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Abstract

The tool Imitator implements the Inverse Method (IM ) for Timed
Automata (TAs). Given a TA A and a tuple π0 of reference valuations
for timings, IM synthesizes a constraint around π0 where A behaves in
the same discrete manner. This provides us with a quantitative measure
of robustness of the behavior of A around π0. The new version Imitator
2.5 integrates the new features of stopwatches (in addition to standard
clocks) and updates (in addition to standard clock resets), as well as pow-
erful algorithmic improvements for state space reduction. We illustrate on
several case studies of preemptive scheduling problems how such features
make the tool well-suited to analyze robustness.

1 Introduction

Imitator 2.5 (for Inverse Method for Inferring Time AbstracT behaviOR) is a
tool for parameter synthesis in the framework of real-time systems based on the
inverse method IM for Parametric Timed Automata (PTAs). Different from
CEGAR-based methods, this algorithm for parameter synthesis makes use of a
“good” parameter valuation π0 instead of a set of “bad” states [2]. Imitator
takes as input a network of PTAs with stopwatches and a reference valuation π0;
it synthesizes a constraint K on the parameters such that (1) π0 |= K and (2) for
all parameter valuation π satisfying K, the trace set (i.e., the discrete behavior)
of A under π is the same as for A under π0. This provides the system with a
criterion of robustness (see, e.g., [10]) around π0.

PTA

Reference
valuation π0

Imitator Constraint K

Figure 1: Functional view of Imitator

We show in this report how to exploit solutions of scheduling problems for
generating zones of robustness around these solutions. We represent the schedul-
ing problems under the form of networks of Timed Automata (TAs). As we
consider scheduling with preemption, TAs are enriched with stopwatches and
arbitrary updates [1]. Each schedule (interleaving of tasks) corresponds to a
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branch in the reachability tree of the TA. A typical solution (schedule) corre-
sponds to the shortest path of this tree. Roughly speaking, using the given
solution of a scheduling problem, we explain how to synthesize a robustness
region around this solution inside which the interleaving of the given solution
still corresponds to the shortest path. In order to do this, we use a parametric
version of the original TA and apply Imitator.

The plan of this paper is as follows. In section 2, we present on an example
the sketch of our methodology that we will apply on different classes of examples
taken from the literature. We apply our method to problems of

• cyclic tasks with various scheduling policies (Section 3)

• sporadic tasks with variable execution times (Section 4)

• cyclic tasks with fixed priorities and given task deadlines (Section 5)

• job-shop scheduling (Section 6)

In section 7, we explain how to use the Behavioral Cartography (BC) method
[3]. Experimental results are given in Section 8. Final remarks are given in
Section 9.

2 Sketch of the Method

We will now illustrate our method on a preemptive jobshop example given in
[1]. The jobshop scheduling problem is a generic resource allocation problem in
which common resources (“machines”) are required at various time points (and
for given duration) by different tasks. For instance, one needs to use a machine
m1 for d1 time units, machine m2 for d2 time units, and so on. The goal is to
find a way (“schedule”) to allocate the resources such that all tasks terminate as
early as possible (“minimal makespan”). Let us consider the jobshop problem
{J1, J2} for 2 jobs and 3 machines with: J1 = (m1, d1), (m2, d2), (m3, d3) and
J2 = (m2, d

′
2) with d1 = 3, d2 = 2, d3 = 4, d′2 = 5. There are many possible

schedules (two of them are depicted in Figure 2). In [1], this problem is modeled
as a product A of TAs with stopwatches, each TA modeling a job. Each schedule
corresponds to a branch in the reachability tree of A. The makespan value
corresponds to the duration of the shortest branch, here 9.

Let us explain how to analyze the robustness of the valuation π0 : {d2 =
2, d′2 = 5} with respect to the makespan value 9. We first consider a parametric
version of A where d2 and d′2 become parameters. In the same spirit as in [6], we
add an observer O, which is a TA synchronized with A, that fires a transition
labeled DEADLINE as soon as a schedule spends more than 9 time units. We
then use Imitator (instead of a CEGAR-like method as in [6]) with A ‖ O
as a model input and π0 as a valuation input. This yields the constraint K:
7 > d′2 ∧ 3 > d2 ∧ d′2 + d2 ≥ 7. See Figure 2 for a geometrical representation of
K.
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Figure 2: Geometrical representation of K around π0 : (2, 5).

By the IM principle, the set of traces (i.e., discrete runs) of A ‖ O is always
the same, for any point (d2, d

′
2) of K. This set of traces is depicted under the

form of a tree in Figure 3. Since the makespan for π0 is 9, we know that some

Figure 3: Graphics of the trace set output by Imitator on the jobshop example

branches of the tree do not contain any DEADLINE label (these branches end
at node s73 in Figure 3). This holds for each point (d2, d

′
2) of K. The makespan

of the system is thus always at most 9 in K. (In particular, we can increase d2
from 2 to 3, or increase d′2 from 5 to 7 while keeping the makespan less than or
equal to 9.)
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Figure 4: Schedules

3 Cyclic Tasks with Various Scheduling Policies

3.1 Description of the Problem

In this framework of case studies, we want to prove the schedulability of cyclic
tasks on a single machine, we consider the preemptive framework, where a
currently running task can be interrupted by another one when it becomes
activated and has a higher priority. Each task τi is defined by an offset Oi ∈ N
(the time before the first release), a period Ti ∈ N (the amount of time between
two releases), a deadline Di ∈ N (the maximum timed allowed to perform the
task) and a Worst Case Execution Time Ci ∈ N (the maximum of work required
to execute the task).

Added to these automata, we have an a priori scheduling policy either Fixed
Priority (FP) or Earliest Deadline First (EDF). The first policy gives to each
task τi a priority Pi and when two tasks are activated at the same time, the
computational time is given to the highest priority. The EDF policy gives the
computational time to the task that has its deadline coming the sooner.

In this context, given a scheduler, the system is said to be schedulable if
each task τi is completed before Di time units after the beginning of its period.
Actually because of the periodicity of the problem, we only have to ensure that
it is schedulable within lcmi∈I(Ti).

This problem is:
Given a list of tasks {τi}i∈I

τi = (Oi, Ti, Di, Ci),

is the system schedulable?
Formally, we have:

• Model M : A TA per task and a TA for the scheduler

• Input I: {Oi, Ti, Di, Ci}i∈I
• Output: Yes/No

3.2 Robustness Analysis

The problem is parameterized typically by letting deadlines Dis instantiated
and parameterizing some of the Cis, Ois and Tis. We have:

• Model M ′: a set of PTA deduced from M by parameterizing the values
of interest
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• Input: I and an identified set of parameters

• Output found by Imitator: a constraint K such that for every π |= K,
the π-instantiated model M ′[π] is schedulable.

4 Scheduling with Variable Execution Times [11]

4.1 Description of the Problem

The problem addressed here is how to determine what is the minimum time
such that every job in n independent job chains, denoted J1, J2, · · · , Jn can
complete in time when the jobs are scheduled on a processor according to a
priority-driven algorithm. Roughly speaking, we let Ji,j denote the jth job of
the chain Ji. Each job Jij has a fixed priority Φi,j and is preemptable. The

execution time of Ji,j is in the range [e−i,j , e
+
i,j ] with e−i,j , e

+
i,j in N. The release

time ri,j of job Ji,j is set to an integer value. Ji,1 is ready for execution at
its release time ri,1; for each j > 1, Ji,j cannot execute until its immediate
predecessor Ji,j−1 completes. The problem and two schedules are depicted in
Figure 5. For details, see [11].

Figure 5: Two task chains (left) and two acceptable schedules (right)

The problem is as follows:
Given a list of chain of tasks {Ji}i∈I where Ji = Ji,jj∈J (i) and

Ji,j = (ri,j , e
−
i,j , e

+
i,j ,Φi,j),

what is the maximum time needed to complete all the tasks?
Formally, we have:

• Model: A product of TAs, with a TA per task and a TA for the FP
scheduler

• Input: I = (ri,j , e
−
i,j , e

+
i,j ,Φi,j)i∈I

• Output: ∆ = Worst case completion time of the last task (of the last
chain).
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4.2 Robustness Analysis

The problem is parameterized typically by letting the priorities Φi,j and the
[e−i,j , e

+
i,j ] instantiated as well as the computed value ∆, and by parameterizing

some of the ris. We have:

• Model M ′: a PTA deduced from M by parameterizing the values of in-
terest and composed with a TA that tests wether or not the last task is
completed within ∆ (using an error state)

• Input: I together with ∆ and an identified set of parameters

• Output found by Imitator: a constraint K such that for every π |= K,
the last task of the π-instantiated model M ′[π] is completed within ∆.

5 Cyclic Tasks with Given Tasks Deadlines [6, 8]

5.1 Description of the Problem

We are given a set of tasks {τ1, . . . , τn}. Each task τi is periodic of period Ti (a
fixed duration of time between two activation events) , and an offset Oi for its
first activation time. Once a task τi has been activated, it executes for at most
time Ci and has to terminate within the deadline Di.

We say that the system is schedulable if each task τi is completed before its
relative deadline Di. Actually, because of the periodicity of the system, we only
have to be sure that it is schedulable within lcmi∈I(Ti).

The problem is as follows:
Given a list of tasks {τi}i∈I with

τi = (Oi, Ti, Di, Ci),

is the system schedulable?
Formally, we have:

• Model M : A TA per task and a TA for the scheduler

• Input I: {Oi, Ti, Di, Ci}i∈I
• Output: Yes or No

5.2 Robustness Analysis

The problem is parameterized typically by letting the deadlines Dis instantiated
and by parameterizing some of the Cis, Ois and Tis. Formally, we have:

• Model M ′: a PTA deduced from M by parameterizing the values of in-
terest

• Input: I and an identified set of parameters

• Output found by Imitator: a constraint K such that for every π |= K,
the π-instantiated model M ′[π] is schedulable.
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5.3 Comparison with [6]

We consider the case of two periodic tasks {τ1, τ2} with D1 = 7, T1 = 10, O1 =
0, C1 = 3, D2 = 6, T2 = 10, O2 = 3, C2 = 5. We parameterize C1, C2 and O2.
Applying Imitator, we found the following constraint K:

6 ≥ C2

∧ 3 ≥ C1

∧ 6× C1 > 17

∧ 2× C1 + C2 > 6 +O2

∧ O2 ≥ C1

∧ 10 ≥ O2 + C2

In [6], the authors uses a CEGAR-based method to synthesize a constraint
on the parameters that will guarantee that the system is schedulable.

The constraint found by their method is:

C1 + C2 < 6 +O2

∧ C1 + C2 < 10

∧ C1 + C2 > 6

∧ C2 < 10−O2

∧ C1 < 7

∧ C2 < 6

We notice that this constraint is uncomparable with the constraint K found
by Imitator.

6 Job-Shop Scheduling [1]

6.1 Description of the Problem

The Job-shop scheduling problem is a generic resource allocation problem in
which common resources (“machines”) are required at various time points (and
for given duration) by different tasks. The goal is to find a way to allocate
the resources such that all the tasks terminate as soon as possible (or “minimal
makespan” in the scheduling jargon). We consider a fixed set M of resources. A
step is a pair (m, d) where m ∈M and d ∈ N, indicating the required utilization
of resource m for time duration d. A job specification is a finite sequence

J = (m1, d1), (m2, d2), · · · , (mk, dk)
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of steps stating that in order to accomplish job J , one needs to use a machine
m1 for d1 time, then use machine m2 for d2 time etc. For details, see [1].The
problem is:
Given a list of job specifications {Ji}i∈I where

Ji = {(mi,j , di,j)}j∈J(i),

what is the minimal makespan to complete all the tasks?
Formally, we have:

• Model M : A product of TAs, with a TA per job

• Input I: {(mi,j , di,j)i∈I(j)}j∈J
• Output: µ = minimal makespan

6.2 Robustness Analysis

The problem is parameterized typically by parameterizing some of the dis. For-
mally, we have:

• Model M ′: a PTA deduced from M by parameterizing the values of in-
terest and composed with a TA that tests wether or not the last task is
completed within µ (using an ok and an error state)

• Input: I together with an identified set of parameters and the value of the
computed makespan µ

• Output found by Imitator: a constraint K such that for every π |=
K, there is a schedule which allows to complete the last task of the π-
instantiated model M ′[π] within µ.

7 Schedulability with Behavioral Cartography

When one is only interested in finding all the parameters valuation such that the
system is schedulable, without considering a particular schedule, it is interesting
to consider the Behavioral Cartography Method included in IMITATOR. By
iterating IM over all the integers points inside a finite but dense rectangle V0 in
the parametric space, one is able to decompose (most of) the parametric space
included into V0 into behavioral tiles1 [3].

For a given tile, we ensure that for every valuation of the parameters in
this tile, the behavior of A is the same; therefore, we only have to test the
schedulability of a single point for each tile to ensure the schedulability on the
whole tile.

1Actually, one can take a finer discretization step than integers to ensure a better cover-
ability of V0
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Let us apply this method on a “Rate monotonic” example of [5, Section III].
There are three periodic tasks τ1, τ2 and τ3 with periods of T1 = 3, T2 = 8 and
T3 = 20 and deadlines of D1 = 3, D2 = 8 and D3 = 20. We are interested
in finding the set of computation times of each task such that the system is
schedulable. (The interested reader can find the full details in [5].)

We set V0 as C1 ∈ [0, 3], C2 ∈ [0, 8] and C3 ∈ [0, 20], where Ci is the
computational time of τi. The system is unschedulable if there exists a task τi
such that Ci > Ti. Algorithm BC outputs the set of tiles and we check for one
point of each tile whether the system is schedulable or not. The result for this
example is given in Figures 6, 7, 8 for this V0 with a discretization step of 0.2.
This corresponds exactly to the schedulability region found in [5] (Figure 1 (a)).

Figure 6: Cartography output by IMITATOR 2.5 (in green the system is schedu-
lable; in red, unschedulable)

8 Experimental Results

All case studies and experiments have been performed on Ubuntu 11.10 equipped
with an Intel Core 2 2.93 GiHz processor with 2 GiB RAM). More data (in-
cluding the output constraints) are given in http://www.lsv.ens-cachan.fr/

Software/imitator/case-studies.php. For case studies FPi and EDFi, see
the values of the parameters in Appendix A.

In Figure 9, we give from left to right the name of the case study, the
number |A| of automata in parallel, the number |X| of clocks, the number |P |
of parameters, the number |S| of states computed, the number |T | of transitions
computed, the number n of iterations of the inverse method, the number |K|
of inequalities within the resulting constraint K, the computation time t in
seconds.

The examples LA02 2×5 and 3×5 are taken from the LA02 example of
http://bach.istc.kobe-u.ac.jp/csp2sat/jss/, where we only consider the
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Figure 7: Cartography output by IMITATOR 2.5 (in green the system is schedu-
lable; in red, unschedulable)

Figure 8: Cartography output by IMITATOR 2.5 (in green the system is schedu-
lable; in red, unschedulable)

2 (resp. 3) first jobs on 5 machines.

9 Final Remarks

The use of models such as PTAs and parametric Time Petri Nets (TPNs) for
solving scheduling problems has received attention in the past few years. For
example, Roméo [9] performs model checking for parametric TPNs with stop-
watches, and synthesizes parameter valuations satisfying TCTL formulæ. An
extension of Uppaal allows parametric model checking [4], although the model
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Case study |A| |X| |P | |S| |T | n |K| t (s)
Examples from section 3

FP 0 5 7 10 63 62 32 12 1.10
FP 1 5 7 10 205 225 40 11 15.6
FP 2 5 7 10 208 228 42 12 10.7
FP 3 5 7 10 49 51 15 12 1.03

EDF 0 5 10 13 63 62 32 13 2.42
EDF 1 5 10 13 76 91 31 20 66.1
EDF 2 5 10 13 254 326 47 12 9.9
EDF 3 5 10 13 31 33 9 13 1.09

Examples from section 4
from [11] 8 15 18 215 264 15 17 85.3

Examples from section 5
from [6] 4 6 8 676 886 15 15 288.3
from [8] 3 4 9 60 103 10 7 2.1

Examples from section 6
from [1] 3 3 4 53 70 10 5 0.45

LA02 2×5 3 3 11 371 528 21 10 63.4
LA02 3×5 4 3 16 4903 9043 30 5 160.6

Examples from section 7
from [5] 5 7 10 66

Figure 9: Results for the schedulability problem

itself remains non-parametric. The approach most related to Imitator 2.5
is [6, 8], where the authors infer parametric constraints guaranteeing the fea-
sibility of a schedule, using PTAs with stopwatches. The main difference be-
tween [6, 8] and Imitator relies in our choice of the inverse method, rather than
a CEGAR-based method. First results obtained on the same case studies are
incomparable (although similar in form), which seems to indicate that the two
methods are complementary. The problem of finding the schedulability region
was attacked in analytic terms in [5]; the size of our examples is rather mod-
est compared to those treated using such analytic methods. However, in many
schedulability problems, no analytic solution exists (see, e.g., [11]), and exhaus-
tive simulation is exponential in the number of jobs. In such cases, symbolic
methods as ours and those of [6, 8] are useful to treat critical real-life examples
of small size. We are thus involved in a project [7] with an industrial partner
with first interesting results.
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A Parameter values for the FPs and EDFs ex-
amples

A.1 FP 0 and EDF 0

Three cyclic tasks of the form τi = (Oi, Ti, Di, Ci) with:

• τ1 = (0, 10, 10, 4)

• τ2 = (94, 100, 100, 20)

• τ3 = (0, 1000, 1000, 120)

and the priorities for FP 0 are P1 = 3, P2 = 2 and P3 = 1.

12



A.2 FP 1 and EDF 1

Three cyclic tasks of the form τi = (Oi, Ti, Di, Ci) with:

• τ1 = (0, 100, 100, 20)

• τ2 = (0, 150, 150, 40)

• τ3 = (0, 350, 350, 100)

and the priorities for the FP 1 are P1 = 3, P2 = 2 and P3 = 1.

A.3 FP 2 and EDF 2

Three cyclic tasks of the form τi = (Oi, Ti, Di, Ci) with:

• τ1 = (0, 3, 3, 1)

• τ2 = (0, 5, 5, 1)

• τ3 = (0, 10, 10, 1)

and the priorities for the FP 2 are P1 = 3, P2 = 2 and P3 = 1.

A.4 FP 3 and EDF 3

Three cyclic tasks of the form τi = (Oi, Ti, Di, Ci) with:

• τ1 = (0, 100, 100, 20)

• τ2 = (0, 150, 150, 40)

• τ3 = (0, 160, 160, 20)

and the priorities for the FP 3 are P1 = 3, P2 = 2 and P3 = 1.
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