
Synchronous Structures ⋆

David Nowak

Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology (AIST)

Akihabara Dai Biru, Room 1102
1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan

Abstract

Synchronous languages have been designed to ease the development of reactive sys-
tems, by providing a methodological framework for assisting system designers from
the early stages of requirement specifications to the final stages of code generation
or circuit production. Synchronous languages enable a very high-level specifica-
tion and an extremely modular design of complex reactive systems by structural
decomposition of them into elementary processes. We define an order-theoretical
model that gives a unified mathematical formalisation of all the above aspects of
the synchronous methodology and characterises the essentials of the synchronous
paradigm.

Key words: preorder semantics, reactive system, synchronous programming

1 Introduction

The Synchronous Paradigm Synchronous languages, such as Es-

terel [2], Lustre [3] and Signal [4] have been designed to ease the de-
velopment of reactive systems. The synchronous hypothesis provides a de-
terministic notion of concurrency where operations and communications are
instantaneous. In a synchronous language, concurrency is meant as a logical

⋆ A preliminary version of this article was presented at the 10th International Con-
ference on Concurrency Theory (CONCUR’99), Eindhoven, The Netherlands, Au-
gust 1999 [1]. This work was partially supported by Action Coopérative INRIA
PRESYSA. This work was done while the author was affiliated with Institut de
Recherche en Informatique et Systèmes Aléatoires (IRISA), Rennes, France, and
Oxford University Computing Laboratory, United Kingdom.

Preprint submitted to Elsevier Science 13 June 2006

way to decompose the description of a system into a set of elementary com-
municating processes. Interaction between concurrent components is concep-
tually performed by broadcasting events. Synchronous languages enable a very
high-level specification and an extremely modular design of complex reactive
systems by structurally decomposing them into elementary processes. The use
of synchronous languages provides a methodological framework for assisting
the users from the early stages of requirement specifications to the final stages
of code generation or circuit production while obeying compliance to expressed
and implied safety requirements. In that context, the synchronous language
Signal is particularly interesting, in that it allows the specification of (early)
relational properties of systems which can then be progressively refined in or-
der to obtain an executable specification. All the stages of this design process
can easily be modelled and understood in isolation. The purpose of this arti-
cle is to define the mathematical model of synchronous structures which gives
a unified formalisation of all the aspects of a synchronous methodology and
which contains each of them in isolation.

Related Work There are several ways to characterise the essentials of the
synchronous paradigm. In [5], we introduce a co-inductive semantics of Sig-

nal, and a library of theorems is developed in the proof assistant Coq [6].
But it is not expressive enough to deal with dependencies. The semantics of a
synchronous language can be described in a better way with Symbolic Transi-
tion Systems (STSs) [7]. This is a formalism on which fundamental questions
can be investigated. But it treats the absence of a signal as a special value.
This is not consistent with reality: The presence or the absence of a signal, rel-
atively to another signal, has to be inferred by the program (endochrony [8]).
In [8], STSs are extended with preorders and partial orders to model causality
relations, schedulings and communications. This preorder-theoretic model is
put into practice in the design of BDL [9], a synchronous specification lan-
guage that uses families of preorders to specify systems. In [10], the problem
of characterising synchrony without using a special symbol for absence is ad-
dressed in terms of multiple input-output sequential machines. In [11], the
language Signal is modelled in interaction categories [12] where morphisms
are processes and objects are types of processes.

Motivations In 1545, the great Italian mathematician Gerolamo Cardano
wrote “Ars Magna” [13], an important and influential treatise on Algebra in
which the first complete expression for the solution of a general cubic equa-
tion was put forward. Cardano noticed that, in the case of some equation
with three real solutions, he was forced to take at a certain stage the square
root of a negative number. The imaginary numbers were born. Analogically,
we generalise the classical notion of signal [4,8,14] with imaginary signals.
Indeed, imaginary signals are obtained by closure under deterministic merge.

2

This extension has no material counterpart. It is used to compute intermediate
results. For instance, in the original trace semantics [15,16], the temporal ab-
stractions of signals (called clocks) have necessary a greatest lower bound but
do not always have a (real) least upper bound. In that case, we need to define
an imaginary least upper bound. Our model allows to extend the notion of
classical clocks with imaginary clocks and to define a boolean lattice of clocks.
Indeed, the closure of signals under deterministic merge induces the closure
of clocks under least upper bound. In this lattice-theoretical model, temporal
relations between signals always have a solution. If the solution contains imag-
inary signals, it means that the system has no real solution in the classical
model and that it does not thus form an executable specification. Imaginary
signals and clocks are in fact well suited to model the non-determinism that
can be present in a Signal specification. Our model does not treat the absence
of a signal as a special value. It is consistent with reality where the presence or
the absence of a signal, relatively to another signal, has to be inferred by the
program (endochrony [8]). Indeed, it is impossible to check the absence of a
signal: Suppose that an input signal is absent. If it comes from a register, then
this one will provide its previous value. If it comes from a sensor, then this
one will provide a random value. Moreover, synchronous structures can deal
elegantly with data dependence and refinement of synchronous specifications.

Outline First, in Section 2, we abstract the notion of control dependence
in a mathematical structure that we call a synchronous structure in which
we define the notions of imaginary signal and clock. Then, in Section 3, we
prove that signals and their morphisms define a Cartesian closed category that
we can relate with the category of event structures. In Section 4, we extend
synchronous structures to deal elegantly with data dependence, with temporal
refinement, and with the delay operator of synchronous languages. Finally, in
Section 5, we give the semantics of Signal in our model.

2 Synchronous Structure

In this section, we focus on a characterisation of control dependencies i.e.
the temporal relations between events or the dates of events relative to some
reference of time, not the value of events. Let us informally depict a synchro-
nisation scenario between two sequences of events (i.e. sets of totally ordered
events):

3

They exchange (dotted) synchronisation messages using an asynchronous
medium for their communications. This involves a synchronisation relation
between events. The natural structure of time of the whole system is that of
a preorder. This preorder can be understood as the transitive closure of the
union of the temporal relation (an order relation) and the synchronisation
relation (an equivalence relation). Then, the example becomes:

In this section, we will formalise the notions involved in this example.

2.1 Synchronous Structure

We define a synchronous structure as a set of events plus a single preorder
relation which summarises both the notion of synchrony (induced equivalence)
and temporal causality (underlying partial order).

Definition 1 (E ,≪) is a synchronous structure if and only if E is a non-
empty set (of events) and ≪ is a preorder on E such that:

∀x ∈ E · {y ∈ E | y ≤ x} is finite, where x ∼ y ⇔def x≪ y ∧ y ≪ x

x < y ⇔def x≪ y ∧ x 6∼ y

x ≤ y ⇔def x < y ∨ x = y

Intuitively, x ∼ y means that x and y are synchronous, that is to say the
events x and y must occur simultaneously. The partial order ≤ is the temporal
causality between events: x ≤ y states that xmust occur before y. For instance,
Figure 1 depicts 8 events which define a synchronous structure. To give easier
explanations, the events are numbered from 1 to 8. Dotted lines represent the
equivalence relation ∼ and bold lines represent the strict order relation < as

4

1 2

3 4

5 6 7

8

Fig. 1. An example of synchronous structure

a Hasse diagram: x < y if and only if there is a sequence of connected bold
line segments moving downwards from x to y.

The preorder ≪ combines the synchronicity relation and the temporal causal-
ity relation. It defines a notion of time for the whole system. The use of a
preorder eliminates bad cases.

First, two synchronisations cannot cross each other:

Indeed, by transitivity of the preorder, events are all synchronous in this case:

Second, the necessary temporal relation are induced. Suppose that we have
the following set of events:

By transitivity of the preorder, we deduce a missing temporal relation:

5

More generally, the following property (1) comes directly from the definition
of a synchronous structure:

∀x, y1, y2, z ∈ E · x≪ y1 ∧ y1 < y2 ∧ y2 ≪ z ⇒ ¬x ∼ z (1)

In Figure 1, it is thus guaranteed, for example, that the events numbered 1
and 8 cannot be synchronous.

We say that an event x is covered by an event y, and write x−<y, if and only
if x < y and there is no event z satisfying x < z < y. From the fact that ≤ is
well founded, we can deduce the following property:

∀x, y ∈ E · x < y ⇒ ∃z ∈ E , z−<y (2)

Indeed, (E ,≤) is not dense because ≤ is well founded. This property is impor-
tant to guarantee a discrete model of synchronous programming.

2.2 Signal

Usually, a (real) signal is a totally ordered set of events. This total order
implies that two different events cannot be synchronous. We generalise this
definition to enable partially ordered sets of events to be (imaginary) signals.
A signal just have to satisfy the property that two different events cannot be
synchronous. We use this relaxed condition to define internal operations.

Definition 2 Let X be a subset of E . X is a signal if and only if it satisfies
the following axiom:

∀x, y ∈ X · x ∼ y ⇒ x = y (3)

Let X be a signal. From (3) we deduce that ≪ is antisymmetric on X and
then is a partial order on X.

Let SE be the set of signals. For instance, in Figure 1, {1, 3, 5, 8} and {2, 6, 8}
are in SE . A real signal is then a particular case of signal which is totally or-
dered by ≪. For instance, in Figure 1, {1, 3, 5}, {2, 6, 8} and ∅ are real signals

6

X Y

Fig. 2. Preordered signals (X � Y)

but not {1, 3, 5, 8}. An imaginary signal is a signal that is not a real signal.
With internal operations on signals, we will see that an imaginary signal en-
ables to represent the lack of synchronisation constraints in an underspecified
reactive system. A subspecification is a correct specification with interleaved
events, and therefore cannot be executed because its scheduling is not fully
determined. It needs to be composed with another specification to remove the
non-determinism.

The property (2) is also true in a signal. It means that between two events of
a signal there is only a finite numbers of events.

We define a preorder � on SE . A signal X precedes a signal Y if and only if
for any event of X there exists a synchronous event of Y (see, for instance,
Figure 2). For all signals X and Y ,

X � Y ⇔def ∀x ∈ X · ∃y ∈ Y · x ∼ y

This preorder gives rise to an equivalence relation =̂. For all signals X and Y ,

X=̂Y ⇔def X � Y ∧ Y � X

X=̂Y states that X and Y are synchronous. i.e. they are present at the same
instants. We shall define precisely this notion of instant in Subsection 2.3.

Internal Operations on Signals We define two operations on signals: The
down-sampling ⊗ and the deterministic merge ⊕.

X ⊗Y selects the events of X which are synchronous with an event of Y (see,
for instance, Figure 3). For all signals X and Y ,

X ⊗ Y =def {x ∈ X | ∃y ∈ Y · x ∼ y}

7

X ⊗ Y

YX

Fig. 3. Example of down-sampling (X ⊗ Y)

X Y

X ⊕ Y

Fig. 4. Example of deterministic merge (X ⊕ Y)

⊗ is an internal operation on SE i.e. for all signals X and Y , X⊗Y is a signal.
Indeed, X ⊗ Y is a subset of X, therefore (3) holds. Note that, in Figure 3,
although X and Y are imaginary signals, the result X ⊗ Y is a real signal in
this example.

X ⊕ Y is the union of the sets X and Y minus the events of Y that are
synchronous with an event of X. In other words, if X are Y are present at a
same instant then the priority is given to the left signal X (see, for instance,
Figure 4). For all signals X and Y ,

X ⊕ Y =def X ∪ {y ∈ Y | ∀x ∈ X · ¬x ∼ y}

By construction, ⊕ is an internal operation on SE i.e. for all signals X and Y ,
X ⊕ Y is a signal. Note that, in Figure 4, although X and Y are real signals,
their deterministic merge X ⊕ Y is an imaginary signal because its events
are not totally ordered by ≪. This imaginary signal comes from the lack of
synchronisation constraints between X and Y . More generally, it is easy to
see that imaginary signals are obtained by closure under deterministic merge.

8

Algebraic Properties First, the following properties are clear from the
definitions of ⊗ and ⊕:

(X ⊗ Y) � X

(X ⊗ Y) � Y

X � (X ⊕ Y)

Y � (X ⊕ Y)

It is also clear that ⊗ and ⊕ are not commutative but they satisfy Proposition 1
stated below. In order to prove this proposition, we first prove the two following
lemmas.

Lemma 1 For all signals X, Y and Z, Z � X ∧ Z � Y ⇒ Z � X ⊗ Y .

Proof. Let X, Y and Z be three signals such that Z � X and Z � Y . Let
z ∈ Z. There exists an x ∈ X such that x ∼ z and a y ∈ Y such that y ∼ z.
Thus, by transitivity of ∼, x ∼ y. Thus x ∈ X ⊗ Y . Thus Z � X ⊗ Y . 2

Lemma 2 For all signals X, Y and Z, X � Z ∧ Y � Z ⇒ X ⊕ Y � Z.

Proof. Let X, Y and Z be three signals such that X � Z and Y � Z. Let
x ∈ X ⊕ Y . Two cases are possible:

1. If x ∈ X, then, from X � Z, we deduce there exists a z ∈ Z such that
x ∼ z.

2. If x ∈ Y , then, from Y � Z, we deduce there exists a z ∈ Z such that
x ∼ z.

Thus X ⊕ Y � Z. 2

Proposition 1 For all signals X and Y , X⊗Y =̂ Y ⊗X and X⊕Y =̂ Y ⊕X.

Proof. We know that X ⊗ Y � Y and X ⊗ Y � X. From Lemma 1, we thus
deduce that X ⊗ Y � Y ⊗X. And similarly, we can prove Y ⊗X � X ⊗ Y .
Thus X ⊗ Y =̂Y ⊗X.

We know that Y � X ⊕ Y and X � X ⊕ Y . From Lemma 2, we thus deduce
that Y ⊕ X � X ⊕ Y . And similarly, we can prove X ⊕ Y � Y ⊕ X. Thus
X ⊕ Y =̂Y ⊕X. 2

2.3 Instant and Trace

In this subsection, we define the notions of instant and trace and we prove
other algebraic properties of ⊗ and ⊕ through their translation into the trace
semantics.

9

Instant Logical instants are modelled by equivalence classes of synchronous
events. The set of instants is the quotient of E by ∼:

IE =def E/∼

For any event x, we write x̃ its equivalence class that we call its instant. The
preorder ≪ on E gives rise to a partial order on IE . For all events x and y,

x̃ ⊲ ỹ ⇔def x≪ y

Trace In order to define traces, we need to prove Lemma 3 relating signals
and instants.

Lemma 3 For any signal X ∈ SE , for any instant i ∈ IE ,

X ∩ i = ∅ ∨ ∃x ∈ X · X ∩ i = {x}

Proof. Let X ∈ SE and i ∈ IE . Suppose that X ∩ i = {x, x′}. x ∈ i and
x′ ∈ i, thus x ∼ x′. From (3), we thus know that x = x′. 2

A signal X is said absent at the instant i if and only if X ∩ i = ∅. Otherwise
it is said present at the instant i.

We define tX(i) to be the unique event at the intersection of X and i if X is
present at the instant i. Or else it is the special value ⊥ 6∈ E if the signal is
absent at the instant i. This function tX is well defined thanks to Lemma 3.

tX : IE −→ E⊥

i 7−→

x if X ∩ i = {x}

⊥ otherwise

where E⊥ =def E ∪ {⊥}.

tX is called the trace of X. Now we relate trace properties with signal prop-
erties. We first prove the following lemma.

Lemma 4 For any signal X ∈ SE , for any event x ∈ X, X ∩ x̃ = {x}.

Proof. Let X ∈ SE and x ∈ X. x ∈ x̃ thus x ∈ X ∩ x̃. But X ∩ x̃ is a
singleton, thus X ∩ x̃ = {x}. 2

We can then prove the following proposition.

10

Proposition 2 For all signals X and Y , X = Y ⇔ tX = tY .

Proof. Let (X, Y) ∈ S2
E .

1. If X = Y , then tX(i) = tY (i) for any i by reflexivity of the equality.
2. Suppose that tX = tY . Let x ∈ X. tX(x̃) = tY (x̃) i.e. X ∩ x̃ = Y ∩ x̃.

But X ∩ x̃ = {x} from Lemma 4. Thus Y ∩ x̃ = {x}. Thus x ∈ Y . And
similarly for y ∈ Y , we prove that y ∈ X. 2

To ease proof of properties of operators ⊗ and ⊕, we translate them into the
trace model.

Let · be the operator on traces defined by:

tX · tY : IE −→ E⊥

i 7−→

tX(i) if tX(i) 6= ⊥ and tY (i) 6= ⊥

⊥ otherwise

The following proposition relates the operators · and ⊗.

Proposition 3 For all signals X and Y , tX⊗Y = tX · tY .

Proof. Let i ∈ IE . Two cases are possible:

1. If (X ⊗ Y)∩ i = {x0}, then tX⊗Y (i) = x0. And {x ∈ X | ∃y ∈ Y, x ∼ y} =
{x0}. Thus X ∩ i = {x0} and there exists y0 ∈ Y such that x0 ∼ y0. Thus
Y ∩ i = {y0}. Thus tX(i) = x0 6= ⊥ and tY (i) 6= ⊥. Finally, tX .tY (i) =
x0 = tX⊗Y (i).

2. If (X ⊗ Y) ∩ i = ∅, then tX⊗Y (i) = ⊥. And X ∩ i = ∅, thus tX(i) = ⊥ =
tX⊗Y (i). 2

Let + be the operator on traces defined by:

tX + tY : IE −→ E⊥

i 7−→

tX(i) if tX(i) 6= ⊥

tY (i) otherwise

The following proposition relates the operators + and ⊕.

Proposition 4 For all signals X and Y , tX⊕Y = tX + tY .

11

tX tY tZ tX · tY (tX · tY) · tZ tY · tZ tX · (tY · tZ)

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ z ⊥ ⊥ ⊥ ⊥

⊥ y ⊥ ⊥ ⊥ ⊥ ⊥

⊥ y z ⊥ ⊥ y ⊥

x ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

x ⊥ z ⊥ ⊥ ⊥ ⊥

x y ⊥ x ⊥ ⊥ ⊥

x y z x x y x

Fig. 5. Associativity of ·

Proof. Let i ∈ IE . Two cases are possible:

1. If X ∩ i = {x0}, then tX(i) = x0 6= ⊥, and thus tX + tY (i) = tX(i) = x0.
FromX ⊆ X⊕Y andX∩i = {x0}, we deduce that tX⊕Y (i) = (X⊕Y)∩i =
{x0} = tX + tY (i).

2. If X ∩ i = ∅, then tX(i) = ⊥. And thus tX + tY (i) = tY (i).
(a) If Y ∩ i = {y0}, then tY (i) = y0 and (X ⊕ Y) ∩ i = {y0}. Thus

tX⊕Y (i) = y0 = tY (i) = tX + tY (i).
(b) If Y ∩ i = ∅, then tY (i) = ⊥ and (X ⊕ Y)∩ i = ∅. Thus tX⊕Y (i) =

⊥ = tY (i) = tX + tY (i). 2

We can now easily prove some algebraic laws of ⊗ and ⊕.

Proposition 5 For all signals X, Y and Z,

tX · (tY · tZ) = (tX · tY) · tZ
tX + (tY + tZ) = (tX + tY) + tZ

Proof. It is sufficient to prove these equalities for any instant. Let X, Y, Z ∈
SE . Let i ∈ IE . tX(i) = ⊥ ∨ ∃x ∈ X, tX(i) = x, tY (i) = ⊥ ∨ ∃y ∈ Y, tY (i) = y
and tX(i) = ⊥ ∨ ∃z ∈ Z, tZ(i) = z. We thus only need to enumerate the 8
possible cases to establish the associativity relations. It is done in Figures 5
and 6. 2

Corollary 1 For all signals X, Y and Z,

X ⊗ (Y ⊗ Z)= (X ⊗ Y) ⊗ Z

X ⊕ (Y ⊕ Z)= (X ⊕ Y) ⊕ Z

12

tX tY tZ tX + tY (tX + tY) + tZ tY + tZ tX + (tY + tZ)

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ z ⊥ z z z

⊥ y ⊥ y y y y

⊥ y z y y y y

x ⊥ ⊥ x x ⊥ x

x ⊥ z x x z x

x y ⊥ x x y x

x y z x x y x

Fig. 6. Associativity of +

Proof. It follows from Propositions 2 and 5. 2

Proposition 6 For all signals X, Y and Z,

tX · (tY + tZ)= (tX · tY) + (tX · tZ)

tX + (tY · tZ)= (tX + tY) · (tX + tZ)

(tX + tY) · tZ = (tX · tZ) + (tY · tZ)

Proof. It is sufficient to prove these equalities for any instant. Let X, Y, Z ∈
SE . Let i ∈ IE . tX(i) = ⊥ ∨ ∃x ∈ X, tX(i) = x, tY (i) = ⊥ ∨ ∃y ∈ Y, tY (i) = y
and tX(i) = ⊥ ∨ ∃z ∈ Z, tZ(i) = z. We thus only need to enumerate the 8
possible cases to establish the distributivity relations. It can be done using
tables as in the previous proposition. 2

Remark 1 + is not distributive to the right. Indeed, if tX(i) = x, tY (i) = ⊥
and tZ(i) = z, then ((tX · tY) + tZ)(i) = z and ((tX + tZ) · (tY + tZ))(i) = x.

Corollary 2 For all signals X, Y and Z,

X ⊗ (Y ⊕ Z)= (X ⊗ Y) ⊕ (X ⊗ Z)

X ⊕ (Y ⊗ Z)= (X ⊕ Y) ⊗ (X ⊕ Z)

(X ⊕ Y) ⊗ Z = (X ⊗ Z) ⊕ (Y ⊗ Z)

Proof. It follows from Propositions 2 and 6. 2

Traces can be used to relate the semantics of the synchronous language Signal

given in Section 5 with the original trace semantics of Signal [15,16].

13

2.4 Clock

In order to study the temporal relations between signals, we define the equiv-
alence classes of signals by =̂. The set of clocks CE is the quotient of SE by
=̂:

CE =def SE/=̂

For any signal X, we write X̂ its equivalence class that we call its clock. ∅̂
is called the null clock. The clock of a real (resp. imaginary) signal is a real
(resp. imaginary) clock.

The preorder � on SE gives rise to an order ⊑ on CE . For all signals X and Y ,

X̂ ⊑ Ŷ ⇔def X � Y

The Boolean Lattice of Clocks Intuitively, it is clear that a clock should
be related to a set of instants and conversely. We show that the set of clocks
CE and the powerset P(IE) of IE are isomorphic. To prove this isomorphism,
we need the Axiom of Choice.

Axiom 1 (Axiom of Choice) For any set E and any equivalence relation
R on E, there exists a function cR : E −→ E such that

• ∀x ∈ E · x R cR(x), and
• ∀x, y ∈ E · x R y ⇒ cR(x) = cR(y).

From this axiom we extract the two useful choice functions c∼ : E −→ E and
c=̂ : SE −→ SE .

Theorem 1 (CE ,⊑) and (P(IE),⊆) are isomorphic.

Proof. let f : P(IE) −→ CE be a function which associates a clock to any set
of instants:

f : P(IE) −→ CE

I 7−→ X̂ with X = c∼〈{x ∈ i | i ∈ I}〉

We first prove that this definition is legal. X is a set of events (It is the image
set of {x ∈ i | i ∈ I} by c∼). From the Axiom of Choice, (3) is established i.e.
two synchronous events of X are necessarily equal. X is thus a signal and we
can take its clock X̂.

14

Let us prove that f is monotonic. Let I and J be two sets of instants such that
I ⊆ J . Thus {x ∈ i | i ∈ I} ⊆ {x ∈ i | i ∈ J}. Let X = c∼〈{x ∈ i | i ∈ I}〉 and
Y = c∼〈{x ∈ i | i ∈ J}〉. X ⊆ Y , thus X � Y , thus X̂ ⊑ Ŷ i.e. f(I) ⊑ f(J).

Let g : CE −→ P(IE) be a function which associates a set of instants to any
clock:

g : CE −→ P(IE)

C 7−→ {x̃ ∈ IE | x ∈ X} with {X} = c=̂〈C〉

We first prove that this definition is legal. C is an equivalence class of syn-
chronous signals. From the Axiom of Choice, the image of C by c=̂ is a sin-
gleton, and thus its unique element is called X.

Let us prove that g is monotonic. Let C and D be two clocks such that C ⊑ D.
Let X and Y be the respective representatives of C andD chosen by the choice
function c=̂ i.e. {X} = c=̂(C) and {Y } = c=̂(D). From the definition of ⊑, we
deduce X � Y . Let i ∈ g(C) and x ∈ X be the representative of i in X. From
X � Y we deduce that there exists y ∈ Y such that x ∼ y. Thus y ∈ i. Thus
i ∈ g(D) (from the definition of g). Finally g(C) ⊆ g(D).

Let us prove that g ◦ f = IdP(IE). Let I ⊆ IE be a set of instants. Let

X = c∼〈{x ∈ i | i ∈ I}〉. We have f(I) = X̂. Let {Y } = c=̂〈X̂〉. We have
g ◦ f(I) = g(f(I)) = g(X̂) = {ỹ ∈ IE | y ∈ Y }. Thus, we just need to prove
that {ỹ ∈ IE | y ∈ Y } = I.

1. Let i ∈ {ỹ ∈ IE | y ∈ Y }. There exists y ∈ i such that y ∈ Y . But X=̂Y ,
thus there exists x ∈ X such that x ∼ y. Thus i = x̃ = ỹ ∈ I.

2. Let i ∈ I. By definition of X, there exists x ∈ X such that x ∈ i. But
X=̂Y , thus there exists y ∈ Y such that x ∼ y. Thus i = x̃ = ỹ ∈ {ỹ ∈
IE | y ∈ Y }.

Let us prove that f ◦ g = IdCE . Let C be a clock. Let X be a representative
of C chosen by the choice function c=̂ i.e. {X} = c=̂(C). We have g(C) =
{x̃ ∈ IE | x ∈ X}. Let Y = c∼〈{y ∈ i | i ∈ g(C)}〉. We have f ◦ g(C) = Ŷ .
We thus just need to prove that Ŷ = C, which is equivalent to X=̂Y . By
substitution, we obtain Y = c∼〈{y ∈ i | i ∈ {x̃ ∈ IE | x ∈ X}}〉. Thus
Y = c∼〈{y ∈ x̃ | x ∈ X}〉. Thus X=̂Y . 2

Using this isomorphism, we define the operator \ on clocks which is the coun-
terpart of the operator \ on sets of instants which subtracts a set from another.
We can also define the complementary of a clock. Let f be the isomorphism
from CE to P(IE). For all clocks C and D,

C\D =def f
−1(f(C)\f(D))

15

C =def f
−1(IE\f(C))

The complementary of a signal X is a “chosen” signal X (using the Axiom of

Choice) of clock X̂.

{X} = c=̂〈 X̂ 〉

(P(IE),⊆) is a boolean lattice. From the isomorphism, we deduce that (CE ,⊑)
is also a boolean lattice i.e. it is complete, distributive, and there exists a null
element ∅̂ and a universal element 1E equal to f−1(IE).

The operator ⊗ on SE gives rise to the greatest lower bound operator ⊓ on
CE . For all signals X and Y ,

X̂ ⊓ Ŷ =def X̂ ⊗ Y

Proposition 7 C ⊓D is the greatest lower bound of clocks C and D.

Proof. Let C and D be two clocks. Let X ∈ C and Y ∈ D be the respective
representative signals. We have X⊗Y � X and X⊗Y � Y , thus, by definition

of ⊑, X̂ ⊗ Y ⊑ X̂ and X̂ ⊗ Y ⊑ Ŷ . X̂ ⊗ Y is thus a lower bound of {X̂, Ŷ }.

Let us prove that it is the greatest lower bound. Let Ẑ be a lower bound of

{X̂, Ŷ } such that X̂ ⊗ Y ⊑ Ẑ. Let z ∈ Z. From Z � X and X � Y , we
deduce that there exists a pair of events (x, y) ∈ X × Y such that x ∼ z
and y ∼ z. By transitivity of ∼, we have x ∼ y, and thus x ∈ X ⊗ Y . Thus
Z � X ⊗ Y i.e. Z ⊑ X ⊗ Y . Thus Z = X ⊗ Y . 2

The operator ⊕ on SE gives rise to the least upper bound operator ⊔ on CE .
For all signals X and Y ,

X̂ ⊔ Ŷ =def X̂ ⊕ Y

Proposition 8 C ⊔D is the least upper bound of clocks C and D.

Proof. Let C and D be two clocks. Let X ∈ C and Y ∈ D be the respective
representative signals. We have X � X⊕Y and Y � X⊕Y thus, by definition

of ⊑, X̂ ⊑ X̂ ⊕ Y and Ŷ ⊑ X̂ ⊕ Y . X̂ ⊕ Y is thus an upper bound of {X̂, Ŷ }.

Let us show that it is the least upper bound. Let Ẑ be an upper bound of

{X̂, Ŷ } such that Ẑ ⊑ X̂ ⊕ Y . Let x ∈ X ⊕ Y . If x ∈ X, then, from X � Z,
we deduce that there exists an event z ∈ Z such that x ∼ z. Otherwise x ∈ Y ,
and thus, from Y � Z, we deduce that there exists an event z ∈ Z such that

x ∼ z. Thus X ⊕ Y � Z i.e. X̂ ⊕ Y ⊑ Ẑ. 2

16

E

E/∼SE/=̂

SE

CE IE P(IE)

CE and P(IE) are
isomorphic.

Fig. 7. Summary

We can see that the closure of the set of signals under deterministic merge
induces the closure of the set of clocks under least upper bound.

Figure 7 summarises the relations between the different involved sets.

2.5 Configuration

Synchronous structures do not allow explicit representation of the states of a
system. However, we can define a notion of computation state. A configuration
is a computation state of the system described by the synchronous structure
i.e. the set of events which have occurred in the computation. Formally, a
configuration is a downward closed subset of a synchronous structure. Let
(E ,≪) be a synchronous structure. A subset c of E is a configuration of E if
and only if

∀x, y ∈ E · x≪ y ∧ y ∈ c ⇒ x ∈ c

If an event is in a configuration then it is clear that all its predecessors and
synchronous events are also in this configuration.

Proposition 9 Let (E ,≪) be a synchronous structure. A configuration of E

17

is a subset c of E such that:

• ∀(x, y) ∈ E2, x ≤ y ∧ y ∈ c⇒ x ∈ c, and
• ∀(x, y) ∈ E2, x ∼ y ∧ y ∈ c⇒ x ∈ c.

Let DE be the set of configurations of E and D0
E ⊆ DE be the subset of finite

configurations. These sets are partially ordered by inclusion ⊆.

We write ⌈x⌉ the set {x′ ∈ E | x′ ≪ x}. By definition, ⌈x⌉ is a configuration.

Lemma 5 Let (E ,≪) be a synchronous structure. Let x ∈ E . ⌈x⌉\x̃ is a
configuration.

Proof. Let y, y′ ∈ E be such that y′ ∈ ⌈x⌉\x̃ and y ≪ y′. We have y′ ∈ ⌈x⌉
(thus y′ ≪ x) and y′ 6∼ x. By transitivity, y ≪ x and y 6∼ x. Thus y ∈
⌈x⌉\x̃. 2

Lemma 6 Let (E ,≪) be a synchronous structure. Let c1, c2 ∈ DE be a pair of
configurations. c1 ∪ c2 is a configuration.

Proof. Let x, x′ ∈ E such that x′ ∈ c1 ∪ c2 and x ≪ x′. Two cases (non
exclusive) are possible:

1. x′ ∈ c1: By definition of a configuration, x ∈ c1. Thus x ∈ c1 ∪ c2.
2. x′ ∈ c2: By definition of a configuration, x ∈ c2. Thus x ∈ c1 ∪ c2. 2

The preorder associated with synchronous structure can be recovered from its
finite configurations.

Proposition 10 For all events x and y,

x≪ y ⇔ ∀c ∈ D0
E , y ∈ c⇒ x ∈ c

Proof. Let x, y ∈ E .

(⇒) Suppose that x ≪ y. Let c ∈ D0
E be a finite configuration such that

y ∈ c. We obtain x ∈ c by definition of a configuration.
(⇐) By reducing to the absurd, suppose that ∀c ∈ D0

E , y ∈ c ⇒ x ∈ c and
x 6≪ y. Let us take c = ⌈y⌉. As x 6≪ y, x 6∈ ⌈y⌉, which is a contradiction. 2

We can regard configurations and instants as respectively states and labels in
a labelled transition system. The set of states is the set of configurations DE .
The initial state is the empty configuration ∅ ∈ DE . The set of labels is the set
of instants IE . The transition relation is a ternary relation over DE ×IE ×DE

such that for any i ∈ IE and for any (c, c′) ∈ DE
2,

c i−−→ c′ ⇔def i 6⊆ c ∧ c′ = c ∪ i

18

Theorem 2 Let i1 and i2 be two instants. The following propositions are
equivalent.

(i) There exists configurations c0, c1, c2 et c3 such that:

c3

c1

i2

>>}}}}}}}}
c2

i1

``AAAAAAAA

c0
i1

``AAAAAAAA i2

>>}}}}}}}}

(ii) i1 et i2 are not comparable.

Proof.

(i) ⇒ (ii) Suppose that Proposition (i) holds. Let us prove by reducing to the
absurd that i1 and i2 are comparable. Suppose that i1 ⊲ i2. We have i2 ⊆ c2.
But i1 ⊲ i2, thus i1 ⊆ c2. The transition c2

i1−−→ c3 is thus not possible.
Symmetrically, if i2 ⊲ i1 then the transition c1

i2−−→ c3 is not possible. It is a
contradiction, thus i1 and i2 are not comparable.

(ii) ⇒ (i) Suppose that i1 and i2 are not comparable. Let x1 ∈ i1 and x2 ∈ i2.
We just have to take:

c0 =(⌈x1⌉\i1) ∪ (⌈x2⌉\i2)

c1 = ⌈x1⌉ ∪ (⌈x2⌉\i2)

c2 =(⌈x1⌉\i1) ∪ ⌈x2⌉

c3 = ⌈x1⌉ ∪ ⌈x2⌉

These definitions are correct thanks to Lemma 5 and Lemma 6. 2

3 The Category of Signals

Another way to study temporal relations between signals is to define a cate-
gory of signals in which a morphism describes the temporal relation between
two signals. The purpose of this categorical formalisation is to provide a nice
and convenient way to relate our work with event structures [17]. Indeed, cat-
egory theory is a convenient formalism for relating models. We show that the
category of signals can be related to the category of event structures by a
pair of specification structures [18]. Moreover, we show that this category is
Cartesian closed.

19

3.1 Signal Morphism

Suppose that X and Y are two signals such that X � Y . Thus, for any event
x ∈ X, there exists an event y ∈ Y such that x ∼ y, by definition of �.
This event y is unique by definition of a signal. Hence, we can define a total
function [Y]X , called signal morphism, from X to Y :

[Y]X : X −→ Y

x 7−→ y such that x ∼ y

By definition, [Y]X is the unique morphism from X to Y . For any signal X,
the automorphism [X]X is the identity function on X.

Proposition 11 For all signals X and Y such that X � Y ,

1. [Y]X is injective: ∀x, x′ ∈ X · [Y]X(x) = [Y]X(x′) ⇒ x = x′

2. [Y]X is strictly monotonic: ∀x, x′ ∈ X · x < x′ ⇒ [Y]X(x) < [Y]X(x′)

Proof. Let X and Y be two signals such that X � Y .

1. Let x and x′ be two events of X. Suppose that y = [Y]X(x) = [Y]X(x′).
Thus, by definition of [Y]X , x ∼ y and x′ ∼ y. By symmetry and tran-
sitivity ∼, we have x ∼ x′. Finally, by definition of a signal, we obtain
x = x′.

2. Let x and x′ be two events of X such that x < x′. Suppose that [Y]X(x′) ≤
[Y]X(x). Two cases are possible. First, if [Y]X(x′) = [Y]X(x), thus, by
injectivity of [Y]X , x = x′. It is a contradiction. Second, let us take
[Y]X(x′) < [Y]X(x). From x′ ∼ [Y]X(x′) we deduce x′ ≪ [Y]X(x′). From
[Y]X(x′) < [Y]X(x) we deduce [Y]X(x′) ≪ [Y]X(x). From x ∼ [Y]X(x)
we deduce [Y]X(x) ≪ x. By transitivity of ≪, we obtain x′ ≪ x. From
the hypothesis x < x′, we also have x ≪ x′. Thus x ∼ x′. Finally,
by definition of a signal, we obtain x = x′. It is a contradiction. Thus
[Y]X(x) < [Y]X(x′) 2

Proposition 12 [Y]X is bijective (with [Y]−1
X = [X]Y) if and only if X=̂Y .

Proof.

1. Let X and Y be two synchronous signals. We can thus define the total
functions [Y]X and [X]Y . Let us prove that [X]Y is the converse of [Y]X
i.e. [X]Y ◦ [Y]X = [X]X and [Y]X ◦ [X]Y = [Y]Y .

(a) Let x be an event ofX. [X]Y ◦[Y]X(x) ∈ X and [X]Y ◦[Y]X(x) ∼ x,
thus, by definition of a signal, x = x′.

20

(b) Let y be an event of Y . [Y]X ◦ [X]Y (y) ∈ Y and [Y]X ◦ [X]Y (y) ∼ y,
thus, by definition of a signal, y = y′.

Thus [Y]X is bijective.
2. Let X and Y be two signals such that [Y]X is bijective. X � Y because

[Y]X exists. A fortiori [Y]X is surjective i.e. for any y ∈ Y there exists
x ∈ X such that y = [Y]X(x), and thus y ∼ x. Thus Y � X. 2

A signal isomorphism is a bijective signal morphism such that its converse is
also a signal morphism. From Proposition 12, two signals are isomorphic if
and only if they are synchronous.

Signal morphisms can be composed.

Proposition 13 For all signals X, Y and Z such that X � Y � Z,

[Z]Y ◦ [Y]X = [Z]X

Proof. Let us prove this proposition by reducing to the absurd. Suppose that
[Z]X 6= [Z]Y ◦ [Y]X . Thus there exists an x0 ∈ X such that [Z]X(x0) 6= [Z]Y ◦
[Y]X(x0). We have [Z]X(x0) ∼ x0 and x0 ∼ [Z]Y ◦ [Y]X(x0). By transitivity,
[Z]X(x0) ∼ [Z]Y ◦ [Y]X(x0). But [Z]X(x0) and [Z]Y ◦ [Y]X(x0) are both in Z.
they are thus equal by definition of a signal. It is a contradiction. 2

3.2 The Category of Signals

The set of signals and the set of morphisms define a small (preorder) category
SigE with product ⊗ and coproduct ⊕ [19].

More precisely, let X and Y be two objects (i.e. signals) of the category SigE .
The product object X ⊗ Y and the two projections [X]X⊗Y and [Y]X⊗Y are
a product of X and Y . These data satisfy the property that, for any object
Z and all morphisms f : Z −→ X and g : Z −→ Y , there exists a unique
morphism 〈f, g〉 : Z −→ X ⊗ Y such that the following equations hold:

[X]X⊗Y ◦ 〈f, g〉= f (4)

[Y]X⊗Y ◦ 〈f, g〉= g (5)

Indeed, necessarily f = [X]Z (resp. g = [Y]Z) because [X]Z (resp. [Y]Z) is the
unique morphism from Z to X (resp. Y). The unique morphism 〈f, g〉 from
Z to X ⊗ Y is [X ⊗ Y]Z which exists (because Z � X and Z � Y , thus
Z � X ⊗ Y) and establishes (4) and (5) according to Proposition 13.

21

This definition amounts to saying that the following diagram commutes:

X X ⊗ Y
[X]X⊗Yoo [Y]X⊗Y //Y

Z

f=[X]Z

bbEEEEEEEEEEEEEEEEE

〈f,g〉=[X⊗Y]Z

OO

g=[Y]Z

<<zzzzzzzzzzzzzzzzz

The coproduct object X ⊕ Y and the two injections [X ⊕ Y]X and [X ⊕ Y]Y
are a coproduct of X and Y . These data satisfy the property that, for any
object Z and all morphisms f : X −→ Z and g : Y −→ Z, there exists a
unique morphism [f, g] : X⊕Y −→ Z such that the following equations hold:

[f, g] ◦ [X ⊕ Y]X = f (6)

[f, g] ◦ [X ⊕ Y]Y = g (7)

Indeed, necessary f = [Z]X (resp. g = [Z]Y) because [Z]X (resp. [Z]Y) is
the unique morphism from X (resp. Y) to Z. The unique morphism [f, g]
from X ⊕ Y to Z is [Z]X⊕Y which exists (because X � Z and Y � Z, thus
X ⊕ Y � Z) and establishes (6) and (7) according to Proposition 13.

This definition amounts to saying that the following diagram commutes:

X
[X⊕Y]X //

f=[Z]X

""EEE
EEE

EEE
EEE

EEE
EE X ⊕ Y

[f,g]=[Z]X⊕Y

��

Y
[X⊕Y]Yoo

g=[Z]Y

||zzzzz
zzz

zzzz
zzz

zz

Z

The signal ∅ is the unique initial object of the category SigE i.e. for any object
X of SigE there exists a unique morphism [X]∅ : ∅ −→ X. And the coproduct
⊕ is defined for each ordered pair of objects of SigE . Hence the category SigE
has finite coproducts.

It is also possible to construct a terminal object. Let C be the clock corre-
sponding to the set of all instants IE . Let Y ∈ C be a signal of clock C. This
signal Y is a terminal object i.e. for any object X of SigE there exists a unique
morphism [Y]X : X −→ Y . And the product ⊗ is defined for each ordered
pair of objects of SigE . Hence the category SigE has finite products.

Let Y ⇒ Z be the object Y ⊕ Z and ApplyY,Z : (Y ⇒ Z) ⊗ Y −→ Z be the
morphism [Z](Y ⇒Z)⊗Y . ApplyY,Z is correctly defined because (Y ⇒ Z)⊗Y � Z.

22

Indeed:

(Y ⇒ Z) ⊗ Y = (Y ⊕ Z) ⊗ Y

= (Y ⊗ Y) ⊕ (Z ⊗ Y)

= ∅ ⊕ (Z ⊗ Y)

= (Z ⊗ Y)

� Z

In addition, (Y ⇒ Z) ⊗ Y = (Z ⊗ Y). Therefore ApplyY,Z = [Z]Z⊗Y .

SigE is Cartesian closed i.e. for all objects Z and each morphism f : X⊗Y −→
Z there exists a unique morphism λ(f) = [Y ⇒ Z]X : X −→ (Y ⇒ Z) such
that the following diagram 1 commutes:

(Y ⇒ Z) ⊗ Y
Apply

Y,Z //Z

X ⊗ Y

λ(f)⊗[Y]Y

OO

f

::uuuuuuuuuuuuuuuuuuuu

The morphism λ(f) = [Y ⇒ Z]X is correctly defined. Indeed, let x ∈ X. Two
cases are possible:

1. There exists an event y ∈ Y such that x ∼ y. Thus x ∈ X ⊗ Y . The
existence of f implies X ⊗ Y � Z. Thus there exists an event z ∈ Z such
that x ∼ z. we thus have a z′ ∈ Y ⊕ Z or rather z′ ∈ (Y ⇒ Z). Thus
X � (Y ⇒ Z).

2. There exists an event y ∈ Y such that x ∼ y. Thus y ∈ Y ⊕ Z or rather
y ∈ (Y ⇒ Z). Thus X � (Y ⇒ Z).

3.3 Relation with Event Structures

Event structures [17] are a fundamental model for concurrency. As synchronous
structures, they are based on the notion of event. A category of prime event

1 Let f : X −→ Y and g : X ′ −→ Y ′ be two morphisms. The morphism f ⊗ g :
X ⊗ X ′ −→ Y ⊗ Y ′ is defined by:

f ⊗ g = 〈f ◦ [X]X⊗X′ , g ◦ [X ′]X⊗X′〉

23

structures can be defined of which the morphisms model a synchronisation
between two event structures. Indeed, these morphisms are partial functions
η such that η(x) = x′ states that the occurrence of x implies the simultaneous
occurrence of x′. Event structures have a conflict relation which does not exist
between signals. This conflict relation can be seen as an enrichment of the cat-
egory of signals that we will model with a pair of specification structures [18].

Specification Structures Specification structures formalise the idea of en-
riching a semantic universe with a refined notion of property. Let C be a
category. A specification structure S over C is defined by the following data:

• a set PA of “properties over A” , for each object A of C,
• a relation RA,B ⊆ PA× C(A,B) × PB for each pair of objects A, B of C.

We write ϕ{f}ψ for (ϕ, f, ψ) ∈ RA,B (“Hoare triples”). This relation is re-
quired to satisfy the following axioms, for all morphisms f : A −→ B,
g : B −→ C, and for all “properties” ϕ ∈ PA, ψ ∈ PB, and θ ∈ PC:

ϕ{IdA}ϕ (8)

ϕ{f}ψ ∧ ψ{g}θ ⇒ ϕ{g ◦ f}θ (9)

In fact, these axioms are typed versions of the standard Hoare logic axioms
for “sequential composition” and “skip”.

With a category C and a specification structure S over C, we can define a new
category CS. Its objects are pairs (A,ϕ) with A an object of C and ϕ ∈ PA.
Its morphisms f : (A,ϕ) −→ (B,ψ) are morphisms f : A −→ B in CS such
that ϕ{f}ψ. Composition and identities are inherited from C. (8) and (9)
ensure that CS is a category.

Moreover, there is an evident faithful functor from CS to C such that the
image of (A,ϕ) is A. In fact, the notion of specification structure over C is
coextensive with that of faithful functor into C. Indeed, given a faithful functor
F : D −→ C, we can define a specification structure by:

PA =def {ϕ ∈ Obj(D) | F (ϕ) = A}

ϕ{f}ψ ⇔def ∃α ∈ D(ϕ, ψ) · F (α) = f

For instance, if C =def Set, PX =def X, and x{f}y ⇔def f(x) = y, then the
category CS is the category of pointed sets.

24

From signals to event structures We cannot define a specification struc-
ture directly from the category of signals SigE to the category of prime event
structures, because the morphisms of the former are total functions whereas
the ones of the latter are partial functions. Hence, we first define an in-
termediate category PSigE whose objects are those of SigE , and morphisms
f : X −→ Y are, for all signals X and Y , partial functions defined by:

f : X −→ Y

x 7−→

[Y]X(x) if x ∈ X ⊗ Y ,

not defined otherwise.

It is clear that the identities are morphisms and morphisms can be composed
(as in the category Pfn of sets and partial functions).

We relate these three categories by a pair of specification structures.

First, we define a specification structure S1 from PSigE to the category of
signals SigE :

• C =def PSigE
• PX =def {∗X}
• ∗X{f}∗Y ⇔def f is total

Second, we define a specification structure S2 from PSigE to the category of
prime event structures ES (using the notations from [17]):

• C =def PSigE
• PX =def {#X ⊆ X2 | ∀(x, x′, x′′) ∈ X, (x, x′) ∈ #X ∧ x′ ≤ x′′ ⇒ (x, x′′) ∈

#X}

• #X{f}#Y ⇔def

∀x ∈ X, f(x) is defined ⇒ ⌈f(x)⌉ ⊆ f(⌈x⌉)

∀(x1, x2) ∈ X2, f(x1) ∨∨f(x2) ⇒ x1 ∨∨x2

By construction, we obtain that CS2 is the category of prime event structures.

4 Data Dependence

In this section, we extend the notion of synchronous structure to deal with
data dependence.

25

4.1 Dependent Synchronous Structure

We associate a data dependency relation → to synchronous structures such
that a data dependence cannot come from the future.

Definition 3 A dependent synchronous structure is a triple (E ,≪,→) such
that (E ,≪) is a synchronous structure and → is a partial order included in
≪ i.e.

∀x, y ∈ E · x→ y ⇒ x≪ y

The inclusion of the data dependency relation in the preorder of the event
structure guarantees that the value of an event cannot depend on the value
of a future event. Indeed, the preorder represent the global time of the whole
system. The data dependencies of an event can only come from past or present
values of other events.

Temporal Refinement The synchronous paradigm is a good abstraction
for the design and the verification of reactive systems. Particularly, the syn-
chronous language Signal allows the specification of early relational proper-
ties of systems which can then be progressively refined in order to obtain an
executable specification. Actually, we have to cut into the logical instants of
the specification with respect to temporal and data dependence. This transfor-
mation is called a temporal refinement. This notion models the search (by the
Signal compiler for instance) for an execution order of synchronous events.

Definition 4 Let (E1,≪1,→1) and (E2,≪2,→2) be dependent synchronous
structures. A bijective function f from E1 to E2 is a temporal refinement mor-
phism if and only if for any pair of events x, y of E1,

x ∼1 y⇒ f(x) ∼2 f(y) ∨ f(x) <2 f(y) ∨ f(y) <2 f(x) (10)

x <1 y⇒ f(x) <2 f(y) (11)

x→1 y⇒ f(x) →2 f(y) (12)

The atomic properties of events are respected by any temporal refinement
morphism f . An event is indivisible i.e. an event cannot be cut into distinct
events because f is a function. An event cannot be destroyed because f is
total. Distinct events cannot be joined because f is injective. An event can-
not be spontaneously created because f is surjective. (10) enables to order
synchronous events. (11) and (12) respectively guarantee that temporal de-
pendence and data dependence are respected.

26

Temporal refinement morphisms give rise to a partial order ; over depen-
dent synchronous structures (We identify isomorphic ones). For all dependent
synchronous structures (E1,≪1,→1) and (E2,≪2,→2),

(E1,≪1,→1) ; (E2,≪2,→2) ⇔def

(There exists a temporal refinement morphism f : E1 −→ E2)

Dependent synchronous structures such that their events are all synchronous
are minimal elements. Dependent synchronous structures such that distinct
events cannot be synchronous are maximal elements.

Conditional Dependency We define a ternary relation, called conditional
dependency. Intuitively, X C−−→Y states that, at the instants of the clock C,
there are dependencies → from an event of X to an event of Y in the same
instant. That is to say, in this relation, we are only interested in instantaneous
dependencies. Practically this relation is used to schedule computations that
have to be done in the same logical instant. A set of conditional dependencies
is called a scheduling specification. For all signals X, Y and Z,

X Ẑ−−→ Y ⇔def ∀x ∈ X ⊗ Z · ∃y ∈ Y · x ∼ y ∧ x→ y

It follows from this definition that if X Ẑ−−→ Y , then X ⊗ Z � Y ; that is to
say, for any event of X ⊗ Z, there exists a synchronous event of Y .

The following theorem enables to compute the transitive closure of a schedul-
ing specification.

Theorem 3 For all signals X, Y and Z, for all clocks C and D,

X C−−→Y ∧ Y D−−→Z ⇒ X C⊓D−−−−→Z and

X C−−→Y ∧ X D−−→Y ⇒ X C⊔D−−−−→Y

Proof. Let V , W , X, Y and Z be signals.

1. Suppose that X V̂−−→Y and Y Ŵ−−→Z. Let x ∈ X⊗(V ⊗W). By associativ-
ity, we have x ∈ (X⊗V)⊗W . Thus x ∈ (X⊗V) from the definition of ⊗.

But X V̂−−→Y , thus there exists y ∈ Y such that x ∼ y and x → y. From
x ∈ (X ⊗ V) ⊗W and x ∼ y, we deduce that y ∈ Y ⊗W . But Y Ŵ−−→Z.
Thus there exists z ∈ Z such that y ∼ z and y → z. By transitivity of
∼ and →, we respectively have x ∼ z and x → z. Finally X V̂ ⊗W−−−−→Z or
rather X V̂ ⊓Ŵ−−−−→Z.

27

G

D F

E H

C (C ⊔ (D ⊓ F)) ⊓ G

E ⊓ H

D ⊓ H

E ⊓ F ⊓ G

Fig. 8. Abstraction of Scheduling Specifications

2. Suppose that X V̂−−→ Y and X Ŵ−−→ Y . Let x ∈ X ⊗ (V ⊕ W). By left
distributivity, we obtain x ∈ (X ⊗ V) ⊕ (X ⊗ W). Two cases are then
possible:

(a) x ∈ X ⊗ V : From X V̂−−→Y , we deduce there exists y ∈ Y such
that x ∼ y and x→ y.

(b) x ∈ X ⊗W : From X Ŵ−−→Y , we deduce there exists y ∈ Y such
that x ∼ y and x→ y.

Finally we obtain X V̂ ⊕W−−−−→Y or rather X V̂ ⊔Ŵ−−−−→Y . 2

In Figure 8, the diagram on the left depicts a scheduling specification involving
local variables. These are hidden in the diagram on the right, using Theorem 3.

4.2 Valuated Synchronous Structure

We associate a valuation function v to dependent synchronous structures.

Definition 5 Let D be a set (of values). (E ,≪,→, v) is a valuated syn-
chronous structure if and only if (E ,≪,→) is a dependent synchronous struc-
ture and v a total function from E to D.

Let D be a subset of D. A signal is said of domain D if and only if

∀x ∈ X · v(x) ∈ D

We define a preorder �v over valuated signals. For all signals X and Y ,

X �v Y ⇔def X � Y ∧ ∀x ∈ X · v(x) = v([Y]X(x))

This preorder gives rise to an equivalence relation. Two synchronous signals of
which events have same values at same instants are equivalent. For all signals

28

X and Y ,

X=̂vY ⇔def X �v Y ∧ Y �v X

Flow In order to study flows of values of a signal, we define a flow as an
equivalence class of =̂v. The set of flows FE is the quotient of the set SE by
the equivalence relation =̂v.

FE =def SE/=̂v

The equivalence class of a signal X is called the flow of X and is written |X|.
The preorder �v over valuated signals gives rise to a partial order on flows.
For all signals X and Y ,

|X| ≤v |Y | ⇔def X �v Y

Let v⊥ be the extension of v to E⊥:

v⊥ : E⊥ −→ D⊥

x 7−→

v(x) if x ∈ E

⊥ otherwise

Let X be a valuated signal. Its valuated trace vX : IE 7−→ D⊥ is defined by:

vX = v⊥ ◦ tX

For any instant i, vX(i) is equal to the value of X at the instant i if X is
present at this instant, otherwise it is equal to ⊥.

Lemma 7 For any signal X ∈ SE , for any event x ∈ X, v(x) = vX(x̃).

Proof. Let X ∈ SE and x ∈ X.

vX(x̃) = v⊥(tX(x̃)) by definition of vX

= v⊥(x) from Lemma 4

= v(x) by definition of v⊥ 2

|X| and vX are related by the following proposition:

Proposition 14 For all signals X and Y , |X| = |Y | ⇔ vX = vY .

29

Proof. Let X and Y be signals.

1. Suppose that |X| = |Y |. Thus X=̂vY . Let i ∈ IE . If vX(i) = ⊥, then
vY (i) = ⊥ because X and Y are synchronous. If vX(i) = v, then vY (i) = v
by definition of =̂v.

2. Suppose that vX = vY . It is thus clear that X and Y are synchronous. Let
(x, y) ∈ X × Y such that x ∼ y. We have:

v(x) = vX(x̃) from Lemma 7

= vY (x̃) by hypothesis

= vY (ỹ) because x ∼ y

= v(y) from Lemma 7 2

Flow function Let A1, . . . , An and B be subsets of D, and f be a total
function from A1 × · · · × An to B. We define its extension f⊥ by:

f⊥ : A1 × · · · × An ∪ {⊥, . . . ,⊥} −→ B ∪ {⊥}

(x1, . . . , xn) 7−→

f(x1, . . . , xn) if

(x1, . . . , xn) ∈ A1 × · · · × An

⊥ otherwise

We write f |X1, . . . , Xn| the application of f to all simultaneous values of the
signals X1, . . . , Xn:

f |X1, . . . , Xn| = {Y ∈ F | vY = f⊥ ◦ 〈vX × · · · × vXn
〉}

where 〈vX1 × · · · × vXn
〉 is the function such that the image of x1, . . . , xn ∈

(X1 × · · · ×Xn) is vX(x1), · · · , vXn
(xn).

Proposition 15 f |X1, . . . , Xn| is a flow.

Proof. We make the proof for n = 1 but it can easily be generalised for any
n.

1. Let Y1 and Y2 be signals of f |X|. vY1 = f⊥ ◦ vX and vY2 = f⊥ ◦ vX . Thus
vY1 = vY2 . From Proposition 14, we deduce that |Y1| = |Y2|. Thus Y1=̂vY2.

2. Let Y1 ∈ f |X| and Y2 ∈ SE such that Y1=̂vY2. Thus |Y1| = |Y2|. Thus
vY2 = vY1 = f⊥ ◦ vX . Therefore Y2 ∈ f |X|. 2

30

Delay The delay enables to move forward the valuations of a real signal. In
the case of a real signal, the meaning of the delay is clear. Indeed, the value of
an event of a delayed real signal is the value of the previous event if it exists.
If it does not exists, then a default value is given. Prer(u,X, Y) states that
Y is the delayed real signal of the real signal X, initialised with u.

Prer(u,X, Y) ⇔def X=̂Y ∧

∀y ∈ Y ·

y minimal element of Y ⇒ v(y) = u

∃y− ∈ Y · y−−<y ⇒ v(y) = v([X]Y (y−))

This function is well defined because Y is a real signal. Indeed, any event y of
Y is either the minimal element of Y or has a unique predecessor in Y .

We can extend the previous definition such that it takes into account data
dependence:

Prer
→(u,X, Y) ⇔def X=̂Y ∧

∀y ∈ Y ·

y minimal element of Y ⇒ v(y) = u

∃y− ∈ Y · y−−<y ⇒

v(y) = v([X]Y (y−)) ∧

[X]Y (y−) → y

In the case of an imaginary signal, where events are only partially ordered
“along time”, the definition of a delay operator is not obvious. Indeed, there
are many ways to delay an imaginary signal. In fact, we wish to have the
property that a signal and its delayed signal are synchronous. In an imaginary
signal, two events can be in concurrence and if we delay this signal, we have
to choose the one that is “pushed forward” by the delay. For instance, on
Figure 9, the signal Y is a possible delayed signal of X in which we have
chosen to “push forward” events 2, 3 and 5. As this choice would be arbitrary,
the delay of imaginary signals is defined as a relation. Let X and Y be signals.
Y is a delayed signal of X initialised to u is written Pre(u,X, Y) and defined
by:

Pre(u,X, Y) ⇔def

X=̂Y ∧

∃X ′
M ∈ max⊆{X

′ ⊆ X | X ′ is totally ordered} ·

Prer(u,X ′
M , [Y]X〈X

′
M〉)∧

X\X ′
M=̂vY \[Y]X〈X

′
M〉

31

1

2

3

4

5

6

1

0

2

3

4

6

X Y

Fig. 9. Delay

where max⊆E is the set of maximal elements of a set E ordered by inclusion.
This definition states that X and Y are synchronous, and a real subsignal X ′

M

of X is delayed while the rest of X does not change. For instance, in Figure 9,
X and Y are such that Pre(u,X, Y).

We can extend the previous definition such that it takes into account data
dependence:

Pre→(u,X, Y) ⇔def

X=̂Y ∧

∃X ′
M ∈ max⊆{X

′ ⊆ X | X ′ is totally ordered} ·

Prer
→(u,X ′

M , [Y]X〈X ′
M〉) ∧

X\X ′
M=̂vY \[Y]X〈X

′
M〉 ∧

∀x ∈ X\X ′
M · x→ [Y]X(x)

Applied to the example of Figure 9, it gives the graph of Figure 10 where an
arrow between two events x and y denotes a data dependence x→ y.

Down-sampling clock For any signal X of domain {false, true}, the clock
[X] is isomorphic to the set of instants where X is present with the value true:

[X] = X̂ ′ with X ′ = {x ∈ X | v(X) = true}

32

1

2

3

4

5

6

1

0

2

3

4

6

X Y

Fig. 10. Delay with dependence

5 Application to Signal

In this section, we give a denotational semantics of the synchronous language
Signal into valuated synchronous structures. A process is denoted by a class
of dependent synchronous structures. The notation [[.]] is used for different
denotation functions because it is clear from the context which one it is.

Let D be a set of values. Primitive functions are denoted by function over D
(Note that primitive values v are considered as primitive functions of arity 0):

[[f]] ∈ D × · · · × D −→ D

Signal variables are evaluated with the signal environment ρ:

E [[x]]ρ = ρ(x) ∈ SE

Primitive processes are denoted by relations on flows and also by dependence
relations from the signals involved in the right part of an equation to the signal
of the left part, at the clock of the latter (see Fig 11).

Parallel composition and hiding are respectively denoted by the logical “and”
and the existential quantifier of the underlying logic:

E [[P1|P2]]
φ
ρ = E [[P1]]

φ
ρ ∧ E [[P2]]

φ
ρ

E [[P/x]]φρ = ∃X ∈ SE ,
E [[P]]φρ,x7→X

Process variables are evaluated with the process environment φ:

E [[p(x1,...,xn)]]φρ =
(
∃E ′ ∈ φ(p), E ′ = E [[x1]]ρ ∪ . . . ∪

E [[xn]]ρ
)

33

E [[y:=f(x1,...,xn)]]φρ = |E [[Y]]ρ| = f |E [[x1]]ρ, . . . ,
E [[xn]]ρ| ∧

∧n
i=1

E [[xi]]ρ
Ê [[y]]ρ

−−−−→ E [[y]]ρ

E [[z:=x when y]]φρ = E [[z]]ρ=̂v
E [[x]]ρ ⊗

E [[y]]ρ ∧

E [[x]]ρ
Ê [[x]]ρ⊓[E [[y]]ρ]

−−−−−−−−−→ E [[z]]ρ

E [[z:=x default y]]φρ = E [[z]]ρ=̂v
E [[x]]ρ ⊕

E [[y]]ρ ∧

E [[x]]ρ
Ê [[x]]ρ−−−−→ E [[z]]ρ ∧

E [[y]]ρ
Ê [[y]]ρ\Ê [[x]]ρ

−−−−−−−−→ E [[z]]ρ

E [[y:=x$ init v]]φρ = Pre→([[v]], E [[x]]ρ,
E [[y]]ρ)

Fig. 11. Semantics of primitive processes

Process schemes are denoted by the enrichment of environments ρ and φ with
heading declarations (Note that ρ and φ are empty for the main process):

[[(?x1,...,xm !y1,...,yn) P where

process p1=D1;

. . .

process pp=Dp

end]]φρ =

E | ∃(x1, . . . , xm, y1, . . . , yn) ∈ SE , E = (
⋃m

i=1 xi) ∪ (
⋃n

j=1 yj) ∧

[[P]]
φ,p1 7→[[D1]]φρ ,...,pp 7→[[Dp]]φρ

ρ,x1 7→x1,...,xm7→xm,y17→y1,...,yn7→yn

One will find the original trace semantics of Signal [15,16] by restricting our
semantics to real signals. This semantics improves the original trace semantics
by adding a notion of least upper bound for non-deterministic processes. It can
then deal elegantly with data dependence and refinement of Signal processes.

6 Conclusions

We have defined a unified model which formalises all aspects of the develop-
ment of a reactive system using the underlying programming methodology of
synchronous languages. This model uses basic notions of preorder theory and
category theory and has been partially specified and validated using the Coq

34

theorem prover [6]. Synchronous structures allow to model non-determinism
with imaginary signals and clocks. The set of clocks is completed with imag-
inary clocks to form a boolean lattice. Thus, any pair of clocks always has a
least upper bound. In our model, absence is not treated as a special value: It
is consistent with reality. Synchronous structures can also deal elegantly with
data dependence and refinement of synchronous specifications to model the
compilation of a synchronous language.

Acknowledgment We are grateful to Jean-Pierre Talpin and Paul Le Guer-
nic for working on an earlier version of this work, to Paul Caspi, Simon Gay
and Rajagopal Nagarajan for useful discussions, and to anonymous reviewers
for their comments.

References

[1] D. Nowak, J.-P. Talpin, P. Le Guernic, Synchronous structures, in: CONCUR
’99: Concurrency Theory, 10th International Conference, Eindhoven, The
Netherlands, August 24-27, 1999, Proceedings, Vol. 1664 of Lecture Notes in
Computer Science, Springer, 1999, pp. 494–509.

[2] G. Berry, G. Gonthier, The Esterel synchronous programming language: Design,
semantics, implementation, Science of Computer Programming 19 (2) (1992)
87–152.

[3] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous dataflow
programming language LUSTRE, Proceedings of IEEE 79 (9) (1991) 1305–
1320.

[4] A. Benveniste, P. L. Guernic, C. Jacquemot, Synchronous programming with
events and relations: The SIGNAL language and its semantics, Science of
Computer Programming 16 (2) (1991) 103–149.

[5] D. Nowak, J.-R. Beauvais, J.-P. Talpin, Co-inductive axiomatization of a
synchronous language, in: Proceedings of the 11th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs’98), Vol. 1479 of Lecture
Notes in Computer Science, Springer, 1998, pp. 387–399.

[6] The Coq Development Team, The coq proof assistant reference manual, version
6.2, Tech. rep., INRIA (1998).

[7] A. Pnueli, N. Shankar, E. Singerman, Fair synchronous transition systems and
their liveness proofs, in: Formal Techniques in Real-Time and Fault-Tolerant
Systems, Vol. 1486 of Lecture Notes in Computer Science, Springer-Verlag,
1998, pp. 198–209.

35

[8] Benveniste, Caillaud, L. Guernic, Compositionality in dataflow synchronous
languages: Specification and distributed code generation, Information and
Computation 163 (1) (2000) 125–171.

[9] J.-P. Talpin, A. Benveniste, B. Caillaud, C. Jard, Z. Bouziane, H. Canon, BDL,
a language of distributed reactive objects, in: Proceedings of the International
Symposium on Object-Oriented Real-time Distributed Computing (ISORC 98),
1998, pp. 196–205.

[10] P. Caspi, Clocks in dataflow languages, Theoretical Computer Science 94 (1)
(1992) 125–140.

[11] S. J. Gay, R. Nagarajan, Modelling Signal in Interaction Categories, in:
Theory and Formal Methods 1993: Proceedings of the First Imperial College
Department of Computing Workshop on Theory and Formal Methods, Springer-
Verlag Workshops in Computer Science, 1993, pp. 148–158.

[12] S. Abramsky, Interaction Categories (Extended Abstract), in: Theory and
Formal Methods 1993: Proceedings of the First Imperial College Department
of Computing Workshop on Theory and Formal Methods, Springer-Verlag
Workshops in Computer Science, 1993, pp. 57–70.

[13] G. Cardano, Ars Magna, 1545.

[14] N. Halbwachs, Synchronous programming of reactive systems, Kluwer Academic
Publishers, 1993.

[15] I. M. Smarandache, Transformations affines d’horloges: application au codesign
de systèmes temps-réel en utilisant les langages SIGNAL et ALPHA, Ph.D.
thesis, Université de Rennes 1 (Oct. 1998).

[16] D. Nowak, Spécification et preuve de systèmes réactifs, Ph.D. thesis, Université
de Rennes 1, 176 pages (Oct. 1999).

[17] G. Winskel, Event structures, Petri nets: applications and relationships to other
models of concurrency, Springer Lecture Notes in Computer Science 255 (1987)
325–392.

[18] S. Abramsky, S. Gay, R. Nagarajan, Specification structures and propositions-
as-types for concurrency, j-LECT-NOTES-COMP-SCI 1043 (1996) 5–??

[19] S. M. Lane, Categories for the Working Mathematician, Vol. 5 of Graduate
Texts in Mathematics, Springer-Verlag, New York, NY, 1971.

36

