
Call-by-Name and Call-by-Value
as Token-Passing Interaction Nets

François-Régis Sinot?

LIX, École Polytechnique, 91128 Palaiseau, France
frs@lix.polytechnique.fr

Abstract. Two common misbeliefs about encodings of the λ-calculus in
interaction nets (INs) are that they are good only for strategies that are
not very well understood (e.g. optimal reduction) and that they always
have to deal in a complex way with boxes. In brief, the theory of inter-
action nets is more or less disconnected from the standard theory: we
can do things in INs that we cannot do with terms, which is true [5, 10];
and we cannot do in INs things that can easily be done with terms. This
paper contributes to fighting this misbelief by showing that the standard
call-by-name and call-by-value strategies of the λ-calculus are encoded
in interaction nets in a very simple and extensible way, and in particular
that these encodings do not need any notion of box. This work can also
be seen as a first step towards a generic approach to derive graph-based
abstract machines.

1 Introduction

Interaction nets (INs) [9] are a graphical paradigm of distributed computation
that makes all the steps in a computation explicit and expressed uniformly in the
same formalism. Reduction in interaction nets is local and strongly confluent,
hence reductions can take place in any order, even in parallel (see [17]). These
properties make interaction nets well-suited as an intermediate formalism in the
implementation of programming languages.

Indeed, interaction nets have their origins in linear logic [6], but have been
most successfully used in the implementation of optimal reduction in the λ-
calculus, starting from Lamping [10], Gonthier, Abadi and Lévy [8], Asperti
et al. [1] to the recent work of van Oostrom et al. [19]. There have also been sev-
eral other efficient (non-optimal) implementations of the λ-calculus, for instance
Mackie [15, 16].

All of the above encodings of the λ-calculus have in common that a β-redex
is always translated to an active pair (i.e. a redex in interaction nets), hence,
paradoxically, while all reductions are equivalent, there is still the need for an
external interpreter to find the redexes and manage them, which is typically
implemented by maintaining a stack of redexes [17]. The fact that different β-
reductions may be interleaved also has the nasty consequence that the encodings
? Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay,

CNRS, École Polytechnique, INRIA, Université Paris-Sud.

2

need to simulate boxes in a more or less complex and costly way (see [10, 8, 13,
15, 16] for various types of such encodings). This reveals two common misbeliefs
about interaction nets for λ-calculus: they are good only to express strategies
that we cannot write in a term-like framework, and consequently that we do
not understand very well, and they always need a complex mechanism to man-
age boxes. This paper intends to fight these two misbeliefs. More precisely, we
will present encodings of the call-by-name and call-by-value strategies of the λ-
calculus in interaction nets. These encodings are based on the idea of a single
evaluation token, which is a standard interaction agent, walking through the
term as an evaluation function would do. They are thus very natural and easy
to understand.

An implementation of the λ-calculus on a sequential machine has whatsoever
to perform reductions in a certain order (i.e. to follow a strategy), hence it is
meaningful to give up the redex-to-redex translation in interaction nets. This has
actually been done in Lippi’s work [12, 11]. Lippi gives an implementation of left
reduction in interaction nets, and goes even further by describing the Krivine
machine in interaction nets. However, his work is based on notions of coding
and decoding which makes the overall presentation difficult to understand and
he does not make clear the notion of evaluation token hidden in his encoding.
In particular, he does not extend his presentation to call-by-value, which indeed
seems difficult with his presentation.

In contrast, our presentation is more simple and uniform: it is based on the
simple idea of a single evaluation token walking through the representation of
the term exactly as a functional evaluator would do, going down on recursive
calls and up when exiting the recursive calls. This approach is very simple and
is indeed a good alternative to working with terms, since it allows to abstract
away from syntactical details such as α-conversion. Moreover it is very easily
extended from call-by-name to call-by-value.

We thus provide new graph-based abstract machines for call-by-name and
call-by-value, with the peculiarity that the structure of the term itself is used
instead of a stack or a heap in traditional abstract machine. Moreover, our
approach is so simple that there is some serious hope it can be extended to more
interesting strategies. It is also nice from a theoretical point of view to (try to)
bridge the gap between optimal reduction and call-by-name/value by providing
a (more) uniform framework.

The idea of a token walking through a graph is superficially reminiscent of
the geometry of interaction (GoI) [7], which has been used to implement call-
by-name [14] and call-by-value [3] abstract machines. However, the details of the
approach are quite different. In particular, the GoI machines avoid as much as
possible to modify the graph, thus they have less freedom in the strategy. For
instance, call-by-value is obtained at the price of a greater complexity. While it
is relatively clear that the GoI machines can be formalised in our framework (i.e.
by making the token explicit and encoding the stack with interaction agents),
this does not seem to lead to a better understanding of the GoI machines (in
particular to a possibly more satisfactory call-by-value machine).

3

Our approach is also reminiscent of continuation-passing style (CPS) trans-
formation [18], in the sense that we simulate an evaluation strategy by forbidding
certain reductions until something triggers them (the token or the continuation).
However, a CPS transformation followed by a traditional encoding in interaction
nets would certainly not allow to get rid of boxes, although only one β-reduction
would be allowed at a time. In this respect, our framework is thus more satis-
factory; it also seems easier to extend to other strategies.

The rest of this paper is structured as follows. In Section 2, we recall some
background on interaction nets. In Section 3, we give the full details of our
approach in the case of call-by-name for closed terms. Sections 4 and 5 adapt
the presentation respectively to closed call-by-value and to open terms. Finally,
we conclude in Section 6.

2 Interaction Nets

A system of interaction nets [9] is specified from a set Σ of symbols, and a set
R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An
occurrence of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then
the agent has n + 1 ports: a distinguished one called the principal port depicted
by an arrow, and n auxiliary ports labelled x1, . . . , xn corresponding to the arity
of the symbol. Such an agent will be drawn in the following way:

����
α

?

@ �
· · ·x1 xn

Intuitively, a net N built on Σ is a graph (not necessarily connected) with agents
at the vertices. The edges of the graph connect agents together at the ports such
that there is only one edge at every port. The ports of an agent that are not
connected to another agent are called free. There are two special instances of a
net: a wiring (no agents) and the empty net; the extremes of wirings are also
called free ports.

An interaction rule ((α, β) =⇒ N) ∈ R replaces a pair of agents (α, β) ∈
Σ×Σ connected together on their principal ports (this is called an active pair or
redex), by a net N . Rules must satisfy two conditions: all free ports are preserved
during reduction (reduction is local, i.e. only the part of the net involved in the
rewrite is modified), and there is at most one rule for each pair of agents. The
following diagram shows the format of interaction rules (N can be any net built
from Σ).

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

We use the notation =⇒ for the one step reduction relation and =⇒∗ for
its transitive and reflexive closure. If a net does not contain any active pairs

4

then we say that it is in normal form. One-step reduction (=⇒) satisfies the
diamond property, and thus we obtain a very strong notion of confluence. Indeed,
all reduction sequences are permutation equivalent and standard results from
rewriting theory tell us that weak and strong normalisation coincide (if one
reduction sequence terminates, then all reduction sequences terminate).

3 Call-by-Name

In this section, we give an encoding of the call-by-name strategy of the λ-calculus
in interaction nets. We present the strategy with inductive rules, in a big-step
style, and the first step in our encoding is to derive a more fine-grained rewrite
system. In this section, we only consider closed terms (i.e. terms without free
variables). Open terms will be dealt with in Section 5.

3.1 Preliminaries

We assume basic knowledge of the λ-calculus; we refer the reader to [2] for more
details. To fix notations, the set Λ of λ-terms is defined by:

t, u ::= x | λx.t | t u

where x ranges over a set of variables. Terms are considered modulo α-conversion
i.e. renaming of bound variables. We denote by fv(t) the set of free variables of
a term t.

This set is equipped with the rewrite relation:

(β) (λx.t) u →β t{x := u}

where t{x := u} denotes t where all occurrences of x are replaced by u,
without name capture. We write →β for one-step reduction and →∗

β for its
reflexive transitive closure.

We call weak head normal forms (whnf) terms of the form λx.t or x t1 . . . tn.
Note that closed whnf are only terms of the form λx.t. We say that v is a weak
head normal form of t if v is a weak head normal form and t →∗

β v.

3.2 Big-Step Style

The call-by-name strategy for closed λ-terms is specified by the following evalu-
ation rules, as found in various textbooks:

λx.t ⇓ λx.t

t ⇓ λx.t′ t′{x := u} ⇓ v

t u ⇓ v

This is in fact the inductive definition of an evaluation function (also known
as big-step semantics), rather than a strategy: we take a λ-term t as input and
we inductively find v such that t ⇓ v, then v is the unique weak head normal

5

form of t (provided it exists) obtained by the call-by-name strategy, but the
reduction path is not visible at the top-level.

Too much is hidden in these rules for a direct encoding in interaction nets. In
the rule for application, we call the procedure recursively on the left term, and
then we have to return to this application somehow. In a functional program-
ming setting, this is done automatically, but this is not a free operation: when
a function is entered, the current environment is saved on the stack; when it
returns, this information is popped down from the stack. We will thus formalise
the call-by-name strategy in a small-step style, so as to be more explicit about
the control flow and to facilitate the encoding in interaction nets.

3.3 Small-Step Style

We want to replace the previous inductive rules by a first-order rewrite system
but we also want to be as explicit about the evaluation order as in the pre-
vious system. We thus enrich the syntax of terms with two unary symbols ⇓
(corresponding to evaluation) and ⇑ (corresponding to the evaluation function
returning) and define the following rewrite system:

⇓ λx.t → ⇑ λx.t
⇓ (t u) → (⇓ t) u
(⇑ λx.t) u → ⇓ t{x := u}

Although we do not want to get into any details, it is clear how the small-step
system is derived from the big-step one. In the particular case of call-by-name,
omitting the symbol ⇑ gives an equivalent system (this is exactly tail-recursion
optimisation), but we prefer to include it already; this point will be discussed
again in Section 4. Also note that, as far as we know, such a simple small-
step presentation of call-by-name has not been made before; usual small-step
presentations of call-by-name and call-by-value rely on inductive rules allowing
reductions in a certain class of contexts, hence do not make explicit the flow of
evaluation contrary to our presentation, which is crucial for the encoding into
interaction nets. In some sense, our presentation is intermediate between tradi-
tional small-step semantics (which separate as much as possible reduction and
strategy) and abstract machines (which may involve complex data structures).
We call this presentation the token-passing semantics of call-by-name.

A λ-term t is always in normal form with respect to this system, and so is
⇑ t. To evaluate t, we have to start reduction from ⇓ t.

First note that a reduction always involves a ⇓ or ⇑, hence, by the following
proposition, there is always at most one redex in a term obtained from reduction
of ⇓ t. Thus the control flow is really made explicit at the syntactic level.

Proposition 1. If ⇓ t →∗ u, then there exists exactly one occurrence of ⇓ or ⇑
in u.

Proof. By induction. The first two rules are easy. In the last rule, the right hand-
side may have zero or more than one occurrences of u, but u has no occurrence
of ⇓ or ⇑ by the induction hypothesis. ut

6

The two systems correspond to each other in the following sense:

Proposition 2. t ⇓ v ⇐⇒ ⇓ t →∗ ⇑ v

Proof. ⇒ By induction:
• λx.t ⇓ λx.t and indeed ⇓ λx.t → ⇑ λx.t
• if t u ⇓ v, then there exists t′ such that t ⇓ λx.t′ and t′{x := u} ⇓ v. By

induction, ⇓ t →∗ ⇑ λx.t′ and ⇓ t′{x := u} →∗ ⇑ v, hence:
⇓ (t u) → (⇓ t) u →∗ (⇑ λx.t′) u → ⇓ t′{x := u} →∗ ⇑ v

⇐ The first part of the proposition (already proved) allows to state the following
lemma: if t is a λ-term and t has a whnf, then there exists v such that
⇓ t →∗ ⇑ v and v is a whnf (consequence of classical theorems on call-by-
name). Then we can proceed by induction:
• ⇓ λx.t → ⇑ λx.t and indeed λx.t ⇓ λx.t
• ⇓ (t u) → (⇓ t) u. By the lemma, if t has a whnf, there exists λx.t′

(remember that all terms are closed), such that ⇓ t →∗ ⇑ λx.t′. Moreover,
t ⇓ λx.t′ by induction. Then (⇑ λx.t′) u → ⇓ t′{x := u} and a similar
argument (lemma and induction) allows to conclude. If t of t′{x := u}
does not have a whnf, the proposition is trivially true (we do not reach
a term of the form ⇑ v). ut

Hence the given rewrite system faithfully corresponds to the call-by-name
strategy. This step is crucial, as the interaction net encoding will closely follow
the small-step style system. Also remark that the method used here is very
general.

3.4 Encoding of Terms

The translation T (·) of λ-terms into interaction nets is very natural. We basically
represent terms by their syntax tree, where we group together several occurrences
of the same variable by agents c (corresponding to copy) and bind them to
their corresponding λ node (this is sometimes referred to as a backpointer). The
nodes for application and abstraction are agents λ and a with three ports; their
principal port is directed towards the root of the term. Note that in traditional
encodings, the application agent looks towards its left, so that interaction with
an abstraction is always possible. Here, on the contrary, terms are translated to
packages [12] and in particular there will be no spontaneous reduction, something
will have to trigger them: the evaluation token.

Variables. In this section, we consider only closed terms (open terms will be
dealt with in Section 5), hence variables are not translated as such. They will
simply be represented by edges between their binding λ and their grouped
occurrence in the body of the abstraction, as explained below.

Application. The translation T (t u) of an application t u is simply an agent
a of arity 2 pointing to the root, with T (t) and T (u) linked to its auxiliary
ports. If t and u share common free variables, then c agents (representing
copy) collect these together pairwise so that a single occurrence of each free
variable occurs amongst the free edges (only one such copy is represented on
the figure).

7

T (t) T (u)

����
a
6

· · · · · ·

Q
QQ

�
��

����
c

@@ ��

?

Abstraction. If λx.t is an abstraction, T (λx.t) is obtained by introducing an
agent λ, and simply linking its right auxiliary port to T (t) and its left one to
the unique wire corresponding to x in T (t). If x does not appear in t, then
the left port of the agent λ is linked to an agent ε.

6����
λ

T (t)

Q
Q

· · ·

or

6����
λ

T (t)

Q
Q

· · ·

����
ε

�
��

To sum up, we represent λ-terms in a very natural way. In particular, there
is no artifact to simulate boxes. Another point worth noticing is that, because
of the explicit link between a variable and its binding λ, α-conversion comes
from free, as it is often the case in graphical representations of the λ-calculus. So
far, we only introduced agents λ and a strictly corresponding to the λ-calculus,
as well as agents ε and c for the explicit resource managements necessary (and
desirable: we do not want to hide such important things) in interaction nets. Also
remark that the translation of a term has no active pair, hence is in normal form,
whatever the interaction rules we allow. Moreover, it has exactly one principal
port, at the root.

3.5 Evaluation by Interaction

We introduce two new unary agents ⇓ and ⇑. To evaluate a closed λ-term t with
call-by-name, we simply build the following net, that we will denote ⇓ T (t).

T (t)

6

����
⇓

?

8

⇑ T (t) will be a net built in the same way, but with a ⇑ agent instead, with
its principal port directed towards the root. In particular, ⇑ T (t) is always a net
in normal form.

The interaction rules will follow as closely as possible the rewrite system of
Section 3.3. The first one is easy; when the evaluation token reaches a λ, it may
begin to return:

����
λ

@�

6

����
⇓

? =⇒

����
λ

@�

6

����
⇑
6

The second one is still simple, but slightly more subtle:

����
a

@�

6

����
⇓

? =⇒ ����
@

@�
�

	

����
⇓

?

When the evaluation token reaches an application agent, we change the agent
a to an agent @ still representing application, but no longer looking at its root
but to the left, towards the propagated evaluation agent, waiting until it returns.

Finally, when the agent ⇑ returns from a successful evaluation to a @, then
we know for sure that there is a λ just behind the ⇑, so the agent ⇑ may safely
disappear, at least if λ and @ promise to create it again later. In a sense, it does
not disappear, it just hides in the @ agent.

����
@

@�
�

	
�����

⇑

=⇒ ����
@

@��	

From the previous rule, it is obvious that the agent ⇑ is in fact useless. How-
ever this is the key to the generality of the translation, because we could have
a different agent in the right hand-side. In particular, we will see that it is not
useless for call-by-value. It is also interesting to note how striking it is in our
framework that the agent ⇑ is useless, which corresponds to tail-recursion optimi-
sation. The framework we propose is so simple that clever optimisations become
obvious, hence this is indeed a good intermediate step between the inductive-
style definition of a strategy and its implementation as an abstract machine.

9

Now that the way is free between the @ and the λ, we may let them interact
as usual, except that we create a new ⇓ token. We thus link together the variable
port of the λ to the argument port of the @, which initiates the substitution.
In brief, we follow exactly the rewrite system, except that we need two steps
instead of one.

����
λ

����
@

�
�

�
	 @

@�

=⇒

����
⇓

?

The core of the interaction net machine for call-by-name thus needs only four
interaction rules, and no encoding of boxes.

3.6 Resource Management

The explicit resource management typical of interaction nets is done by the
agents ε, c and δ. The auxiliary agent δ is introduced to duplicate abstractions,
as explained below. The agent ε erases any agent and propagates according to
the following schema (where α represents any agent):

����
ε

����
α

?
6

� @· · ·

=⇒ ����
ε

?

· · · ����
ε

?

In general, the agent c duplicates any agent it meets. To duplicate an ab-
straction, we need an auxiliary agent δ that will also duplicate any agent, but
will stop the copy when it meets another δ agent. Note that an agent c will thus
never interact with another agent c. Here, α represents any agent except λ.

����
α

�· · ·@

����
c

@ �

6
? =⇒

����
α ����

α

����
c ����

c· · ·

? ?

6 6

�
�
�

@
@

@

����
λ

� @

����
c

@ �

6
? =⇒

����
λ ����

λ

����
δ ����

δ

? ?

6 6

�
�
�

@
@

@

The agent δ duplicates any agent, except itself. If it interacts with itself, it
just annihilates. Here, α represents any agent except δ.

10

����
α

�· · ·@

����
δ

@ �

6
? =⇒

����
α ����

α

����
δ ����

δ· · ·

? ?

6 6

�
�
�

@
@

@

����
δ

6

����
δ

?

@�

@ �

=⇒

Classical results on packages [12] allow to state the two following properties:

Proposition 3. – If t is a closed λ-term, then:

T (t)

6

����
ε

?
=⇒∗ n�

�

(where the right hand-side of the rule denotes the empty net).
– If t is a closed λ-term, then:

T (t)

6

����
c

@ �

?
=⇒∗

T (t)

6

T (t)

6

3.7 Properties

In a net obtained starting from ⇓ T (t), there may be several redexes involving
c’s, δ’s or ε’s, however, we have the following result.

Proposition 4. If ⇓ T (t) =⇒∗ N then in N , there is exactly one occurrence of
⇓, ⇑ or of a λ−@ active pair.

Proof. By induction, using the rules. ut

Proposition 5. t ⇓ v ⇐⇒ ⇓ T (t) =⇒∗ ⇑ T (v)

Proof. It is clear that the interaction rules closely follow the rewrite rules of
Section 3.3 (using Proposition 3 for non-linear substitutions), then Proposition 2
allows to conclude. ut

11

4 Call-by-Value

In this section, we show that we can very easily adapt the previous presentation
to closed call-by-value. We follow the same organisation as Section 3, showing
only the differences. In this section again, all terms are closed.

The call-by-value strategy for closed λ-terms is inductively defined by the
following set of evaluation rules:

λx.t ⇓ λx.t

t ⇓ λx.t′ u ⇓ v′ t′{x := v′} ⇓ v

t u ⇓ v

We may derive a small-step presentation of the strategy in a similar fashion
as in Section 3. Here is the token-passing semantics of call-by-value:

⇓ λx.t → ⇑ λx.t
⇓ (t u) → (⇓ t) u
(⇑ t) u → t (⇓ u)
(λx.t) (⇑ u) → ⇓ t{x := u}

Here the role of ⇑ is more complex than with call-by-name: when the function
part of an application is evaluated, the control is transferred to the argument.
Then, when the argument is evaluated, β-reduction may be performed.

We have a similar property of simulation (the proof is also similar).

Proposition 6. t ⇓ v ⇐⇒ ⇓ t →∗ ⇑ v

Some interaction rules have to change a bit, according to the small-step style
system. When the left term of an application returns after evaluation, we no
longer perform a β-reduction right after. Instead, we turn to evaluating the
argument:

����
@

@�
�

	
�����

⇑

=⇒ ����
@′

@
@

� R

����
⇓

?

We introduce a new application agent @′ whose job is to wait until the
argument of the application is evaluated. When it is, then again, we know for
sure that there is a λ waiting at the left, so we may transform the agent into @
to allow the β-reduction to take place:

����
@′

@
@

� R

����
⇑

I

=⇒ ����
@

@��	

12

The other rules stay the same. Again, we have (the proof is easily adapted):

Proposition 7. t ⇓ v ⇐⇒ ⇓ T (t) =⇒∗ ⇑ T (v)

To sum up, our presentation allow to adapt very easily from call-by-name
to call-by-value, contrary to previous related works. There is no reason to think
this approach cannot be adapted beyond to other strategies, or in a more general
framework than the λ-calculus.

This interaction system is very faithful to what a sequential evaluation func-
tion would probably do. In particular, the agent ⇑ is necessary, because we have
to manage explicitly the control flow in a sequential way.

Of course, interaction nets allow to evaluate the function and the argument of
an application in parallel. Keeping the control flow explicit, we have to synchro-
nise on the application node when both evaluations are completed. The system
is obtained from the same rules as above, except that we replace the interaction
rule ⇓−a by:

����
a

@�

6

����
⇓

? =⇒ ����
@′

@
@

�
�

R

����
⇓

?
����
⇓

?

Now in this system, it is again clear that the agent ⇑ is useless: there is no
true need to synchronise both evaluations, and a β-reduction may occur even if
evaluation of the argument is not yet completed.

But that is not our point. We prefer the version with sequential, explicit
control (i.e. with a unique evaluation token) because it is really closer to an
abstract machine: it is very easily implementable on a sequential machine, which
is what we often have in practice, and does not need an external mechanism to
manage a stack of active pairs.

5 Handling Open Terms

For completeness, we show how to deal with open terms. There is no difficulty,
and no new idea. The presentation is done in a modular way: we only say what
should be added or changed to the presentations of closed call-by-name and
call-by-value to deal with open terms.

Evaluation to weak head normal form of open terms using call-by-name or
call-by-value is done by adding to the corresponding system the following rules:

x ⇓ x

t ⇓ x

t u1 . . . un ⇓ x u1 . . . un

Or, in a small-steps fashion (keeping the other rules):

13

⇓ x → ⇑ x
(⇑ x) u → ⇑ (x u)
(⇑ (v w)) u → ⇑ (v w u)

On the interaction nets side, it is clear that free variables will have to interact
with the evaluation token, hence we cannot just represent them by a wire.

A term t with fv(t) = {x1, . . . , xn} will be translated as a net T (t) with the
root edge at the top, and n free edges marked by an agent v, corresponding to
the free variables:

T (t)

����
v
6 ����

v
6

· · ·
x1 xn

Variables. To sum up, if t is a variable x bound by a λ, then T (t) is just a wire
(left). If it is free in the term, then T (t) is an agent v (right).

����
v
6

The systems for call-by-name and call-by-value are obtained by adding the
two following rules, where we introduce a new agent ⇑o which is essentially the
same as ⇑ but which remembers that the term under it is of the form x t1 . . . tn
and not λx.t. We have to introduce such an agent only because of the restriction
to binary left hand-side in interaction nets (there is no deep reason behind).

����
v
6

����
⇓

? =⇒

����
v
6

����
⇑o

6

����
@

@�
�

	
�����

⇑o

=⇒

����
a

@�

6

����
⇑o

6

In call-by-value, we also have to eliminate a possible ⇑o appearing to the
right of an application. In this case, ⇑o is indeed redundant with ⇑, hence the
rule is the same:

����
@′

@
@

� R

����
⇑o

I

=⇒ ����
@

@��	

14

Finally, it may now happen that, in the course of the duplication of an
abstraction, a δ agent meets a v agent. Then it is safer to transform it back to
a c agent:

����
δ

�@

?

����
v
6

=⇒

����
c

�
�

@
@

?

����
v
6����

v
6

A similar result then holds (for open call-by-name and open call-by-value):

Proposition 8. t ⇓ v ⇐⇒ ⇓ T (t) =⇒∗ ⇑ T (v) or ⇑o T (v)

6 Conclusion

We have presented a simple and extensible approach to express call-by-name and
call-by-value in interaction nets. The approach is so simple that it is indeed a
good alternative to working with terms, with the advantages of seeing graphically
what is going on, of α-conversion for free and of explicit status and cost for the
operations of substitution and copying.

Moreover, our interaction nets lie in a particular subclass of token-passing in-
teraction nets that is not fully studied here, which seems very easy to implement
on a sequential machine, without the usual overheads of looking for a redex and
managing a stack of these. Full study of these aspects is left as future work.

We would also like to extend our approach to closed reduction [4] in order to
derive an interaction nets based abstract machine for this efficient strategy.

The question whether our approach can benefit to the optimal strategy is still
open. Boxes are certainly necessary, since β-reductions have to be interleaved,
but controlling more tightly the evaluation flow might still be useful.

References

1. A. Asperti, C. Giovannetti, and A. Naletto. The Bologna optimal higher-order
machine. Journal of Functional Programming, 6(6):763–810, Nov. 1996.

2. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland Publishing
Company, second, revised edition, 1984.

3. M. Fernández and I. Mackie. Call-by-value lambda-graph rewriting without rewrit-
ing. In Proceedings of the International Conference on Graph Transformations
(ICGT’02), volume 2505 of Lecture Notes in Computer Science, Barcelona, 2002.
Springer-Verlag.

4. M. Fernández, I. Mackie, and F.-R. Sinot. Closed reduction: Explicit substitutions
without alpha-conversion. Mathematical Structure in Computer Science. to appear.

15

5. J. Field. On laziness and optimality in lambda interpreters: Tools for specifica-
tion and analysis. In Conference Record of the 17th Annual ACM Symposium on
Principles of Programming Languages (POPL ’90), pages 1–15, San Francisco, CA,
USA, Jan. 1990. ACM Press.

6. J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.
7. J.-Y. Girard. Geometry of interaction I: Interpretation of system F. In C. Bonotto,

R. Ferro, S. Valentini, and A. Zanardo, editors, Logic Colloquium ’88, pages 221–
260. North-Holland, 1989.

8. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduc-
tion. In Proceedings of the 19th ACM Symposium on Principles of Programming
Languages (POPL’92), pages 15–26. ACM Press, Jan. 1992.

9. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Princi-
ples of Programming Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

10. J. Lamping. An algorithm for optimal lambda calculus reduction. In Proceedings of
the 17th ACM Symposium on Principles of Programming Languages (POPL’90),
pages 16–30. ACM Press, Jan. 1990.

11. S. Lippi. Encoding left reduction in the lambda-calculus with interaction nets.
Mathematical Structures in Computer Science, 12(6), December 2002.

12. S. Lippi. Théorie et pratique des réseaux d’interaction. PhD thesis, Université de
la Méditerranée, June 2002.

13. I. Mackie. The Geometry of Implementation. PhD thesis, Department of Comput-
ing, Imperial College of Science, Technology and Medicine, September 1994.

14. I. Mackie. The geometry of interaction machine. In Proceedings of the 22nd Sym-
posium on Principles of Programming Languages (POPL’95), pages 198–208, San
Francisco, CA, USA, 1995. ACM Press.

15. I. Mackie. YALE: Yet another lambda evaluator based on interaction nets.
In Proceedings of the 3rd International Conference on Functional Programming
(ICFP’98), pages 117–128. ACM Press, 1998.

16. I. Mackie. Efficient λ-evaluation with interaction nets. In V. van Oostrom, edi-
tor, Proceedings of the 15th International Conference on Rewriting Techniques and
Applications (RTA’04), volume 3091 of Lecture Notes in Computer Science, pages
155–169. Springer-Verlag, June 2004.

17. J. S. Pinto. Sequential and concurrent abstract machines for interaction nets. In
J. Tiuryn, editor, Proceedings of Foundations of Software Science and Computation
Structures (FOSSACS), volume 1784 of Lecture Notes in Computer Science, pages
267–282. Springer-Verlag, 2000.

18. G. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

19. V. van Oostrom, K.-J. van de Looij, and M. Zwitserlood. Lambdascope: another
optimal implementation of the lambda-calculus. In Workshop on Algebra and Logic
on Programming Systems (ALPS), Kyoto, April 2004.

