p in m0 that is suitable for m0. Hence position 0.p0 is suitable for m. Then we just
have to verify that mε is not deducible and this is true as mε is m.

3. If m is an asymmetric encryption {n}pk, then as pk appears in IK, n is not deducible
(otherwise m would also be deducible). Therefore, the induction hypothesis applies on n
which has a suitable position p. Let us consider position 0.p for m. Then we just have to
verify that mε is not deducible. However mε is m hence it is not deducible.

4. If m is a symmetric encryption {n}k, then as m is not deducible, ε can be used for position
p.

Thus if a message is non-deducible, it contains a secret that allows B to win his game. Fur-
thermore, any encryption that could hide the secret is non-deducible, thus such encryptions have
not been forged by the left-right encryption oracles. In the case of asymmetric cryptography, the
decryption oracle can be used to recover the secret. In the case of symmetric cryptography, B
directly wins his game by forging a fresh symmetric encryption.

As in the previous proof, we define three different events corresponding to the output of B:
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1. E0: DY, the execution behaved correctly but the final tf is a valid symbolic trace.

2. E1: NDY, adversary A produced a non-deducible message, tf is not a valid symbolic trace
but bit b has been found or a fresh symmetric encryption has been forged.

3. E2: Nonce Collision, two nonces (generated in the initialization of B) have the same
bit-string representation.

As each of these events corresponds to a possible output of B, these events are disjoint and we
have that:

Pr[E0] + Pr[E1] + Pr[E2] = 1

Hence in the case of E0 and E1, the nonces generated by B have to be different one from another.
As we saw in the previous section, the probability of nonce collision is negligible hence Pr[E2] is
negligible.

Let us now give the advantage of B if we suppose that B correctly chose CK and Ni: B
correctly guesses the value of challenge bit b or forges a fresh symmetric encryption when event
E1 occurs. For the other two events, B tries to guess the value of b by outputting a random bit.
Event E1 is split in two: event Eb1 when B guesses the value of b and event Es1 when B forges a
fresh symmetric encryption. Hence the advantages of B against N -PASS/IND (denoted by γN )
and N -PASS/UNF (denoted by δN ) are given by:

AdvγNB (η) = 2Pr[Eb1] + Pr[Es1 ] + Pr[E0] + Pr[E2]− 1
= Pr[Eb1]

AdvδNB (η) = 2Pr[Es1 ]− PrRandUNF

Where PrRandUNF denotes the probability to generate a valid symmetric encryption (for a ran-
domly sampled key) without any oracle. The cryptographic library used to implement the proto-
col is supposed to be safe. Hence the advantage of A against γN and δN is negligible. Moreover
PrRandUNF is negligible, thus we get that Pr[Eb1] and Pr[Es1 ] are negligible and so Pr[E1] is also
negligible.

From here, the theorem’s proof can be completed by using the same reasoning as described at
the end of the previous section.

6.2.4 Considering the General Model

Although the ACM can be used to analyse many simple protocols such as the Needham-Schroeder-
Lowe protocol, it is not suited to represent protocols that deal with digital signature or message
forwarding. For this reason, we want to extend our soundness result to the case of the JCM and
of the full computational model.

The JCM allows for simpler proofs but is not representative of reality: in real life situations,
adversaries do not have to justify the attacks they are performing. Hence in this section we mainly
focus on the full computational model. However the previous soundness proof can be adapted to
handle the JCM as parsing can be entirely achieved when receiving a bit-string.

The main complication when considering the full computational modal compared to the ACM
comes from the emission of secret keys in the case of asymmetric cryptography and from the
emission of keys in the case of symmetric cryptography. This complication is linked to the proof
strategy we used previously. This strategy supposes that each time the adversary sends a bit-
string, this bit-string can be totally parsed. However sending secret keys raises the issue of the
late commitment problem as described previously. It is possible that the adversary sends first
a bit-string then later sends the corresponding decryption key. This decryption keys allows us
to parse the first bit-string but if adversary B only notices at that point that the corresponding
symbolic message is non deducible, it might be impossible for B to win the challenge because of
the messages that he had to send between the first bit-string and the key.
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Let us give another concrete example of this, consider the following protocol where A is im-
personated by the adversary.

B → A : {N}k′
A→ B : x

B → A : N

A→ B : xk

A→ B : {N}xk

Let A be a computational adversary against this protocol, let us imagine an adversary B close to
the one proposed earlier in this section. B uses A as a subroutine and tries to break symmetric
encryption (in this case, the indistinguishability part and not the authentication). Therefore B
generates two possible values bs0 and bs1 for nonce N . Using his left-right encryption oracle, B
produces E(bsb, k′) and gives it to adversary A. Then A outputs a bit-string bs which corresponds
to x. At this point, B has to give bsb to A hence he cannot terminate this simulation. We would
like to argue that N cannot be the reason why the trace output by A is not possible in the symbolic
setting however this is not the case. Namely if we managed to send the value of N to A, A may
have output a bit-string bsk for key xk and then bit-string bs for message {N}xk . B can obtain the
value of N but because he has sent N before, this cannot be used to break symmetric encryption.
The corresponding symbolic trace is:

B → A : {N}k′
A→ B : {N}k
B → A : N

A→ B : k

A→ B : {N}k

This trace is impossible in the symbolic setting but there is no easy way to break symmetric
encryption by using A. When B receives {N}k, he does not know the corresponding decryption
key and hence he cannot get the value of N and wins his challenge. The value of N can only be
discovered when A sends k but this is to late as B had to give N already.

A similar problem is raised in the work of Backes, Pfitzmann and Waidner [BPW03b]. This
issue is solved by assuming that the overall protocol ensures that keys are not sent after being used.
In their context, this assumption clearly eliminates the commitment problem. According to their
work, this assumption is generally met when considering protocols from the Clark and Jacob’s
survey [CJ97]. Only one out of the fifty protocols does not fulfill this requirement: the Wide
Mouthed Frog protocol, which is flawed. Hence this restriction seems quite fair even for real-world
protocols. However it is not clear how this restriction can be adapted to fit in our model. It is
possible to imagine more complex protocols where the issue appears but the use of the key before
its sending comes from a collision.

In our context, a simple solution is to forbid sending secret keys. Then parsing of a message
cannot change because of new knowledge. Hence it is possible to know when receiving a bit-string
if the corresponding message is non-deducible. If it is the case, security of one of the cryptographic
scheme can be broken. However, this hypothesis is unrealistic for most security protocols as key
sending is often used.

Another possible way of handling key sending is to consider stronger cryptographic assumptions
than the usual semantic security. This is developed in Romain Janvier’s thesis [Jan06]. The
soundness result is proven in the full computational model. However Janvier has to add new
cryptographic requirements which are closely related to commitment. It is not clear whether these
requirements are implied by classical requirements or not.
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6.2.5 Extending the Results

In this section, we consider two extensions of the previous results. In the first one, we add a new
primitive close to hashing. In the second part, we show how it is possible to modify the Dolev-Yao
model when considering weaker computational primitives, this is demonstrated on a block cipher.

Hash Functions

Hashing is a cryptographic primitive that is very commonly used in security protocols. Its classical
use relies on two particularities: hashing is deterministic, therefore it is possible to authenticate
a message m knowing its hashed value; hashing is supposed to be collision-resistant, hence au-
thentication provided by a hashing is reliable. Probabilistic hash functions have been proposed
recently [Can97], however we only consider deterministic keyed hash functions in this section.

Symbolic Model

First let us specify how hashing is modeled in the symbolic setting. The definition of message is
modified by adding a new function h of arity 1. For example, hashing of the pair of nonces N and
N ′ is represented by message h(〈N,N ′〉).

Protocols are also modified: there is a new instruction which allows an agent to test that a
value is the hash of a message, this new instruction is denoted by [x = h(t)] where x is a variable
and t is a term. The modified semantics is pretty straightforward, a substitution σ is possible iff
xσ = h(tσ) where the = relation here denotes syntactic equality.

The last modification for the symbolic model concerns the intruder deduction relation. A new
rule is added to the inductive definition of this relation:

• If E ` m, then E ` h(m).

If a message is deducible by the adversary, then its hashing is also deducible. As this is the only
modification to the deduction relation, the adversary cannot deduce anything on m from h(m).

Computational Requirements In the computational world, a keyed hashing algorithm is a
polynomial deterministic algorithm that computes from a key k and a bit-string bs another bit-
string of size η. The key generation algorithm is not important and one can suppose that k is
chosen randomly among strings of size η. The same key is used for all applications of the hash
function and this key is public. The only use of this key is to make collisions harder to find (it is
impossible for an adversary against collision-freeness to output fixed collisions as these collisions
depend on the randomly chosen key).

Usual security requirements for a hashing algorithm H are one-wayness and collision resistance.
One-wayness is a way to represent secrecy, it is impossible from H(bs) to deduce the bit-string bs.
Formally, the following advantage is negligible for any adversary A:

AdvOWA (η) = Pr[k R← [0, 1]η , bs R← [0, 1]η , bs = A(η,H(k, bs))]

Collision resistance means that finding a collision is hard:

AdvCRA (η) = Pr[k R← [0, 1]η , (bs1, bs2) := A(η) , H(k, bs1) = H(k, bs2)]

Note that it is not possible to statically encode collisions in A as the value produced by algorithm
H depends on k which is randomly generated.

Let us discuss now the requirements we have to put on hashing in order to adapt the proof
of the soundness theorem 6.2. For secrecy, hashing has to satisfy an indistinguishability criterion
as one-wayness is not sufficient. Hashing has to satisfy an unforgeability criterion as it is not
possible in the symbolic world to compute a fresh hashing using old ones. Finally equality tests
for hashing are modeled by bit-string tests in the computational setting, hence we also ask our
hashing algorithm to satisfy collision resistance. The main difficulty when formulating these

Laurent Mazaré Ph.D Thesis 129/229



Chapter 6. Linking the Computational and Symbolic Worlds

criteria is that the hashing algorithm is deterministic. Thus the indistinguishability criterion is
not straightforward: the left-right hashing oracle takes as arguments two patterns which must ask
for inclusion of a secret nonce NH by using pattern variable [NH ]. If we do not ask that, the
adversary can submit the pair 〈0, 1〉 to the left-right oracle and compute the values of H(k, 0) and
H(k, 1) (all the participants know the value of hash key k, even the adversary). Moreover, the
adversary cannot submit the same pattern twice (otherwise it is easy to design adversaries with
non-negligible advantages).

The HASH Criterion The HASH criterion is a combination of an IND-CCA criterion, an
UNF criterion and a collision free criterion. A hashing algorithm needs to verify three properties
to be secure. First an adversary cannot obtain information on a bit-string bs when looking at
H(k, bs). The second property is that if an adversary does not know a bit-string bs, he cannot
produce H(k, bs) even if he knows hashing of messages meaningfully related to bs. Finally, it must
be hard for an adversary to find two different messages which have the same hash for a given key.
More details about criteria related to HASH can be found in the excellent book of Bellare and
Rogaway [BR03].

The HASH criterion γ takes as argument a hash function H and returns (Θ;F ;V ). Θ generates
a bit b, a key k and a random bit-string NH of size η. Oracle F gives access to two oracles: an
oracle which gives the value of key k and a left-right hashing oracle which takes as input a pair
〈pat0, pat1〉 of hollow patterns (an hollow pattern can ask for inclusion of NH and have to ask
for it at one position at least) and outputs H(k, patb[NH ]). Moreover, each pattern can only be
submitted once to this oracle in order to avoid guessing attacks. Verifier V contains three parts:
VIND returns true if the adversary outputs the challenge bit b; VUNF returns true if the adversary
outputs a pair 〈h, pat〉 such that h = H(k, pat[NH ]) and h was not produced by F ; VCF returns
true if the adversary outputs a pair 〈bs0, bs1〉 such that H(k, bs0) = H(k, bs1), and bit-strings bs0
and bs1 are different.

A hashing algorithm is said HASH if it verifies γ.
The criterion related to IND (Θ;F ;VIND) (resp. to UNF (Θ;F ;VUNF )) is denoted by

HASH/IND (resp. HASH/UNF). The last criterion related to collision free is denoted HASH/CF.
In practice, we only ask theH algorithm to satisfy the indistinguishability criterion and collision

resistance as unforgeability is a consequence of these two criteria.

Proposition 6.4 If an algorithm H verifies HASH/IND and HASH/CF and PrRandCF and
PrRandUNF are negligible, then H verifies HASH/UNF and HASH.

Proof: We first state two technical lemmas:

Lemma 6.1 Let (ai)1≤i≤n be n real numbers. Then∑
1≤i≤n

a2
i ≥

1
n

∑
1≤i,j≤n

aiaj

Proof: By developing (ai − aj)2 ≥ 0, we obtain

a2
i + a2

j ≥ 2aiaj∑
1≤i,j≤n

a2
i + a2

j ≥ 2
∑

1≤i,j≤n

aiaj

2n
∑

1≤i≤n

a2
i ≥ 2

∑
1≤i,j≤n

aiaj

∑
1≤i≤n

a2
i ≥

1
n

∑
1≤i,j≤n

aiaj

Using this first lemma, we are able to prove the following inequality between probabilities.
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Lemma 6.2 Let X, Y and Y ′ be three independent random variables. X is chosen randomly in
a finite set SX , Y and Y ′ are chosen randomly in the finite set SY . Let E be a predicate over
SX × SY , then

pr
(
E(X,Y ) ∧ E(X,Y ′) ≥ [

pr
(
E(X,Y )

)]2
Proof: To prove this lemma, let p be the left probability. Hence,

p = pr
(
E(X,Y ) ∧ E(X,Y ′)

)
=

1
|SX |

∑
x∈SX

pr
(
E(x, Y ) ∧ E(x, Y ′)

)
=

1
|SX |

∑
x∈SX

pr
(
E(x, Y )

)
.pr

(
E(x, Y ′)

)
=

1
|SX |

∑
x∈SX

pr
[(
E(x, Y )

)]2

Then, using lemma 6.1, we get:

p ≥ 1
|SX |2

∑
x,x′∈SX

pr
[(
E(x, Y )

)]
.pr

[(
E(x′, Y )

)]
=

( 1
|SX |

∑
x∈SX

pr
[(
E(x, Y )

)])2

=
(
pr

[(
E(X,Y )

)])2

Let H be a hash function that verifies HASH/IND and HASH/CF. Let us suppose that there
exists an adversary A against HASH/UNF (also written UNF in the following) whose advantage
is not negligible. Then we build the adversary B against HASH/IND (also written IND in the
following) which executes A (A uses directly oracles given to B).

Adversary B(η)/Ok,OLR:
pat, bs:=A(η)/Ok,OLR
N ′ R← [0, 1]η

pat′ := 〈[], N ′〉
bs′ = OLR(pat, pat′)
if bs = bs′ return 0
else b′

R← [0, 1]
return b′

The advantage of B against IND is given by:

AdvINDB = Pr[B → 0 in GIND
B |b = 0]− Pr[B → 0 in GIND

B |b = 1]

We can now compare the game GIND
B |b = 0 and the game GUNF

A .
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Game GIND
B (η)|b = 0:

NH R← [0, 1]η

k
R← [0, 1]η

pat, bs:=A(η)/λ().k,
λ〈pat0, pat1〉H(k, pat0[NH ])

N ′ R← [0, 1]η

pat′ := 〈[], N ′〉
bs′ = H(k, pat[NH ])
if bs = bs′ return 1
else b′

R← [0, 1]
return b′ = 0

Game GUNF
A (η):

NH R← [0, 1]η

k
R← [0, 1]η

pat, bs:=A(η)/λ().k, λ〈pat0, pat1〉H(k, patb[NH ])
return H(k, pat[NH ]) = bs

Thus we get that the advantage of B can be related to the advantage of A and to the advantage
of another adversary A′ against UNF.

AdvINDB = Pr[GUNF
A = true]+

1
2
Pr[GUNF

A = false]−Pr[GUNF
A′ = true]− 1

2
Pr[GUNF

A′ = false]

Where A′ is an adversary against UNF defined by:

Adversary A′(η)/Ok,OLR:
pat, bs:=A(η)/Ok,OLR
N ′ R← [0, 1]η

pat′ := 〈[], N ′〉
return pat′, bs

We obtain
2AdvINDB = AdvUNFA −AdvUNFA′

Hence, as AdvINDB is negligible and AdvUNFA is not, A′ has a non negligible advantage against
HASH/UNF.

Finally, we build from A an adversary C against collision-freeness whose advantage is related
to the advantage of A′. For this purpose, C generates a nonce NH in order to simulate with a
function ρ the hash oracle used by A.

Adversary C(η)/Ok,OLR:
NH R← [0, 1]η

pat, bs:=A(η)/Ok, ρ
N ′ R← [0, 1]η

N ′′ R← [0, 1]η

pat′ := 〈[], N ′〉
pat′′ := 〈[], N ′′〉
return pat′[NH ], pat′′[NH ]

Then, as PrRandCF is negligible, the probability that C finds a collision is negligible. Moreover,
this probability is greater than the probability that C finds a collision and the hash of pat′[NH ]
is equal to the bs produced by A. In the following, events like H(pat′[NH ]) = bs means: after the
random execution of GUNF

A′ , we obtain pat′, NH and bs such that this equality holds. To deduce
the second inequality, we use lemma 6.2 that is given just after this proof.

Pr[GCF
C = true] ≥ pr

(
H(pat′[NH ]) = bs = H(pat′′[NH ])

)
≥ Pr[H(pat′[NH ]) = bs]

.P r[H(pat′′[NH ]) = bs]

≥
(
Pr[GUNF

A′ = true]
)2
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There is a contradiction as A′ has a non negligible advantage and PrRandUNF is negligible. Hence
H verifies HASH/UNF.

Usual hash functions (MD5, SHA1) produce a fixed-length output. This makes it possible to
find collisions in a constant time (in η), clearly such primitives are not appropriate. It is not clear
to us if there exists an algorithm that verifies HASH.

Hypotheses to Prove Soundness In order to extend our soundness result to protocols us-
ing hashing, the first hypothesis concerns the hashing algorithm which has to satisfy the HASH
criterion. PrRandHASH/UNF and PrRandHASH/CF are negligible. The same hash key is used
through the whole protocol execution, this allows protocols to use the unary notation h(m).

The other requirement holds on protocols: each sent hash message contains a nonce that
remains secret, hash messages cannot contain any secret keys: private keys for asymmetric en-
cryption, symmetric keys and signature keys.

With these requirements, it seems possible to apply the same proof technique as the one used
to prove theorem 6.2 and thus to obtain the same soundness result, see [Jan06] for details.

Block Ciphers

The objective of this section is to weaken the perfect cryptography hypothesis. This is first done in
the formal model by adding a new rule to possible deductions. Then in the computational model,
the classical IND-CCA criterion has to be modified. Hence, a soundness theorem can show that
the extended Dolev-Yao model is still a safe abstraction of the computational model if we suppose
that the encryption scheme verifies the modified IND-CCA property.

To enhance the adversary’s capacity in both models, let us consider a pair of functions: δf
takes a message as argument and outputs another message and δc uses a string of bits to produce
another string of bits. Furthermore, these two functions have to be related: they must modify
their arguments in the same way.

Definition 6.5 (DY-weakening) A DY-weakening is a pair of function (δf , δc) such that for
any computational substitution θ and any message m,

δc (concr(m, θ)) = concr (δf (m), θ)

Where concr is the concretization algorithm. We also ask that given a string s, the set S′ ={
δnc (s), n > 0

}
can be computed in polynomial time.

This last hypothesis is useful when defining the computational criterion.
To illustrate this definition, we use the equational theories related to Block Ciphers (BC). We

do not consider a precise implementation of BC but rather consider encryption schemes verifying
similar equational theories. BC allows the adversary to make some deductions using a property
verified on some block encryption schemes.

Example 6.4 (Block Ciphering) BC is a DY-weakening that allows the adversary to deduce
from an encoding of message m the encoding of a prefix of m. More formally,

δf ({〈m,n〉}pk) = {m}pk
δc(E(s.s′, pk)) = E(s, pk)

It is easy to verify that (δf , δc) constitutes a correct DY-weakening.

The Extended Dolev-Yao Model In the DY model, the deductibility relation E ` m is
defined by inference rules. We add a new inference which represents that an adversary can deduce
from a message its image after applying δf .

E ` m
E ` δf (m)
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This defines an Extended Dolev-Yao model denoted by EDY . Note that usually, δf is defined on
a subset of the set of messages. If δf cannot be applied to a message m, then our inference adds
no new deductions starting from m.

Example 6.5 (Block Ciphering) Using δf given in the previous example, we obtain the clas-
sical prefix rule:

T ` {〈m,n〉}pk
T ` {m}pk

The δc-IND-CCA Criterion If we consider an IND-CCA encryption scheme, then EDY is still
a safe abstraction of the computational model as EDY is an extension of DY (formally, T `DY m
implies T `EDY m). However, EDY can still be a safe abstraction when considering an encryption
scheme that is not IND-CCA. The encryption scheme has to be secure against a new criterion
that uses δc, this criterion is called δc-IND-CCA.

δc-IND-CCA is defined as a criterion (KG, Epk,Dsk) similar to IND-CCA. The only difference
is that in IND-CCA the decryption oracle does not apply to strings produced by the encryption
oracle (stored in a mutable field mem), here it does not apply to strings that are in mem′ ={
δnc (s), s ∈ mem,n > 0

}
. As this set can be computed in polynomial time, the decryption oracle

can be implemented using a PRTM.
It is easy to extend δc-IND-CCA to N -δc-IND-CCA and a trivial application of the partition

theorem gives the following property:

Proposition 6.5 Let AE be an asymmetric encryption scheme. Then for any N > 0, AE is
N − δc-IND-CCA iff AE is δc-IND-CCA.

Example 6.6 (Block Ciphering) Proof of the existence of a δc-IND-CCA encryption scheme
for BC can be done as follows.

Let bs be a positive integer representing a block size. Let us consider an IND-CCA encryption
scheme AE = (KG, E ,D) and a SYM-CPA encryption scheme AE ′ = (KG′, E ′,D′). Then, AE ′′ is
the encryption scheme (KG, E ′′,D′′) where E ′′(s, pk) is defined as:

E ′′(s, pk) = E(s1 · k1, pk) · E ′(s2 · k2, k1) · ... · E ′(sn, kn−1)

when s is composed by blocks s1 to sn of size bs and keys ki are freshly generated symmetric keys.
The decoding algorithm allows to retrieve the original message by applying a similar modification.

This encryption scheme is not IND-CCA but is δc-IND-CCA. To prove that, let us assume that
it is not the case. Then there exists an adversary A against this criterion. We use A to break Q-
PAS (for Pattern Asymmetric Symmetric semantic security, this criterion represents joint security
of asymmetric and symmetric encryption with patterns and is a restriction of Q-PASS): for this
purpose, A is executed and his queries to oracles are simulated using IND-CCA oracles. Then,
if A asks for the encryption of s1 · ... · sn, the new adversary asks for encryption of s1, creation
of a fresh challenge symmetric key SYM-CPA and so on. When A calls his decryption oracle,
the argument m is not the prefix of any output of the new encryption oracle. Let us suppose that
m = m1 · ... ·mn. Then if m1 has not been produced by the left-right asymmetric encryption oracle,
it is possible to decrypt the whole message. Otherwise, let i be the minimal index such that mi has
not been produced by an encryption oracle. Then either mi allows to win SYM-CPA/UNF or the
m was not a correct encryption. Finally, if any mi has been produced by an encryption oracle,
then m is a prefix of the output of the new encryption oracle.

Soundness Result In the formal world, the definition of extended possible traces is exactly
similar to the definition of possible traces. For a given protocol Π, this defines a set etraces(Π).
For computational semantics, the different exec algorithms are not modified.

The main result is stated in the following theorem:
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Theorem 6.3 Let Π be a protocol. Let AE be the encryption scheme used in Π. If AE is
δc-IND-CCA then for any concrete adversary Ac:

Pr
[
6 ∃tf ∈ traces(Π) · Exec(A,Π, θ) ∈ Concr(tf , θ)

]
is negligible

The proof is close to the one of the previous soundness theorem, an adversary against the
protocol can be transformed to an adversary against the encryption scheme as soon as the trace
is NEDY (not Extended Dolev-Yao).

• Parsing is done as before except that messages in mem′ cannot be decoded anymore. For
this purpose, messages in mem′ are stored as long as their formal equivalent to allow their
parsing. Hence, it is possible to simulate the execution of the protocol.

• Messages that are NEDY are elements of the following grammar where m represents any
message:

n ::= N |〈n,m〉|〈m,n〉|{n}pk
If n is a nonce, winning the challenge can be done as before. If n is a pair, then one of its
component is NEDY. Finally, if n is an encoding {n′}pk then the decryption oracle can be
called to get n′, otherwise n ∈ mem′ but any message in mem′ is accessible in the trace and
so is EDY.

Example 6.7 (Block Ciphering) Verification of protocols with BC is possible when considering
a bounded number of sessions (but the problem is in general NP-complete [CKRT03a]). Thus, it
is possible to verify a protocol with this hypothesis in the formal world, if the protocol is safe
(regarding for example trace properties), then it is safe in the computational world.

Extensions Here, the weakening functions operate on messages/strings and produces a mes-
sage/string. Although this hypothesis makes the results easier to understand, it is quite restrictive.
This is why, we consider functions δc and δf which work on and produce sets of messages/strings.
A similar soundness result can obtained in a straightforward way.

Example 6.8 (Extended BC) Let us consider an extension of BC where the adversary is able
to deduce a prefix as before but also a suffix. This is encoded in the following definition:

δf ({〈m,n〉}pk) =
{
{m}pk, {n}pk}

δc(E(s.s′, pk)) =
{
E(s, pk), E(s′, pk)

}
The EDY is modified with the two following inferences:

T ` {〈m,n〉}pk
T ` {m}pk

T ` {〈m,n〉}pk
T ` {n}pk

Proof of the existence of a δc-IND-CCA encryption scheme for extended BC is presented here:
Let bs be a positive integer representing a block size. Let us consider an IND-CCA encryption
scheme AE = (KG, E ,D). Then, AE ′ is the encryption scheme (KG, E ′,D′) where E ′(s, pk) is
defined as:

E ′(s, pk) = E(s1, pk) · E(s2, pk) · ... · E(sn, pk)

when s is composed by blocks s1 to sn of size bs. The decoding algorithm allows to retrieve the
original message by applying a similar modification.

Then, AE ′ is not an IND-CCA encryption scheme but is a δc-IND-CCA encryption scheme.
It is not IND-CCA as an adversary can submit message 02bs and message 12bs to the encryption
oracle. The oracle outputs {b2bs}pk = {bbs}pk.{bbs}pk and so the adversary submits bbs to the
decryption oracles (this is possible as this message has not been produced by the encryption oracle)
and obtains the value of bit b. The restriction made on the decryption oracle aims at forbidding
such attacks.

Laurent Mazaré Ph.D Thesis 135/229



Chapter 6. Linking the Computational and Symbolic Worlds

If AE ′ is not a δc-IND-CCA encryption scheme, then there exists an adversary A against the
criterion with δc. As usual, this adversary can be used to create an adversary against IND-CCA
for algorithm AE: oracles related to A are simulated using AE (this is trivial for encryption and
possible for decryption because of the form of δc).

This approach works well for equational theories that do not modify encryption keys. This is
not the case if we consider an encryption scheme with key commutation (usual when considering
modular exponentiation). For any keys pk1, pk2, and any message m:{

{m}pk2
}
pk1

=
{
{m}pk1

}
pk2

In this case, if a bit-string bs has been submitted to an encryption oracle that returned bs′, then
no encoding (with any other public key) of bs′ can be submitted to the decryption oracle. Hence
the set mem′ cannot be computed in polynomial time.

6.3 Relating Symbolic and Computational Properties

In this section, we study computational soundness of symbolic properties. We mainly investigate
two different classes of properties: trace properties like authentication and weak secrecy and strong
secrecy properties like SecNonce or SecKey. More complex properties based on opacity (a symbolic
version of computational indistinguishability) are examined in chapter 9.

6.3.1 Trace Properties

Let us first consider the case of trace properties. The computational version Pc of a trace property
is given by a set of computational traces and the symbolic version Pf is given by a set of symbolic
traces. We say that Pf is a faithful abstraction of Pc for protocol Π, if the probability that a
concretization of a symbolic trace in Pf is not in Pc is negligible. In other words, the following
probability has to be negligible for any adversary A:

Pr[∃tf ∈ traces(Π) : tf ∈ Pf ∧ Exec(A,Π, θ) ∈ Concr(tf ) ∧ Exec(A,Π, θ) 6∈ Pc].

In particular, faithfulness is always verified if the set of possible concretizations of traces from Pf
is included in Pc which means that any concretization of a symbolic trace verifying the property
in the symbolic world also has to verify the property in the computational setting.

The following proposition is a preservation result for faithful trace properties. It states that
if the symbolic property is a faithful abstraction of the computational property and it is satisfied
in the symbolic model then the concrete property is satisfied in the computational model. It has
been applied to mutual authentication in [MW04c] in which there is also a longer discussion about
symbolic/computational properties.

Proposition 6.6 Let Pf be a symbolic property and Pc be a computational property. Let Π be a
well-formed protocol that uses a PASS secure library. If Pf is a faithful abstraction of Pc for Π
and if Π |=f Pf , then Π |=c Pc. In other words, if the protocol satisfies the property Pf in the
symbolic model then it satisfies Pc in the computational model.

Proof: This proposition is a consequence of theorem 6.1. Indeed, we have

Pr[Exec(A,Π, θ) 6∈ Pc] = Pr[∃tf ∈ Traces(Π) : tf ∈ Pf∧
Exec(A,Π, θ) ∈ Concr(tf ) \ Pc]+

Pr[∃tf ∈ Traces(Π) : tf 6∈ Pf∧
Exec(A,Π, θ) ∈ Concr(tf )]+

Pr[6 ∃tf ∈ Traces(Π) : Exec(A,Π, θ) ∈ Concr(tf )]
= ν(η) + 0 + ν′(η)

where ν and ν′ are negligible.
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Similar results also exist for protocols that only use a subset of the different cryptographic
primitives proposed here. Moreover, it is also possible to generalize this result in order to handle
hashing and the full computational model (see [Jan06] for details).

Let us now illustrate how this last proposition can be used. For this purpose, we consider
two different properties: authentication and weak secrecy. These are trace properties hence the
proposition applies directly whereas for more complex properties (e.g. SecNonce) an intermediate
proof is needed.

Authentication

Let us first deal with authentication properties. These properties can be formulated as trace
properties. Namely, given a protocol and a cryptographic library, there is a set of computational
properties representing executions where authentication is verified in the computational setting.
There also exists a set of symbolic traces which represent executions where authentication is
verified in the symbolic world.

Proposition 6.7 Let Π be a well-formed protocol that uses a PASS secure library. If Π satisfies
an authentication property in the symbolic setting, then the same authentication property is verified
in the computational world.

Proof: For any of the authentication properties, it is sufficient to notice that if a computational
execution abstracts on a symbolic trace where authentication is verified, then authentication is
also verified in the computational setting. Hence the symbolic version of authentication is clearly
a faithful abstraction of the computational version. Then it is possible to apply proposition 6.6.

Weak Secrecy

Weak secrecy is expressed as a trace property in section 6.1.3. Hence it is possible to use prop-
erty 6.6 in order to deal with soundness of symbolic secrecy. The main result is that if a protocol
ensures secrecy for nonce N in the symbolic setting, then weak secrecy of N is ensured in the
computational setting. This is stated through the next proposition.

Proposition 6.8 Let Π be a well-formed protocol that uses a PASS secure library. If Π satisfies
secrecy for message m in the symbolic setting, then the same weak secrecy of m is verified in the
computational world.

Proof: The proof is exactly the same as for 6.7. It is sufficient to notice that if a computational
execution abstracts on a symbolic trace where weak secrecy is verified, then weak secrecy is also
verified in the computational setting. Then it is possible to apply proposition 6.6.

Weak secrecy correctly abstracts on symbolic secrecy. However this version of secrecy is too
weak to be used in the computational setting. For example, it is possible that a protocol satisfies
weak secrecy for a nonce N and that an adversary can deduce half of the bits of N . As the
adversary is not able to build N entirely, there is no contradiction. If N is used for authentication,
this is not a problem as the adversary has to submit the whole N in order to perform an attack.
But if N is for example an encoding of a credit card number and a payment date, then if the
adversary is able to recover the credit card information, this becomes a real problem. At this
point, weak secrecy cannot guarantee anything on partial information leaks.

From a computational point of view, we would like to ensure that no information at all can be
extracted from the secret nonce. This is captured by the SecNonce property: after executing the
protocol, the adversary should not be able to distinguish the secret nonce value from a randomly
sampled value with non-negligible probability.

6.3.2 Secrecy

Some properties cannot be expressed by a predicate over traces. In this situation, proposition 6.6
cannot be applied directly. Hence, simulatability approaches [BPW03a, CH04] are better suited to
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handle directly these properties. However soundness of the symbolic model can be proven for some
“non-trace” properties: this is usually the case for indistinguishability properties and the proofs
have to be adapted from for example the proof of theorem 6.1. For trace properties, this theorem
just have to be applied but for “non-traces” properties, we have to understand and modify the
proof of this theorem. This is done for example in [CW05] for strong secrecy of nonces (i.e. the
SecNonce property presented in section 6.1.3). Precisely, the main result of this paper is that if
a nonce N is secret for a protocol Π in the symbolic setting, if the encryption scheme used to
implement it is secure against IND-CCA and if the signature scheme is secure for UNF, then the
SecNonce property for N in Π is verified. The proof proceeds by directly creating an adversary
against the cryptographic primitives that uses the adversary against SecNonce.

This result can easily be extended to the case of protocols that involve asymmetric encryption,
symmetric encryption and digital signature. However, as we want proofs to remain readable, we
still consider in this section the simplest model possible: the ACM model where the only allowed
cryptographic primitive is asymmetric encryption.

Strong Secrecy for Nonces: SecNonce

Note that here, the model is simpler than the one used in [CW05]. However the result given here
cannot be seen as a direct consequence of the main result of this paper as we allow key emission.
Moreover, the proof presented here can be adapted to handle the general computational model as
well as other cryptographic primitives [Jan06].

Theorem 6.4 Let Π be a protocol and N be a nonce. Let us suppose that the asymmetric encryp-
tion scheme used to implement this protocol is secure against IND-CCA. If protocol Π preserves
secrecy of nonce N in the symbolic setting, then Π verifies SecNonce for nonce N .

Proof: The proof of this theorem is very close to the proof of theorem 6.1. Let A be an adversary
against SecNonce for protocol Π = (R, IK) on nonce N . Let n be the number of nonces used by
the protocol. Then we build an adversary B against n-PAT-IND-CCA. Adversary B is built in the
same way as in the proof of theorem 6.1. Nonce N is trapped, hence two values bs0 and bs1 for N
are randomly sampled. Adversary B uses A as a subroutine. Hence B has to simulate the protocol
execution so that A can perform his attack. This attack allows B to find his challenge bit’s value.
Whenever B has to produce the concretization of an encryption of a message m containing N ,
B creates two patterns: pat0 where N is instantiated with bs0 and pat1 where N is instantiated
with bs1. Then B uses his left-right encryption oracles on the pair 〈pat0, pat1〉 and hence receives
the encryption of (the concretization of) patb. As N is secret in the symbolic world, B cannot be
asked to produce a message where N is unprotected (otherwise, A has produced a trace that is not
possible in the symbolic setting and so another adversary would be able to break the cryptographic
primitives using A). Hence B perfectly simulates the execution of the protocol with adversary A.

Finally, B gives to A the bit-strings bs0 and bs1 and A has to tell which bit-string was used
in the protocol. B makes the same answer as A for his challenge bit. Therefore the experiment
involving A against SecNonce and B against n-PAT-IND-CCA are the same (except for negligible
probability if B has to reveal N). Thus Π verifies SecNonce for nonce N .

Secrecy for Keys

In this section, we introduce a definition for strong secrecy of keys. Weak secrecy of keys can be
defined as weak secrecy of nonces: an adversary wins if he is able, after execution of the protocol,
to output the bit-string value of the key. However, it is not possible to define strong secrecy for
keys as in SecNonce. Indeed, strong – Real or Random – secrecy is too strong when applied to keys.
Our basic criteria cannot ensure real or random secrecy of secret keys: let us consider for example
the protocol constituted by the only action Send({A}k). Then secrecy of key k−1 is ensured in the
symbolic setting as k−1 is not deducible from {A}k. In the computational world, the IND-CCA
and SYM-CPA criteria do not imply the encryption to be which-key concealing. An algorithm is
which-key concealing if it is impossible to retrieve any information on the key from cipher-texts.
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Otherwise, it is which-key revealing. This notion is formally detailed in the following paragraph.
As the encryption can be which-key revealing, it is possible for the adversary to distinguish the
key used to compute {A}k from a randomly generated key. Hence real or random secrecy for keys
is not implied by IND-CCA as it was for nonces.

Which-Key Concealing An encryption scheme (symmetric or asymmetric) is said to be which-
key concealing if it is impossible for an adversary to deduce from a cipher-text any information
on the related key. The related game is an indistinguishability criterion: the adversary is either
confronted to two encryptions using the same key or to two encryptions with different keys and
has to tell if he thinks the encryptions where performed with the same key or with different keys.
Let AE be an asymmetric encryption scheme composed of the three algorithms (KG, E ,D). Let
A1,A2 be a two-stage adversary, then the advantage of A1,A2 against which-key concealing (wk)
is given by:

AdvwkA1,A2
(η) = Pr[(pk, sk) := KG(η); bs := A1(η); A2(E(bs, pk), E(bs, pk)) = 1]

−Pr[(pk, sk) := KG(η); (pk′, sk′) := KG(η); bs := A1(η); A2(E(bs, pk), E(bs, pk′)) = 1]

This advantage definition can easily be adapted to handle the case of symmetric encryption. Let
(KG, E ,D) be a symmetric encryption scheme, then the advantage of A against wk is given by:

AdvwkA1,A2
(η) = Pr[k := KG(η); bs := A1(η); A2(E(bs, k), E(bs, k)) = 1]

−Pr[k := KG(η); k′ := KG(η); bs := A1(η); A2(E(bs, k), E(bs, k′)) = 1]

An encryption scheme is which-key concealing if for any adversary A1,A2, the advantage of A1,A2

against wk is negligible. Our main claim is that classical security assumptions for encryption
schemes do not ensure that the schemes are which-key concealing.

Proposition 6.9 Let us suppose that there exists an asymmetric encryption scheme that is secure
against IND-CCA. Then there exists an asymmetric encryption scheme that is secure against IND-
CCA and not which-key concealing.

Proof: Let AE be an asymmetric encryption scheme defined by algorithms KG, E and D. Then
asymmetric encryption scheme AE ′ is defined as triple (KG′, E ′,D′) where:

• The key generation algorithm is unchanged: KG′ = KG.

• Encryption is performed by appending the public key after the encryption made by E :

E ′(bs, pk) = E(bs, pk).pk

• The decryption algorithm is modified in order to match the previous encryption algorithm:

D′(bs.pk, sk) = D(bs, sk)

Then if asymmetric encryption scheme AE is secure against IND-CCA, AE ′ is also secure against
IND-CCA but is also which-key revealing.

The case of symmetric encryption is little more complicated to handle as it is not possible to
paste the key after encryptions. Hence, instead of appending the key itself, we append a hash of
this key that does not give any useful information to the adversary. An example of such hash can
be the parity of the random coins used to generate the key (because parity of the key itself may
not bring any useful information).

Therefore, classical indistinguishability criteria cannot ensure real-or-random secrecy for keys.
The important point is not for the adversary to get “any” information on the key but to get some
“usable” information. Thus strong secrecy for keys is defined as the impossibility for an adversary
to have collected enough information on the key so that he can perform an attack against IND-
CCA (for asymmetric encryption). The main advantage of this strong secrecy notion is that it
allows composition of protocols: after executing a first protocol, the adversary did not get enough
information to break IND-CCA. Hence the key can be used once more in a second protocol (as
safety of the protocol relies on IND-CCA, cf section 6.2) and so on.
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Strong Secrecy for Asymmetric Encryption Keys Let AE = (KG, E ,D) be an asymmetric
encryption scheme. Let Π be a protocol and pk be a public key that occurs in Π. The SecKey
property is defined as the following challenge: an adversary is composed of to two stages A1 and
A2. Stage A1 is executed as a protocol adversary and then can get information on pk. Finally, in
the second stage, A2 is confronted to the usual IND-CCA challenge and has to guess the value of
the challenge bit. Formally, the advantage of (A1,A2) is defined by:

AdvSK(Π,pk)
A (η) = Pr[ θ := init(η,R)

(t, θ,mem) := CMexec(η,A1, θ,Π)
A2(mem)/(IND-CCA oracles for pk with b=1) = 1]

−Pr[ θ := init(η,R)
(t, θ,mem) := CMexec(η,A1, θ,Π)
A2(mem)/(IND-CCA oracles for pk with b=0) = 1]

An important point is that the adversary cannot use his IND-CCA decryption oracle on cipher-
texts produced during the protocol execution. Technically, such cipher-texts can be produced
using the related left-right encryption oracle but also by using the public key oracle. Hence the
decryption oracle may not work on these cipher-texts.

Protocol Π verifies SecKey for key pk if the advantage of any adversary is negligible in η.

Proposition 6.10 Let Π be a protocol and pk be a key that is used in Π. Let us suppose that
the cryptographic library used to implement this protocol is safe. If protocol Π preserves secrecy of
pk−1 in the symbolic setting, then Π verifies SecKey for key pk.

Proof: The idea of the proof is the simple. Let A be an adversary against SecKey, we build an
adversary B against N -PAT-IND-CCA which uses A as a subroutine. B simulate the execution
of adversary A confronted to protocol Π. For this purpose, he first randomly chooses a subset of
his keys that includes pk called challenge keys, these keys are supposed to be kept secret by the
protocol. He then generates the necessary atoms and uses them to simulate the protocol, B uses
his oracles to perform encryptions with his challenge keys. This is done in the same way as in
theorem 6.1. Note that the left-right encryption oracles are always used with the same patterns
as arguments. Indeed in this situation, patterns are used to ask for encryption of secret keys but
the left-right aspect is not useful here. Adversary B is able to perfectly simulates the protocol
execution, the only problem occurs if B is asked to send pk−1 without protecting it with a safe
encryption. However as this cannot happen in the symbolic world, this can only happen in the
computational setting with negligible probability. Thus after simulating the protocol execution,
adversary B answers A2 queries to the IND-CCA oracle using his own oracles. At this point, we
understand why the decryption oracle cannot be used on cipher-text from the protocol simulation
(which may have been produced by the left-right encryption oracle). Finally B outputs the same
result as A2.

If B correctly chose his challenge keys (and this happen with non-negligible probability), then
the advantage of A1,A2 and the advantage of B are equal up to some negligible function (repre-
senting executions where B is asked to output pk−1). Thus the SecKey property is verified for pk.

Strong Secrecy for Symmetric Encryption Keys The previous definition is easy to adapt
to symmetric encryption. Let SE be a symmetric encryption scheme. Let Π be a protocol that
uses a symmetric key k. We still consider two-stages adversaries. The advantage of adversary
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(A1,A2) is given by (for the IND part):

AdvSK(Π,k)
A (η) = Pr[ θ := init(η,R)

(t, θ,mem) := CMexec(η,A1, θ,Π)
A2(mem)/(IND-CPA oracles for k with b=1) = 1]

−Pr[ θ := init(η,R)
(t, θ,mem) := CMexec(η,A1, θ,Π)
A2(mem)/(IND-CPA oracles for k with b=0) = 1]

Protocol Π verifies SecKey for key k if the advantage of any adversary is negligible in η.

Proposition 6.11 Let Π be a protocol and k be a symmetric key that is used in Π. Let us suppose
that the cryptographic library used to implement this protocol is safe. If protocol Π preserves secrecy
of k in the symbolic setting, then Π verifies SecKey for key k.
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Part III

Extensions

143





Chapter 7

Modular Exponentiation

Contents

7.1 The Diffie-Hellman Assumption . . . . . . . . . . . . . . . . . . . . . . 147

7.1.1 The Diffie-Hellman Key Exchange Protocol . . . . . . . . . . . . . . . . 147

7.1.2 Computational and Decisional Diffie Hellman Problems . . . . . . . . . 147

7.2 Extending the Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2.1 Dynamic Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Introducing Symbolic Equivalence . . . . . . . . . . . . . . . . . . . . 156

7.3.1 Messages and Deductions . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3.2 Symbolic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4 Soundness of Formal Encryption . . . . . . . . . . . . . . . . . . . . . 159

7.4.1 Computational Semantics of Messages . . . . . . . . . . . . . . . . . . . 159

7.4.2 Soundness Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.4.3 Application to the Burmester-Desmedt Protocol . . . . . . . . . . . . . 162

The problem Diffie-Hellman schemes for authenticated key exchange protocols (AKE) are cryp-
tographic primitives that allow users communicating over an unreliable network to establish shared
secret keys that may be used to achieve security goals like data confidentiality and data integrity.
They are widely used in practice (e.g. kerberos, SSH, TLS, video conferencing, etc...). There are
two main families of AKE protocols that differ in the primitives used to provide authentication:
password-based or long-lived key-based. In any case, the Diffie-Hellman key exchange scheme is a
standard component of authenticated key exchange protocols. The design of AKE protocols is a
difficult and error prone task (see [BGH+93, DvOW92, PQ01]). Hence, the interest in providing
automatic verification tools that can cope with protocols that include Diffie-Hellman schemes and
other cryptographic primitives. Such verification methods have been recently developed within
the symbolic model for security protocols (also called formal model) [CKRT03a, MS03, BB03].

In this chapter, we study soundness of the symbolic verification methods for protocols that
involve Diffie-Hellman schemes and symmetric encryption, i.e. we want to extend previous compu-
tational soundness results to protocols that use Diffie-Hellman exponentiation in order to generate
new keys. We do not consider other cryptographic primitives like asymmetric encryption or digital
signature as this would make notations more complex.

Contributions We make two main contributions in this chapter.
A Proof of the Correctness of the Symbolic Model We consider a symbolic model

that deals with protocols using Diffie-Hellman exponentiation as well as symmetric encryption,
essentially the model of [CKRT03a]. We prove computational soundness of this symbolic model in
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the passive setting. This result is established under the Decisional Diffie-Hellman assumption and
provided that the symmetric encryption scheme is secure and the protocol satisfies additional con-
ditions usually met in practice. Our result also applies to (static) group Diffie-Hellman protocols.
The purpose of these protocols is to establish a session key that is shared between the members of
the group. The security of group protocols seems to require adapted methods different from the
two-party case (e.g.[PQ01, BCPQ01, PQ03, PQ04]). Concerning the cryptographic primitives, the
protocols we consider include Diffie-Hellman schemes and symmetric encryption and can easily be
adapted to include digital signature, asymmetric encryption or hash functions.

We only consider the passive case as there exist automatic ways to transform key agreement
protocols that are secure in the passive setting into authenticated key agreement protocols secure
against active adversaries. This can be done by using the compiler introduced by Katz and Yung
in [KY03]. Hence our result is an extension of the classical Abadi-Rogaway result [AR00]. Note
that this result is not a subcase of the active setting: both results are incomparable as we consider
an equivalence relation instead of just trace properties.

A New Diffie-Hellman Assumption The Computational Diffie-Hellman assumption (CDH
for short), respectively, the Decisional Diffie-Hellman assumption (DDH for short), are often taken
as a basis for proving security of protocols that use Diffie-Hellman schemes. CDH refers to the
assumption that it is computationally infeasible to compute gxy, given g, gx and gy. And the DDH
assumption refers to the computational indistinguishability of the two distributions (g, gx, gy, gxy)
and (g, gx, gy, gr), i.e. (g, gx, gy, gxy) ∼ (g, gx, gy, gr). These assumptions are natural for two-
party protocols. With the advance of multi-cast communication and group protocols the Diffie-
Hellman scheme has been extended to allow more than two participants. Group CDH (GCDH for
short) [STW96] and Group DDH (GDDH for short) [BCP02] have been introduced to deal with
multi-party settings. The GCDH assumption refers to the infeasibility of computing gx1···xn given
gE for any strict subset E ( {x1, · · · , xn}. The GDDH assumption refers to the indistinguisha-
bility of gx1···xn and gr given gE for any strict subset E ( {x1 · · ·xn}. While it has been shown
that the DDH and GDDH assumptions are equivalent [STW96, BCP02]; it is unknown whether
GCDH and CDH are equivalent.

In this chapter, we introduce the Dynamic CDH and Dynamic DDH assumptions (DCDH
and 3DH for short). In contrast to the group DH-variations, in DCDH the adversary is not asked
to compute gx1···xn but he can choose to compute gp (or distinguish in case of 3DH) for any
polynomial p. There are restrictions on the form of p, for example p should not have been given
to the adversary. Thus in the decisional variation, the adversary can query the real value of gp

for any polynomial p or submit p to a left-right oracle that returns, depending on the value of a
challenge bit b, gp or gr, for a randomly chosen r. The adversary has to guess the value of b.

While we are not able to provide an equivalence result between CDH and DCDH, we show
that the 3DH assumption is equivalent to the DDH assumption. This assumption turns out to be
very helpful in proving soundness of the symbolic model when group key exchange protocols are
considered.

Related work concerning computational soundness Although lots of recent works studied
the link between the symbolic and computational models, most of them do not apply to protocols
that include Diffie-Hellman key exchange. In fact, very few results concerning this class of protocols
have been published. An exception is the work of Gupta and Shmatikov [GS05] that extends the
works of [DDMP03, DDM+05]. Their approach is based on a Hoare-like logic for reasoning about
security protocols. The logic has two different interpretations with respect to a symbolic semantics
and with respect to computational (complexity theoretic) semantics. Computational soundness of
the logic, which informally means that proofs in the symbolic logic are valid in the computational
interpretation is proved in [DDM+05]. The work in [GS05] adapts this result to protocols that
use DH-exponentiation and digital signature. This work is also carried in the static corruption
and finite-session setting. Moreover, it considers two-party protocols where authentication uses
CMA-signature. We do not known about automated verification tools for the proposed logic.
Jonathan Herzog presents in [Her03, Her04] an abstract model for DH key exchange protocols
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based on the Strand-Space Model [THG98]. In Herzog’s work the symbolic adversary is extended
with the capability of applying arbitrary polytime functions. He shows computational soundness
of the symbolic model. Hence none of these related works consider the case of polynomials used
in exponentiations, as in the Burmester-Desmedt protocol [BD94].

Outline of this Chapter The next section introduces the classical Diffie-Hellman problems.
In section 2, we define the dynamic version and show its equivalence to the decisional Diffie-
Hellman problem. Section 3 introduces symbolic messages and the related equivalence relation.
Section 4 discusses the soundness of the symbolic semantics in the passive case. Its main result is
computational soundness of the equivalence relation. We illustrate this result on the Burmester-
Desmedt protocol and prove its security in the passive case. Using the compiler described by Katz
and Yung in [KY03], it is possible to build an adapted version of this protocol that is secure in the
active setting. This seems to be contradictory with [PQ04] where Pereira and Quisquater prove
that it is impossible to build an authenticated key-agreement protocol that only uses modular
exponentiation and that is secure in the active setting. However there is no contradiction because
the Katz and Yung compiler adds digital signatures to ensure authentication whereas Pereira and
Quisquater consider protocols where authentication is provided using modular exponentiation.
The original Burmester-Desmedt protocol only uses modular exponentiation but it is insecure in
the active setting, we prove its security in the passive case.

7.1 The Diffie-Hellman Assumption

For the remainder of this chapter, let η be the security parameter. Let G be a cyclic group of
prime order q and let g be a generator of G. The operation of the group applied to x and y is
denoted by x.y. The exponentiation of an element x is denoted by xn. The order q is assumed
large, i.e. its number of digits is linear in η. We suppose that everyone knows g, G and q.

7.1.1 The Diffie-Hellman Key Exchange Protocol

Let us first consider the simplest form of Diffie-Hellman scheme. Two agents A and B want to
create a shared secret value. Agent A randomly chooses an element x in [1, q] and sends gx to B.
Agent B also chooses an element y in [1, q] and sends gy to A. Then A and B can both compute
the shared value gxy: A takes the value u she received from B and computes ux, B received v
from A and computes vy.

A→ B : gx

B → A : gy

A→ B : {N}gxy

If we consider the case of a passive adversary (eavesdropper), then the adversary knows gx

and gy. However, it should be hard for him to compute the shared secret gxy using gx and gy.
Thus this secret can be used to encrypt future communications between A and B. The last line
represents the first use of such encrypted messages.

7.1.2 Computational and Decisional Diffie Hellman Problems

There are two different flavors of Diffie-Hellman assumptions related to the previous protocol. The
first one, called the computational assumption, states that it should be hard for any adversary to
produce gxy if he only knows gx and gy. The second one, called the decisional assumption, is a
strengthened version of the computational assumption. Knowing gx and gy, it should be hard for
any adversary to distinguish between gxy and gr for some random value r.

Laurent Mazaré Ph.D Thesis 147/229



Chapter 7. Modular Exponentiation

Formally, the Computational Diffie-Hellman (CDH) assumption is that for any adversary A,
the advantage of A defined thereafter is negligible.

AdvCDH(A) = Pr
[
A(gx, gy)→ gxy

∣∣∣x, y R← [1, q]
]

However, this computational assumption does not immediately guarantee any secrecy property
on gxy. It may be feasible to compute the first bits of gxy but infeasible to compute its whole
representation. Thus, there exists a presumably stronger assumption: from gx and gy, it is
impossible to get any information on the shared secret gxy.

The Decisional Diffie-Hellman (DDH) assumption is that for any adversary A, the advantage
of A defined thereafter is negligible.

AdvDDH(A) = Pr
[
A(gx, gy, gxy)→ 1

∣∣∣x, y R← [1, q]
]
− Pr

[
A(gx, gy, gr)→ 1

∣∣∣x, y, r R← [1, q]
]

If this assumption holds, an adversary is not able to distinguish the shared secret from a random
group element with non-negligible probability. This means that an adversary cannot extract a
single bit of information on gxy from gx and gy.

Using the Criterion Formalism The CDH and DDH assumptions can easily be related to two
security criteria. CDH is associated to γCDH = (Θ, F, V ) where Θ randomly generates x and y in
[1, q], oracle F returns gx and gy and the verifier V returns true only for gxy. DDH is associated
to γDDH = (Θ, F, V ) where Θ randomly generates x, y, r in [1, q] and a bit b. If b = 1 then F
returns gx, gy and gxy, else F returns gx, gy and gr. The adversary has to guess the value of bit
b, i.e. V (x) is true iff x = b.

Proposition 7.1 The CDH assumption holds iff γCDH is safe. The DDH assumption holds iff
γDDH is safe.

Proof: Let A be an adversary against CDH, then it is easy to build an adversary A′ against
γCDH such that:

Pr
[
A(gx, gy)→ gxy

∣∣x, y R← [1, q]
]

= Pr[GγCDH
A′ (η) = true]

As PrRandγCDH is negligible, if γCDH is safe then the CDH assumption holds. The converse is
immediate as it is easy to build from A′ an adversary A against CDH such that the previous
equality is still true.

Let A be an adversary against DDH, then it is easy to build an adversary A′ against γDDH
such that:

Pr
[
A(gx, gy, gxy)→ 1

∣∣x, y R← [1, q]
]

= Pr[GγDDH
A′ (η) = true|b = 1]

Pr
[
A(gx, gy, gr)→ 0

∣∣x, y, r R← [1, q]
]

= Pr[GγDDH
A′ (η) = true|b = 0]

Hence, we get that,

Pr
[
A(gx, gy, gxy)→ 1

∣∣x, y R← [1, q]
]
+Pr

[
A(gx, gy, gr)→ 0

∣∣x, y, r R← [1, q]
]

= 2Pr[GγDDH
A′ (η) = true]

Then as PrRandγDDH = 1/2, we get

AdvDDH(A) = AdvγDDHA′ (η)

Therefore, if γDDH is safe then the DDH assumption holds. The converse is still true as it is also
possible to build A′ from A.

Hence, we properly defined the classical Diffie-Hellman assumption using our game formalism.
An immediate property is that the decisional version of the assumption is stronger than the
computational one.
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Proposition 7.2 Criterion γDDH is safe implies that criterion γCDH is safe. Thus if the DDH
assumption is valid then the CDH assumption is also verified.

Proof: Let A be an adversary against the CDH assumption. Then adversary B against DDH is
designed by the following:

Adversary B(X,Y, Z):
if Z = A(X,Y ) then return 1
else return 0

The advantage of adversary B is given by:

AdvDDH(B) = Pr
[
B(gx, gy, gxy)→ 1

∣∣∣x, y R← [1, q]
]
− Pr

[
B(gx, gy, gr)→ 1

∣∣∣x, y, r R← [1, q]
]

= Pr
[
A(gx, gy)→ gxy

∣∣∣x, y R← [1, q]
]
− Pr

[
A(gx, gy)→ gr

∣∣∣x, y, r R← [1, q]
]

= AdvCDH(A)− 1
q

The number of elements in G is supposed large hence 1/q is negligible. As the DDH assumption
holds, the advantage of B is negligible. Hence the advantage of A against CDH is also negligible
and the CDH assumption holds.

7.2 Extending the Assumptions

7.2.1 Dynamic Diffie-Hellman

The CDH and DDH assumptions are not general enough to easily apply to dynamic group proto-
cols. Thus, the Group Decisional Diffie-Hellman problem (GDDH) has been studied and proven
equivalent to DDH [STW96, BCP02]. In GDDH, there are α variables x1 to xα for which values
are randomly generated. The adversary has access to g

Q
i∈I xi for any strict subset I of [1, α], then

he has to distinguish g
Q
i∈[1,α] xi from a random group element. However this variant is not really

convenient if for example one wants to prove that assuming DDH, distributions (gx, gx.y+y, gy)
and (gx, gx.y+y, gr) are computationally equivalent. Thus we introduce a new extension of DDH
which we call the Dynamic Decisional Diffie-Hellman (3DH) assumption. This new assumption
extends GDDH in three ways: the adversary may ask for multiple challenges, not only g

Q
i∈[1,α] xi ;

the target challenges can be different from g
Q
i∈[1,α] xi ; the adversary may ask for linear combina-

tions of group elements, e.g. g2x1−x2 . All these extensions are used by the Burmester-Desmedt
protocol [BD94]. We also introduce a similar generalization for CDH, this generalisation is called
Dynamic Computational Diffie-Hellman. We do not use our criterion formalism to describe the
new assumptions. Although this would be possible, as we do not intend to use the criterion
partition theorems, we rather stick with a more classical formalism.

Let X be a countable set of variables. A monomial is a product of distinct variables. Hence
it can be represented by a finite subset of X. The order of a monomial m is the number of
its variables and is denoted by ord(m). We consider polynomials that are linear combination of
monomials. It is important to notice that x2 is not allowed. This restriction cannot be withdrawn
easily because as stated in [BDZ03], the indistinguishability of (gx, gx.x) and (gx, gr) under the
DDH assumption is an open problem.

Dynamic Computational Diffie Hellman The DCDH game generalizes CDH: the adversary
has access to an oracle that given a polynomial p outputs gp. At the end of the game, the adversary
chooses a polynomial q and has to output gq.

Formally, polynomials are represented by vectors that give the coefficients of the different
monomials. The game is indexed by the different monomials m1 to mn which the adversary has
access to. First, some values are randomly sampled in Zq for all the variables that occur in the
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monomials (mi)i. These variables are denoted by x1 to xα. Then the values for the different
monomials are computed and stored in vector ~m. The adversary is executed, it can access one
oracle. This oracle takes as argument a vector ~v representing coefficients of monomials. The
computation of the polynomial is given by the scalar product of ~v and ~m and the oracle outputs
g~v.~m. Finally, the adversary has to output a group element d and its challenge polynomial ~w.
The game is a success if d corresponds to the group element related to ~w. Of course, there is a
restriction so that the game is not too easy to win: the challenge polynomial ~w has to be linearly
independent from the arguments of the oracle.

Game GA(m1, ...,mn) :
for i from 1 to α

xi
R← Zq

~m := (m1[(xi)i], ...,mn[(xi)i])
d, ~w := A/λ~v.g~v.~m,
return d = g ~w.~m

Then the advantage of an adversary A is given by:

AdvG(m1,...,mn)
A = Pr

[
G1
A(m1, ...,mn) = 1

]
An immediate result concerning DCDH is that if the advantage of any adversary against DCDH

is negligible, then the advantage of any adversary against CDH is also negligible.

Proposition 7.3 For every adversary A, there exists an adversary B such that:

AdvCDHA = AdvG(x1,x2,x1x2)
B

Proof: Adversary B can easily be built using A:

Adversary B/O:
d := A

(
O(1, 0, 0),O(0, 1, 0)

)
return d, (0, 0, 1)

Adversary B makes requests for gx1 and gx2 using his oracle with arguments (1, 0, 0) and (0, 1, 0).
He gives the so obtained values to A and returns the output of A as the value of gx1x2 .

Dynamic Decisional Diffie-Hellman The 3DH assumption considers an adversary that can
be faced to two different games. As usual in decisional assumptions, the adversary has to guess
against which game he is playing. For this purpose he has access to two oracles. These oracles
use randomly sampled values (in Zq) for a finite subset (x1, ..., xα) of X.

The first oracle behaves in the same way in the two different games, it takes as argument a
polynomial p over (xi)i (represented by a vector of coefficients in Zq) and returns gp(x1,...,xα). In
the first game, the second oracle behaves in the exact same way as the first oracle. However, in
the second game, this second oracle still takes as argument a polynomial p but it returns gr for
some randomly sampled r in Zq.

Without restrictions, this game would be easy to win: an adversary can first submit a poly-
nomial to the first oracle then submit it to the second oracle. If the two results are the same,
the adversary knows with high probability that he is in the first game. Otherwise, the adversary
knows for sure that he is in the second game. Hence we add a restriction over possible queries:
the set of polynomials submitted to the oracles has to be linearly independent (over Zq).

It is easy to see that this new 3DH assumption implies the DDH assumption: an adversary
can ask for gx1 and gx2 to his first oracle, then he queries the second oracle with polynomial x1x2

and receives either gx1x2 or gr. Finally the adversary has to deduce in which situation he is.
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Formalization We write A/λx.F (x), λx.F ′(x) to denote an adversary A that can access two
oracles, The first oracle takes as input x and returns F (x) whereas the second one returns F ′(x).

Let n be a positive integer polynomially bounded in the security parameter η. Let m1 to mn

be n different monomials. In game G(m1, ...,mn), values in Zq are randomly generated for the α
different variables occurring in the monomials. Then a vector ~m of size n is computed, this vector
contains the integers values for the different monomials. The adversary has to distinguish between
two situations: in the first one, he has access to two oracles that behave in the same way. They
take as argument a vector ~v of integers of length n and returns g~v.~m. In the second situation, the
first oracle behaves as previously and the second one returns a random group element. However,
there is one restriction concerning the requests made by A. Let V1 be the set of vectors asked to
the first oracle and V2 be the set of vectors submitted to the second oracle, then V1 ∪V2 has to be
a family of linearly independent vectors (over Zq), i.e. requests are independent one from another.
In particular, an adversary cannot submit the same vector to both oracles (as this is a trivial
dependency). He cannot even submit the same vector to the same oracle twice. It is interesting to
see that if the adversary was able to call the second oracle twice with the same vector, he would
obtain the same result in the first game and two different results in the second one (as for each call
to the second oracle, a new randomly sampled group element is returned), thus the game would
be easy to win.

Game G1
A(m1, ...,mn) and game G0

A(m1, ...,mn) are formally defined by:
Game G1

A(m1, ...,mn) :
for i from 1 to α

xi
R← Zq

~m := (m1[(xi)i], ...,mn[(xi)i])
d := A/λ~v.g~v.~m,

λ~v.g~v.~m

return d

Game G0
A(m1, ...,mn) :

for i from 1 to α

xi
R← Zq

~m := (m1[(xi)i], ...,mn[(xi)i])
d := A/λ~v.g~v.~m,

λ~v.gr where r R← Zq
return d

The first oracle is called the real oracle whereas the second is called the RR oracle The advan-
tage of an adversary A is given by:

AdvG(m1,...,mn)
A = Pr[G1

A(m1, ...,mn) = 1]− Pr[G0
A(m1, ...,mn) = 1]

The main result concerning 3DH is that it is equivalent to DDH. In a first proposition, we
detail how an advantage against G can be reduced into multiple advantages against DDH.

Proposition 7.4 Let Γ be a polynomially bounded list of monomials and let α be the number of
different variables that are used in Γ. We suppose that if m1m2 appears in Γ, then m1 and m2

also appear in Γ. If A is an adversary against G(Γ), then there exist |Γ|−α adversaries Bi against
DDH such that:

AdvG(Γ)
A = 2

|Γ|−α∑
i=1

AdvDDHBi

Proof: This proof uses four intermediate lemmas. The first lemma tells us that in a finite field
(with q elements), the number of solutions for a linear system of n independent equations among
α variables is qα−n.

Lemma 7.1 Let q be a prime. Let us consider a linear system of n equations implying α variables
in Zq.

∀i ∈ [1, n],
α∑
j=1

vi,j .xj = ai

If vectors ~vi = (vi,1, ..., vi,α) are linearly independent over Zq, then the number of solutions of the
system is given by: ∣∣{~x ∈ Zαq |∀i ∈ [1, n],

α∑
j=1

vi,j .xj = ai
}∣∣ = qα−n
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Proof: This proof can be done using an induction on the number α of variables.

1. If α equals 1, then linear independence implies that there is at most one equation v.x = a
Let us first consider that there are no equations, then the number of solution is q:∣∣{x ∈ Zq

}∣∣ = q

2. If α equals 1 and there is one equation. As Zq is a field, this equation has exactly one
solution x = v−1.a. Hence, ∣∣{x ∈ Zq|v.x = a

}∣∣ = 1

3. In the case of α+ 1 variables, let us consider the first equation

α∑
j=1

v1,j .xj = a1

Linear independence implies that there exists a coefficient k such that v1,k is different from
0. Then xk is given by:

xk = v−1
1,k.

(
a−

∑
j 6=k

v1,j .xj
)

This substitution is used to transform the n − 1 other equations into equations where xk
does not appear any more. The new system of equation is:

∀i ∈ [2, n],
∑
j 6=k

(vi,j − v−1
1,k.v1,j).xj = ai + v−1

1,k.a1

Linear independence of the first system implies linear independence for this new system. As
this system only involves α− 1 equations, the induction hypothesis holds hence:∣∣{x1, ..., xk−1, xk+1, ..., xα ∈ Zα−1

q |∀i ∈ [2, n],
∑
j 6=k

(vi,j−v−1
1,k.v1,j).xj = ai+v−1

1,k.a1

}∣∣ = q(α−1)−(n−1)

Then for each solution of the new system, there is only one possibility for xk. Hence the
number of solutions of both systems are the same thus:

∣∣{~x ∈ Zαq |∀i ∈ [1, n],
α∑
j=1

vi,j .xj = ai
}∣∣ = qα−n

Using the first lemma, it is possible to relate the number of solutions of two closely linked
systems.

Lemma 7.2 Let q be a prime. Let us consider n (resp. m) vectors of Zαq denoted by ~vi (resp.
~wj) such that all these vectors are linearly independent. Then∣∣∣{~x ∈ Zαq

∣∣∣ ∀i ∈ [1, n], ~vi.~x = ai
∀j ∈ [1,m], ~wj .~x = bj

}∣∣∣.qm
=

∣∣∣{~x ∈ Zαq , ~r ∈ Zmq ,
∣∣∣ ∀i ∈ [1, n], ~vi.~x = ai
∀j ∈ [1,m], rj = bj

}∣∣∣
Proof: Linear independence allows us to apply lemma 7.1 twice: First,∣∣∣{~x ∈ Zαq

∣∣∣ ∀i ∈ [1, n], ~vi.~x = ai
∀j ∈ [1,m], ~wj .~x = bj

}∣∣∣ = qα−(n+m)
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Then on the second set of solutions, we first remark that:∣∣∣{~x ∈ Zαq , ~r ∈ Zmq ,
∣∣∣ ∀i ∈ [1, n], ~vi.~x = ai
∀j ∈ [1,m], rj = bj

}∣∣∣ =
∣∣{~x ∈ Zαq ,

∣∣∀i ∈ [1, n], ~vi.~x = ai
}∣∣

= qα−n

The conclusion is immediate from here.
An immediate corollary of this is that if ~X denotes a random variable over Zαq (with uniform

probability) and ~R denotes a random variable over Zmq (also with uniform probability). Then with
the same hypothesis than in the previous proposition,

Pr
[ ∀i ∈ [1, n], ~vi. ~X = ai
∀j ∈ [1,m], ~wj . ~X = bj

]
= Pr

[ ∀i ∈ [1, n], ~vi. ~X = ai
∀j ∈ [1,m], Rj = bj

]
=

1
qn+m

Using this result, we now prove our result for a base case where all the monomials are variables.

Lemma 7.3 Let x1 to xα be α different variables. Let A be an adversary against G(x1, ..., xα)
then

AdvG(x1,...,xα)
A = 0

Proof: Let A be an adversary. Let us consider that A calls the first (resp. second) oracle n (resp.
m) times with arguments ~vi (resp. ~wj) and receives as output gai (resp. gbj ). Then as the families
of vectors ~v and ~w are linearly independent, the probabilities of producing such observations with
such arguments are the same in the two possible games. Therefore, we can compute the advantage
of A:

AdvG(m1,...,mα)
A = Pr[G1

A(m1, ...,mα) = 1]− Pr[G0
A(m1, ...,mα) = 1]

=
∑
u

Pr[G1
A(m1, ...,mα) = 1|A observed u].P r[u]

−
∑
u

Pr[G0
A(m1, ...,mα) = 1|A observed u].P r[u]

=
∑
u

Pr[u].
(
Pr[G1

A(m1, ...,mα) = 1|A observed u]

−Pr[G0
A(m1, ...,mα) = 1|A observed u]

)
= 0

The previous lemma is useful to initialize our induction argument. The next lemma allows to
perform the induction itself.

Lemma 7.4 Let m1 to mα be α monomials which set of variables is Xm. Let x1 and x2 be two
different variables from Xm and let x1,2 be a variable that is not in Xm. Let m′

1 to m′
α denote

monomials such that m′
i is monomial mi where x1x2 is replaced by x1,2.

For any adversary A against G(m1, ...,mα), there exists an adversary B against DDH such
that:

AdvG(m1,...,mα)
A = 2AdvDDHB + AdvG(m′

1,...,m
′
α)

A

Proof: Adversary B is designed to play against DDH by using A. He uses his DDH challenges to
answer requests of A. First adversary B associates a group element gi to each monomial mi, this
is done by function F that outputs a vector of values. The ith element of the vector corresponds
to applying the following function to mi:

m → exp(Z,m \ {x1, x2}) if x1, x2 ∈ m
m → exp(X,m \ {x1}) else if x1 ∈ m
m → exp(Y,m \ {x2}) else if x2 ∈ m
m → exp(g,m) otherwise
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Where exp is the exponentiation function defined by exp(u,m) = u
Q
x∈m x. Then adversary B is

given by:

Adversary B(X,Y, Z):
∀i ≥ 3, xi

R← Zq
b
R← [0, 1]

g1, ..., gα := F (X,Y, Z, x3, .., xn)
d := A/λ~v.

∏α
i=1 g

~v[i]
i

λ~v.if b then
∏α
i=1 g

~v[i]
i else gr

return b = d

The execution of B with arguments (gx1 , gx2 , gx1x2) is the same as the game that involves A against
G(m1, ...,mα) whereas the execution of B with arguments (gx1 , gx2 , gx1,2) is the same as the game
that involves A against G(m′

1, ...,m
′
α). The advantage of B is given by:

2AdvDDHB = 2Pr
[
B(gx1 , gx2 , gx1x2) = 1

]
− 2Pr

[
B(gx1 , gx2 , gx1,2) = 1

]
= 2

(
Pr

[
B(gx1 , gx2 , gx1x2) = 1

]
− 1

)
− 2

(
Pr

[
B(gx1 , gx2 , gx1,2) = 1

]
− 1

)
= AdvG(m1,...,mα)

A −AdvG(m′
1,...,m

′
α)

A

Moreover as (mi)i is a family of linearly independent monomials, (m′
i)i is also a family of linearly

independent monomials (because x1,2 is a fresh variable).
Finally, proposition 7.4 can be proven by iterating this last lemma. For this purpose, we

introduce ord(Γ) which is defined as the sum of the order of monomials in Γ and proceed using
an induction on ord(Γ)− |Γ|.

1. If ord(Γ)−|Γ| equals 0, then all the monomials have order 1 and thus the number of variables
α is equal to Γ. In this situation, lemma 7.3 applies and gives us that for any adversary A,

AdvG(Γ)
A = 0

2. Else ord(Γ) is strictly greater than |Γ| thus there exists a monomial m in Γ whose order
is strictly greater than 1. Let x1 and x2 be two variables from m. Let x1,2 be a fresh
variable and let m′

1 to m′
α denote monomials mi where x1x2 is replaced by x1,2. The list of

monomials m′
1 to m′

α is denoted by Γ′. Lemma 7.4 applies and hence,

If A is an adversary against G(m1, ...,mα), there exists an adversary B|Γ|−α against DDH
such that:

AdvG(Γ)
A = 2AdvDDHB|Γ|−α + AdvG(Γ′)

A

The induction hypothesis applies on Γ′ (as the sum of orders have strictly decreased). Hence
there exists |Γ′| − (α+ 1) adversaries against DDH denoted by B1 to B|Γ′|−(α+1) such that:

AdvG(Γ′)
A = 2

|Γ′|−(α+1)∑
i=1

AdvDDHBi

Moreover Γ′ and Γ have the same number of elements hence we finally get that:

AdvG(Γ)
A = 2

|Γ|−α∑
i=1

AdvDDHBi

Let us consider the case of α different variables. Then let us suppose that Γ contains all the
monomials using the α variables. The number of such monomials is 2α−1. Hence, it is impossible
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to have a polynomial (in η) number of variables, as Γ would contain an exponential number of
elements (and so the game would not be polynomial time anymore). Even when DDH hold,
proposition 7.4 cannot be used to conclude that 3DH holds. As we do not want to consider an
exponential number of monomials but we want to have a polynomial number of distinct variables,
a solution is to bound the degree of the monomials independently of η.

Corollary 7.1 Let P be a polynomial. Let x1 to xP (η) be P (η) different variables and m be an
integer. Let Γ denote the list of monomials using xi whose orders are lower than m. If the DDH
assumption holds, then the advantage of any adversary A against G(Γ) is negligible.

In the following, we use a bounded variant of 3DH. We limit ourselves to the case of n distinct
variables where n does not depend on the security parameter. Therefore, the number of possible
monomials is bounded and 3DH is equivalent to DDH. Let us call 3DHn this game. Then it
is immediate using the previous proposition that 3DHn is implied by DDH. Moreover, we call
DCDHn the computational variant of 3DHn.

Proposition 7.5 If the DDH assumption holds, then both 3DHn and DCDHn hold.

Proof: 3DHn ⇒ DCDHn: Let A be an adversary against DCDHn. Then B is the adversary
against 3DHn defined by:

Adversary B/OS ,OC
(d, ~w) := A/λ~v.OS(~v)
d′ := OC(~w)
return d = d′

Adversary B uses his real oracles to answer queries made by A. Finally, A claims he has found
the value d of gp for some polynomial p independent from polynomials used in previous queries.
Thus B can use his RR oracle to obtain either gp or gr. If this value is equal to the output of A,
B outputs 1, else B outputs 0. The advantage of B is given by:

AdvG(m1,...,mn)
B = Pr[G1

B(m1, ...,mn) = 1]− Pr[G0
B(m1, ...,mn) = 1]

The first probability corresponds to the advantage of A against DCDHn. The second one is
the probability that A outputs gr where r is randomly sampled from [1, q] and A has no other
information related to r. As q is large, this probability is negligible. Thus the advantage of A
against DCDHn is negligible.

Summing up the Results Let n be an integer. Henceforth, 3DH is used instead of 3DHn.
Figure 7.1 summarizes the relations between the DH-assumptions:

CDH DDH

3DHDCDH

Figure 7.1: Implications between the DH-assumptions

A natural extension would be to allow multi-sets as oracle arguments. However, as noted
in [BDZ03], the equivalence between DDH and such extension is a difficult yet unsolved problem.
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7.3 Introducing Symbolic Equivalence

In this section, we adapt definitions from chapter 2 We consider protocols in the passive case,
hence we extend our notion of message and define symbolic equivalence between messages. This
equivalence relation is an extension of the one introduced in [AR00] to the case of modular expo-
nentiation.

Besides, atomic data and concatenated messages, the security protocols we consider may use
symmetric encryption and modular exponentiation. Modular exponentiations can be used as
keys for symmetric encryption. For this purpose we use a hash function in the computational
setting which transforms (randomly sampled) group elements into (randomly sampled) symmetric
keys. This hash function is not present in the symbolic model as it is only used when performing
symmetric encryption with a group element as key.

7.3.1 Messages and Deductions

We still consider that the set of atomic message AM is composed of the set AN of agent names,
the set N of nonces, the set K of keys. However we add to AM a new sort EN of exp nonces.
Exp nonces are the only type of messages that can be exponentiated. We assume that all these
sets are disjoints. The set K only contains symmetric keys from SymK.

Let K, N and p be meta-variables over keys, nonces and respectively polynomials using exp-
nonces. We still only consider power-free polynomials: x2 is forbidden. The set Msg of messages
is defined by the following grammar:

msg ::= 〈msg,msg〉 | {msg}key | N | key
key ::= K | exp(p)

As before, message 〈m1,m2〉 represents pairing of messages m1 and m2, {m}k represents (sym-
metric) encryption of message m using key k and exp(p) represents modular exponentiation of g
to the power of p. For any message m, poly(m) designates the set of polynomials that appear in
m.

First we define a deduction relation E ` m where E is a finite set of messages and m is a
message. The intuitive meaning of E ` m is that m can be deduced from E. The deductibil-
ity relation is an extension of the classical Dolev-Yao inference system [DY83] as introduced in
chapter 2. However we only keep the necessary rules for symmetric encryption.

m∈E
E`m

E`〈m1,m2〉
E`m1

E`〈m1,m2〉
E`m2

E`m1 E`m2

E`〈m1,m2〉
E`m E`k

E`{m}k

E`{m}k E`k
E`m

We add two new deduction rules in order to handle modular exponentiation:

E ` exp(p) E ` exp(q)
E ` exp(λp+ q)

λ ∈ Z
E ` exp(1)

These two deductions correspond to capacities of the adversary in the computational setting:
the adversary can multiply two group elements gu and gv in order to get gu+v. Moreover the
adversary can exponentiate a group element gu and obtain gλ.u. Thus in the symbolic setting, we
allow the first deduction. The second deduction is necessary as we supposed the group generator
to be public, hence it is possible for any adversary to output it. We do not consider any explicit
equational theory (other than polynomial equality) as in [CKRT03b, MS03]. Indeed, as we are
mainly interested in the passive setting, we do not allow exponentiations of exponentiations or
products of exponentiations. Hence, we only have to consider equalities between polynomials in
normal form (i.e. linear combinations of monomials).

After adding the two new deductions, the deductibility relation is still decidable.
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Proposition 7.6 Let m be a message and E be a finite set of messages. Then deductibility of m
from E is decidable.

Proof:
Let m be a message and E be a finite set of messages. Let K and P be respectively the set of

keys and the set of polynomials that appear in E and m.
The subset Kd of K of deducible keys and the subset Pd of P of deducible polynomials 1 can

be inductively defined by:

1. Initially, Kd and Pd are empty.

2. Then at each step, any key that is reachable using keys from Kd and exponentiations from
Pd is added to Kd. The same thing is done for reachable polynomials.

3. At the end of each step, if p is a polynomial from P which is a linear combination of
polynomials from Pd, then p is also added to Pd.

Sets K and P are finite so this algorithm terminates. Moreover after applying this algorithm, all
the deducible keys and polynomials are respectively in Kd and Pd, let k be a deducible key, then
consider the minimal size derivation proving that k is deducible, an iterative argument on this
derivation proves that k is in Kd.

In order to test that m is deducible from E, we build the set S of atoms, exponentiations and
encryptions (using non-deducible keys or exponentiations) that are reachable from m using Kd
and Pd. Then deductibility holds if all the elements of S are reachable in E using Kd and Pd.

7.3.2 Symbolic Equivalence

Patterns are used to characterize the information that can be extracted from a message. These
patterns are close to those introduced in [AR00, MP05] but are extended in order to handle
modular exponentiation. Let m be a message then its pattern is inductively defined by:

pattern
(
〈m1,m2〉

)
=

〈
pattern(m1), pattern(m2)

〉
pattern

(
{m′}exp(p)

)
= {pattern(m′)}exp(p) if m ` exp(p)

pattern
(
{m′}exp(p)

)
= {�}exp(p) if m 6` exp(p)

pattern
(
{m′}K

)
= {pattern(m′)}K if m ` K

pattern
(
{m′}K

)
= {�}K if m 6` K

pattern
(
N

)
= N

pattern
(
K

)
= K

pattern
(
exp(p)

)
= exp(p)

Symbol � represents a cipher-text that the adversary cannot decrypt. We say that two messages
are equivalent if they have the same pattern.

m ≡ n if and only if pattern(m) = pattern(n)

We now introduce equivalence up to renaming by allowing renaming of nonces, keys and polyno-
mials. Renaming of keys is necessary: in the computational setting K and K ′ cannot be distin-
guished but (K,K) and (K,K ′) can be. Thus we want K and K ′ to be equivalent but not (K,K)
and (K,K ′). Such renamings were already used in [AR00] and in [MP05]. Renaming of nonces
works in the same way. However renaming of polynomials is more subtle: let us consider message
(exp(x), exp(y), exp(x + y)), if this message is simply transformed into (exp(x), exp(y), exp(z)),

1by abuse of notation, we say that a polynomial p is deducible if exp(p) is deducible.
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then instantiations of these two messages are easy to distinguish in the computational setting. In
the first case, the third element is the product of the two first ones whereas in the second case,
this is only the case with negligible probability. In order to fix this problem, we only consider
linear relation preserving bijections or lrp bijections. Such bijections have to preserve linear equa-
tions among polynomials which are exponentiated. Let us formalize this. Let σ be a bijection
from poly(n) to poly(m). Then σ is said to be lrp if the exact same equations are satisfied after
applying it:

∀p1...pn ∈ poly(n), ∀a1, ..., an, b ∈ Z,
n∑
i=1

aipi = b⇔
n∑
i=1

aipiσ = b

It is important to note that coefficients range over Z and not Zq anymore. This condition guar-
antees that linearly dependent bound polynomials are adequately renamed. Then two messages
are equivalent up to renaming if they are equivalent up to some renaming of keys, nonces and
polynomial.

m ∼= n if and only if ∃σ1 a permutation of Keys

∃σ2 a permutation of Nonces

∃σ3 a linear relation preserving bijection of polynomials
such that m ≡ nσ1σ2σ3

However, linear relation preserving as defined previously is hard to check, thus we give another
equivalent way of defining lrp bijections. Let p1, ..., pj be a basis of poly(n). Bijection σ is lrp if
the two following conditions are satisfied:

1. Polynomials p1σ, ..., pjσ have to be linearly independent.

2. For any polynomial p of poly(n), let λ1 to λj be the integers such that p =
∑j
i=1 λipi. Then

σ has to verify the following equality:

( j∑
i=1

λipi
)
σ =

j∑
i=1

λi(piσ)

This new definition allows one to define bijections only on a basis of poly(n). Definitions for other
polynomials of poly(n) are a consequence of the values chosen on this basis.

Using this new definition, an interesting result is the decidability of equivalence up to renaming.

Proposition 7.7 Let m and n be two messages. Equivalence up to renaming of m and n is
decidable.

7.3.3 Examples

In this section, we give some examples that illustrate the choices we made when defining the
equivalence. These choices are motivated by the possibilities of adversaries in the computational
setting. Unlike [AR00], our symbolic model does not include symbolic constants like 0 or 1.
However it is possible to encode these constants using for example exponentiations. Then 1
denotes g0 (note that this is unit element for multiplication) and 0 denotes g1 (but this is not the
unit element for addition). Symbols 0 and 1 can only be used as constants and cannot be used to
represent arithmetic properties.

1. {0}K ∼= {1}K . This example shows that symmetric encryption perfectly hides its plain-text.
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2. ({0}K , {0}K) ∼= ({0}K , {1}K). Symmetric encryption also hides equalities among the un-
derlying plain-texts. To achieve this, encryption has to be probabilistic. As modular expo-
nentiation is deterministic, we cannot ask modular exponentiation to hide such relations.

3.
(
exp(X1), exp(X2), exp(X1 + X2)

) ∼= (
exp(X1 − X2), exp(X2), exp(X1)

)
. Linear relations

between exponents are not hidden by modular exponentiation. In this case, the third element
is linked to the two previous ones. Hence the same relation holds on both side: the exponents
of the third term is the sum of the exponents of the two first terms.

4.
(
exp(X1), exp(X2), exp(X1 +X2)

)
6∼=

(
exp(X1 +X2), exp(X2), exp(X1)

)
. If linear equations

are not preserved by the renaming, then the two messages are not equivalent up to renaming.
In this situation, the third exponents is the sum of the previous ones in the left message,
whereas it is the difference in the right message.

5.
(
exp(X1), exp(X2), {0}exp(X1X2)

) ∼= (
exp(X1), exp(X2), {1}exp(X1X2)

)
This example illus-

trates a passive adversary which observes a Diffie-Hellman key exchange protocol. Two
exponentiations are exchanged that allow the two participants to build a shared secret key.
In this example, this key is used to hide a plain-text which can be either 0 or 1. This example
can be generalized to represent a three-party Diffie-Hellman protocol:(

exp(X1), exp(X2), exp(X3), exp(X1X2), exp(X1X3), exp(X2X3), {0}exp(X1X2X3)

)
∼=

(
exp(X1), exp(X2), exp(X3), exp(X1X2), exp(X1X3), exp(X2X3), {1}exp(X1X2X3)

)
7.4 Soundness of Formal Encryption

In this section, we formalize the mapping between symbolic messages and distributions of bit-
strings. The main result is that equivalence up to renaming is sound: if two messages are equivalent
up to renaming in the symbolic setting, their concretizations are computationally indistinguishable.
To achieve this, the cryptographic primitives used to concretize the messages have to be secure.
For modular exponentiation, the security notion is DDH whereas for the symmetric encryption
scheme, we use the classical IND-CPA (indistinguishability against chosen plain-text attacks)
notion [GM84].

7.4.1 Computational Semantics of Messages

The computational semantics depends on a symmetric encryption scheme SE = (KG, E ,D) and
on a family of cyclic groups G. We suppose that there exists a hash algorithm hash such that
the distribution of keys generated by KG is indistinguishable from the result of hash applied to
a random element of G. We associate with each symbolic message m a distribution of bit-string
[[m]]SE,G that depends on η. This distribution is defined by the following random algorithm:

1. For each key K (resp. each nonce N , each exp-nonce X) from m, a value K̂ (resp. N̂ , X̂)
is randomly sampled using KG (resp. is randomly sampled in [0, 1]η, is randomly sampled
in Zq).

2. The computational value of a composed message m denoted by m̂ is recursively computed:

(̂m,n) = m̂.n̂ concatenation

{̂m}K = E(m̂, K̂) encryption with key

̂{m}exp(p) = E
(
m̂,hash(êxp(p))

)
encryption with exponentiation

̂
exp(

n∑
i=1

λiXi
1...X

i
ji

) = g
Pn
i=1 λi

cXi1...dXiji modular exponentiation
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3. The resulting bit-string is m̂.

This algorithm is close to the concr algorithm used in previous chapters. We did not want to
reuse this concr algorithm as here we first have to randomly sample values for the different atoms
whereas concr is given a computational substitution.

7.4.2 Soundness Result

In this section, we present the main soundness result of this chapter. This result is an extension of
the main theorem presented in [AR00] to the case of messages that involve modular exponentiation.
As in previous work, this result needs an acyclicity hypothesis: messages considered here must not
contain any encryption cycle. If one wants to consider encryption cycles, the IND-CPA hypothesis
is too weak. However, key dependent security [BRS01] should be a strong enough hypothesis to
ensure soundness in this case.

First let us properly define our acyclicity requirement: a message m is said to be acyclic if the
following conditions are satisfied:

1. Let P(m) be the set of polynomials p such that exp(p) appears as a key in m. Then
polynomial p cannot be involved in any linear combination in m, i.e. there does not exist
p1,...pj polynomials from m (used as keys or as plain-texts) different from p such that p =∑j
i=1 λi.pi

2. There exists an ordering ≺ between keys and polynomials from P(m): if u appears encrypted
using v or exp(v) then u ≺ v. This ordering must not have any cycles.

This requirement is quite rough but generally holds on key exchange protocols. Its main purpose
is to forbid key cycles of the form {exp(x), exp(x+ y)}exp(y) which can lead to real attacks.

We also have to define indistinguishable distributions. Intuitively, two distributions D1 and
D2 are computationally indistinguishable if for any adversary A, the probability for A to make
the difference between a randomly sampled element of D1 or of D2 is negligible.

Definition 7.1 Let D1 and D2 be two distributions (that depend on η). The advantage of an
adversary A in distinguishing D1 and D2 is defined by:

AdvD1,D2
A = Pr[x := D1(η) ; A(x) = 1]− Pr[x := D2(η) ; A(x) = 1]

Distributions D1 and D2 are computationally indistinguishable, D1 ≈ D2, if the advantage for
any adversary A in distinguishing D1 and D2 is negligible.

Then our main result states that distributions related to equivalent messages are computationally
indistinguishable.

Proposition 7.8 Let m and n be two acyclic messages, such that m ∼= n. Let SE be a symmetric
encryption scheme that is IND-CPA secure and G be a group such that the DDH assumption holds,
then [[m]]SE,G ≈ [[n]]SE,G.

Proof: This proof is done by considering two intermediate lemmas. The first one handles renam-
ings, the second one, using DDH and IND-CPA, relates the computational distribution of m to
the computational distribution of its pattern. Hence we introduce a computational evaluation for
� which is: �̂ = 0.

Lemma 7.5 Let σ1 be a permutation of Keys, σ2 be a permutation of Nonces and σ3 be a lrp
bijection of polynomials. If the DDH assumption holds on G then for any message m we have
that:

[[m]]SE,G ≈ [[mσ1σ2σ3]]SE,G
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Proof: The cases of σ1 and σ2 are trivial. The difficulty is to prove that for any message m,

[[m]]SE,G ≈ [[mσ3]]SE,G

Let x1 to xα be the exp-nonces used by m and let Γ be the set of monomials that use these
variables. Let p1 to pj be a basis of poly(m). Other polynomials from poly(m) are written
p =

∑j
i=1 λi.pi. Then we consider renaming σ′3 defined by piσ′3 = yi for i ∈ [1, j] where each yi is

a fresh distinct variable. As DDH holds, 3DH also holds. Using 3DH, it is easy to prove that

[[m]]SE,G ≈ [[mσ′3]]SE,G

For this purpose, let us consider an adversary A that tries to distinguish these two distributions.
Then we build an adversary A′ against 3DH that has the exact same advantage:

Adversary A′/OR,ORR:
for i from 1 to j

yi := ORR(pi)
randomly generate keys and nonces from m
recursively compute m̂

in order to compute ̂exp(
∑j
i=1 λi.pi) use

∏j
i=1 y

λi
i

When the challenge bit of A′ equals 1, A′ is faced to [[m]]SE,G. Otherwise it is faced to [[mσ′3]]SE,G.
Hence, the advantage of A′ is given by:

AdvG(Γ)
A′ = Pr[G1

A(Γ) = 1]− Pr[G0
A(Γ) = 1]

= Pr[A(bs) = 1|bs := [[m]]SE,G]− Pr[A(bs) = 1|bs := [[mσ′3]]SE,G]

= Adv[[m]]SE,G,[[mσ
′
3]]SE,G

A

As 3DH holds, the advantage of A′ is negligible and so the advantage of A is also negligible.
Therefore, these two distributions are computationally indistinguishable.

Moreover, let us consider renaming σ′′3 defined by (piσ3)σ′′3 = xi for i ∈ [1, j]. Using 3DH we
also have that:

[[mσ3]]SE,G ≈ [[mσ3σ
′′
3 ]]SE,G

Messages mσ′3 and mσ3σ
′′
3 are identical therefore we finally get that:

[[m]]SE,G ≈ [[mσ3]]SE,G

Lemma 7.6 Let m be an acyclic message. If the DDH assumption holds on G and SE is secure
against IND-CPA then:

[[m]]SE,G ≈ [[pattern(m)]]SE,G

Proof: We only give a sketch of this proof as this is mainly an adaptation of the hybrid argument
described in [AR00].

This proof is done using a recursion alon ≺. At each step the number of non-deducible keys
(or exponentiations) that are used to encrypt messages different from � decreases. Let K be the
set of such keys and exponentiations.

1. If K is empty, then m is equal to its pattern and the property is trivial.

2. Else if the maximum of K for ≺ is a key k. Key k is not deducible hence acyclicity of m
implies that k only occurs at key positions in m. Let m′ be message m where encryptions
using k are replaced by {�}k. Then using IND-CPA (see [AR00] for details), messages m
and m′ are computationally indistinguishable.
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3. Else if the maximum of K for ≺ is an exponentiation exp(p). Acyclicity implies that p is
linearly independent from other polynomials of m and that p only appears at key positions
in m. Let m′ be message m where encryptions using exp(p) are replaced by {�}exp(p). Let
mp be message m where exp(p) is replaced by some fresh key kp and m′

p be mp where
encryptions using kp are replaced by {�}kp . Then using 3DH (which holds as DDH holds),
we get that m and mp are computationally indistinguishable. Using ind-cpa, we get that
mp and m′

p are computationally indistinguishable and finally by using once more 3DH, we
get that m′

p and mp are indistinguishable. Finally, we get that:

[[m]]SE,G ≈ [[m′]]SE,G

Let m and n be two acyclic messages such that m ∼= n. By definition we know that there
exist σ1 be a permutation of Keys, σ2 be a permutation of Nonces and σ3 be a lrp bijection of
polynomials such that m ≡ nσ1σ2σ3. Using lemma 7.6, we get that:

[[m]]SE,G ≈ [[pattern(m)]]SE,G

Moreover, as n is acyclic, nσ1σ2σ3 is also acyclic, hence we obtain:

[[nσ1σ2σ3]]SE,G ≈ [[pattern(nσ1σ2σ3)]]SE,G

By definition of m ≡ nσ1σ2σ3, the two patterns are equal and we get:

[[m]]SE,G ≈ [[nσ1σ2σ3]]SE,G

Finally we apply lemma 7.5 to obtain the expected result:

[[m]]SE,G ≈ [[n]]SE,G

This result states soundness of formal equivalence in the computational world. However, the
converse (i.e. completeness) is in general false. There are two main problems that prevent com-
pleteness. First, the symmetric encryption scheme may allow decryption with the wrong key
and output a random bit-string in this case. Then messages ({N}K ,K) and ({N}K ,K ′) can be
computationally indistinguishable. This can be solved by adding a confusion freeness hypothesis
for the symmetric encryption scheme [MW04b, AJ01]. The second problem is that the symmet-
ric encryption scheme can satisfy key concealing (this is ensured by type 0 security in [AR00]).
Then messages ({0}K , {0}K′) and ({0}K , {0}K) are computationally indistinguishable but are not
equivalent even with renaming. To solve this, one can either ask the encryption scheme to be
key revealing or modify the pattern definition in order to hide the key name (but the encryption
scheme has to be key concealing in order to prove soundness).

7.4.3 Application to the Burmester-Desmedt Protocol

As an example, we show how to apply our results to the group Key Exchange protocol of
Burmester-Desmedt presented at Eurocrypt’94 [BD94]. The aim of this protocol is to estab-
lish a secret key shared among the members of the group. It is scalable as it requires only two
rounds and a constant number of modular exponentiation per user. No proof of this protocol has
been published until recently [KY03, BD05], where a proof of key secrecy in the presence of a
passive adversary is presented. The protocol is not secure in the presence of an active adversary
as it does not provide any form of authentication.
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Protocol description Consider a network in which members of a group can broadcast messages
to all others. Let η be a security parameter and let A1,A2,· · · ,An, for n ∈ N, be members of a
group. In this section, all subscripts are taken modulo n, for example An+1 designates A1 and A0

designates An.

1. Initialization: The parameters of the protocol are: a security parameter η, a finite cyclic
group G = 〈g〉 of prime-order q, a large number. The parameters G, g and q are published.

2. Round 1: Each participant Ai samples a random xi ∈ Zq, and broadcasts Zi := gxi .

3. Round 2: Each participant Ai broadcasts Xi = (Zi+1/Zi−1)xi . Hence, Zi is equal to
gxixi+1−xi−1xi .

4. Key computation: Each party computes the key 2:

Ki := Znxii−1X
n−1
i Xn−2

i+1 . . . Xi+n−2

Let us compute a simplified value for the key and verify that this value does not depend on
i.

Xi+n−2 = gxi−2xi−1−xi−3xi−2

X2
i+n−3Xi+n−2 = g2(xi−3xi−2−xi−4xi−3)gxi−2xi−1−xi−3xi−2

= gxi−2xi−1+xi−3xi−2−2xi−4xi−3

... = ...

Xn−1
i Xn−2

i+1 . . . Xi+n−2 = gxi−1xi−2+xi−3xi−4+...+xi−n+1xi−n−(n−1)xi−nxi−n−1

Ki = gnxixi−1Xn−1
i Xn−2

i+1

= g
Pn
i=1 xixi+1

We call this protocol BDGKE, the Burmester-Desmedt Group Key Exchange protocol.

Security properties We prove that BDGKE enjoys the key secrecy property in presence of a
passive adversary that may read and record the messages sent during protocol execution. This
is the main result of [BD05], where a complexity-theoretic proof is presented. Key secrecy was
introduced by Bellare and Rogaway [BR93] and later extended for multi-party applications by
Bresson et al. [BCPQ01]. It states that the key computed using the protocol is indistinguishable
from a randomly generated key. This implies in particular that either this key is not used to
perform any encryption or the symmetric encryption scheme has to be key concealing as defined
in section 6.3.2.

Protocol verification A transcript of the execution of the protocol is given by the expression
M :

M =
〈
exp(x1), · · · , exp(xn), exp(x2x1 − xnx1), · · · , exp(x1xn − xn−1xn), exp(

n∑
i=1

xixi+1)
〉

Let N be the expression obtained from M by replacing the key exp(
∑n
i=1 xixi+1) by exp(r).

N =
〈
exp(x1), · · · , exp(xn), exp(x2x1 − xnx1), · · · , exp(x1xn − xn−1xn), exp(r)

〉
Then, by proposition 7.8, if M ∼= N then [[M ]]SE,G ≈ [[N ]]SE,G, provided DDH is satisfied.

Therefore, to prove that BDGKE satisfies the key secrecy property, under the hypothesis that
DDH holds, it is sufficient to show M ∼= N .

2Strictly speaking, Ki is not the key but the shared secret from which a shared key is derived by, for instance,
applying a hash function.
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Now, since M and N do not contain any encryption as sub-expression, we have pattern(M) =
M and pattern(N) = N . Let P = {xi, xi+1xi − xi−1xi | i = 1, · · · , n}. Then, poly(M) =
P ∪ {

∑n
i=1 xixi+1} and poly(N) = P ∪ {r}.

Consider now the substitution σ : poly(N)→ poly(M) that coincides with the identity except
that σ(r) =

∑n
i=1 xixi+1. Obviously σ is bijective. Hence, all that remains to be verified for

concludingM ∼= N , is that σ is a lrp substitution. The only non-trivial equality among polynomials
from poly(M) or poly(N) is:

x1xn − xn−1xn =
n−1∑
i=1

−(xi+1xi − xi−1xi)

Since, σ is defined as the identity on the polynomials implied in the previous equality, we have

(x1xn − xn−1xn)σ =
n−1∑
i=1

−(xi+1xi − xi−1xi)σ

As σ preserves this equation and all the other equations are either derived from this one or
trivial, σ preserves linear relations. Thus we get that σ is a lrp and so M ∼= N . Finally, using
proposition 7.8, we get that the two distributions are indistinguishable. This proves that for any
adversary A, if A is given gxi and gxixi+1−xi−1xi for any i, then A cannot make the difference
between the shared key and a random group element with non negligible probability.

Although this example illustrates a possible use of exponentiation in our symbolic equivalence
notion, it does not use symmetric encryption. Hence we extend this example in order to use
this cryptographic primitive. We consider a Burmester-Desmedt key agreement and after that a
participant sends a secret nonce S using the shared key. We want to verify that this secret nonce
is indistinguishable from another randomly sampled secret nonce. The adversary can observe the
execution of the protocol. After that he is given either the nonce value or another randomly
sampled values and he has to decide which is the case. Thus we consider two possible transcripts
for the protocol. M represents the correct execution:

M =
〈
exp(x1), · · · , exp(xn), exp(x2x1 − xnx1), · · · , exp(x1xn − xn−1xn), {S}exp(

Pn
i=1 xixi+1), S

〉
And N is the execution where the adversary is finally a random nonce S′ which is not the secret
nonce used in the encryption.

N =
〈
exp(x1), · · · , exp(xn), exp(x2x1 − xnx1), · · · , exp(x1xn − xn−1xn), {S}exp(

Pn
i=1 xixi+1), S

′〉
We first have to verify that our acyclicity requirement is met. This is the case as exp(

∑n
i=1 xixi+1)

is linearly independent from any other polynomials from M and N . There is no necessity for
renaming polynomials. M andN have the same patterns up to renaming of S′ to S. ThereforeM ∼=
N and applying proposition 7.8, we can conclude that the two distributions are indistinguishable
and that the SecNonce property is verified for S. This result can also be seen as a consequence
of the first result: after seeing the key agreement part, the key cannot be distinguished from a
random key. Hence encryptions using this key are safe as the encryption scheme is IND-CPA.
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In section 6.2, we linked the symbolic and computational aspects of security protocols. How-
ever, to achieve this, we had to make several hypotheses. The most restrictive one is that we
consider protocols that are only made of a single instance of a single role. As noted in sec-
tion 2.3.3, this restriction is fair if we consider a bounded number of sessions of a protocol. In this
case, it is possible to consider a single role without loss of generality. This restriction is real when
considering an unbounded number of sessions. Then it is impossible to make such a simplification
without losing generality.

In this chapter, we investigate the case of an unbounded number of sessions. Note that a truly
unbounded number of sessions does not make any sense. Adversaries have an execution time that
is polynomially bounded. Thus, the number of possible sessions is also polynomially bounded.
The main difficulty with respect to the proof presented in section 6.2 is that reduction properties
such that property 5.4 only work for a bounded number of challenges. Let us consider more closely
this property.

Proposition 5.4 Let N be an integer. If an asymmetric encryption scheme AE is IND-CCA,
then AE is N -PAT-IND-CCA.

The integer N is fixed and does not depend on the security parameter η. We are interested
in extending this proposition to the case where a polynomial number of keys is available to the
adversary.

Proposition Poly Let P be a polynomial. If an asymmetric encryption scheme AE is IND-
CCA, then AE is P -PAT-IND-CCA.
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In criterion P -PAT-IND-CCA, the adversary has access to P (η) different challenge keys. The
ultimate goal of this chapter is to define a truly dynamic and unbounded criterion ∞-PAT-IND-
CCA. In this criterion, the adversary can ask for creation of new challenge keys (this is done
by accessing an oracle). Then he can access oracles related to the newly generated key and to
previously generated ones.

Proposition ∞ If an asymmetric encryption scheme AE is IND-CCA, then AE is ∞-PAT-
IND-CCA.

Moreover this kind of proposition can usually be proved using an hybrid argument. This is the
case in [BBM00] where N -IND-CCA is proven equivalent to IND-CCA even if N is polynomial
in the security parameter. The main challenge when considering polynomial criteria is indeed
adaptive corruption, if some keys can be revoked then the equivalence result is far more complicated
to obtain. The adaptive corruption problem raises issues close to the selective decommitment for
which no solution is known today [CFGN96, DNRS99].

It is possible to extend the computational semantics of protocols using the same idea. Using an
oracle, the adversary can ask for the creation of a new session. He can specify the agents name and
parameters in this session. The adversary also has access to oracles in order to send and receive
messages. These oracles take as input the session and the agent that the adversary is referring to.

The first step is to introduce criteria where a polynomial number of challenges are generated.
The advantage of this new criterion formalism is that we separate challenges that are generated a
polynomial number of times (i.e. keys in IND-CCA) from challenges that are generated only once
(i.e. bit b in IND-CCA).

This chapter is organised as follows. In section 1, we introduce polynomial criteria and give an
adapted simplified partition theorem. This theorem is exemplified on an extension of IND-CPA
that deals with adaptive corruptions. In section 2 we formulate the main partition theorem in the
polynomial case, we exemplify this on a variant of SYM-CPA. Fully dynamic criteria are defined
in section 3 where adapted partition theorems are also given. Finally section 4 shows how these
results can be used to prove computational soundness of formal methods.

8.1 Polynomial Number of Challenges

In this section, we first introduce iterated criteria. Then we adapt our partition theorem to the
case of such criteria. However, we do not consider the extended version of the theorem. The
case of the “complete” theorem is not really more complicated and is detailed in section 8.2. To
illustrate the interest of our theorem, we exemplify its application to an extension of IND-CPA
where a polynomial number of challenge keys are considered in an adaptive corruption setting.
Using the following theorem, polynomial IND-CPA can be proven equivalent to IND-CPA.

8.1.1 Iterated Criteria

Let P be a polynomial. We do not want to generate a negative or null number of challenges.
Hence in the rest of this chapter, we only consider positive polynomials, i.e. polynomials Q such
that for any positive integer x, Q(x) is a positive non-null integer. This is not a true restriction
as for any polynomial P , there exists a positive polynomial Q such that for any x, P (x) ≤ Q(x).

An iterated criterion γ is a tuple (Θ0; Θ;F0;F ;V0) where:

• Θ0 is the challenge generator that is only called once.

• Θ is the single challenge generator. During the experiment related to this criterion, this
generator is called P (η) times (where η is the security parameter). Hence P (η) challenges
are generated. They are usually denoted by θ1 to θP (η)).

• F0 is the oracle related to Θ0, it does not use any other challenges.

• F is the oracle related to challenges generated by Θ. It is composed of an oracle for each
generated challenge θi for i between 1 and P (η).
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• Finally verifier V0 checks that the output of the adversary is correct. To simplify things, V0

only depends on θ0 (i.e. the challenge generated by Θ0) in this section.

Oracle F0 only uses challenge θ0. The part of oracle F related to the ith generated challenge uses
challenge θi and can also use challenges θj for j lower than i. In particular, oracle F can use the
information stored in θ0. Hence oracle F can have a variable number of parameters. The oracle
related to θ1 is F (s, θ0, θ1) whereas the oracle related to θ2 is F (s, θ0, θ1, θ2). In the following, we
use the notation Fi to refer to oracle F used in the case of θi.

Let A be an adversary against γ. Then the experiment involving A depends on the positive
polynomial P giving the number of challenges. Notation γP is used to denote criterion γ where
the challenge generator Θ is iterated P (η) times. The experiment proceeds as follows: challenge
θ0 is generated using Θ0. Challenges θ1 to θP (η) are generated using Θ. Adversary A is executed
and has access to oracle F0 and to oracles Fi where i ranges between 1 and P (η). Finally, the
adversary outputs his result d and the verifier is called to check that the output is correct. The
game can be detailed by the following procedure:

Game GγP
A (η):

θ0:=Θ0(η)
for i from 1 to P (η)

θi:=Θ(η)
d:=A(η)/λs.F0(s, θ0),

λs.F (s, θ0, θ1)
. . .
λs.F (s, θ0, θ1, . . . , θP (η))

return V0(d, θ0)

Note that as before, generators Θ0 and Θ may generate multiple challenges. Oracle F0 and each
oracle F may represent multiple oracles. The definition of advantage is unchanged compared to
classical criteria.

AdvγPA (η) = 2
(
Pr[GγP

A (η) = true]− PrRandγP (η)
)

As verifier V0 only depends on θ0, PrRand does not change when P is modified. Moreover, PrRand
is defined by using an experiment without any oracle, hence we use PrRandγ0 to compute PrRand.
Thus, the advantage is given by:

AdvγPA (η) = 2
(
Pr[GγP

A (η) = true]− PrRandγ0(η)
)

Let us illustrate this extension of criteria. For this purpose, we consider an extension of N -
PAT-IND-CPA where N can be a polynomial.

Example 8.1 (P -PAT-IND-CPA) Let AE be an asymmetric encryption scheme (KG, E ,D).
Criterion P -PAT-IND-CPA is defined by (Θ0; Θ;F0;F ;V0) where:

• Θ0 generates a random bit b.

• Θ generates a key pair pk, sk using KG.

• Oracle F0 is empty, it always returns the empty bit-string.

• Oracle F is composed of two oracles. The first one outputs the public key from Θi. The
second one takes as argument a pair of patterns pat0, pat1. When related to challenge Θi,
oracle F selects pattern patb (where bit b comes from θ0), applies concr using θj for j between
1 and i− 1 and encrypts the result using the public key stored in θi. Hence,

FLR(〈pat0, pat1〉, θ0, . . . , θi) = E
(
concr(patbθ0 , θ1, . . . θi−1), pkθi

)
The public key oracle is given by:

F pk(s, θ0, . . . , θi) = pkθi

Laurent Mazaré Ph.D Thesis 167/229



Chapter 8. Unbounded Number of Sessions

• Verifier V0 verifies that the adversary correctly output the value of bit b.

This criterion allows an adversary to try to break IND-CPA by using a polynomial number of
challenge keys. The acyclicity requirement related to PAT is automatically met as oracle Fi can
only fill patterns using keys in θj for j strictly lower than i.

8.1.2 Partition Theorem

The partition theorem introduced in chapter 5 can be adapted to the case of iterated criteria. We
only consider the simplified partition theorem here. Its main restriction towards the general case
is that the final verifier can only depend on a fixed part of the criterion (denoted by θ0 in the
theorem). In this case, the theorem is iterated P (η) times. Thus the advantage of any adversary
A against γP can be related to the advantage of an adversary against criterion γ0 (also denoted
criterion δ) and to the advantage of another adversary against an indistinguishability criterion
β. Therefore, if one wants to check that the advantage of any adversary against γP is negligible,
he just has to check that the advantages of any adversary against γ0 and β are negligible and to
apply the partition theorem.

Theorem 8.1 (Simplified Partition Theorem, Polynomial Case) Let P be a positive poly-
nomial. Let γ be the iterated criterion

γ = (Θ0,Θ, F0, F, V0)

We assume that there exist some functions f , f ′ and g that can be represented by PRTMs
such that for any i greater than or equal to 1 such that the oracle Fi consists in both λs ·
f(g(s, [θ0, . . . , θi−1]), θi) and λs · f ′(s, θi) when applied to parameters s and θ0 to θi.

Then, for any adversary A against criterion γP , there exist two adversaries B and C, such that
:

∀η, AdvγPA (η) = 2P (η)AdvβB(η) + AdvδC(η)

where β = (Θ, b; f ◦ LRb, f ′; vb) is indeed an indistinguishability criterion and δ = (Θ0;F0;V0) is
our “main” criterion.

Proof: This proof can be done by iterating theorem 5.1. The idea is from A to obtain B and
C using the partition theorem, then to decompose C and get B′ and C′ and so on on C′. The
advantage of A has the form:

AdvγPA (η) = 2
P (η)∑
i=1

AdvβBi(η) + AdvδCP (η)(η)

We then consider an adversary D against β that randomly chooses an integer i in [1, P (η)] and
has the same behavior as Bi. Hence the advantage of D is the average of the advantage of the
Bi’s. Thus by renaming D as B, we get the expected result.

Let us make precise the technical part of the proof by formally describing machines Bi and
Ci. The form of these machines comes from the proof of theorem 5.1. It is necessary to describe
these machines as we want to check that there exists a machine D whose advantage is the average
advantage of the Bi’s. For this reason, given an integer i between 1 and P (η), it must be possible
to generate the code of the Bi in polynomial time.

Adversary Ci plays against criterion δi which is equivalent to criterion γ iterated P (η)−i times,
this criterion is equivalent to criterion γP−i.

Adversary Ci(η)/O0,O1, ...,OP (η)−i:
for j in [1, i] :

θj0:=Θ0(η)
θj1:=Θ(η)
...
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θjP (η)+1−j :=Θ(η)
s:=A(η)/O0,O1, ...,OP (η)−i,

λs.FP (η)+1−i(s, θi0, θ
i
1, ..., θ

i
P (η)−1+i),

...
λs.FP (η)(s, θ10, θ

1
1, ..., θ

1
P (η))

return s

The adversary Ci can be generated in polynomial time. Adversary Bi uses adversary Ci−1 as a
sub-routine. His oracles O1 and O2 are respectively linked to f ◦ LRb and f ′.

Adversary Bi(η)/O1,O2

θ0 := Θ0(η)
for j in [1, P (η)− i] :

θ′j := Θ(η)
θj := Θ(η)

s:=Ci−1(η)/λs.F0(s, θ0),
...
λs.FP (η)+1−k(s, θ0, ..., θP (η)+1−k),
λs.O1

〈
g(s, [θ′1, ..., θ

′
P (η)+1−k, θP (η)−k]), g(s, [θ1, ..., θP (η)+1−k, θP (η)−k])

〉
,

λs.O2(s, θP (η)−k)
if V0(s, θ0) return 1
else return 0

Generating the adversary Bi can also be done in a polynomial time. To compute the relative
advantage of the different adversaries Bi and Ci, we use the same reasoning as in the proof of
theorem 5.1. For the sake of simplicity, we do not describe formally the different games. This
could be done in a similar way as in the classical proof. When the challenge bit b equals 1, the game
involving Bi+1 against β is equivalent to the game involving Ci against δi. Thus, the probabilities
of success are the same:

Pr[Gβ
Bi(η) = true|b = 1] = Pr[Gδi

Ci(η) = true]

When the challenge bit b equals 0, the game involving Bi+1 against β is equivalent to the game
involving Ci+1 against δi+1

Pr[Gβ
Bi(η) = true|b = 0] = Pr[Gδi+1

Ci+1(η) = true]

By subtracting the second equation from the first one, we get the advantage of Bi:

AdvβBi = Pr[Gδi
Ci(η) = true]− Pr[Gδi+1

Ci+1(η) = true]

Moreover, criterion δi and δi+1 have the same verifier V0 that only uses a common challenge
generated by Θ0. Thus, the PrRand for these two criteria is the same. For any i and j, we have
that:

PrRandδi = PrRandδj = PrRandδ0

This can be used in the previous equation:

AdvβBi =
(
Pr[Gδi

Ci(η) = true]− PrRandδi
)
−

(
Pr[Gδi+1

Ci+1(η) = true]− PrRandδi+1
)

By using the definition of advantage, we get the following equality:

∀i ∈ [0, P (η)− 1], AdvδiCi(η) = 2.AdvβBi+1(η) + Advδi+1

Ci+1(η)
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Criterion δ0 is criterion γ. Criterion δP (η) is criterion δ. Moreover, adversary C0 is the same as
adversary A. Hence by summing these lines, we get:

AdvγPA (η) = 2
P (η)∑
i=1

AdvβBi(η) + AdvδCP (η)(η)

Adversary D is easy to deduce from adversary Bi. This adversary plays against β. He randomly
chooses an integer i in [1, P (η)] and executes adversary Bi.

Adversary D/O1,O2

i
R← [1, P (η)]

return Bi/O1,O2

The advantage of D is given by:

AdvβD(η) = Pr[Gβ
D(η) = true]− PrRandβ(η)

)
=

1
P (η)

P (η)∑
j=1

(
Pr[Gβ

D(η) = true|i = j]− PrRandβ(η)
)

=
1

P (η)

P (η)∑
j=1

AdvβBi(η)

We finally get that:
∀η, AdvγPA (η) = 2P (η)AdvβD(η) + AdvδCP (η)(η)

Using the previous theorem, we reduce some criteria that involve a polynomial number of
challenges to equivalent “atomic” criteria. We first consider the case of P -AC-IND-CPA, an
extension of IND-CPA that handles a certain form of key decommitment.

8.1.3 The P -AC-IND-CPA Criterion

The P -AC-IND-CPA criterion is another intuitive extension of IND-CPA. A polynomial number
of key pairs are generated (P (η)) along with a challenge bit b. Then the adversary can ask for the
public part of each key, he also has access to a left-right oracle for each key pair (pki, ski): the
adversary submits a pair of bit-strings of the same length 〈bs0, bs1〉 and receives the encryption of
bsb using pki, E(bsb, pki). The main change with respect to IND-CPA is that this criterion handles
a kind of decommitment: the adversary can revoke any key (this can be viewed as corrupting an
honest agent). For this reason, the adversary may ask for the secret part of any key. In this case,
he must not have used the left-right oracle related to the key (otherwise it would be easy to win)
and will not have access to this oracle any more. This is called corruption of a key and AC stands
for Adaptive Corruption as the adversary can choose which keys to corrupt one after another.

Let AE = (KG, E ,D) be an asymmetric encryption scheme and P be a positive polynomial.
We build a new criterion based on IND-CPA with the following features: the adversary has access
to the classical left-right oracle and the public key oracle for a polynomial number of keys; he
may also ask for revelation of the secret part of some of the keys with some restrictions. Let
P -AC-IND-CPA be the criterion (Θ0; Θ;F0;F ;V0) where:

• Θ0 generates a random bit b;

• Θ generates a pair of matching public and secret keys (pk, sk), together with two booleans,
can reveal and is revealed, that are respectively initialized to true and false (these booleans
are used to implement restrictions on secret key revelation);
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• F0 is the empty oracle;

• F is the family of the oracles Fi, each one containing three oracles. The first oracle, rel pki,
outputs the public key pki, the second one is the left-right encryption oracle denoted by
enc pki, and the third one, rel ski, that can release the secret key ski. Implementations for
the oracles are detailed below.

• V0(s, θ0) returns true iff s = b.

The encryption oracle takes as argument a pair of bit-strings 〈bs0, bs1〉, checks that the key
has not been revealed and returns the encryption of mb.

Oracle enc pki(〈bs0, bs1〉) :
if is revealed then

return ⊥
else
can reveal := false
return E(bsb, pki)

The second oracle reveals the secret part of the key. It verifies that the key has not been used
previously with the left-right oracle.

Oracle rel ski :
if can reveal then
is revealed := true
return ski

else
return ⊥

Finally, the last oracle gives access to the public part of the key.

Oracle rel pki :
return pki

The objective is now to prove the equivalence between this new criterion and IND-CPA. First
we discuss a simplified version of this equivalence. Instead of considering this criterion with a
polynomial number of keys, we take the case where the number of keys is bounded by a constant
N . This criterion is denoted by N -AC-IND-CPA (γN ). We first prove the equivalence between
N -AC-IND-CPA and N -IND-CPA. The equivalence between N -IND-CPA and 1-IND-CPA is a
well-known result.

Let A be an adversary against γN . Then there exists an adversary B against N -IND-CPA
whose advantage is “similar” to the advantage of A. The adversary B randomly chooses a sub-set
R of [1, N ]. With probability 1/2N , these will be the keys whose inverse is asked by A. Therefore
B simulates these keys (by generating them using KG). If A asks a left-right encryption using one
of these keys, B randomly returns 0 or 1. Else B returns the result of A.

AdvγNA (η) ≤ 2NAdvN−IND−CPAB (η)

This allows us to reduce N -AC-IND-CPA to IND-CPA and to obtain the following proposition.

Proposition 8.1 For any integer N > 0, an asymmetric encryption scheme is secure against
N -AC-IND-CPA iff it is secure against IND-CPA.

Proof: We proved that security against IND-CPA implies security against N -AC-IND-CPA. The
converse is immediate. Let A be an adversary against IND-CPA, A can be used against N -
AC-IND-CPA and the advantages are the same in both cases. Thus if we have security against
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N -AC-IND-CPA, for any adversary A against IND-CPA, the advantage of A against N -AC-IND-
CPA is negligible. The advantage of A against IND-CPA is the same and so is also negligible. For
this reason, security against N -AC-IND-CPA implies security against IND-CPA.

However, this method cannot be generalized to the case of P -AC-IND-CPA as 2P (η) makes
that the right part of the inequality is not negligible anymore. Therefore, we use our new partition
theorem to prove this result. For this purpose, let us verify the assumptions of our theorem.

• V0 only depends on b which is generated by Θ0, F0 is the empty oracle so it only depends
on θ0.

• Oracle Fi is composed of a part f ′ containing the public key oracle and the secret key reve-
lation oracle. It also contains a part f(g(s, [θ0, ..., θi−1]), θi) where g(〈m0,m1〉, [θ0, ..., θi−1])
returns mb (b is the challenge bit from θ0 and f makes the encryption using key pki (from
θi) and the related checks.

Then if we apply the partition theorem, β = (Θ, b; f ◦LRb, f ′; vb) is criterion 1-AC-IND-CPA and
δ = (Θ0;F0;V0) is a criterion where the adversary has to guess the value of a bit b without any
oracle (as F0 is the empty oracle). Let A be an adversary against P -AC-IND-CPA, there exist
two adversaries B and C, such that :

∀η, AdvγPA (η) = 2P (η)AdvβB(η) + AdvδC(η)

The advantage of C has to be zero, hence P -AC-IND-CPA is equivalent to 1-AC-IND-CPA. As
there is only one key left, the technique presented above applies and 1-AC-IND-CPA is equivalent
to IND-CPA. It is now easy to conclude:

Proposition 8.2 For any positive polynomial P , an encryption scheme is secure against P -AC-
IND-CPA iff it is secure against IND-CPA.

Note that we only prove that security against IND-CPA implies security against P -AC-IND-CPA.
The other implication is obvious.

8.1.4 Adaptive Corruption

The adaptive corruption problem can be described as follows: P (η) keys are randomly sampled
and the adversary is given the encryption of bit-string 0 for each of these keys. Then the adversary
chooses half of the keys and receives their bit-string values. Then the question is: are the other
keys still secure ? The intuitive answer is yes and our last result allows us to prove it.

Let us first give a formal definition to the adaptive corruption problem. An adversary is
composed of two stages A1 and A2. A1 receives some cipher-texts and has to output a subset U
of [1, P (η)] which contains exactly half of the elements (let V be the other elements of [1, P (η)]).
A2 receives the values of the related keys and is faced to the classical IND-CPA game on the other
keys.

Game GAC
A1,A2

(η):
for i from 1 to P (η)

pki, ski := KG(η)
U,mem := A1(E(0, pk1), ..., E(0, pkP (η)))
b
R← {0, 1}

d := A2(pkU [1], ..., pkU [P (η)/2],mem)/λ〈bs0, bs1〉.E(bsb, pkV [1])
...
λ〈bs0, bs1〉.E(bsb, pkV [P (η)/2])

return d = b

The advantage of an adversary (A1,A2) against AC is given by:

AdvACA1,A2
(η) = 2.P r[GAC

A1,A2
(η) = 1]− 1
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Then using the previous proposition it is easy to prove that IND-CPA implies adaptive corruption.

Proposition 8.3 Let SE be an IND-CPA symmetric encryption scheme, then for any adversary
(A1,A2), the advantage of (A1,A2) against SD is negligible.

Proof: Let (A1,A2) be an adversary against SD. Then it is easy to build an adversary A against
P -AC-IND-CPA whose advantage is the same as the advantage of (A1,A2). Adversary A uses A1

and A2 in the following way: A uses his public-key oracles to compute E(0, pki) for each challenge
key pki. A1 outputs a subset U of [1, P (η)]. Then A uses his revelation oracles to get the keys
related to U . These keys are given to A2. When A2 issues a query, this query is given to the
corresponding left-right oracle of A. As queries of A2 concern keys that are not in U , A did not
ask for revelation of these keys and the left-right oracles can still be used. Finally, A outputs
the same result as A2. The games involving A and (A1,A2) are the same thus their respective
advantages are similar.

Moreover using proposition 8.1, the advantage of A is negligible. Therefore the advantage of
(A1,A2) is also negligible.

8.2 Generalization of the Complete Partition Theorem

In the previous section, we only treated the case of theorem 5.1. In this section, we extend this
result to the case of theorem 5.2. The main difficulty is that the verifier does not only depend on θ0
anymore. It can also depend on the variously generated θi. We first have to define iterated criteria
with multiple verifiers. After that, we extend our partition theorem to the case of such criteria.
An example of iterated criterion with multiple verifiers is P -SYM-CPA where P is a polynomial.
An adversary against this criterion can win his challenge by producing a valid encryption for any
of the P (η) challenge keys.

8.2.1 Iterated Criterion with Multiple Verifiers

Let P be a positive polynomial. In order to introduce multiple verifiers, we add to the definition
of iterated criteria a new verifier V . This verifier takes as arguments the output of the adversary
and a θi produced by Θ. Hence this verifier can be instantiated for any i between 1 and P (η). To
win his game, an adversary as either to satisfy V0 or one of the Vi.

An iterated criterion with multiple verifiers γ is a tuple (Θ0; Θ;F0;F ;V0;V ) where:

• Θ0 is the challenge generator that is only called once.

• Θ is the single challenge generator.

• F0 is the oracle related to Θ0.

• F is the oracle related to a challenge generated by Θ.

• Verifier V0 checks that the output of the adversary is correct with respect to θ0 produced by
Θ0.

• Verifier V checks that the output of the adversary is correct with respect to a θi produced
by Θ.

As before, oracle F0 only uses challenge θ0. Oracle F uses challenges θi and can also use challenges
θj for j lower than i. Hence oracle F can have a variable number of parameters. Verifier V0 only
depends on θ0 and verifier V only depends on a single θi generated by Θ. The verifier V that uses
θi is also denoted by Vi.

Let A be an adversary against γ. Then the experiment involving A is close to the experiment
in the case of a single verifier. It depends on the positive polynomial P giving the number of
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challenges. Notation γP is still used to denote criterion γ where the challenge generator Θ is
iterated P (η) times. We define a different experiment for each verifier (thus there are P (η) +
1 different experiments). The experiments proceed as in the previous section: challenge θ0 is
generated using Θ0. Challenges θ1 to θP (η) are generated using Θ. Adversary A is executed
and has access to oracle F0 and to oracles Fi where i ranges between 1 and P (η). Finally, the
adversary outputs his result d and the verifier (V0 or one of the Vi) is called to check that the
output is correct. The games can be detailed by the following procedure. Note that the game
depends on an integer j specifying which verifier is used.

Game GγP ,j
A (η):

θ0:=Θ0(η)
for i from 1 to P (η)

θi:=Θ(η)
d:=A(η)/λs.F0(s, θ0),

λs.F (s, θ0, θ1)
. . .
λs.F (s, θ0, θ1, . . . , θP (η))

return Vj(d, θj)

We define a different advantage for each of the different values of j:

AdvγP ,jA (η) = 2.
(
Pr[GγP ,j

A (η) = true]− PrRandγP ,j(η)
)

As verifier V0 only depends on θ0, PrRandγ0,0 is equal to PrRand in the case of criterion
(Θ0;F0;V0). The advantage in this case is given by:

AdvγP ,0A (η) = 2.
(
Pr[GγP ,0

A (η) = true]− PrRand(Θ0;F0;V0)(η)
)

For the other verifiers V , PrRandγP ,j is equal to PrRand in the case of criterion (Θ; ε;V ). Hence
the advantage in this other case is given by the following for j between 1 and P (η).

AdvγP ,jA (η) = 2.
(
Pr[GγP ,j

A (η) = true]− PrRand(Θ;ε;V )(η)
)

Finally, the advantage is defined as the maximum advantage against any of the possible verifiers
(this is similar to what is done for multiple verifiers in section 4.2).

AdvγPA (η) = max
0≤i≤P (η)

(
AdvγP ,iA (η)

)
We also say that a cryptographic scheme is safe for iterated criterion γ and polynomial P if for
any adversary A, the advantage of A against γP is negligible (the cryptographic scheme is used to
implement the criterion). Hence, using max in the definition, we say that a cryptographic scheme
is safe for a criterion iff it is safe for any criteria that use only one of the verifiers.

Using this new class of criteria, it is possible to generalize theorem 5.2 so that it can handle a
polynomial number of challenges.

8.2.2 Partition Theorem in the General Case

The partition theorem in its generalized form can be adapted to the case of iterated criteria with
multiple verifiers. The result is that the advantage of any adversary against an iterated criterion
(Θ0; Θ;F0;F ;V0;V ) can be linked to the advantage of an adversary against (Θ0;F0;V0), to the
advantage of an adversary against an indistinguishability criterion and to the advantage of an
adversary against a criterion using verifier V . The main use of this theorem is to prove safety of a
scheme for γP . For this purpose, it is sufficient to prove safety of the scheme for the three “small”
criteria.
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Theorem 8.2 (Partition Theorem, Polynomial Case) Let P be a positive polynomial. Let
γP be the criterion

γP = (Θ0; Θ;F0;F ;V0;V )

We assume the following hypothesis: there exist three functions f , f ′ and g (that can be represented
by PRTMs) such that for any i oracle Fi consists in both:

λs · f(g(s, [θ0, . . . , θi−1]), θi) and λs · f ′(s, θi)

Then, for any adversary A against criterion γP , there exist three adversaries B, C and D
verifying the following equality:

∀η, AdvγPA (η) = 2P (η)2AdvβB(η) + AdvδC(η) + P (η)AdvσD(η)

where β = (Θ, b; f ◦ LRb, f ′; vb) is indeed an indistinguishability criterion, δ = (Θ0;F0;V0) is our
”main” criterion and σ = (Θ; f, f ′;V ) is the criterion related to verifier V .

Proof: This proof is very close to the proof of theorem 8.1. The main difference is that instead of
iterating the simplified partition theorem, the full partition theorem is iterated here. Once more,
the idea is to decompose the advantage of A into the advantage of three machines B, C and D,
then to iterate the reasoning on the advantage of C. The key of this proof is to verify that the
machines generated by the partition theorem have a common form which allows for the automatic
generation of these machines.

The technical part of the proof consists in formally describing machines Bi, Ci and Di. The
form of these machines comes from the proof of theorem 5.2. To ensure equalities instead of
inequalities, adversaries Bi, Ci and Di can either be of the following form or be adversaries that
have a null advantage.

Adversary Ci plays against criterion δi which is equivalent to criterion γ iterated P (η)−i times,
this criterion is equivalent to criterion γP−i.

Adversary Ci(η)/O1, ...,OP (η)−i:
for j in [1, i] :

θj0:=Θ0(η)
θj1:=Θ(η)
...
θjP (η)+1−j :=Θ(η)

s:=A(η)/O1, ...,OP (η)−i,
λs.FP (η)+1−i(s, θi0, θ

i
1, ..., θ

i
P (η)−1+i),

...
λs.FP (η)(s, θ10, θ

1
1, ..., θ

1
P (η))

return s

The adversary Ci can be generated in polynomial time. Adversary Bij uses adversary Ci−1 as a
subroutine. His oracles O1 and O2 are respectively linked to f ◦LRb and f ′. Index j denotes the
verifier that the adversary is using.

Adversary Bij(η)/O1,O2

θ0 := Θ0(η)
for j in [1, P (η)− i] :

θ′j := Θ(η)
θj := Θ(η)

s:=Ci−1(η)/λs.F0(s, θ0),
...
λs.FP (η)+1−k(s, θ0, ..., θP (η)+1−k),
λs.O1

〈
g(s, [θ′1, ..., θ

′
P (η)+1−k, θP (η)−k]), g(s, [θ1, ..., θP (η)+1−k, θP (η)−k])

〉
,

λs.O2(s, θP (η)−k)
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if Vj(s, θ0) return 1
else return 0

Generating the adversary Bi can also be done in a polynomial time.
Finally, adversary Di uses adversary Ci−1 in order to play against criterion σ defined by the

triple (Θ; f, f ′;V ).

Adversary Di(η)/O1,O2

b
R← [0, 1]

θ0 := Θ0(η)
for j in [1, P (η)− i] :

θ′j := Θ(η)
θj := Θ(η)

s:=Ci−1(η)/λs.F0(s, θ0),
...
λs.FP (η)+1−k(s, θ0, ..., θP (η)+1−k),
λs.O1 ◦ LRb

〈
g(s, [θ′1, ..., θ

′
P (η)+1−k, θP (η)−k]), g(s, [θ1, ..., θP (η)+1−k, θP (η)−k])

〉
,

λs.O2(s, θP (η)−k)
return s

Generating these last adversaries Di can also be done in a polynomial time under the same
hypothesis as Ci.

To compute the relative advantages of the different adversaries Bi, Ci and Di we use the same
reasoning as in the proof of theorem 5.2. For the sake of simplicity, we do not describe formally
the different games. This could be done in a similar way as in the classical proof.

Criterion δji denotes criterion δi where Vj is the only verifier considered. When the challenge
bit b equals 1, the game involving Bij against β is equivalent to the game involving Ci against δi
Thus, the probabilities of success are the same:

Pr[Gβ
Bij

(η) = true|b = 1] = Pr[Gδji
Ci(η) = true]

When the challenge bit b equals 0, the game involving Bij against β is equivalent to the game
involving Ci+1 against δi+1

Pr[Gβ
Bij

(η) = true|b = 0] = Pr[G
δji+1

Ci+1(η) = true]

Using these two equations, we get the advantage of Bi:

AdvβBij
= Pr[Gδji

Ci(η) = true]− Pr[Gδji+1

Ci+1(η) = true]

Moreover, criteria δji and δji+1 have the same verifier Vj that only uses a common challenge
generated by Θj . Thus, the PrRand for these two criteria is the same. For any i and i′, we have
that:

PrRandδ
j
i = PrRandδ

j

i′ = PrRandσ

This can be used in the previous equation:

AdvβBij
=

(
Pr[Gδji

Ci(η) = true]− PrRandδ
j
i

)
−

(
Pr[G

δji+1

Ci+1(η) = true]− PrRandδ
j
i+1

)
By using the definition of advantage, we get the following equality:

∀i ∈ [0, P (η)− 1], Advδ
j
i

Ci(η) = 2AdvβBij
(η) + Adv

δji+1

Ci+1(η)
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Criterion δ00 is criterion γ.

∀i ∈ [0, P (η)− 1], Advδ
i
i

Ci(η) = AdvσDi(η)

Hence by using the definition of advantage with multiple verifiers, we get that for any i between
0 and P (η)− 1,

AdvδiCi(η) =

∑
j

2AdvβBij
(η)

 + Advδi+1

Ci+1(η) + AdvσDi(η)

Finally, adversary D chooses a random integer i between 1 and P (η) and executes Di. Adversary
B generates two integers i and j and executes Bij . Thus, we finally get the theorem’s main result:

∀η, AdvγPA (η) = 2P (η)2AdvβB(η) + AdvδC(η) + P (η)AdvσD(η)

Using the previous theorems, we reduce some criteria that involve a polynomial number of
challenges to equivalent “atomic” criteria. We first consider the case of AC-PAT-SYM-CPA,
an extension of SYM-CPA that handles key corruption as in AC-IND-CPA. We use symmetric
encryption in this example in order to have multiple verifiers: to win his challenge, an adversary
can either guess the random bit b or for any challenge key he can forge an encryption using this
key that has not been produced by the encryption oracle (the forged encryption has to be fresh).

8.2.3 The P -AC-PAT-SYM-CPA Criterion

The P -AC-PAT-SYM-CPA criterion is an extension of the SYM-CPA criterion for symmetric
encryption schemes. Let SE be a symmetric encryption scheme composed of the key generation
algorithm KG, the encryption algorithm E and the decryption algorithm D. In this new criterion,
P (η) different symmetric keys are generated using KG. A random challenge bit b is also sampled.
The adversary can query three oracles for each key k:

1. The first oracle takes as argument a pair of patterns 〈pat0, pat1〉 and returns the encryption
using k of the valuation of pattern patb using the concr algorithm. There is still an acyclicity
restriction that prevents a key k to occur encrypted by itself. This oracle is called left-right
oracle related to key k.

2. The second oracle takes as argument a bit-string bs and returns the encryption of bs using k.
This is useful to represent the classical key corruption problem. The adversary can ask for
corruption of a key after seeing cipher-texts using that key, however these cipher-texts should
not contain useful information for the adversary (hence this is not a left-right encryption
oracle but just an encryption oracle). Corruption of the key is still possible after using this
oracle.

3. The third oracle is related to corruption. The adversary can ask to see the value of a challenge
key k. In this situation, the adversary must not have queried the left-right oracle related to
k before and it will not have access to this oracle after the revelation of k.

There are multiple ways to win in this criterion. An adversary can either find the value of bit b
or forge a “fresh” encryption using one of the challenge keys.

Formally, the P -AC-PAT-SYM-CPA criterion is represented by an iterated criterion using
multiple verifiers. This criterion is defined by the tuple (Θ0; Θ;F0;F ;V0;V ) where each component
can be precisely described:

• Θ0 generates the challenge bit b;
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• Θ generates a symmetric key using the key generation algorithm KG. It also generates two
booleans, can reveal and is revealed, that are respectively initialized to true and false
(these booleans are used to implement restrictions on secret key revelation). It finally gen-
erates a shared memory mem that is used to store previous outputs of the left-right oracle;

• F0 is the empty oracle;

• F is composed of three oracles: the first one is the classical left-right oracle related to
patterns, the second one is the encryption oracle, the third one is the corruption oracle
which allows the adversary to get the value of the key. The formal definitions for these
oracles are given thereafter. The encryption oracle takes as argument a pair of patterns
〈pat0, pat1〉, checks that the key has not been revealed and returns the encryption of the
concretization of patb. The result of the encryption is also stored in mem for verifier V (as
V has to check that the output of A is a fresh message using the symmetric key).

Oracle enc k(〈pat0, pat1〉, θ0, ..., θi) :
if is revealedθi then

return ⊥
else

can revealθi := false
out := E(concr(patbθ0 , θ1...θi−1), kθi)
memθi := out :: memθi
return out

The second oracle takes as input a bit-string and simply returns its encryption. The result
also has to be stored for verifier V .

Oracle enc′ k(bs, θ0, ..., θi) :
out := E(bs, kθi)
memθi := out :: memθi
return out

The third oracle reveals the key. It verifies that the key has not been used previously with
the left-right oracle.

Oracle rel k(θ0, ..., θi) :
if can revealθi then

is revealedθi := true
return ki

else
return ⊥

• V0 tests that the adversary correctly guessed the challenge bit b from θ0.

• V tests that the adversary has produced a valid encryption for key k from θ. This encryption
has to be different from all the bit-strings that were stored in the mem mutable field from
θ.

The objective is now to prove the equivalence between this new criterion and SYM-CPA. As in the
case of P -AC-IND-CPA, proving the equivalence is easy if P is a constant polynomial but this is
not trivial in any other cases. For this reason, we use this generalized partition theorem to prove
the result.

Proposition 8.4 For any positive polynomial P , a symmetric encryption scheme is secure against
P -AC-PAT-SYM-CPA iff it is secure against SYM-CPA.
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Proof: First, it is trivial to show that if an encryption scheme is secure against P -AC-PAT-SYM-
CPA, then it is secure against SYM-CPA.

Theorem 8.2 can be used to prove the converse. Let γP denote criterion P -AC-PAT-SYM-CPA,
γ is defined as an iterated criterion. In order to apply this theorem, oracle F can be decomposed
in two parts: the f ′ part that contains the revelation oracle rel k and the encryption oracle enc′ k
which only depend on θi and a second part that contains the left-right encryption oracle enc k.
This second part can itself be decomposed in two layers:

enc k(s, θ0, ..., θi) = f(g(s, [θ0, . . . , θi−1]), θi)

Where g(〈pat0, pat1〉, [θ0, . . . θi−1]) returns the concretization of patb where bit b is taken from θ0.
Formally,

g(〈pat0, pat1〉, [θ0, . . . θi−1]) = concr(patbθ0 , θ1 . . . θi−1)

The f layers contains all the operations related to θi, it is defined by the following algorithm.
Because of acyclicity, the argument of this algorithm is a bit-string and not a pattern.

Algorithm f(bs, θi) :
if is revealedθi then

return ⊥
else

can revealθi := false
out := E(bs, kθi)
outputθi := out :: outputθi
return out

The hypotheses of the polynomial partition theorem hold therefore for any adversary A there exist
three adversaries B, C and D such that:

∀η, AdvγPA (η) = 2P (η)2AdvβB(η) + AdvδC(η) + P (η)AdvσD(η)

where the different criteria are given by:

• β = (Θ, b; f ◦LRb, f ′; vb) is an indistinguishability criterion. A challenge bit b and a symmet-
ric key k are randomly generated. Arguments of the f ◦ LRb oracle can only be bit-strings,
this is the classical left-right encryption oracle. The verifier checks that the adversary cor-
rectly guessed the value of b. This criterion is close to SYM-CPA except that if the key has
not been used, it can be revealed using the f ′ oracle.

• δ = (Θ0;F0;V0) is the main criterion. As oracle F0 is empty, adversaries have to guess the
value of bit b generated by Θ0 without any oracle. Hence the advantage of any adversary
against δ is 0.

• σ = (Θ; f, f ′;V ) is the criterion related to verifier V . A symmetric key is generated and
can be revealed. To win his challenge, an adversary has to forge a fresh encryption using
the challenge key without asking for its revelation. As the f ′ part cannot be called by
the adversary without losing, this criterion is equivalent to SYM-CPA/UNF. Therefore, the
advantage of any adversary against σ is negligible.

The final step of this proof is to prove that the advantage of any adversary against β is negligible.
Then the advantage of adversary A is negligible and it is possible to conclude that the encryption
scheme SE is safe for P -AC-PAT-SYM-CPA.

Criterion β is criterion SYM-CPA/IND except that the key can be revealed. Let B be an
adversary against β, adversary B′ uses B to play against SYM-CPA/IND. This adversary executes
B with his oracle for the left-right encryption part. In case B calls his second oracle, B′ returns 1
for his challenge (returning a random bit would also work).
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Adversary B′(η)/O:
d := B(η)/O, λq. return 1
return d

Then let E be the event where B asks for revelation of the key. The idea there is that when E
occurs, B cannot make any request to his first oracle. Hence his has to guess bit b without any
information on it, thus his advantage in this condition is 0. S denotes criterion SYM-CPA/IND.

AdvSB′(η) = 2Pr[GSB′(η) = true]− 1
= 2Pr[GSB′(η) = true|E]Pr[E] + 2Pr[GSB′(η) = true|¬E]Pr[¬E]− 1
= Pr[E] + 2Pr[GSB(η) = true|¬E]Pr[¬E]− 1
= 2Pr[GSB(η) = true|E]Pr[E] + +2Pr[GSB(η) = true|¬E]Pr[¬E]− 1

= AdvβB(η)

As adversary B′ plays against SYM-CPA/IND, his advantage is negligible. Hence the advantage
of B is also negligible. The encryption scheme is safe for β and for P -AC-PAT-SYM-CPA.

8.3 One Step Further: Dynamic Criteria

The first part of this chapter described the case of criteria where the adversary has access to a
polynomial number of challenges (and so to a polynomial number of oracles). A natural idea comes
from the fact that adversaries are polynomially bounded. Consequently, even if an adversary has
access to a truly unbounded number of challenges and oracles, he is only able to use a polynomial
number of them. Thus this section introduces dynamic criteria: let us exemplify this on an
extension of IND-CPA to an unbounded number of challenges, this extension is denoted by ∞-
IND-CPA.

Let AE be an asymmetric encryption scheme composed of a key generation algorithm KG, an
encryption algorithm E and a decryption algorithm D. In the case of ∞-IND-CPA, the adversary
can ask for dynamic creation of new keys. For this reason, he has access to a new challenge oracle
ν. This oracle does not use any argument. It generates a new key-pair using KG and returns
an index i. This index is used to specify which key has to be used when querying the oracles.
A random bit b is also generated at the start of the game. Then the adversary has access to an
oracle F . This oracle takes as argument an index i and a pair of bit-strings composed of bs0 and
bs1. The oracle returns the encryption of bit-string bsb using the public key whose index is i:
E(bsb, pki). The adversary has to guess the value of bit b in order to win his challenge.

8.3.1 Definition

A criterion is said to be dynamic when the adversary can ask for the generation of a polynomial
number of challenges. Obviously, each new challenge is related to a new oracle, that we only allow
to depend on the challenges of which the adversary has asked for the generation previously. Hence,
cycles are avoided in the construction of the criterion itself.

A dynamic criterion γ is composed of five elements. These elements are the same as the ones
used for iterated criteria. The difference lies in the way these elements are used. These five
elements are:

1. An initial challenge generator Θ0;

2. A single challenge generator Θ;

3. An initial oracle F0;

4. A single oracle F ;

5. And a verifier V0.

180/229 Verimag — 2006 Laurent Mazaré
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In this section, we suppose that the verifier V0 only depends on the challenge generated by Θ0.
Let A be an adversary. The semantics of the game involving A against dynamic criterion γ is

simple. The challenge generator Θ0 is used to compute the initial challenge θ0. The adversary is
executed, he has access to three oracles:

• The initial oracle F0 that uses θ0 which is the initial challenge generated by Θ0 (for most
criteria, this oracle is empty).

• The new challenge oracle ν: this oracle generates a new challenge θ using Θ. It does not
take any argument but it returns the index i used to store θ. Let i denote a global index
that has been initialized to 0. The pseudo-code for oracle ν is:

Oracle ν() :
i := i+ 1
θi := Θ(η)
return i

• A meta-oracle µ. This oracle takes two arguments: an index j and the request itself denoted
by q. This oracle checks that challenges have been generated up to index j. If this is not
the case, ⊥ is returned. Else it uses the single oracle F on q in order to answer. The
corresponding pseudo-code is:

Oracle µ(j, q) :
if i < j then return ⊥
return F (q, θ0, ..., θj)

The single oracle F has access to all the previously generated challenges including θ0. This
allows us to model criteria using patterns while avoiding cycle problems.

The experiment involving the adversary A against dynamic criterion γ can be represented by the
following game:

Game Gγ
A(η):

θ0 := Θ0(η)
d := A/λq.F0(q, θ0)

λ().ν()
λ(j, q).µ(j, q)

return V0(d, θ0)

The notions of advantage and PrRand are unchanged: PrRand is the best probability to win that
an adversary A can get without using the oracles. Hence for a criterion γ, PrRand only depends
on the initial generator Θ0 and the verifier V0. The advantage of an adversary A against dynamic
criterion γ is still defined by:

AdvγA(η) = 2
(
Pr[Gγ

A(η) = true]− PrRandγ(η)
)

Dynamic criteria are illustrated on a simple example in section 8.3.3. Beforehand we extend
the partition theorem in order to deal with dynamic criteria.

8.3.2 Partition Theorem for Dynamic Criteria

The polynomial partition theorem can easily be adapted to the dynamic case. The main argument
is that the adversary has a polynomial bound P on his execution time. Hence the adversary is
not able to create more than P (η) challenges. Playing against the dynamic criterion is just like
playing against the polynomial criterion where P (η) challenges are allowed.
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Theorem 8.3 (Simplified Partition Theorem, Dynamic Case) Let P be a positive polyno-
mial. Let γ be the dynamic criterion (Θ0; Θ;F0;F ;V0).

We assume the following hypotheses :

1. V0 only depends on the challenge generated by Θ0, denoted by θ0. This hypothesis is always
met as it occurs in the definition of dynamic criteria.

2. There exist some functions f , f ′ and g such that for any i the oracle F consists in both :

λs · f(g(s, [θ0, . . . , θi−1]), θi) and λs · f ′(s, θi)

Then, for any adversary A (whose execution time is bounded by polynomial P ) against criterion
δ, there exist two adversaries B and C, such that:

∀η,AdvδA(η) = 2P (η)AdvβB(η) + AdvδC(η)

where β = (Θ, b; f ◦LRb; vb) is indeed an indistinguishability criterion and δ = (Θ0;F0;V0) is our
”main” criterion.

Proof: The proof is immediate as a consequence of theorem 8.1. Indeed A can only access P (η)
different challenges. Hence the advantage of an adversary A against γ can easily be transformed
into the advantage of an adversary A′ (derived from A) against γ′ (which is the same criterion as
γ with P challenges).

8.3.3 Applications

Dynamic criteria have immediate applications in extending previous criteria such as P -AC-IND-
CPA. This defines a criterion ∞-AC-IND-CPA where the number of challenge keys is adaptively
chosen by the adversary. This criterion is formally defined as δ = (Θ;κ;F ;F ;V ) where: Θ
randomly generates a bit b, κ generates a pair of keys using KG, F is the empty oracle, Fk
contains all the previous oracles related to the kth key, V (s, θ) returns true iff s is equal to b.

We consider the case of an asymmetric encryption scheme AE = (KG, E ,D). For each challenge
key (pk, sk), the adversary has access to three oracles:

1. The public key oracle which returns pk.

2. The left-right encryption oracle which is given a pair of patterns (pat0, pat1) and outputs
the encryption of the concretization of patb using key pk.

3. The revelation oracle which returns sk. This oracle can only be called if the left-right oracle
has not been called before. After that, the left-right oracle cannot be accessed anymore.

Proposition 8.5 An encryption scheme is secure against ∞-AC-IND-CPA iff it is secure against
IND-CPA.

Proof: This proof can be done by adapting the proof of proposition 8.1.

8.4 Computational Soundness of Formal Methods

In this section, we illustrate how polynomial and dynamic criteria can be used to prove computa-
tional soundness of symbolic analysis. In a first example, we consider adaptive security and extend
previously existing results [MP05]. The adaptive security case is an extension of Abadi-Rogaway’s
logic where there adversary can have an adaptive behavior. The second example focuses on proto-
cols in the active case as presented earlier in this document. These two results are not comparable
as the adaptive setting is not a sub-case of the active adversary model.
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8.4.1 Adaptive Security of Formal Encryption

We have stated before that P -AC-PAT-SYM-CPA and SYM-CPA are equivalent. However as we
do not consider the active setting but the adaptive one, the unforgeability part of SYM-CPA is
not necessary to prove computational soundness. Thus we introduce a new criterion P -AC-PAT-
IND-CPA for symmetric encryption scheme. The challenge generator and the oracle are the same
as in P -AC-PAT-SYM-CPA however the only way to win is to find the value of the challenge bit
b, hence there is only a single verifier that depends on b. A simple application of theorem 8.1 gives
the following result.

Proposition 8.6 Let P be a polynomial. A symmetric encryption scheme SE is secure against
P -AC-PAT-IND-CPA iff it is secure against IND-CPA.

Proof: This proof can be done by adapting the proof of proposition 8.1.
Using this we prove an extended version of the soundness theorem given in [MP05] which

is itself an extension of the well-known result by Abadi and Rogaway [AR00]. In this section,
symmetric encryption is the only considered cryptographic primitive.

Symbolic Equivalence We use the same notion of equivalence as the one given in section 7.3.2
which is borrowed from [AR00] and [MP05]. However we remove the part concerning modular
exponentiation, thus the pattern of a message m (which characterizes the information that is
accessible by an adversary from m) is defined by:

pattern
(
〈m1,m2〉

)
=

〈
pattern(m1), pattern(m2)

〉
pattern

(
{m′}K

)
= {pattern(m′)}K if m ` K

pattern
(
{m′}K

)
= {�}K if m 6` K

pattern
(
N

)
= N

pattern
(
K

)
= K

Where symbol � still represents a cipher-text that the adversary cannot decrypt. We say that
two messages are equivalent if they have the same pattern.

m ≡ n if and only if pattern(m) = pattern(n)

Then two messages m and n are equivalent up to renaming, m ∼= n, if there exists σ1 a permutation
of Keys and σ2 a permutation of Nonces such that m and nσ1σ2 are equivalent.

A consequence of proposition 7.8 is computational soundness of equivalence up to renaming:
if two acyclic messages are equivalent up to renaming, then their computational implementations
are indistinguishable (no polynomial time adversary can distinguish them with non-negligible
probability).

Proposition 8.7 Let m and n be two acyclic messages, such that m ∼= n. Let SE be a symmetric
encryption scheme that is IND-CPA secure, then [[m]]SE ≈ [[n]]SE .

Adaptive security is an extension of this soundness result to the case where the adversary adap-
tively choses messages m and n. The main difficulty is that the message chosen by the adversary
may use a polynomial (in η) number of keys.

The Adaptive Security Problem The security game described here is an extension of the
one proposed in [AR00] to the case of an adaptive attacker: a challenge bit b is generated and
the adversary tries to guess the value of bit b. For this purpose, he has access to an oracle called
the left-right concretization oracle. Arguments of this oracle are pairs of equivalent (symbolic)
messages m0,m1. The oracle returns a possible concretization of mb.
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However, besides acyclicity, there are restrictions on the messages that the adversary is allowed
to call the oracle with. Let us consider an adversary that first submits the pair {N0}k, {N1}k to
his left-right concretization oracle. Then the adversary receives a concretization of {Nb}k. Then if
the adversary submits pair k, k and pair N0, N0 to the left-right concretization oracle, he receives
the computational values of k, N0. Using the computational value of k, the adversary can decrypt
the implementation of {Nb}k and compare the result with the value of N0. The adversary is able
to guess the value of bit b with high probability. Pairs of messages submitted by the adversary to
his oracle are equivalent: {N0}k ≡ {N1}k, k ≡ k and N0 ≡ N0, but the concatenations of these
messages are note equivalent:

〈{N0}k, k,N0〉 6≡ 〈{N1}k, k,N0〉

Thus if the adversary submits the pair {N0}k, {N1}k to his oracle, he is not allowed to ask for
key k after that because knowing key k, messages {N0}k and {N1}k are not equivalent anymore.
The restriction is that the concatenations of messages asked by the adversary to his left-right
concretization oracle have to be equivalent.

It is important to remark that arguments of the left-right concretization oracle are symbolic
messages. The adversary does not have to know the computational values of these messages to
ask them, he just submits symbolic terms, for example the adversary can get the computational
value of key k by querying his left-right concretization oracle with pair k, k. Whatever the value of
the challenge bit is, the adversary receives the value of k. A similar game was described in [MP05]
where equivalence up to renaming is used. We stick to equivalence without renaming in order to
preserve simplicity.

Let SE denote a symmetric encryption scheme. Formally, the game that involves adversary
A is described by the following algorithm. The integer j is used to store the number of pairs of
messages that were asked during previous queries (the queries themselves are stored in two arrays
of symbolic messages M0 and M1). The computational substitution θ contains the values for the
different keys and nonces that appears in messages submitted to the left-right oracle. The update
function takes as argument two messages and updates θ by randomly sampling nonces and keys
that were not previously in θ. Note that the update function depends on the nonce generation
algorithm and on the key generation algorithm from SE and that the concr function depends on
the encryption algorithm from SE .

Game AdptA(η):
b
R← [0, 1]

j := 0
θ := []
d := A(η)/λ〈m0,m1〉.M0[j] := m0

M1[j] := m1

if not 〈M0[0], ...,M0[j]〉 ≡ 〈M1[0], ...,M1[j]〉 then return ⊥
else j := j + 1; θ := update(θ,m0,m1)

return concr(mb, θ)
return b = d

It is possible to describe this game in terms of security criteria. However this is not done here
as keys and nonces are dynamically generated (and there can be a polynomial quantity of such
creations).

Definition 8.1 A symmetric encryption scheme SE is said to be secure against adaptive symbolic
message attacks if the advantage of any adversary against game Adpt is negligible.

The advantage of an adversary A against game Adpt is defined by:

AdvAdptA (η) = 2Pr[AdptA(η) = true]− 1
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Soundness of Adaptive Security As usual, key cycles are problematic. Hence we add the
hypothesis that message submitted by the adversary cannot contain encryption cycles. Another
hypothesis is made in [MP05] in order to prove soundness. This requirement states that keys cannot
be sent after being used. The sequence of messages {0}k followed by {k}k′ is invalid because key
k is used in the first message (to encrypt 0) and is sent in the second message (protected by k′).
Although this is fair, it is possible to weaken this requirement: a key can be sent after being used
if it was not used to protect another key. Thus the sequence of messages {0}k followed by {k}k′
is valid but {k′′}k followed by {k}k′ is not valid as key k is used to encrypt another key.

Let us formalize these two requirements through the following definition. First we suppose
without loss of generality that symmetric keys are denoted by ki where i is an integer.

Definition 8.2 A message m is said to be cycle free if for any sub-message {m′}kj of m only
keys ki with i > j can appear in m′.

A sequence of message mi is said to be valid if each mi is cycle-free and if key ku is used (at
a key position) in mi to encrypt another key then ku cannot be sent in messages mj for j ≥ i.

It is now possible to state our soundness theorem. This theorem proves that if an encryption
scheme is secure (for an IND-CPA like notion) then any adversary has a negligible advantage in
the Adpt game: safety in the symbolic model (represented by the symbolic equivalence relation)
implies safety in the computational model (represented by an indistinguishability game). We
suppose that the encryption scheme used here hides the length of plain-texts.

This theorem constitutes the main result of [MP05], however we allow some form of adaptive
corruption as keys can be used then sent. Although we do not tackle fully adaptive corruptions,
our increment is linked to the selective decommitment problem and proposes an approach for
solving this open problem [DNRS99].

Theorem 8.4 Let SE be a symmetric encryption scheme that is secure for IND-CPA, then SE is
secure against adaptive symbolic message attacks.

Proof: Let SE be a symmetric encryption scheme that is secure for IND-CPA, Let A be an
adversary against adaptive symbolic message attacks. Let P be the polynomial bound on the
execution of A, hence A can use at most P (η) different symmetric keys. Using A, it is possible to
build an adversary B against P -AC-PAT-IND-CPA which has a comparable advantage. Adversary
B uses his challenge keys to answer queries thatAmakes to his oracle. For this purpose B randomly
generates the necessary nonces. The left-right oracle related to key i is denoted by OiLR, the unary
encryption oracle is denoted OiE and the associated revelation oracle is denoted by Oir.

Adversary B(η)/O1
LR,O1

E ,O1
r ...,O

P (η)
LR ,OP (η)

E ,OP (η)
r :

j := 0
θ := []
d := A(η)/λ〈m0,m1〉.M0[j] := m0

M1[j] := m1

if not M0[0], ...,M0[j] ≡M1[0], ...,M1[j] then return ⊥
else j := j + 1; θ := update′(θ,m0,m1)

return concr′(m0,m1, θ)
return d

This adversary uses two new functions update′ and concr′. The computational substitution θ is
only used to store values for nonces. Key values are not stored as they are part of B’s challenge.
Hence the update′ function only generates the necessary values for new atoms from m0 and m1.
The concr′ function also has to be adapted in order to use the different left-right oracles in order to
build a possible concretization of mb. Note that the concr′ algorithm also has to store the keys for
which it had to call the revelation oracle Or. We distinguish two versions of the concr′ algorithm.
The first one detailed below works on pairs of messages. This version is used by adversary B. If
the adversary asks for a key, the revelation oracle is used to get the computational value of the
related challenge key. If the adversary asks for a nonce, its value can be found in θ.
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Algorithm concr′(m0,m1, θ):
match m0,m1 with

| ki, ki → return Or(i)
| N,N → return aθ
| 〈n0, n

′
0〉, 〈n1, n

′
1〉 → return concr′(n0, n1, θ).concr′(n′0, n

′
1, θ)

| {n0}ki , {n1}ki → if ki has been revealed then return E
(
concr′(n0, n1, θ),Or(i)

)
else pat0 := concr′(n0, θ) Partial Concretization

pat1 := concr′(n1, θ) Partial Concretization
return OiLR(pat0, pat1)

This algorithm uses another version of the concr′ function that only uses a single message and
returns a pattern. This version generates a pattern instead of a bit-string. Symmetric keys are
replaced by requests for such keys and nonces are replaced using their value from θ.

We now want to prove that the game involving A against adaptive symbolic message is similar
to the game involving B against P -AC-PAT-IND-CPA. For this purpose, we relate the behavior
of concr′ to the behavior of concr. First let us consider the cases where concr′ fails:

1. The revelation oracle Or(i) can refuse to reveal the key value. This means that oracle OiLR
has already been called, hence key ki is sent but it has been used as a key before either
to encrypt another key or on two different patterns. Our hypotheses prevent this situation
from happening.

2. The left-right encryption oracle can return ⊥. This situation corresponds to encryption
cycles and cannot occur due to our hypotheses.

3. The pattern matching of the first version of concr′ is not exhaustive. However, the concr′

function is only used if the following condition holds.

M0[0], ...,M0[j] ≡M1[0], ...,M1[j]

Revealed keys correspond exactly to keys that are deducible by the adversary. A quick
induction on the structure of the proof of M0[j] ≡ M1[j] allows us to deduce that the
pattern matching presented here cannot fail.

Now if we consider that concr′ outputs a bit-string, then it is easy to see that the distribution
created by applying concr′ in the case where the challenge bit b equals 1 is the same as the
distribution created by concr to message m0. Formally, if the challenge bit b equals 1 and the
challenge keys corresponds to the keys from θ,

concr′(m0,m1, θ) = concr(m0, θ)

When considering message m1 in the case where b equals 1, we have the same equality:

concr′(m0,m1, θ) = concr(m1, θ)

The two functions concr′ and concr behave in similar ways. Thus the game involving A against
adaptive symbolic message is similar to the game involving B against P -AC-PAT-IND-CPA.

We finally get that the advantages of B and A are equal. Symmetric encryption scheme SE
is secure against IND-CPA. Therefore by using proposition 8.6, we get that SE is secure against
P -AC-PAT-IND-CPA. Hence the advantage of B is negligible and the advantage of A is also
negligible. Therefore, SE is secure against adaptive symbolic message attacks.

This theorem proves that if a symmetric encryption scheme is secure, then the equivalence
relation correctly abstracts indistinguishability even in the case of an adaptive adversary. This re-
sult cannot be easily compared with results of soundness for protocols. Here, the adversary cannot
specify some of the symmetric keys or some nonces values whereas this is possible when consid-
ering protocols. However the adversary can choose which messages are going to be concretized
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whereas in linear protocols, the adversary has no choice. These two approaches are different. The
main interest of this approach is that proofs are simpler because the queries of the adversary do
not have to be parsed. Moreover examples of usage for the adaptive model include analysis of
multicast protocols are presented in [MP05].

A Limitation: Dynamic Encryption Cycles In this document, cycles have always been
defined in a static way: when considering pattern criteria like N -PAT-IND-CPA, the order between
keys is k1 < k2 < ... < kN . Hence k1 can be used to encrypt keys k2 to kN , and each key ki
can be used to encrypt keys ki+1 to kN . An interesting extension would be to check cycles in a
dynamic way: the adversary can submit whichever patterns he wants to each of the oracle, the
only limitation is that he should not create encryption cycles. For example, the adversary can
first ask for E(k1, k2), then for E(k3, k2). At this point, he cannot ask for E(k2, k3) as this would
create a cycle.

Let us formalize this through a new criterion N -dPAT-IND-CPA. This criterion γN is defined
as the triple (Θ;F ;V ). We consider an asymmetric encryption scheme AE = (KG, E ,D).

• Θ generates N key pairs (pk1, sk1) to (pkN , skN ) using KG. It also generates the challenge
bit b.

• F gives access to two oracles for each key pki: the public key oracle which returns pki and
the left-right encryption oracle which given a pair of patterns 〈pat0, pat1〉 concretizes patb
using the necessary keys and outputs the encryption of the result using pki.

F also stores the dependence created by the adversary: if skj is encrypted by pki, F stores
that i < j. If a request can create a cycle for <, then A outputs an error ⊥.

• Finally, the verifier checks that the adversary correctly guessed the value of the challenge
bit b.

This new criterion is an extension of N -dPAT-IND-CPA. It is clear that if AE is secure against
N -dPAT-IND-CPA, then it is also secure against IND-CPA but the converse is more complicated.
In order to study the converse, we separate two different cases, in the first one, N is independent
of η, in the second one, with a slight abuse of notation, N is a polynomial in η.

If N is independent of η, then it is possible to prove that security against IND-CPA implies
security against N -dPAT-IND-CPA. For this purpose, we know that security against IND-CPA
implies security against N -PAT-IND-CPA. Then let A be an adversary against N -dPAT-IND-
CPA, we build an adversary B against N -PAT-IND-CPA which use A as a subroutine. The idea is
that B tries to guess the order that A will use between keys. As the number of possible orders, N !
is independent of η, this strategy succeeds with non-negligible probability. Formally, B generates a
permutation σ of [1, N ]. Each time A makes a request, references to key pair number i are replaced
by references to key pair iσ. Then with probability greater than 1/N !, B perfectly simulates A,
in the other case (i.e. if B is confronted to a cycle), B always output 1. Hence we get that the
advantage of B satisfies the relation:

AdvN−PATB (η) ≥ 1
N !

.AdvN−dPATA (η)

As security against N -PAT-IND-CPA hold, the left member is negligible, so the advantage of A
is also negligible and we get that the encryption scheme is secure against N -dPAT-IND-CPA.

If N is polynomial in η, the former technique cannot apply: the problem is that N ! is exponen-
tial in η therefore we cannot conclude from that relation. Thus, when the number of challenges is
unbounded, this problem seems worse to solve than adaptive corruption. We did not manage to
prove any result linking N -dPAT-IND-CPA to IND-CPA in this setting hence we leave this as an
open question.
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8.4.2 Computational Soundness of Security Protocols

The final objective when introducing polynomial and dynamic criteria was to be able to extend
the link between the symbolic and computational models of protocols to the case of an unbounded
number of sessions. Even if the secrecy problem is undecidable in the latter case, there exists
a wide variety of protocol checkers that work on unbounded sessions (usually by using abstract
interpretation). Such verifiers include Hermes [BLP03b], ProVerif [BAF05], Securify [Cor03] or
Casrul [Rus03].

In order to consider protocols with an unbounded number of session, we first have to introduce
definitions related to such protocol, then we have to give symbolic and computational semantics to
these protocols. As the CMExec procedure from chapter 6 takes as argument a bounded number
of actions, this procedure has to be rewritten from scratch. The adversary should be able to
create new sessions whenever he wants. He should also be able to make precise the interleaving of
the different sessions by naming the agent and the session he is referring too. For these reasons,
computational semantics in this case become hard to understand. Therefore we do not give here
any formal result. Instead, we informally describe how our new results can be used to extend
results from 6.2.

Unbounded Number of Session Proofs detailed in section 6.2 cannot be directly extended
to consider an unbounded number of sessions. A major problem is that the adversary B that is
built in these proofs starts by randomly selecting a subset of keys CK. This set is equal to the set
of keys that are not leaked to the adversary with probability 2−N where N is the total number
of keys. In the bounded model, this probability is constant hence it is not negligible. However in
the case of an unbounded number of sessions, the probability is 2−P (η) where P is a polynomial.
This probability is negligible and the usual proof scheme cannot apply.

There are different easy ways to handle this problem by adding some restrictions. For ex-
ample, [MW04c] and [CW05] do not consider emission of secret keys. The corruption model
of [CW05] allows the adversary to statically corrupt participants: corruption is done at the begin-
ning of the protocol and it is not possible to later corrupt some more participants. Therefore keys
that are secret at the beginning of the protocol stay secret through the whole protocol execution.
In [JLM05a] there is no corruption model but keys can be sent. In order to prevent keys from
being known by the adversaries, a restrictive hypothesis is done: (secret) keys that are secret at
the beginning of the protocol cannot be disclosed to the adversary later.

Using the ∞-AC-PAT-SYM-CPA criterion and other criteria, it is possible to bypass such
restrictions. The proof can be achieved with an adaptive corruption model, however we have to
keep restrictions from the previous section: the order between keys is fixed at the beginning of the
protocol, moreover a key can only be corrupt if it was not used before to encrypt other keys.
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In the symbolic world, the notion of secrecy has been formulated in various ways in the com-
puter security literature. However, two different views of secrecy have been developed over the
years by two separate communities. The first one starts from the notion of information flow,
describing the knowledge an adversary could gain in terms of properties such as non-deducibility
or non-interference. The second view was initiated in Dolev and Yao’s work and focused initially
on security properties. The idea here is to describe properly the capability of the adversary. Some
variants of secrecy appeared, such as strong secrecy, giving more expressivity than the security
property but still lacking the expressivity of information flow concepts. Moreover in the compu-
tational setting, indistinguishability is used to represent a wide variety of properties like strong
secrecy or anonymity. Thus our objective is this chapter is to find an equivalent of indistinguisha-
bility for the symbolic world.

Opacity was introduced in order to describe complex security properties in the symbolic setting.
It has first been formulated for security protocols [Maz04b]. Then this work was extended in terms
of Petri nets [BKR04b, BKR04a, BKMR05]. In this chapter, we first introduce a general notion of
opacity for the framework of labelled transition systems. When using opacity we have fine-grained
control over the observation capabilities of the players, and we show one way that these capabilities
may be encoded. The essential idea is that a predicate is opaque if an observer of the system will
never be able to establish the trueness or falsity of this predicate. Moreover, opacity has a natural
transcription in the computational setting. An opaque predicate can be directly transformed into
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an indistinguishability property. A property is opaque in the computational world if it is not
possible for any adversary to distinguish cases where the property is verified from other cases with
non-negligible probability. Then it is possible to link the symbolic and computational version of
indistinguishability.

This chapter is structured as follows. In the first section, after recalling some basic definitions,
we present a generalisation of opacity, and show how this specialises into the three previously
defined variants: initial opacity, final opacity and total opacity. We also show how opacity is
related to previous work in security. We consider how opacity may describe anonymity and
non-interference, and quickly discuss it in the context of security protocols. In section 9.2, we
consider the question of opacity checking, and state a general undecidability result for opacity.
After restricting ourselves to Petri nets, we give some decidability and undecidability properties.
As opacity is undecidable as soon as we consider systems with an infinite number of states, we
present an approximation technique which may provide a way of model checking even in such
cases. This section also includes two examples. The first, drawn from the commercial world,
illustrates how anonymity may be expressed using opacity. The second considers a voting scheme,
and shows how the approximation technique might be used. Then section 9.3 relates opacity in
the symbolic setting to indistinguishability in the computational setting. These results are applied
to obtain the first proof of security for the Chaum voting scheme in the computational world.

9.1 Introducing Symbolic Opacity

9.1.1 Basic Definitions

The set of finite sequences over a set A is denoted by A∗, and the empty sequence by ε. The
length of a finite sequence λ is denoted by len(λ), and its projection onto a set B ⊆ A by λ|B .

Definition 9.1 A labelled transition system (LTS) is a tuple Π = (S,L,∆, S0), where S is the
(potentially infinite) set of states, L is the (potentially infinite) set of labels, ∆ ⊆ S×L×S is the
transition relation, and S0 is the nonempty (finite) set of initial states.
A run of Π is a pair (s0, λ), where s0 ∈ S0 and λ = l1 . . . ln is a finite sequence of labels such that
there are states s1, . . . , sn satisfying (si−1, li, si) ∈ ∆, for i = 1, . . . , n. We also denote the state
sn by s0⊕λ, and call it reachable from s.
The set of all runs is denoted by run(Π), and the language generated by Π is defined as L(Π) =
{λ | ∃s0 ∈ S0 : (s0, λ) ∈ run(Π)}.

A LTS Π = (S,L,∆, S0) is deterministic if for any transitions (s, l, s′), (s, l, s′′) ∈ ∆, it is the case
that s′ = s′′. Otherwise Π is said to be non-deterministic. A classical property states that it is
possible to determinize a non-deterministic LTS:

Proposition 9.1 Let Π be a non-deterministic LTS, then there exists a deterministic LTS Π′

such that run(Π) = run(Π′).

Let Π = (S,L,∆, S0) be an LTS fixed for the rest of this section, and Θ be a set of elements
called observables. We now aim at modelling the different capabilities for observing the system
modelled by Π. First, we introduce a general observation function and then, specialize it to reflect
limited information about runs available to an observer. An observation function outputs a word,
i.e. a list of observables (which can be seen as letters).

Definition 9.2 Any function obs : run(Π) → Θ∗ is an observation function. It is called label-
based and: static / dynamic / orwellian / m-orwellian (m ≥ 1) if respectively the following hold
(below λ = l1 . . . ln):

• static: there is a mapping obs′ : L→ Θ∪{ε} such that for every run (s, λ) of Π, obs(s, λ) =
obs′(l1) . . . obs′(ln).
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• dynamic: there is a mapping obs′ : L × L∗ → Θ ∪ {ε} such that for every run (s, λ) of Π,
obs(s, λ) = obs′(l1, ε)obs′(l2, l1) . . . obs′(ln, l1 . . . ln−1).

• orwellian: there is a mapping obs′ : L × L∗ → Θ ∪ {ε} such that for every run (s, λ) of Π,
obs(s, λ) = obs′(l1, λ) . . . obs′(ln, λ).

• m-orwellian: there is a mapping obs′ : L × L∗ → Θ ∪ {ε} such that for every
run (s, λ) of Π, obs(s, λ) = obs′(l1, κ1) . . . obs′(ln, κn), where for i = 1, . . . , n, κi =
lmax{1,i−m+1}lmax{1,i−m+1}+1 . . . lmin{n,i+m−1}.

In each of the above four cases, we often use obs(λ) to denote obs(s, λ).

Note that allowing obs′ to return ε allows one to model invisible actions. The different kinds
of observable functions reflect different computational power of the observers. Static functions
correspond to an observer which always interprets the same executed label in the same way.
Dynamic functions correspond to an observer which has potentially infinite memory to store
labels, but can only use knowledge of previous labels to interpret a label. Orwellian functions
correspond to an observer which has potentially infinite memory to store labels, and can use
knowledge (either subsequent or previous) of other labels to (re-)interpret a label. m-orwellian
functions are a restricted version of the last class where the observer can store only a bounded
number of labels. Static functions are nothing but 1-orwellian ones; static functions are also a
special case of dynamic functions; and both dynamic andm-orwellian are a special case of orwellian
functions.

It is possible to define state-based observation functions. For example, a state-based static
observation function obs is one for which there is obs′ : S → Θ ∪ {ε} such that for every run
(s, l1 . . . l1), we have obs(s, l1 . . . ln) = obs′(s)obs′(s⊕l1) . . . obs′(s⊕l1 . . . ln).

Let us consider an observation function obs. We are interested in whether an observer can
establish a property φ (a predicate over system states and traces) for some run having only access
to the result of the observation function. We identify φ with its characteristic set: the set of runs
for which it holds and assume that φ is decidable.

Now, given an observed execution of the system, we would want to find out whether the fact
that the underlying run belongs to φ can be deduced by the observer (note that we are not
interested in establishing whether the underlying run does not belong to φ; to do this, we would
rather consider the property φ = run(Π) \ φ).

What it means to deduce a property can mean different things depending on what is relevant
or important from the point of view of real application. Below, we give a general formalisation of
opacity and then specialise it in three different ways.

Definition 9.3 A predicate φ over run(Π) is opaque w.r.t. the observation function obs if, for
every run (s, λ) ∈ φ, there is a run (s′, λ′) /∈ φ such that obs(s, λ) = obs(s′, λ′). Moreover, φ is
called: initial-opaque / final-opaque / total-opaque if respectively the following hold:

• there is a predicate φ′ over S0 such that for every run (s, λ) of Π, we have φ(s, λ) = φ′(s).

• there is a predicate φ′ over S such that for every run (s, λ) of Π, we have φ(s, λ) = φ′(s⊕λ).

• there is a predicate φ′ over S∗ such that for every run (s, l1 . . . ln) of Π, we have
φ(s, l1 . . . ln) = φ′(s, s⊕l1, . . . , s⊕l1 . . . ln).

In the first of above three cases, we often write s ∈ φ whenever (s, λ) ∈ φ.

Initial-opacity has been illustrated by the dining cryptographers example (in [BKR04b] with
two cryptographers and [BKR04a] with three). It would appear that it is suited to modelling
situations in which initialization information such as crypto keys, etc., needs to be kept secret.
More generally, situations in which confidential information can be modelled in terms of initially
resolved non-determinism can be captured in this way. Final-opacity models situations where the
final result of a computation needs to be secret. Total-opacity is a generalisation of the other two
properties asking not only the result of the computation and its parameters to be secret but also
the states visited during computation.
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Proposition 9.2 Let φ and φ′ be two predicates over run(Π). If φ is opaque w.r.t. an observation
function obs and φ′ ⇒ φ, then φ′ is opaque w.r.t. obs.

Proof: Follows directly from definitions.
The goal of this section is to show how our notion of opacity relates to other concepts commonly

used in the formal security community. We compare opacity to forms of anonymity and non-
interference.

9.1.2 Anonymity

Anonymity is concerned with the preservation of secrecy of identity through the obscuring of the
actions of this identity. It is a function of the behaviour of the underlying (anonymizing) system,
as well as being dependent on capabilities of the observer.

The static, dynamic and orwellian forms of observation function presented in definition 9.2
model three different strengths of observer. We now introduce two observation functions needed
to render anonymity in terms of suitable opacity properties.

Let Π = (S,L,∆, S0) be an LTS fixed for the rest of this section, and A = {a1, . . . , an} ⊆ L
be a set of labels over which anonymity is being considered. Moreover, let α, α1, . . . , αn /∈ L be
fresh labels.
The first observation function, obssA, is static and defined so that obssA(λ) is obtained from λ by
replacing each occurrence of ai by α. The second observation function, obsdA, is dynamic and
defined thus: let ai1 , . . . , aiq (q ≥ 0) be all the distinct labels of A appearing within λ listed in the
(unique) order in which they appeared for the first time in λ; then obs(λ) is obtained from λ by
replacing each occurrence of aij by αj . For example,

obss{a,b}(acdba) = αcdαα and obsd{a,b}(acdba) = α1cdα2α1.

Strong anonymity

In [SS96], a definition of strong anonymity is presented for the process algebra CSP. In our (LTS)
context, this definition translates as follows.

Definition 9.4 Π is strongly anonymous w.r.t. A if L(Π) = L(Π′), where Π′ is obtained from Π
by replacing each transition (s, ai, s′) with n transitions: (s, a1, s

′), . . . , (s, an, s′).

In our framework, we have that

Definition 9.5 Π is O-anonymous w.r.t. A if, for every sequence µ ∈ A∗, the predicate φµ over
the runs of Π defined by

φµ(s, λ) =
(
len(λ|A) = len(µ) ∧ λ|A 6= µ

)
is opaque w.r.t. obssA.

We want to ensure that every possible sequence µ (with appropriate length restrictions) of
anonymized actions is a possible sequence within the LTS. In definition 9.5 above, the opacity of
the predicate φµ ensures that the sequence µ is a possible history of anonymized actions, because
it is the only sequence for which the predicate φµ is false, and so φµ can only be opaque if µ is a
possible sequence.

Proposition 9.3 Π is O-anonymous w.r.t. A iff it is strongly anonymous w.r.t. A.

Proof: We first observe that the strong anonymity w.r.t. A is equivalent to

{λ′ ∈ L∗ | ∃λ ∈ L(Π) : obssA(λ′) = obssA(λ)} ⊆ L(Π) . (9.1)

We show that Π is O-anonymous w.r.t. A iff (9.1) holds.

192/229 Verimag — 2006 Laurent Mazaré
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(=⇒) Suppose that λ ∈ L(Π) and λ′ ∈ L∗ are such that obssA(λ′) = obssA(λ). Clearly, if
λ′|A = λ|A then λ′ = λ ∈ L(Π), so we assume that λ′|A 6= λ|A. Then, for some s ∈ S0, we have that
φµ(s, λ) holds, where µ = λ′|A. Hence, by the opacity of φµ w.r.t. obssA, there is (s′, λ′′) ∈ run(Π)
such that obssA(λ′′) = obssA(λ) and φµ(s′, λ′′) does not hold. Thus λ′ = λ′′ ∈ L(Π). As a result,
(9.1) holds.

(⇐=) Suppose that µ ∈ A∗ and φµ(s, λ) holds. Then len(λ|A) = len(µ) and λ|A 6= µ. Let
λ′ ∈ L∗ be the unique sequence such that λ′|A = µ and obssA(λ′) = obssA(λ). By (9.1), there is s′

such that (s′, λ′) ∈ run(Π). Clearly, obssA(λ′) = obssA(λ) and φµ(s′, λ′) does not hold. As a result,
φµ is opaque w.r.t. obssA, and so Π is O-anonymous w.r.t. A.

Weak anonymity

A natural extension of strong anonymity is weak anonymity1. This models easily the notion of
pseudo-anonymity : actions performed by the same party can be correlated, but the identity of the
party cannot be determined.

Definition 9.6 Π is weakly anonymous w.r.t. A if π(L(Π)) ⊆ L(Π), for every permutation π over
the set A.

In our framework, we have that

Definition 9.7 Π is weak-O-anonymous if, for every sequence µ ∈ A∗, the predicate φµ over the
runs of Π introduced in definition 9.5 is opaque w.r.t. obsdA.

Then these two notions of weak anonymity can be related through the following proposition.

Proposition 9.4 Π is weak-O-anonymous w.r.t. A iff it is weak-anonymous w.r.t. A.

Proof: We first observe that obsdA(λ) = obsdA(λ′) iff there is a permutation π over the set A such
that π(λ) = λ′, and so showing weak anonymity w.r.t. A is equivalent to showing that

{λ′ ∈ L∗ | ∃λ ∈ L(Π) : obsdA(λ′) = obsdA(λ)} ⊆ L(Π) .

The proof then follows similar lines to that of Theorem 9.3, with obsdA playing the role of obssA.

Other observation functions

Dynamic observation functions can model for example the downgrading of a channel. Before
the downgrading nothing can be seen, after the downgrading the observer is allowed to see all
transmissions on that channel. A suitable formulation would be as follows.

Suppose that A represents the set of all possible messages on a confidential channel, and
δ ∈ L \ A represents an action of downgrading that channel. Then obs(λ) is obtained from λ by
deleting each occurrence of ai which precedes (directly or indirectly) an occurrence of δ. In other
words, if the downgrading action appears earlier in the run, then the messages on the channel are
observed in the clear, otherwise nothing is observed.

Orwellian observation functions can model conditional or escrowed anonymity, where someone
can be anonymous when they initially interact with the system, but some time in the future their
identity can be revealed, as outlined below.

Suppose that there are n identities Idi, each identity being capable of performing actions
represented by ai ∈ A. Moreover, α /∈ L represents the encrypted observation of any of these
actions, and ρi ∈ L \ A represents the action of identity Idi being revealed. Then obs(λ) is
obtained from λ by replacing each occurrence of ai by α, provided that ρi never occurs within λ.

1We believe that this formulation of weak anonymity was originally due to Ryan and Schneider.
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9.1.3 Non-Interference

Opacity can be linked to a particular formulation of non-interference. A discussion of non-
interference can be found in [FG94b] and [Rya01]. The basic idea is that labels are split into
two sets, High and Low. Low labels are visible by anyone, whereas High labels are private.
Then, a system is non-interfering if it is not possible for an outside observer to gain any knowledge
about the presence of High labels in the original run (the observer only sees Low labels). This
notion is in fact a restriction of standard non-interference. It was originally called non-inference
in [O’H90], and is called strong non-deterministic non-interference in [FG01].

Definition 9.8 Π satisfies non-inference if L(Π)|Low ⊆ L(Π).

In other words, for any run (s, λ) of Π, there exists a run (s′, λ′) such that λ′ is λ with all the
labels in High removed.

The notion of non-interference (and in particular non-inference) is close to opacity as stated by
the following two properties. First, we show that it is possible to transform certain initial opacity
properties into non-inference properties.

Proposition 9.5 Any initial opacity problem involving a static observation function can be re-
duced to a non-inference problem.

Proof: Let Π = (S,L,∆, S0) be an LTS, obs defined through obs′ (see definition 9.2) be a static
observation function, and φ defined through φ′ (see definition 9.3) be an initial opacity predicate.
We construct a new LTS Π′ = (S′, L′,∆′, S′0) such that:

• S′ = S ∪ {s′ | s ∈ S0} where each s′ is a fresh state.

• L′ = obs′(L) ∪ {h} where h 6∈ obs′(L) is a fresh label.

• ∆′ is obtained from ∆ by replacing each (s, l, r) ∈ ∆ by (s, obs′(l), r), and adding, for each
s ∈ S0, a new transition (s′, h, s).

• S′0 = {s | s ∈ S0 \ φ} ∪ {s′ | s ∈ S0 ∩ φ}.

We then consider a non-inference problem for Π′ with Low = obs′(L) and High = {h}, and below
we show that Π′ satisfies non-inference iff for Π the opacity property φ w.r.t. obs holds. We
assume that Π′ is deterministic; otherwise we replace it by its deterministic version.

(=⇒) Suppose that (s, λ) ∈ run(Π)∩φ. Then (s′, h obs(λ)) ∈ run(Π′). Thus, by non-inference
of Π′, there is (r, κ) ∈ run(Π′) such that obs(λ) = κ, so r ∈ S0 \ φ. Hence there is (r, µ) ∈ run(Π)
such that obs(µ) = κ = obs(λ). Consequently, the opacity of φ w.r.t. obs holds.

(⇐=) Suppose that (r, κ) ∈ run(Π′) and κ|Low 6= κ. Then κ = hρ and r = s′, for some ρ
and s ∈ S0 ∩ φ. Hence there is (s, λ) ∈ run(Π) such that obs(λ) = ρ and, by the opacity of φ
holding for obs, there is (r, ψ) ∈ run(Π) such that r /∈ φ and obs(ψ) = obs(λ). In turn, this means
that (r, obs(ψ)) ∈ run(Π′). We finally have κ|Low = ρ = obs(λ) = obs(ψ), and so Π′ satisfies
non-inference.

A kind of converse result also holds, in the sense that one can transform any non-inference
property to a general opacity property.

Proposition 9.6 Any non-inference problem can be reduced to an opacity problem.

Proof: Let (S,High ∪ Low,∆, S0) be an LTS. We define φ as a predicate over run(Π) so that
φ(s, λ) holds iff λ|Low 6= λ. Moreover, obs is defined as a static observation function such that
obs(λ) = λ|Low. Below we show that Π satisfies non-inference iff for Π the opacity property φ
w.r.t. obs holds.

(=⇒) Suppose that (s, λ) ∈ run(Π) ∩ φ. Then λ|Low 6= λ and so, by the non-inference of Π,
there is s′ such that (s′, λ|Low) ∈ run(Π). Clearly, (s′, λ|Low) /∈ φ and obs(s′, λ|Low) = obs(s, λ),
since (λ|Low)|Low = λ|Low. As a result, the opacity of φ w.r.t. obs holds.
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(⇐=) Suppose that (s, λ) ∈ run(Π) and λ|Low 6= λ. Then (s, λ) ∈ run(Π) ∩ φ and so, by the
the opacity property φ w.r.t. obs, there is (s′, λ′) ∈ run(Π) \ φ such that obs(λ) = obs(λ′). Thus
λ′|Low = λ′ and λ′|Low = λ|Low. Hence λ|Low ∈ L(Π). As a result, Π satisfies non-inference.

Non-interference in general makes a distinction between public (Low) and private (High)
messages, and any revelation of a high message breaks the non-interference property. We believe
that the ability to fine-tune the obs function may make opacity better suited to tackling the
problem of partial information flow, where a message could provide some partial knowledge and
it may take a collection of such leakages to move the system into a compromised state.

9.2 Opacity Checking

Opacity is a very general concept and many instantiations of it are undecidable. This is even true
when LTSs are finite. We formulate such a property as proposition 9.8 (part 4), but first we state
a general non-decidability result.

Proposition 9.7 Opacity is undecidable.

Proof: We show that the reachability problem for Turing machines is reducible to (final)
opacity. Let TM be a Turing machine and s be one of its (non-initial) states. We construct
an instance of the final opacity as follows: Π is given by the operational semantics of TM , the
observation function obs is constant, and φ returns true iff the final state of a run is different from
s. Since s is reachable in TM iff φ is final opaque w.r.t. obs, opacity is undecidable.

It follows from the above proposition that the undecidability of the reachability problem for a
class of machines generating LTSs makes opacity undecidable. We therefore restrict ourselves to
Petri nets, a rich model of computation in which the reachability problem is still decidable [Rei98].
Furthermore, Petri nets are well-studied structures and there is a wide range of tools and algorithms
for their verification.

9.2.1 Petri Nets

We use Petri nets with weighted arcs [Rei98], and give their operational semantics in terms of
transition sequences.2 Note that this varies slightly from the one used in [BKR04b] where the
step sequence semantics allowed multiple transitions to occur simultaneously. Here, transitions
are clearly separated.

A (weighted) net is a triple N = (P, T,W ) such that P and T are disjoint finite sets, and
W : (T ×P )∪ (P ×T )→ N. The elements of P and T are respectively the places and transitions,
and W is the weight function of N . In diagrams, places are drawn as circles, and transitions as
rectangles. If W (x, y) ≥ 1 for some (x, y) ∈ (T ×P )∪ (P ×T ), then (x, y) is an arc leading from x
to y. As usual, arcs are annotated with their weight if this is 2 or more. The pre- and post-multiset
of a transition t ∈ T are multisets of places, preN (t) and postN (t), respectively given by

preN (t)(p) = W (p, t) and postN (t)(p) = W (t, p),

for all p ∈ P . A marking of a net N is a multiset of places. Following the standard terminology,
given a marking M of N and a place p ∈ P , we say that p is marked if M(p) ≥ 1 and that M(p)
is the number of tokens in p. In diagrams, M is represented by drawing in each place p exactly
M(p) tokens (black dots). Transitions represent actions which may occur at a given marking and
then lead to a new marking. A transition t is enabled at a marking M if M ≥ preN (t). Thus, in
order for t to be enabled at M , for each place p, the number of tokens in p under M should be
greater than or equal to the total number of tokens that are needed as an input to t, respecting
the weights of the input arcs. If t is enabled at M , then it can be executed leading to the marking
M ′ = M − preN (t) + postN (t). This means that the execution of t ‘consumes’ from each place p

2 It should be stressed that the transitions in the Petri net context correspond to the labels rather than arcs in
the LTS framework.
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exactly W (p, t) tokens and ‘produces’ in each place p exactly W (t, p) tokens. If the execution of t
leads from M to M ′ we write M [t〉M ′ and call M ′ reachable in one step from M . A marked Petri
net Σ = (N,S0) comprises a net N = (P, T,W ) and a finite set of initial markings S0. It generates
the LTS ΠΣ = (S, T,∆, S0) where S is the set of all the markings reachable (in any number of
steps) from the markings in S0, T is the set of labels, and ∆ is defined by (M, t,M ′) ∈ ∆ if
M [t〉M ′. The language of Σ is that of ΠΣ.

In the case of Petri nets, there are still some undecidable opacity problems.

Proposition 9.8 The following problems are undecidable for Petri nets:

1. Initial opacity when considering a static observation function.

2. Initial opacity when considering a state-based static observation function.

3. Initial opacity when considering an orwellian observation function even in the case of finite
LTSs generated by marked nets.

4. Opacity when considering a constant observable function even in the case of finite LTSs
generated by marked nets.

Proof: Below we reduce three undecidable problems to suitable variants of opacity, in each case
defining a marked Petri net Σ as well as observation function obs and opacity predicate φ for
the runs of ΠΣ. The first two are related to Petri nets: the language inclusion problem [JE96],
and the reachable markings inclusion problem [Pet81]. The third one is the Post Correspondence
Problem (PCP): we consider a fixed alphabet with more than two symbols. Then given a finite set
of pair of words (ai, bi)i over this alphabet it is impossible for an algorithm to answer the following
question: is there a finite sequence of integer i1 to in such that the concatenation of words ai1 to
ain is equal to bi1 to bin .

ai1 ...ain = bi1 ...bin

(1) Let Σi = (Ni, {Mi}), for i = 1, 2, be two marked Petri nets. We first construct their
isomorphic copies Σ′

i = (N ′
i , {M ′

i}), for i = 1, 2, in such a way that each transition or place x in
Σi is renamed to (x, i), and M ′

i = {(s1, i), . . . , (ski , i)} where Mi = {s1, . . . , ski}. Then:

• Σ = (N, {M ′
1,M

′
2}) is a marked net such that N is the union of N ′

1 an N ′
2.

• obs is static and given by obs′(t, i) = t, for each transition (t, i) in Σ.

• φ is true iff the first marking of a run is M ′
1.

Since the language of Σ1 is included in that of Σ2 iff φ is initial opaque w.r.t. obs, part (1) holds.
(2) Let Σi = (Ni, {Mi}), for i = 1, 2, and Σ be the three marked Petri nets as in the proof of

part (1). Then:

• We modify Σ in such a way that each transition (t, i) is replaced by two identically
connected copies, (t′, i) and (t′′, i). We then add to Σ three fresh places, p′, p and
p′′, and two fresh transitions, u and u′, in such a way that their arcs are as follows:
W (p′, u) = W (u, p) = W (p, u′) = W (u′, p′′) = 1, W (p′, (t′, i)) = W ((t′, i), p′) = 1 and
W (p′′, (t′′, i)) = W ((t′′, i), p′′) = 1, for each transition (t, i) of Σ. Next, to obtain the initial
markings, we add one copy of p′ to both M ′

1 and M ′
2.

●

t',i t'',i

u'u

p' p p''
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• obs is state-oriented and given by obs′(M) = {s1, . . . , sm} for any marking M =
{p, (s1, i1), . . . , (sm, im)}, and obs′(M) = ε otherwise (note that such an observation function
allows one to inspect at most one state of a given run).

• φ is true iff the first marking of a run is M ′
1 + {p′}.

Property φ is initial opaque if for any run starting from M ′
1 + {p′}, there is a run starting from

M ′
2 + {p′} that has the same observable trace. There is only a single non empty observation for

each run and this observation gives an accessible markings (from Σ1 if the initial marking was
M ′

1 + {p′} and from Σ′
2 if it was M ′

2 + {p′}). Since the set of reachable markings of Σ1 is included
in that of Σ2 iff φ is initial opaque w.r.t. obs, part (2) holds.

(3) Let us consider an instance of PCP with (ai, bi), for i = 1, . . . , n. Then:

• Σ consists of a net ({s, s′}, {(a1, 1), (b1, 1), . . . , (an, n), (bn, n)},W ) and the initial markings
S0 = {{s}, {s′}}, with the arcs given by

W (s, (ai, i)) = W ((ai, i), s) = W (s′, (bi, i)) = W ((bi, i), s′) = 1

for i = 1, . . . , n. Clearly, ΠΣ is finite.

• obs is orwellian and depends only on the sequence λ = (x1, i1) . . . (xm, im) returning
x1 . . . xmi1 . . . im (note that x1 . . . xm is the concatenation of labels which are words).

• φ is true iff the first marking of a run is {s}.

Since the instance of PCP has a solution iff φ is initial opaque w.r.t. obs, part (3) holds.
(4) Let us consider an instance of PCP with (ai, bi), for i = 1, . . . , n. Then:

• Σ consists of a net ({s}, {1, . . . , n},W ) and the initial marking S0 = {{s}}, where the arcs
are given by W (s, i) = W (i, s) = 1 for i = 1, . . . , n. Clearly, ΠΣ is finite.

• obs always returns ε.

• φ({s}, i1 . . . im) is true iff m ≥ 1⇒ ai1 . . . aim 6= bi1 . . . bim .

Since the instance of PCP has a solution iff φ is opaque w.r.t. obs, part (4) holds.
An analysis of the proof of the last result identifies two sources for the complexity of the opacity

problem. The first one is the complexity of the studied property, captured through the definition
of φ. In particular, the latter may be used to encode undecidable problems and so in practice
one should presumably restrict the interest to relatively straightforward versions of opacity, such
as the initial opacity. The second source is the complexity of the observation function, and it is
presumably reasonable to restrict the interest to some simple classes of observation functions, such
as the static observation functions. This should not, however, be considered as a real drawback
since the initial opacity combined with an n-orwellian observation function yields an opacity notion
which is powerful enough to deal, for example, with bounded security protocols.

What now follows is a crucial result stating that initial opacity with an n-orwellian observation
function is decidable provided that the LTS generated by a marked Petri net is finite3. In fact,
this result could be generalised to any finite LTS.

Proposition 9.9 In the case of a finite LTS, initial opacity w.r.t. an n-orwellian observation
function is decidable.

Proof: The result was shown in [BKR04b] using regular language inclusion for n = 1. Here, we
will re-use this result after reducing the case of n = 2 to that of n = 1 (the proposed reduction
can easily be extended to any n > 2).

Let Π = (S,L,∆, S0) be a finite LTS, for which a 2-orwellian observation function obs, and
initial opacity predicate φ, are given. We define an LTS Π′ = (S′, L′,∆′, S′0) together with a static
observation function obs′ and initial opacity predicate φ′ for the runs of Π′, as follows.

3 Note that the finiteness of LTS is decidable, and can be checked using the standard coverability tree construc-
tion [Rei98].
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• S′ consists of all triples (α, s, β) such that s ∈ S and one of the following holds:

– α is the label of an arc incoming to s and β is the label of an arc outgoing from s.

– α is the label of an arc incoming to s and β = ε.

– s ∈ S0, α = ε and β is the label of an arc outgoing from s.

Moreover, the triples from the third case form S′0.

• ∆′ consists of all
(
(α, s1, β), l, (β, s2, γ)

)
such that (s1, β, s2) ∈ ∆ and one of the following

holds (below we also give the value of obs′(l)):

– α = ε = γ, l = β and obs′(l) = obs(β).

– α = ε 6= γ, l = βγ and obs′(l) = obs(βγ).

– α 6= ε = γ, l = αβ and obs′(l) = obs(αβ).

– α 6= ε 6= γ, l = αβγ and obs′(l) = obs(αβγ).

• φ′ is true for (α, s, β) ∈ S′0 iff φ was true for s.

We then observe that the opacity problem for φ w.r.t. obs is equivalent to the opacity problem for
φ′ w.r.t. obs′. Hence, since the new LTS is finite, the former is decidable.

The last result is an extension of the main result given in [BKR04b] which stated the same
property for n = 1 (as well as for two other kinds of opacity mentioned earlier on).

9.2.2 Approximation of Opacity

As initial opacity is, in general, undecidable when LTSs are allowed to be infinite, we propose in
this section a technique which might allow to verify it, at least in some cases, using a technique
close to abstract interpretation [CC77, CC92]. It uses an abstraction of opacity called under/over-
opacity.

Definition 9.9 For i = 1, 2, 3, let Πi be an LTS. Moreover, let obsi be an observation function
and φi a predicate for the runs of Πi such that the following hold:

(∀ξ ∈ run(Π1) ∩ φ1) (∃ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ′)
(∀ξ ∈ run(Π3) \ φ3) (∃ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ′) .

Then φ1 is under/over-opaque (or simply uo-opaque) w.r.t. obs1 if for every ξ ∈ run(Π2) ∩ φ2

there is ξ′ ∈ run(Π3) \ φ3 such that obs2(ξ) = obs3(ξ′).

Intuitively, Π2 provides an over-approximation of the runs satisfying φ1, while Π3 provides an
under-approximation of those runs that do not satisfy φ1.

Proposition 9.10 Uo-opacity w.r.t. obs1 implies opacity w.r.t. obs1.

Proof: Follows directly from definitions.
Given Π1, obs1 and φ1, the idea then is to be able to construct an over-approximation and

under-approximation to satisfy the last definition. A possible way of doing this in the case of
marked Petri nets is described next.

Uo-opacity for Petri nets Suppose that Σ = (N,S0) is a marked Petri net, Π1 = ΠΣ, obs1 is
a static observation function for Π1 and φ1 ⊆ S0 is an initial opacity predicate for Π1.
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Deriving over-approximation Coverability graphs (see [Fin93] for details) are commonly used
to analyze unbounded Petri nets (i.e. Petri nets that have an unbounded number of reachable
markings). These graphs are used to approximate a Petri net with a finite automata. Instead of
using markings for the nodes of the execution graph of the net, nodes from a coverability graph
use ω-markings: a place can be assigned the value ω to indicate an unbounded number of tokens.
Consuming or producing tokens from/to ω leads to ω. The integer inequality is extended over
N ∪ {ω} by ∀n ∈ N, ω > n.

Classical properties of the coverability graph are that it is a finite graph and for any reachable
marking of the original Petri net, a greater (for every place) marking can be reached using the
same transitions in the coverability graph.

The over-approximation is obtained by generating the coverability graph Π2 of Σ starting from
the initial nodes in S0 ∩ φ1. The only modification of the original algorithm needed is that in our
setup there may be several starting nodes S0 ∩ φ1 rather than just one. However, this is a small
technical detail. The observation function obs2 is static and defined in the same way as obs1. The
predicate φ2 is true for all the initial nodes S0 ∩ φ1. Crucially, Π2 is always a finite LTS.

Proposition 9.11 (∀ξ ∈ run(Π1) ∩ φ1) (∃ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ′).

Proof: It suffices to prove {λ ∈ L∗|∃s0 ∈ S0 : (s0, λ) ∈ φ} ⊆ L(Π2). Suppose that (s0, λ) ∈
run(Π1)∩φ1. We show, by induction on the length of λ, that there is (s′0, λ) ∈ run(Π2) such that
s′0 = s0 and s0⊕λ is covered by s′0⊕λ (i.e., for every place p the value assigned by s0⊕λ is not
greater than that assigned by s′0⊕λ).

Since the base case trivially holds, assume that the property is true for (s0, λ) ∈ run(Π1)∩ φ1

and that (s0, λt) ∈ run(Π1). Then, by the induction hypothesis, there is (s′0, λ) ∈ run(Π2) such
that s′0 = s0 and s0⊕λ is covered by s′0⊕λ. Since t is enabled in Σ at marking s0⊕λ, and s′0⊕λ
covers the latter, t labels an arc outgoing from s′0⊕λ, leading to some state s. Clearly, s covers
s0⊕(λt) since no ω entry in s0⊕λ can be replaced by a finite value in s.

Deriving under-approximation A straightforward way of finding an under-approximation is
to impose a maximal finite capacity max for the places of Σ (for example, by using the complement
place construction), and then deriving the LTS Π3 assuming that the initial markings are those in
S0\φ1. The observation function obs3 is static and defined in the same way as obs1. The predicate
φ3 is false for all the initial nodes S0 \ φ1.

Clearly, Π3 is always a finite LTS. However, for some Petri nets with infinite reachability graph
(as shown later on by the second example), this under-approximation may be too restrictive,
even if one takes an arbitrarily large bound max. Then, in addition to using instance specific
techniques, one may attempt to derive more generous under-approximations in the following way.

We assume that there are some (invisible) transitions in Σ mapped by obs1 to ε transitions,
and propagate the information that a place could become unbounded due to infinite sequence of
invisible transitions. The construction resembles the coverability graph generation.

As in the case of the reachability graph, the states in Π3 are ω-markings (see the proof of
proposition 9.11). Then Π3 is built by starting from the initial states S0 \ φ1, and performing a
depth-first exploration. At each visited ω-marking M , we find (for example, using a nested call
to a coverability graph generation restricted to the invisible transitions starting from M) whether
there exists an ω-marking M ′ > M reachable from M through invisible transitions only4 (M ′ > M
means that for any place p, M ′(p) ≥ M(p) and M and M ′ are different, i.e. there exists a place
p such that M ′(p) > M(p)); then we set M(p) = ω, for every place p such that M ′(p) > M(p).

Note that the above algorithm may be combined with the capacity based approach (i.e. re-
placing M(p) with ω as soon as M(p) is greater than a fixed bound) and then it always produces
a finite Π3. In general, however, Π3 is not guaranteed to be finite.

It should be pointed out that Π3 generated in this way is not, in general, a deterministic LTS,
but this does not matter as the only thing we are interested in is the language it generates.

4 This search does not have to be complete for the method to work, however, the more markings M ′ we find,
the better the overall result is expected to be.
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Proposition 9.12 (∀ξ ∈ run(Π3) \ φ3) (∃ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ′).

Proof: It suffices to show that obs3(L(Π3)) ⊆ obs1(L(Π1)).
Suppose that s0t1s1 . . . tnsn is a path in Π3 starting from an initial state. We show, by induction
on n that, for every k ≥ 1, there is (s0, λ) ∈ run(Π1) such that obs1(λ) = obs3(t1 . . . tn) and, for
every place p, either sn(p) ≤ (s0⊕λ)(p) or ω = sn(p) > (s0⊕λ)(p) ≥ k.

Since the base case trivially holds, assume that the property holds for n, s0t1s1 . . . tnsnts is a
path in Π3 starting from an initial state, and k ≥ 1. Moreover, let t′1 . . . t

′
q (q ≥ 0) be a sequence

of invisible transitions which was ‘responsible’ for replacing the marking resulting from executing
t in sn by s.
Given now an arbitrary m ≥ 1 we can choose sufficiently large k′ ≥ k such that, after applying
the induction hypothesis, there is (s0, λ) ∈ run(Π1) satisfying:

• obs1(λ) = obs3(t1 . . . tn) and, for every place p, either sn(p) ≤ (s0⊕λ)(p) or ω = sn(p) >
(s0⊕λ)(p) ≥ k′.

• t followed by m repetitions of the sequence t′1 . . . t
′
q is executable in Σ from the marking

s0⊕λ.

The latter, in particular, means that the overall effect of the sequence t′1 . . . t
′
q on the marking of

any place is that the number of tokens never decreases (otherwise ‘negative’ place markings would
be eventually generated which is impossible). This in turn means that, by executing t′1 . . . t

′
q

sufficiently many times from the marking s0⊕(λt), we may reach a marking s′ such that, for every
place p, either s(p) ≤ s′(p) ∈ N or ω = s(p) > s′(p) ≥ k.

Deciding uo-opacity Assuming that we have successfully generated over- and under-
approximations Π2 and Π3, uo-opacity holds iff

obs2(L(Π2)) ⊆ obs3(L(Π3))

When Π2 and Π3 are finite LTSs, then obs2(L(Π2)) obs3(L(Π3)) are regular languages. Inclusion
of two regular languages is a decidable problem 5 thus the previous inclusion can also be decided.

9.2.3 Examples

To illustrate our work, we give two examples. The first one is inspired by an anonymity requirement
required in the chemical industry. The second describes a simple voting system.

9.2.4 A Scenario from Chemical Engineering

Figure 9.1 is a Petri net representation of a scenario in the chemical industry. It is adapted from an
example presented in [PTE04]. In the example, a chemical development company A asks company
B (transition a1) to prepare a feasibility study into the development of a new chemical. When
this is completed (transition b1) company A is informed of the conclusions (transition a2). On
the basis of these conclusions company A decides to commission a chemical safety report, from
either company C (transition a3) or company C ′ (transition a′3). The relevant law allows the
chosen company to question company B on aspects of the feasibility study. However, the chosen
company is not allowed to reveal its identity to company B, in order to protect the integrity of
B’s answers. In our example, there are only two possible companies, C and C ′, so our intention
is that from B’s point of view, the visible interactions do not reveal the identity of the chosen
company.

We may assume that the actions a3, a
′
3, a4 and a′4 are not visible to B, as these actions concern

only companies A and B.
5Regular languages are accepted by finite automatons. ”Intersection” of two such automatons can be computed

as well as ”complement”. Moreover emptiness is decidable. The result follows as A ⊆ B is equivalent to ¬∩B = ∅.
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Figure 9.1: Petri Net for the chemical industry scenario.

We choose the (static) observation function of B to be the identity function, except for

obs′(a3) = obs′(a4) = ε obs′(c1) = γ
obs′(a′3) = obs′(a′4) = ε obs′(c′1) = γ

We now demonstrate the set of transitions {c1, c′1} to be O-anonymous.
If λ = li . . . ln, the properties that we require to be opaque w.r.t. obs are:

φ(s, λ) = (∃i : li = c1) and φ′(s, λ) = (∃i : li = c′1)

The two possible sequences of actions of this system are a1b1a2a3c1a4 and a1b1a2a
′
3c
′
1a

′
4, and

so the two possible observations of the system are

obs(a1b1a2a3c1a4) = a1b1a2εγε
obs(a1b1a2a

′
3c
′
1a

′
4) = a1b1a2εγε

which are observationally equivalent. The properties φ and φ′ are therefore opaque, and the
set {c1, c′1} is strongly anonymous w.r.t. obs.

9.2.5 A Simple Voting Scheme

In this example, we consider a vote session allowing only two votes: 1 and 2. We then describe a
simple voting scheme in the form of a Petri net (see figure 9.2). The voting scheme contains two
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Figure 9.2: Net for the voting system.

phases. The first one called voting phase (when there is a token in Voting) allows any new voter
to enter the polling station (transition NV ) and vote (transitions V 1 and V 2). Votes are stored
in two places Results1 and Results2. A particular voter A is identified, and we formulate our
properties with respect to A. After an indeterminate time, the election enters the counting phase
(when there is a token in Counting, after executing transition C, and no token in Voting). Then
the different votes are counted. Votes for 1 are seen via transition C1 and vote for 2 via C2. This
net has one obvious limitation. At the end, there still can be some tokens left in places Results1
and Results2 so this scheme does not ensure that every vote is counted.

We want to verify that the vote cast by A is secret: the two possible initial markings are
{V oting, 1} and {V oting, 2}. We prove that it is impossible to detect that “1” was marked (a
symmetric argument would show that it is impossible to detect whether “2” was marked). The
observation function is static and only transitions C1 and C2 are visible, i.e., obs(C1) = C1,
obs(C2) = C2 and obs(t) = ε for any other transition t.

To verify opacity, we use the under/over approximation method. The coverability graph (over-
approximation) can be computed (see figure 9.3) using, for example, Tina [tin04]. After applica-
tion of the observation function and simplification, we obtain that obs2(L(Π2)) = {C1, C2}∗(see
section 9.2.2 for the definition of Π2).

However, the simple under approximation using bounded capacity places does not work in this
case, as for any chosen maximal capacity max, the language L(Π3) is finite whereas obs2(L(Π2)) is
infinite. Thus, we use the second under approximation technique. The following array represents
the reachable states of the system starting from marking {V oting, 2} using this technique.

Waiting V oting Results1 Results2 1 2 Counting
A N 1 N N 0 1 0
B N 1 N N 0 0 0
C N 0 N N 0 1 1
D N 0 N N 0 0 1
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Figure 9.3: Coverability graph for the voting system.

The behavior of this reachability graph, i.e. obs3(L(Π3)), is simple:

A B

C D

ǫ

ǫ ǫ

C2 C1 C2 C1

Thus, the under-approximation is in this case: obs3(L(Π3)) = {C1, C2}∗, and so obs2(L(Π2)) ⊆
obs3(L(Π3)) holds. We can now conclude that opacity of φ w.r.t. obs is verified and so the vote
cast by A is kept secret.

9.3 Opacity as Indistinguishability

In this section, we are only interested in initial opacity. Protocols as we described them earlier
are not general enough to represent more complex systems such as voting schemes. Hence, we
consider general LTSs where labels are messages. In order to link opacity to indistinguishability,
a first step consists in defining probabilistic opacity.

9.3.1 Probabilistic Opacity

Let Σ be a finite alphabet representing actions made by a system. A trace is a finite sequence of
actions, i.e., a word over Σ. Let Σ∗ be the set of words over Σ and ε be the empty word.

A system is a random function ∆ from a finite set S of initial states to sequences of actions.
Random means that the system can perform some non-deterministic operations (with discrete
probabilistic choices). For example it can pick up a random bit b. If b = 0, it performs action
a else action a′. The set of possible traces of a system ∆ is denoted by ∆(S). In a similar way,
∆({s}) is the set of possible traces starting from s in S. This set can have more than one element
as function ∆ is random. We suppose that ∆ can be represented using a PRTM.

An observation function allows the eavesdropper to see only limited information about traces
produced by the studied system. These functions are mappings from Σ to Σ ∪ {ε}. Hence, it is
possible for an action to be totally invisible from the outside if the observation function replaces
it with ε.
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Opacity Let us consider a system ∆ with possible initial states S and an observation function
obs. A property ψ is a predicate over S which satisfiability is a polynomial time problem. A
property ψ is opaque if given s ∈ S and t ∈ ∆({s}), it is not possible, for an adversary that
has access uniquely access to obs(t) to know whether s verifies ψ. Here, not possible means that
it should not be possible to achieve this with “reasonable” probability. This notion of opacity
corresponds to initial opacity as introduced in section 9.1.

More than in opacity itself, we are interested here in the advantage that an adversary can get
by having access to the observation of the trace. If a vast majority of initial states in S verify ψ,
the adversary can assume that s verifies ψ even without looking at the trace. However, by looking
at the trace, it is possible to get some new information and to deduce the result for sure. To define
this advantage, we consider that the adversary A tries to win the following game:

1. An initial state s is chosen randomly in S;

2. The adversary A is given the observation of a trace in ∆({s}) and has to output a bit b;

3. A wins his challenge, when b is equivalent to the property “s satisfies ψ”.

This game is represented by an experiment which is a random Turing machine. The experiment
related to adversary A and to obs is the following PRTM.

Game Gobs
A :

s
R← S

t := ∆(s)
b := A(obs(t))
return b⇔ (s ∈ ψ)

As in chapter 4 the advantage is the difference between the probability that A solves his challenge
and the best probability that one can get without access to the observation. Hence, it is defined
by the following formula.

AdvobsA = 2
(
Pr[Gobs

A → true]− PrRandψ
)

Where PrRandψ is the greatest possible value for Pr[Gε
B → true] for any B and ε represents the

observation function that associates ε to any action in Σ.
Note that the above definitions for the experiment and the advantage can easily be defined in

an equivalent way by using the general notion of security criterion.

• Θ randomly generates an initial parameter s and a trace t;

• F gives access to the trace observation obs(t);

• V verifies that the output bit b correctly answers the question: does s verify ψ ?

Criterion (Θ;F ;V ) has exactly the same related experiment and advantage as those given above.
Using the definition of advantage, it is possible to tell whether an observation function is of

any use in trying to solve the challenge.

Definition 9.10 Let ∆ be a system, S be the set of its initial states and ψ a property over S. An
observation function obs is called

• safe for strict opacity of ψ , if for any random Turing machine A, AdvobsA = 0

• safe for cryptographic opacity of ψ, if for any polynomial random Turing machine A,
AdvobsA is negligible

• safe for plausible deniability of ψ, if for any random Turing machine A, AdvobsA 6=
2− 2PrRandψ i.e. Pr[ExpobsA → true] is different from 1.
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Plausible deniability coincides with the opacity notion introduced in section 9.1. However in
this section we are more interested in cryptographic opacity than in plausible deniability.

For strict opacity, if an observation function is safe then an adversary gets no advantage at
all by looking at the observation. This is for example the case of information exchanged by
cryptographers during their dinner (in the original proposal of Chaum) if we consider that one of
them paid the diner for any element of S.

For cryptographic opacity, an observation function may return some relevant information that
cannot be exploited in a reasonable (i.e. polynomial) time. For example, if we consider that all
the actions made by a system are encrypted using a safe encryption scheme, then the observation
is safe. In this context, a safe encryption scheme is an IND-CPA encryption scheme as introduced
earlier in this document.

The idea is that with plausible deniability, if the adversary observes some trace t, then he
cannot conclude for sure whether property ψ is verified or not. There exists at least one initial
state satisfying ψ and one not satisfying ψ that both produce the observation obs(t).

There is no clear hierarchy among strict opacity and plausible deniability as the first notion
does not imply the second one (this implication is only true when PrRand is different from one).

9.3.2 Decidability of Strict Opacity for Finite Systems

Let us consider the case where only a finite number of traces can occur. Thus, we suppose that
both S and ∆(S) are finite. With this assumption, the greatest advantage for any adversary can
be computed. Moreover, there exists an adversary that reaches this advantage.

Let O be the set of all possible observations, i.e. O = obs(∆(S)). We first define the interest
of an observation function obs. This definition is rather intuitive as an observation function can
bring some advantage if the probability for ψ to be true knowing the observation is different from
the general probability of ψ. This explains why this definition uses the term |Pr[ψ]− Pr[ψ|o]|.

Definition 9.11 The interest Iobs of an observation function obs is given by:

Iobs = 2
∑
o∈O

Pr[o]
∣∣Pr[ψ]− Pr[ψ|o]

∣∣
Then, the main result of this section is that the interest is the least possible advantage. For this
reason, as it is possible to effectively compute the interest of a given observation, safety for strict
opacity of an observation function is a decidable problem. The following proposition states the
main result.

Proposition 9.13 For any adversary A and observation function obs, AdvobsA ≥ Iobs. Moreover,
there exists an adversary Aobs whose advantage is exactly Iobs.

Proof: This proof is achieved in three steps:
Step 1 First, consider the case where there is only one possible observation, |O| = 1. Adversary

A has a probability p (resp. 1− p) to answer 1 (resp. 0).

Pr[ExpobsA → true] = Pr[ExpobsA → true|s ∈ ψ]Pr[ψ] + Pr[ExpobsA → true|s /∈ ψ]Pr[¬ψ]
= p.Pr[ψ] + (1− p)(1− Pr[ψ])

Then, if Pr[ψ] ≥ 1
2 , 1− 2Pr[ψ] is negative hence:

Pr[ExpobsA → true] = (1− p)(1− 2Pr[ψ]) + Pr[ψ]
≤ Pr[ψ]

In the other case, 2Pr[ψ]− 1 is negative,

Pr[ExpobsA → true] = (1− Pr[ψ]) + p(2Pr[ψ]− 1)
≤ 1− Pr[ψ]
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These two inequalities allow us to deduce the following.

Pr[ExpobsA → true] ≤ max(Pr[ψ], 1− Pr[ψ])

= |Pr[ψ]− 1
2
|+ 1

2

max(Pr[ψ], 1−Pr[ψ]) is exactly the best advantage that an adversary which does not have access
to any oracle can get. This adversary always returns 1 if Pr[ψ] is greater than 1/2 and 0 otherwise.

Pr[ExpobsA → true] ≤ PrRandψ

Hence, the advantage is negative.
Step 2 Now, it is possible to generalize the above result for any set O.

Pr[ExpobsA → true] =
∑
o∈O

Pr[o]Pr[ExpobsA → true|o]

≤
∑
o∈O

Pr[o]
(∣∣Pr[ψ|o]− 1

2

∣∣− 1
2
)

≤ 1
2

+
∑
o∈O

Pr[o]
∣∣Pr[ψ|o]− 1

2

∣∣
We introduce PrRandψ in the former equation using its form |Pr[ψ]− 1

2 |+
1
2 . Hence,

AdvobsA ≤
∑
o∈O

Pr[o]
(∣∣Pr[ψ|o]− 1

2

∣∣− ∣∣Pr[ψ]− 1
2

∣∣)
|AdvobsA | ≤

∑
o∈O

Pr[o]
∣∣∣∣Pr[ψ|o]− 1

2

∣∣− ∣∣Pr[ψ]− 1
2

∣∣∣∣
≤

∑
o∈O

Pr[o]
∣∣Pr[ψ|o]− Pr[ψ]

∣∣
≤ Iobs

Step 3 The machine Aobs which advantage is exactly Iobs is very simple:

Adversary Aobs(o):
p := Pr[ψ|o]
if p ≥ 0.5, return true
else return false

Probability for the different obs equivalence classes are hardwired in the machine. As there are
only a finite number of classes, Aobs works in polynomial time (in the size of o). The advantage
of this adversary can be computed in a similar way as step 1 and 2.

It is important to notice that the second statement of the previous proposition asserts the
existence of an RTM Aobs with AdvobsA = Iobs. This RTM is not necessarily a legal adversary.
Indeed, Aobs has an execution time which is linear in the number of possible observations. This
is not a problem when considering strict opacity or plausible denying as adversaries are RTM.
However, for cryptographic opacity, we only admit adversaries in PRTM. Worse, even if we assume
the quite fair hypothesis (for an eavesdropper) that there is only a bounded number of messages
which all have some bounded size, the number of possible observations may be exponential in the
security parameter η, and hence, Aobs may not a PRTM.

Nevertheless, this result is interesting at least for strict opacity as shown now. Indeed, a
consequence of this proposition is that no adversary has an advantage if and only if for every o
in O, Pr[ψ] = Pr[ψ|o]. When one wants to verify strict opacity, it is possible to test that for
any observation, the probability for ψ to be true assuming this observation is exactly the general
probability for ψ to be true. Hence, we have
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Proposition 9.14 Let obs be an observation function and ψ a property. Then, obs is safe for
strict opacity of ψ if and only if for any o ∈ obs(∆(S)), Pr[s ∈ ψ] = Pr[s ∈ ψ|obs(s) = o].

9.3.3 An Approach to the Verification of Cryptographic Opacity

As we noted in the previous section, we make the finite behavior hypothesis for cryptographic
systems (with passive adversaries). That is, we assume that S and ∆(S) are finite. The approach
proposed for proving strict opacity using the interest of the observation function and the existence
of an adversary matching this interest is not applicable for cryptographic opacity. Indeed, when
considering cryptographic opacity, adversaries are polynomially bounded and hence cannot per-
form brute-force attacks. Therefore, we present here a different approach. The main idea in this
approach is to decompose the verification of cryptographic opacity into the verification of strict
opacity for an abstracted system on one hand and the safety of the underlying encryption scheme
on the other hand.

Specifications and Patterns In the cryptographic setting, the alphabet Σ consists of the
symbols 0 and 1. Thus, an action of the alphabet is a bit-string. We consider systems that
produce some finite size bit-strings (usually, their size is polynomial in the security parameter η).

To define the abstract systems, we introduce a new kind of patterns. There is a difference
with previously introduced patterns as we are interested in opacity and want to tackle the Chaum
voting scheme: we have to be careful in handling the random coins6 used in encryptions. Let us
describe this precisely: in the simplest Dolev-Yao model, encryption of a message m with key pk
is represented by term {m}pk. Thus, two messages {m1}pk1 and {m2}pk2 are equal iff m1 = m2

and pk1 = pk2. Moreover, an adversary who does not know the inverse key of pk cannot get
any information from {m}pk. This means that the randomness used to perform the encryption
is completely abstracted away. In some refinements of this model, however, labels are introduced
to distinguished encryptions made at different instants during a protocol execution [CW05]. Such
labels are only an approximation of random coins as the latter may be equal even when two
encryptions are performed at different instants. As we want to verify the Chaum voting scheme
(in which random coins used for some encryptions are sent afterwards to allow verification), we
have to include explicitly random coins in our patterns and we want to be able to send and receive
such coins. Therefore, we write {m;N}pk to represent the result of encrypting m with key pk
using nonce N as random coins for the encryption algorithm.

Patterns are defined by the following grammar where k is a key, bs a bit-string and N is a
nonce:

pat ::= bs bit-string
| N nonces
| k k may be a public or private key
| 〈pat, pat〉 pairing of two patterns
| {pat;N}pk encryption of pat using key pk with randomness N

Without loss of generality, we consider abstract systems that only produce one pattern and not a
list of patterns as it is possible to concatenate patterns using pairing. Thus, a specification ∆s is
a function from S to pat.

Obviously, given a pattern pat the information that can be extracted from pat depends on the
set of private keys that can be computed from pat. We define the set of patterns dec(p) that can
be learned/computed from a pattern p.

Definition 9.12 Let p be a pattern, the set dec(p) is inductively defined by the following infer-
ences.

6Random coins are also nonces but some times we use rather random coins to insist on the fact they are used
to randomize encryptions.
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• p is in dec(p).

• If 〈p1, p2〉 is in dec(p), then p1 and p2 are in dec(p).

• If {p1;N}k and k−1 are in dec(p), then p1 and N are in dec(p).

• If {p1;N}k and N are in dec(p), then p1 is in dec(p).

Notice that since we only consider atomic keys, we only have to consider decompositions. It is also
useful to notice that the last clause is usually not considered in the Dolev-Yao model. This clause
is motivated by the existence of IND-CPA algorithms such that the knowledge of the random
number used for encryption allows one to decrypt the message. An example of such an algorithm
is presented in [BCP03].

A pattern has also a denotation in the cryptographic setting. This depends on a context θ that
associates keys and nonces with their corresponding bit-string values. Thus, the cryptographic
(or computational) value of a term {pat;N}k is E(m, bs, bs′), where m is the value of pat, bs the
value of pk, bs′ the value N and E is the deterministic encryption scheme whose third argument
consists in random coins. Let θ be a mapping associating bit-strings with nonces and keys. The
value of a pattern in the context θ is defined recursively by the concr function:

concr(bs, θ) = bs concr(〈p1, p2〉, θ) = concr(p1, θ).concr(p2, θ)
concr(N, θ) = θ(N) concr({p;N}k, θ) = E(concr(p, θ), θ(k), θ(N)) concr(k, θ) = θ(k)

Let us briefly summarize what we have introduced. We defined the systems we want to consider
whose behavior in each initial state s is a set of patterns and we have associated with each pattern
its value, a bit-string, in a given context.

We now turn our attention to the observations we can make about a pattern. We define
two observations. The concrete observation of a pattern pat in a context θ is defined as follows:
obsc(pat, θ) = concr(pat, θ), that is, obsc corresponds to the observations that can be made in the
cryptographic setting. The abstract observation obsa applied to a pattern outputs the skeleton of
the pattern, it replaces every sub-term of the form {pat;N}pk with ♦Npk (i.e. it simply replaces it
by a black box) when pk−1 is not deducible. Formally, patterns are transformed into obfuscated
patterns which are given by the following grammar:

opat ::= bs|N |〈opat, opat〉|{opat;N}k|♦Nk |k

And observation obsa of a pattern pat is recursively defined by the following rules.

obsa(bs) = bs obsa(〈p1, p2〉) = 〈obsa(p1), obsa(p2)〉
obsa(N) = N obsa({p;N}k) = {obsa(p);N}k if k−1 ∈ dec(pat) ∨N ∈ dec(pat)
obsa(k) = k obsa({p;N}k) = ♦Nk else

As encryption cycles may lead to some vulnerabilities, we restrict ourselves to well-formed
patterns. For this purpose, we define an ordering on pairs consisting of a key and a nonce.
Let pat be a pattern and let E< be the set of pairs (pk,N) such that there is a pattern of the
form {pat′;N}pk in dec(pat) with pk and N not in dec(pat). Then, for (pk,N), (pk′, N ′) ∈ E<,
(pk,N) < (pk′, N ′) iff there exist two patterns {pat1;N}pk and {pat2;N ′}pk′ in dec(pat) verifying
one of the following conditions:

1. N , pk or pk−1 is a sub-term of pat2;N ′;

2. N = N ′ and {pat1;N}pk 6= {pat2;N}pk′ .

A pattern pat is well-formed, if the projection of < on keys is acyclic. Finally, we only consider
well-formed specifications, i.e. specifications that output well-formed patterns.

The conditions above imply that if pat is well-formed, then for (pk,N) ∈ E<, there is only
one encoding using each N (and a non-deducible key) in dec(pat). Hence when obsa transforms
an encoding into ♦Nk , this always denotes the exact same encoding (in particular, there is no
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randomness-reuse as described in [BBS03]). Thus the N label can be seen as a constraint over
encodings (specifying possible bit-to-bit equalities). This is why, equality between two opat is
defined modulo renaming of the nonces.

To illustrate this, let us consider two patterns pat0 = 〈{m;N}k, {m;N}k〉 and pat1 =
〈{m;N ′′}k, {m;N ′}k〉. Then obsa(pat0) = 〈♦Nk ,♦Nk 〉 and obsa(pat1) = 〈♦N ′

k ,♦N ′′

k 〉. As obsa(pat1)
and obsa(pat2) are different, pat0 and pat1 are distinguishable. If we consider pat0 = {m;N}k
and pat1 = {m;N ′}k, then obsa(pat0) = ♦Nk and obsa(pat1) = ♦N ′

k . In this case, obsa(pat1) and
obsa(pat2) are equal (modulo renaming), and hence, pat0 and pat1 are indistinguishable. And
in fact, if the encryption scheme is IND-CPA, pat0 and pat1 are indistinguishable even in the
computational setting.

Main result The main result of this chapter is that for each adversary A (observing both obsc
and obsa, there exist two adversaries Ao (observing obsa) and B (against a variant of IND-CPA)
such that

|Advobsc×obsaA | ≤ |AdvobsaAo |+ 2|Advn−RPAT−CPAB |

Where n is the number of keys, n-RPAT-CPA is a security criterion verified by any IND-CPA
algorithm, observable obsc × obsa gives access to both obsc and obsa. This means that if the
encryption scheme used is IND-CPA, strict opacity in the symbolic world implies cryptographic
opacity in the computational world.

In order to prove our main result, we proceed in two steps. We first define n-RPAT-CPA
and relate it to IND-CPA. Then, we prove that the advantage of any adversary who accesses the
observation functions obsa and obsc is bounded by a linear combination of the advantage of an
adversary that has access to obsa and the advantage of an adversary that has access to obsc. In
both steps, we apply Theorem 5.1. Although the criterion we introduce is implied by IND-CPA,
it is technically more appealing to use it to prove the main result. Besides this, our new criterion
is of interest on its own as it clarifies and discloses some subtleties related to the treatment of
random coins.

The RPAT Extension to IND-CPA

In IND-CPA, the experiment consists of generating a random bit b and a random public key
pk. The adversary tries to guess the value of b. For this purpose, it accesses a left-right oracle
submitting two bit-strings bs0 and bs1 and receives the encryption of bsb using pk. The adversary
also has access to the public key. An encryption scheme AE is said secure against IND-CPA if
any PRTM has a negligible advantage in trying to find b (the advantage is twice the probability
to answer correctly minus one). The criterion we introduce below allows the adversary to ask
for encryption of patterns where challenged keys may be included and insisting on using the
same random coins in different encryptions. Moreover, patterns may include encryption with the
adversary keys. As we show later these extensions do not give more power to an adversary, if he
only makes queries with well-formed patterns.

Let us now introduce n-RPAT-CPA. To do so, let n be a non-negative integer. We first define
R-patterns:

rpat ::= bs|N |〈rpat, rpat〉|{rpat;N}k|{rpat;N}bs|{rpat; bs}k|{rpat; bs}bs′ |k

The only difference with respect to patterns introduced in section 9.3.3 is the encryption with a
non-challenge key or a non-challenge nonce. The evaluation function v is extended to R-patterns.
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The experiment defining the criterion n-RPAT-CPA is as follows:

pat0, pat1, σ ← A1;
b← {0, 1};
(bsi, bs′i)← KG(η); for i = 1, · · · , n
bs′′i ← {0, 1}η; for i = 1, · · · , l
θ ← [b 7→ b, (pk1, sk1) 7→ (bs1, bs′1), · · · , (pkn, skn) 7→ (bsn, bs′n),

N1 7→ bs′′1 , · · · , Nl 7→ bs′′l ];
y ← v(patb, θ);
d← A2(y, σ)
V (d, θ)← b = d

The adversary is split up in two parts A1 and A2, A1 outputs two patterns pat0 and pat1. Pattern
patb is computed (l is the number of nonces used by the pattern and n is the maximal number of
keys that a pattern can use), it is given to A2 which has to answer the value of b. It is also possible
to consider a single adversary A that access a left-right oracle OLR, giving it the two patterns. In
this case, oracle OLR only answers its first call.

In the experiment of n-RPAT-CPA, it is required that 〈pat0, pat1〉 is well-formed and that
obsa(pat0) and obsa(pat1) are equal.

We show that algorithms secure w.r.t. IND-CPA are secure w.r.t. n-RPAT-CPA and as there
are algorithms strongly believed to verify IND-CPA, these algorithms also verify n-RPAT-CPA.

Proposition 9.15 If an asymmetric encryption scheme is secure against IND-CPA, then it is
secure against n-RPAT-CPA for any number of keys n.

Proof: Let AE be an encryption scheme. We proceed in three steps.
Let n-RPATc-CPA be the same criterion as n-RPAT-CPA except that adversaries can only

output clean patterns, i.e. 〈pat0, pat1〉 such that dec(pat0, pat1) does not contain any nonce or
any private key. Our first step consists in proving that IND-CPA implies 1-RPATc-CPA.

Lemma 9.1 If AE is secure w.r.t. IND-CPA then it is secure w.r.t. 1-RPATc-CPA.

Proof: Let us consider an adversary A = (A1,A2) against 1-RPATc-CPA. We construct an
adversary B against IND-CPA whose advantage is the same as the advantage of A.

The only challenge key pair is (pk1, sk1). As there are no cycles among keys, there does not
exist any pair of nonces N,N ′ such that (pk1, N) < (pk1, N

′). Hence relation < is empty. For any
nonce N such that (pk1, N) ∈ E<, N appears in exactly one encoding (but this encoding can be
used several times as in 〈{m;N}pk1 , {m;N}pk1〉) and in this case it appears as a random coin.

The adversary B uses A1 and A2 as sub-machines. However, as A1 outputs patterns while B
has to output messages, B has to simulate the evaluation function v using the IND-CPA left-right
oracle. This is done using the function vsim in the description of B :

pat0, pat1, σ ← A1;
y ← vsim(pat0, pat1);
d← A2(y, σ);
return d

We now have to describe the function vsim. First notice that nonces N that do not appear in E<
appear encrypted in the patterns. Therefore vsim generates some random values for these nonces
and creates the corresponding environment θsim. The context θsim is extended with public key k.
Next, as pat0 and pat1 have the same obsa (modulo renaming), the following recursive function
vrecθsim is applied to pat0, pat1:

vrecθsim(bs, bs) = bs

vrecθsim(m1.m2,m
′
1.m

′
2) = vrecθsim(m1,m

′
1).vrecθsim(m2,m

′
2)

vrecθsim({m;N}pk1 , {m′;N}pk1) = OLR
(
v(m, θsim), v(m′, θsim)

)
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Note that for the last line, if vrecθsim is called twice on the exact same patterns, then the same
value has to be returned (so it is necessary to store the value although this is not done here to
preserve simplicity). Finally, vsim(pat0, pat1) returns vrecθsim(pat0, pat1).

The experiments involving B and A are the same and as PrRand is equal to 1/2 for both
criteria, the advantages of B and A are equal.

The second step is to show that 1-RPATc-CPA implies n-RPATc-CPA for any n.

Lemma 9.2 If AE is secure w.r.t. 1-RPATc-CPA then it is secure w.r.t. n-RPATc-CPA.

Proof: Let us consider an adversary A = (A1,A2) against n-RPATc-CPA.
Using the reduction theorem 5.1, we split up the advantage between an advantage against (n−

1)-RPATc-CPA and an advantage against 1-RPATc-CPA. We assume that adversary A accesses
the left-right oracle F exactly once. Let (pk1, sk1) be a maximal key for < (i.e. there exists a
nonce N such that (pk1, N) is maximal). The partition of θ is defined as follows: θ1 contains key
pair (pk1, sk1), any nonce N such that (pk1, N) ∈ E<. On the other hand, θ2 contains the other
informations from θ including the challenge bit. Oracle F2 generates the encodings related to keys
in θ2 and F1 those related to (pk1, sk1).

As (pk1, sk1) is maximal, there are no other key (pkj , skj) such that for a nonce N in θ1 and
any nonce N ′, (pk1, N) < (pkj , N ′). This is why nonce N is only used as the random coins of an
encryption using pk1.

F1 can be separated into two layers G and H defined by:

H(〈pat0, pat1〉, θ2, θ′2) =
〈
v(patb2 , θ2), v(patb′2 , θ

′
2)

〉
G(〈pat0, pat1〉, b, θ1) = v(patb, θ1)

Where b2 and b′2 are the challenge bits contained respectively in θ2 and θ′2.
Let pat0 and pat1 be two R-patterns such that obsa(pat0) = obsa(pat1). Then both patterns

are the concatenation of encodings and similar bit-strings. The call to F has to be simulated using
F1 and F2. For this purpose, the valuation of their encodings is performed in a similar way as in
vrec except that F1 and F2 should only be called once. To achieve this, requests to F1 and F2

are stored in a single pattern as described for F1 by function vrec2 which outputs a list of pairs
of patterns:

vrec2(bs, bs) = [ ]
vrec2(m1.m2,m

′
1.m

′
2) = vrec2(m1,m

′
1).vrec2(m2,m

′
2)

vrec2({m;N}k, {m′;N}k) = 〈{m;N}k, {m′;N}k〉

Then this list of pairs (〈p1, p
′
1〉; ...; 〈pn, p′n〉) is transformed into the pair of lists 〈p1; ...; pn, p′1; ...; p

′
n〉

which is the argument given to F1. Another function should perform the same operation for keys
different from k. After submitting the results to oracle F1 and F2, it it easy to rebuild the output
of F .

Note that patterns submitted to F1 and F2 are pairs of encodings. F2 receives two well-formed
patterns that have the same obsa and this is the same thing for G (both receive a concatenation
of some ♦N ).

As F2 only depends on θ2, our partition theorem applies, criterion (θ2;F2;V2) is (n−1)-RPAT-
CPA and (θ1, b;G;Vb) is 1-RPAT-CPA. The partition theorem applies and gives that there exist
two PRTMs Ao and B such that

|Advn−RPATA (η)| ≤ 2|Adv1−RPAT
B (η)|+ |Adv(n−1)−RPAT

Ao (η)|

A simple induction proves that as AE is secure against 1-RPATc-CPA, it is secure against n-
RPATc-CPA for any integer n.

Finally, we show that n-RPATc-CPA implies n-RPAT-CPA.

Lemma 9.3 If AE is secure w.r.t. n-RPATc-CPA then it is secure w.r.t. n-RPAT-CPA.
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Proof: Let us consider an adversary A = (A1,A2) against n-RPAT-CPA. As in step 1, an
adversary B = (B1,B2) is built such that B1 returns clean patterns. For this purpose, B2 is similar
to A2. B1 executes A1 and computes dec(pat0, pat1). Then it generates some keys and nonces and
uses them for elements of dec on the answer of pat0 and pat1. The patterns remain well-formed
and still have the same obsa. B and A have the same advantage but B is an adversary against
n-RPATc-CPA. As AE is secure against n-RPATc-CPA, it is also secure against n-RPAT-CPA.

Proposition 9.15 is a simple consequence of the above three lemmas.

Composition Result

Our main result states that given a specification, the advantage of an adversary against the
concrete system is lower than the advantage of the abstract system and the advantage of another
adversary against n-RPAT-CPA.

Theorem 9.1 For each adversary A, there exist two adversaries Ao and B such that

|Advobsc×obsaA | ≤ |AdvobsaAo |+ 2|Advn−RPAT−CPAB |

Proof: This theorem is an application of the partition theorem 5.1. Let ∆s be a specification.
Let n be the maximal number of keys used by ∆s. Then the experiment related to obsc × obsa
can be reformulated as the following experiment:

• Θ is split up on two parts: Θ1 generates the n pairs of keys (pki, ski) and l nonces ni; Θ2

generates the initial state s in S and the pattern p = ∆s(s).

• We have two oracles: F2 gives access to obsa(p), F1 gives access to v(p, θ1) which is obsc(p).

• V2 verifies that the output b made by the adversary is equivalent to s ∈ φ.

F1 can be be cut in two layers. G corresponds to the left-right encryption algorithm for n-RPAT-
CPA, H(x, θ2, θ′2) takes any argument as input x and outputs the pair 〈p′, p〉 where p and p′ are
the patterns respectively contained in θ2 and θ′2.

It is now possible to apply the reduction theorem 5.1 to obtain that for each adversary A,
there exist two adversaries Ao and B such that

|AdvγA| ≤ |Advγ2Ao |+ 2|Advγ1B |

Moreover, γ is equivalent to the criterion related to obsc× obsa, γ2 is equivalent to the one related
to obsa. Finally, γ1 = (b, θ1;G;λx.x = b), G is only the left-right oracle, hence this criterion is the
n-RPAT-CPA criterion except that there is no oracle to view the public keys. As this criterion is
weaker than n-RPAT-CPA, it is possible to conclude that with a different machine B (but still of
comparable complexity),

|Advobsc×obsaA | ≤ |AdvobsaAo |+ 2|Advn−RPAT−CPAB |

Using proposition 9.15, it is clear that if an encryption scheme is secure against IND-CPA,
then it is secure against n-RPAT-CPA for any integer n. Therefor, we have

Corollary 9.1 If the encryption scheme AE used in v is IND-CPA and obsa brings negligible
advantage to any adversary then obsc brings negligible advantage to any adversary.

Application: the Classical Abadi-Rogaway Result Using this result, it is possible to prove
a slightly extended version of the seminal result of Abadi and Rogaway [AR00]. This result states
that provided the used encryption scheme is IND-CPA indistinguishability in the formal (Dolev-
Yao) model implies indistinguishability in the computational model. In fact, obfuscated patterns
are close to patterns as introduced in [AR00]. The main difference is that our patterns explicitly
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represent random coins. However, it is still possible to get exactly Abadi and Rogaway’s result by
assuming fresh distinct nonces for every encryption. If we consider messages with no encryption
cycles, then the corresponding patterns (using fresh nonces) are well-formed. Moreover as nonces
used for encryption are fresh, each ♦Nk has a different label, thus to test equality these labels are
not considered. The Abadi-Rogaway theorem can be stated as an opacity problem. Let m0 and
m1 be two well-formed patterns. There are two initial states in S: 0 and 1. Specification ∆S(s)
outputs ms. Then m0 and m1 are indistinguishable if for any adversary A, AdvobscA is negligible.

Proposition 9.16 Let m0 and m1 be two well-formed patterns such that obsa(m0) = obsa(m1).
If the encryption scheme AE used in v is IND-CPA then m0 and m1 are indistinguishable.

This result is immediate if we apply the above theorem: as obsa returns the same result for the
two patterns, |AdvobsaAo | is equal to zero. Hence as |Advn−RPAT−CPAB | is negligible, the advantage
of A is also negligible and we get the desired result.

9.3.4 An Example, the Chaum Voting Scheme

To illustrate our results, we consider a slightly modified version of the electronic voting scheme
proposed by David Chaum [Cha04] and improved by David Chaum, Peter Ryan and Steve Schnei-
der [CRS04]. The main advantage of this scheme is that it is verifiable using an audit procedure
which preserves opacity of the votes [GKK03], i.e. even after the audit procedure it is not possible
to answer correctly to question: what did voter V vote? However, this paper still makes the
perfect cryptography hypothesis, encryptions are considered as black-box and are not taken into
account. We give here a proof of security for Chaum’s voting scheme in a computational setting.
For this purpose, we assume that the encryption scheme is IND-CPA and prove that then, security
results still hold (but we may have to add some negligible terms representing brute force attacks
against the encryption scheme as we only prove cryptographic opacity).

9.3.5 Description of the Chaum Voting Scheme

Let us briefly recall how the Chaum’s voting scheme works. We omit some important pieces
(mostly the visual aspect) that are not relevant in this context. The interested reader may consider
reading [Cha04] or [CRS04] for details.

A vote session uses n trustees to guarantee the security of the procedure. Each trustee Ci has
a public key pki and an associated secret key ski. The vote procedure works as follows: in a first
step, each voter x chooses a vote value vx in a finite set V of possible votes. Using this value vx,
the voting machine creates an onion by encrypting vx with the public key of all the trustees. The
resulting ballot b1,x is therefore:

b1,x =
{
...{vx;Nn}pkn ; ...;N1

}
pk1

More generally ballot bi is defined by:

bi,x = {bi+1,x;Ni}pki for i ∈ [1, n]
bn+1,x = vx

Of course, the different nonces Ni are fresh and are not used for anything else. The voting machine
does not store anything but b1,x, all the nonces values and vote v are forgotten immediately.

Then the voting machine sends all the different ballots b1,x to trustee C1. Trustee C1 publishes
the values of the different ballots b1,x. Then he decodes ballot b1,x using its secret key sk1.
Therefore, trustee C1 obtains ballot b2,x. However in order to ensure anonymity, b2,x cannot be
published directly. Instead C1 performs an anonymizing mix : C1 performs a random permutation
of the different ballots before publishing its output. The input of C1 was composed of v1

x = b1,x
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Figure 9.4: Audit for the first four Trustees

for all the possible voters x in X. Then the output of C1 is v2
x = b2,xσ where σ is a random

permutation over X.
Each trustee Ci+1 takes as input the output of the previous trustee Ci. He decodes his layer

then performs an anonymizing mix of all the votes. The resulting output list is published so that
it could be used by the next trustee. All the intermediate lists are made public and the last list
allows anyone to compute the result of the vote.

After the decoding phase, an audit process allows one to verify that trustees behave correctly
with great probability. Hence each trustee Ci has to reveal the permutation σ it used for half the
ballots. Thus he has to show for these ballots the link between the input ballot bi,x and the output
bi+1,x, the trustee also has to output nonce N i. Therefore it is possible for anyone to check that
the link is valid (it is supposed that the encryption algorithm allows the trustee to get this nonce).
Verified ballots are not chosen randomly but as described in figure 9.4. The first set of verified
ballots (for step 1) is chosen randomly. For step 2, verified ballots correspond to unconnected
ballots w.r.t. step 1. For step 3, verified ballots are half unconnected ballots and half connected
ones, the halves are chosen randomly. Finally, for step 4, verified ballots are unconnected ballots
w.r.t. step 3. In the figure, vij is the ith ballot in the input of the jth trustee and σj is the
permutation chosen by this trustee. The set Ij consists of integers k such that the transition that
reaches vjk is revealed.

Verification of the system The property we are interested in is opacity of the vote. However,
it should be possible to generalize our results to more complex properties like the bound over
variation distance given in [GKK03].

To simplify, let us suppose that there are two possible values for the vote: y and n. Then
the set S of initial states contains all the vote distributions that give a fixed final result, i.e. for
any element of S the number of voters that choose y is fixed, all the other variables are chosen at
random (permutations, audit sets).

We study the opacity of property ψ = (v1
1 = y): are we able to deduce that the vote chosen

by voter 1 is y? We want to prove that the audit information cannot bring any advantage to an
attacker. This requires that for any observation o, Pr[ψ|o] = Pr[o]. Then, as PrRand is given by
the vote result, it is clear that it is impossible to guess the value of v1 with better efficiency than
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when answering the most probable vote with respect to the result. The specification of the system
is pretty straightforward: ∆s outputs the revealed permutations, the ballots lists and the nonces
used to check the link for any k ∈ Ij . The output pattern is well-formed (there are no cycles for
<, the form of the ballots gives pkn < pkn−1 < ... < pk1).

After applying obsa, the abstract system gives information on the permutations and the final
ballot line, indeed there are two cases for remaining encrypted ballots: they can be abstracted to
♦Nk or they can be linked by a permutation to a vote in the final (unencrypted) line and so these
ballots are useless to the description because it would be possible from the rest of the description
to rebuild them using the final vote and the revealed nonce. Let o be an observation in the formal
world. Let py be the percentage of voter that choose y. Then a quick computation gives us that
Pr[v1

1 = y|o] = py. Let us detail this: there are two cases to consider. First case, the link starting
from v1

1 is revealed.

Pr[v1
1 = y|o] = Pr[v2

1σ1
= y|o]

=
2
n

∑
i/∈I3

Pr[v3
i = y|o]

=
1
n

n∑
i=1

Pr[v4
i = y|o]

= py

In the second case, a similar computation can be done.

Pr[v1
1 = y|o] =

2
n

∑
i/∈I2

Pr[v2
i = y|o]

=
2
n

∑
i∈I3

Pr[v3
i = y|o

=
1
n

n∑
i=1

Pr[v4
i = y|o]

= py

This proves opacity of ψ in the symbolic world.
Security in the computational world is easy to obtain by applying our composition theorem:

let A be a PRTM, then there exist Ao and B two PRTM such that:

|Advobsc×obsaA | ≤ |AdvobsaAo |+ 2|Advn−RPAT−CPAB |

The advantage related to obsa is zero. Moreover, if we consider that the encryption scheme used
is IND-CPA, then Advn−RPAT−CPAB is negligible. Thus the advantage of A is negligible and we
can conclude that the observable obsc is safe for the cryptographic opacity of ψ.
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Chapter 10

Conclusions
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10.1 Achievements

The first achievement of this thesis is a formalization of security criteria. Using this formalism, we
were able to represent classical security requirements such as semantic security or unforgeability.
This formalism also allowed us to introduce various extensions of these classical requirements.
The main interest of these variants is key dependability: using patterns, an adversary can ask for
encryption of some secret information as long as he does not introduce any cycles. Patterns can be
seen as a particular case of key-dependent messages [BRS01]. Even if patterns are less general, they
are perfectly suited when attempting to link symbolic and computational cryptography. We also
introduce criteria representing joint security of multiple cryptographic primitives. These criteria
are useful when considering protocols that involve both asymmetric and symmetric encryption
schemes for example.

Moreover, we proved that our new criteria are equivalent to classical ones. For this purpose, we
formulated a criterion partition theorem. This theorem can be used to show safety for a criteria
when assuming safety for some sub-criteria. For example, if an asymmetric encryption scheme and
a symmetric encryption scheme are both secure (for semantic security and unforgeability), their
combination is also secure. The main interest of this theorem is that it can be used without having
to describe new adversaries. In fact, the necessary adversaries are embedded in the theorem’s
proof thus using this result is very simple. Using the theorem, we were able to prove that if all
the cryptographic primitives are secure on their own, the cryptographic library combining these
primitives is secure for a joint criterion.

The second achievement directly concerns the link between symbolic and computational views
of cryptographic protocols. The main result is that if the cryptographic library is secure for our
joint criterion, if the protocol is secure in the symbolic setting, then the implementation of this
protocol (using the secure cryptographic library) is also secure in the computational setting. The
symbolic view of the protocol is given by the classical Dolev-Yao model. Hence various properties
can be checked automatically on the symbolic side, even when considering an unbounded number
of sessions. Although our approach does not directly apply to complex properties, we were able to
prove the soundness result for trace properties (e.g. authentication), weak secrecy of any message,
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strong secrecy of nonces (SecNonce) and keys (SecKey). The SecNonce property implies that a
nonce has to be indistinguishable from a random nonce after running the protocol. As this kind of
requirement is false in general when considering keys, we introduced the SecKey property which
states that the key still has to be secure after executing the protocol.

Finally, our third achievement consists of three possible extensions of the previous results:
modular exponentiation, polynomial challenges and opacity.

The first extension is modular exponentiation. In this chapter, we studied a classical cryp-
tographic primitive, modular exponentiation as used for example in the Diffie-Hellman protocol.
The classical security requirements for this primitive are the computational and decisional Diffie-
Hellman problems. We were able to prove that if the decisional Diffie-Hellman problem is hard
then a generalization called the dynamic decisional Diffie-Hellman is also hard. We also gave an
extended version of the Dolev-Yao model in order to tackle the specificities of exponentiation. Fi-
nally, using the dynamic Diffie-Hellman assumption, we were able to relate this modified symbolic
model and the classical computational model in the passive setting. This result can be extended
to the active setting by using Katz and Yung’s protocol compiler [KY03].

In the second extension, our objective was to consider an unbounded number of sessions. For
this purpose, we extended the criterion formalism in order to handle criteria where a polynomial
number of challenges are generated. We also gave an adapted version of the criterion partition
theorem. The main complexity when considering protocols involving a polynomial number of keys
is adaptive corruption: it is impossible to guess with non-negligible probability which key is going
to be corrupted by the adversary. Using the criterion partition theorem, we were able to prove
that for asymmetric encryption, there are no problems of adaptive corruption when using semantic
security. The adaptive corruption problem is closely linked to the classical selective decommitment
problem. An interesting point is that the proof technique used for polynomial criteria can be used
to prove that semantic security implies selective decommitment (this was an open question since
1986).

Finally, the third extension is a more complex security properties called opacity. The idea of
opacity is to represent indistinguishability in the symbolic model. We defined several flavors of
opacity and proved various decidability and undecidability results. Moreover, in order to consider
the Chaum voting scheme, we introduced encryption randomness in the symbolic setting and a
specific formalism where output of the message are patterns which can either be instantiated in
the abstract symbolic model or in the computational model. We were able to prove soundness
of this symbolic model in the passive case: outputs from the computational model do not bring
significant information compared to output from the abstract symbolic model. This has been
applied to give the first computational security proof for the Chaum voting scheme.

10.2 Future Work

Our results can be extended in several directions. First let us discuss the possible work directions
when proving computational soundness of the Dolev-Yao model.

First it would be of interest to investigate whether the soundness result can be proved un-
der weaker assumptions on the cryptographic primitives. Almost any work linking the symbolic
and computational models for protocols in the active case uses semantic security against chosen-
cipher-text attacks for encryption schemes. It is clear that the result is false when considering
chosen-plain-text attacks. However, we can notice that some form of malleability is useless to the
adversary, for example if the adversary is able to transform a cipher-text into another cipher-text
but he does not have enough information on the new encoded message, then it might be impos-
sible for the adversary to perform his attack. Hence it might be possible to find an intermediate
security definition which is necessary and sufficient in order to prove computational soundness of
the symbolic model.

Moreover, it would be significant to extend the soundness result to other cryptographic prim-
itives. We achieved this for modular exponentiation and block chaining encryption in this docu-
ment. However there are several other different primitives which are commonly used in real-life
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protocols. For example, adding the XOR operator for protocols in the dynamic case is quite chal-
lenging, Baudet et al. considered the passive case in [BCK05], Backes and Pfitzmann proved an
impossibility result in [BP05a] but this result only holds in their simulatability-based framework.
Other primitives of interest are for example Message Authentication Codes (MAC), blind signa-
ture or encryption schemes with low-entropy passwords. In order to add a new primitive, one has
to enhance the Dolev-Yao deduction rules in the symbolic setting, then one has to properly define
computational security for this primitive. Finally, it might be possible to prove computational
soundness of the enhanced Dolev-Yao model by assuming that the computational requirement is
verified on the newly added primitive.

Another interesting line of work would be to give a machine checkable formalization of secu-
rity criteria. Then the objective would be to make “formal” proofs of the link between criteria.
Automatic proof of such links has been studied in [Bla05] but the proposed tool does not output
the necessary information to build a complete formal proof. Early work has been made on the
Generic Model and on the Random Oracle Model [BCT04] but these lacks the generality of our
formalism for security criteria.

Concerning the three extensions proposed in this document, each of them has several possible
follow-ups.

10.2.1 Modular Exponentiation

In the whole modular exponentiation chapter, we only considered exponentiations of “power-free”
polynomials. Hence message exp(x2) was forbidden. This is linked to an open question formulated
in [BDZ03]: if the decisional Diffie-Hellman problem is hard, then is it possible for an adversary to
distinguish (gx, gx.x) from (gx, gr) with non-negligible probability (where x and r are two randomly
sampled elements)? If the answer to this question is yes, then it might be possible to consider
non-power-free messages. If this is not the case, we could either modify the symbolic model or
add some computational hypotheses.

Moreover, we proved soundness of an extension of the Abadi-Rogaway logic for messages using
modular exponentiation. An interesting result is the converse: completeness of the Abadi-Rogaway
result. This completeness result has been proven by Micciancio and Warinschi in [MW04b] in
the case of symmetric encryption. For this purpose, Micciancio and Warinschi had to add an
hypothesis on the encryption scheme. We believe that with this hypothesis, a similar result holds
when adding modular exponentiation.

In [MP05], Micciancio and Panjwani proposed an adaptive model extending the Abadi-
Rogaway result. Their main soundness result (which we extended in chapter 8) still only considers
symmetric encryption hence it seems feasible to add modular exponentiation in this model. In
particular, this can be applied in order to represent group protocols using Diffie-Hellman expo-
nentiation.

Finally, we put the hypothesis that the order of the group is prime. This might be false in
some specific groups like the RSA group. When the order of the group is prime, gx and g2x are
indistinguishable, however if 2 divides the order of the group, this is not necessarily the case (this
can still be the case as the group order might be hard to compute). Thus, it can be interesting
to modify our symbolic model so as to consider non-prime order groups. In such groups, g2x is
indistinguishable from g2y but not from gy, hence we have to modify the 3DH criterion and the
renaming used to define the symbolic equivalence.

10.2.2 Polynomial Challenges

We proposed a new security criterion P -AC-PAT-IND-CPA. This criterion handles adaptive cor-
ruption as the adversary may ask for revelation of one of the P (η) challenge keys if this key has
not been used to hide some information. Using the polynomial version of the partition theorem,
we proved that this new criterion is implied by classical semantic security.

However, this new criterion has an obvious limitation: patterns can be used with the left-right
encryption oracles but cannot be used with the unary encryption oracles. Thus the adversary
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cannot ask for the encryption of some key k under k′ then for revelation of k′. Intuitively, if k
and k′ have never been used to hide important information, revealing k′ (and thus k) should not
be a problem. The proof technique used by our partition theorem must not work here: as k′ is
used to encrypt k, the theorem works by encrypting either k or another randomly sampled key
with k′. Hence in the proof of the theorem, when using patterns, we have to use the left-right
encryption oracle even if there is a single argument. It is not clear to us whether semantic security
is enough to ensure a generalized version of the adaptive corruption criterion where one could ask
for encryption of keys then for revelation of the key used to perform the encryption.

Another interesting point which seems more complicated than adaptive corruption is the case
of dynamic cycles. In this whole document, cycles are fixed by a static ordering among keys. Thus
it is impossible with these results to prove computational soundness of the symbolic model for
protocols with an unbounded number of session where key cycles are forbidden but the ordering
among keys can be adaptively chosen by the adversary. A way to tackle this problem is to
introduce a new criterion based on semantic security: a polynomial number of keys are generated,
the arguments given to left-right encryption oracles are still patterns. The acyclicity restriction
is not fixed at the beginning anymore, the only requirement is that the adversary when issuing a
query does not produce a key cycle with previous queries. Then an open question is whether this
new criterion is implied by classical semantic security.

10.2.3 Opacity

Opacity has mostly been studied in the passive setting. Hence it would be interesting to generalize
all the results in the case of an active adversary. In particular, the link between the symbolic and
computational models only holds in the passive setting, an extension to the active setting would
definitely be a plus.

A current restriction of opacity in the symbolic setting is that it only tells you that an adversary
cannot deduce for sure that a property is verified. The adversary cannot put probabilities on the
likelihood of φ and ¬φ. A potential further line of research is therefore to consider probabilistic
opacity even in symbolic setting. For this purpose, it is necessary to introduce probabilities on
the initial parameters or to consider probabilistic LTSs. Then the computational soundness result
would state that the difference of probability for opacity is only negligible if the cryptographic
primitives used in the implementation are secure.
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Laurent Mazaré Ph.D Thesis 225/229



Bibliography

[DvOW92] W. Diffie, P. C. van Oorschot, and Michael J. Wiener. Authentication and authenti-
cated key exchanges. Des. Codes Cryptography, 1992. 7

[DY83] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983. 1.2.3, 1.3.1, 1.3.2, 2, 2.4, 7.3.1

[FG94a] R. Focardi and R. Gorrieri. A classification of security properties for process algebra.
Journal of Computer Security, 1994. 1.3.1

[FG94b] R. Focardi and R. Gorrieri. A taxonomy of trace-based security properties for CCS.
In Proceedings of the Computer Security Foundations Workshop Workshop (CSFW
1994). IEEE, 1994. 1.3.1, 9.1.3

[FG01] R. Focardi and R. Gorrieri. Classification of security properties (part i: Information
flow). In FOSAD ’00: Revised versions of lectures given during the IFIP WG 1.7
International School on Foundations of Security Analysis and Design on Foundations
of Security Analysis and Design. Springer-Verlag, 2001. 9.1.3

[Fin93] A. Finkel. The minimal coverability graph for Petri nets. Lecture Notes in Computer
Science; Advances in Petri Nets 1993, 1993. 9.2.2

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under
the RSA assumption. In Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology (CRYPTO 2001). Springer-Verlag, 2001. 3.4.1

[GKK03] M. Gomukiewicz, M. Klonowski, and M. Kutyowski. Rapid mixing and security
of chaum’s visual electronic voting. In Springer-Verlag, editor, Proceedings of the
Eighth European Symposium on Research in Computer Security (ESORICS 2003),
2003. 9.3.4, 9.3.5

[GL00] J. Goubault-Larrecq. A method for automatic cryptographic protocol verification. In
Proceedings of the Fifteenth International Workshop on Formal Methods for Paral-
lel Programming: Theory and Applications (FMPPTA 2000). Springer-Verlag, 2000.
1.3.2, 2

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 1984. 1.3.2, 1.3.3, 3.4.1, 7.4

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.
3.4.2, 3.4.2

[GS05] P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key
exchange protocols. In Proceeding of the Third ACM Workshop on Formal Methods
in Security Engineering: From Specifications to Code (FMSE 2005), 2005. 7

[Her03] J. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model. In
Proceedings of the Sixteenth Computer Security Foundations Workshop (CSFW 2003).
IEEE Computer Society, 2003. 7

[Her04] J. Herzog. Computational soundness for standard assumptions of formal cryptography.
PhD thesis, Massachusetts Institute of Technology, 2004. 7

[IT94] ITU-T. Recommendation Z.120. message sequence charts. Technical Report Z-120, In-
ternational Telecommunication Union – Standardization Sector, Genève, 1994. 1.2.2
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Bibliography
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[JLM05a] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal
encryption in the presence of active adversaries. In Proceedings of the Fourteenth
European Symposium on Programming (ESOP 2005), pages 172–185. Springer-Verlag,
2005. 1.3.3, 4.2, 8.4.2

[JLM05b] R. Janvier, Y. Lakhnech, and L. Mazaré. (de)compositions of cryptographic schemes
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