
ENSC-2010 n°257

THÈSE

présentée à l’École Normale Supérieure de Cachan

en vue de l’obtention du grade de

Docteur de l’École Normale Supérieure de Cachan

par Étienne ANDRÉ

Spécialité informatique

An Inverse Method for the Synthesis
of Timing Parameters in Concurrent Systems

Soutenue le 8 décembre 2010 devant un jury composé de

Eugene ASARIN Président du jury
Bernard BERTHOMIEU Rapporteur

Franck CASSEZ Rapporteur
Emmanuelle ENCRENAZ-TIPHENE Co-directrice de thèse

Laurent FRIBOURG Co-directeur de thèse
Marta KWIATKOWSKA Examinatrice

Kim G. LARSEN Examinateur





Abstract

This thesis proposes a novel approach for the synthesis of delays for timed sys-
tems. When verifying a real-time system, e.g., a hardware device or a commu-
nication protocol, it is important to check that not only the functional but also
the timed behavior is correct. This correctness depends on the values of the
delays of internal operations and of the environment.

Formal verification methods guarantee the correctness of a timed system
for a given set of delays, but do not give information for other values of the
delays. Checking the correctness of for various values of those delays can be
difficult and time consuming. It is thus interesting to consider that these delays
are parameters. The problem then consists in synthesizing “good values” for
those parameters, i.e., values for which the system is guaranteed to behave well.

We are here interested in the synthesis of parameters in the framework of
timed automata, a model for verifying real-time systems. Our approach relies
on the following inverse method: given a reference valuation of the parameters,
we synthesize a constraint on the parameters, guaranteeing the same time-
abstract linear behavior as for the reference valuation. This gives a criterion
of robustness to the system. By iterating this inverse method on various points
of a bounded parameter domain, we are then able to partition the parametric
space into good and bad zones, with respect to a given property one wants to
verify. This gives a behavioral cartography of the system.

This method extended to probabilistic systems allows to preserve mini-
mum and maximum probabilities of reachability properties. We also present
variants of the inverse method for directed weighted graphs and Markov Deci-
sion Processes. Several prototypes have been implemented; in particular, IM-
ITATOR II implements the inverse method and the cartography for timed au-
tomata. It allowed us to synthesize parameter values for several case studies
such as an abstract model of a memory circuit sold by the chipset manufac-
turer ST-Microelectronics, and various communication protocols.

Keywords: verification, model checking, timed systems, parametric timed
automata, synthesis of parameters, hardware verification, probabilistic timed
automata, randomized protocols.



ii Abstract



Résumé

Cette thèse propose une nouvelle approche pour la synthèse de valeurs tempo-
relles dans les systèmes temporisés. Lorsque l’on vérifie un système temps-réel,
comme un circuit ou un protocole de communication, il est important de véri-
fier non seulement l’aspect fonctionnel, mais également temporisé. La correc-
tion du système dépend de valeurs temporelles internes et de l’environnement.

Les méthodes formelles de vérification garantissent la correction d’un sys-
tème temporisé pour un ensemble de valeurs temporelles, mais ne donnent pas
d’information pour d’autres valeurs. Vérifier la correction d’un système pour
de nombreuses valeurs peut s’avérer long et difficile. Il est alors intéressant de
les considérer comme paramètres. Le problème consiste alors à synthétiser des
valeurs de ces paramètres pour lesquelles le système est correct.

Nous nous intéressons ici à la synthèse de paramètres dans le cadre des
automates temporisés. Notre approche est basée sur la méthode inverse sui-
vante : à partir d’une instance de référence des paramètres, nous synthétisons
une contrainte sur les paramètres, garantissant le même comportement que
pour l’instance de référence, abstraction faite du temps. Il en résulte un critère
de robustesse pour le système. En itérant cette méthode sur des points dans un
domaine paramétrique borné, nous sommes alors à même de partitionner l’es-
pace des paramètres en bonnes et mauvaises zones par rapport à une propriété
à vérifier. Ceci nous donne une cartographie comportementale du système.

Cette méthode s’étend aisément aux systèmes probabilistes. Nous présen-
tons également des variantes de la méthode inverse pour les graphes orien-
tés valués et les processus de décision markoviens. Parmi les prototypes implé-
mentés, IMITATOR II implémente la méthode inverse et la cartographie pour les
automates temporisés. Ce prototype nous a permis de synthétiser de bonnes
valeurs pour les paramètres temporels de plusieurs études de cas, dont un
modèle abstrait d’une mémoire commercialisée par le fabricant de puces ST-
Microelectronics, ainsi que plusieurs protocoles de communication.

Mots-clés : vérification, model-checking, systèmes temporisés, automates
temporisés paramétrés, synthèse de paramètres, vérification de circuits, auto-
mates temporisés probabilistes, protocoles de communication.



iv Résumé



Remerciements

Je remercie en premier lieu mes directeurs de thèse Emmanuelle ENCRENAZ

et Laurent FRIBOURG pour les pistes de recherche qu’ils ont su me conseiller
au cours de ces trois années, pour leurs conseils avisés, pour nos discussions
parfois contradictoires et toujours bénéfiques.

Je tiens également à remercier Bernard BERTHOMIEU et Franck CASSEZ pour
m’avoir fait l’honneur de relire ma thèse, et y avoir apporté de nombreux com-
mentaires et suggestions d’améliorations constructifs. I would also like to
thank Eugene ASARIN, Marta KWIATKOWSKA and Kim G. LARSEN to have done
me the great honor of accepting to take part to my jury.

Un grand merci également à plusieurs personnes qui m’ont, d’une manière
ou d’une autre, encouragé à entreprendre une thèse : Patrice QUINTON en pre-
mier lieu pour ses conseils très judicieux, Sébastien FERRÉ et Mireille DUCASSÉ

pour m’avoir accordé leur confiance et leur soutien pendant mon Master 2, et
enfin Arnaud GOTLIEB pour ses encouragements.

Cette thèse n’aurait pu exister dans sa forme actuelle sans les personnes
avec qui j’ai eu l’occasion de travailler au cours de ces trois années. En tant
que membre du projet VALMEM, j’ai eu la chance de bénéficier d’une étude de
cas réaliste et très motivante en la mémoire SPSMALL, grâce aux travaux des
autres membres du projet que sont, outre mes deux directeurs de thèse, Abdel-
rezzak BARA, Pirouz BAZARGAN-SABET, Remy CHEVALLIER, Dominique LE DU

et Patricia RENAULT. Cette étude de cas a, par sa complexité, motivé plusieurs
techniques développées dans cette thèse, et notamment la réalisation de IMI-
TATOR II. Merci également à Ulrich KÜHNE pour avoir poursuivi le développe-
ment d’IMITATOR II, et à Romain SOULAT pour avoir expérimenté de nouvelles
techniques permettant ainsi l’analyse de deux modèles de la mémoire SPS-
MALL (et pour avoir martyrisé passion de longues nuits durant). I also thank
Jeremy SPROSTON for reading my thesis and suggesting numerous interesting
enhancements.

Évidemment, merci au LSV pour la très bonne ambiance qui y règne, et qui
permet d’y réaliser une thèse dans d’excellentes conditions. Et puis, comme



vi Remerciements

il est d’usage de glisser dans cet exercice obligé quelques allusions private
que personne ne comprendra ou ne lira jamais, probablement pas même les
personnes concernées, merci aux occupants de la salle Renodo pour leurs
(bruyantes) parties de travail collaboratif du temps où ils tentaient encore de ri-
valiser avec moi, merci à la RATP de m’avoir permis de réaliser Ticket II, qui aura
égayé le mur en face de moi à défaut de m’enrichir, merci à mon presque voi-
sin de bureau pour m’avoir emmené à la découverte des paysages ferroviaires
d’Asie centrale au beau milieu de l’hiver et de ma thèse et au grand dam de nos
encadrants respectifs, merci à Valérie pour avoir contribué à développer nos
capacités créatrices et nous avoir fait découvrir tout Paris à pied, merci à mes
piments pour avoir consciencieusement poussé, même dans les moments dif-
ficiles que représente l’hiver cachannais, merci à ceux (et surtout celles) qui les
ont arrosés – et puis, last but not least comme on dit, merci à mon vélo. Enfin,
merci à mes parents sans qui je ne serais pas là (c’est une tautologie). 最後，
非常感謝黃磊長久以來的支持和幫助。



Contents

Abstract i

Résumé en français iii

Remerciements v

List of Algorithms xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 The Good Parameters Problem . . . . . . . . . . . . . . . . . . . . . 2
1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Classical Problems . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Formal Techniques of Verification . . . . . . . . . . . . . . . 8

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminary Definitions 13
2.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Labeled Transition Systems . . . . . . . . . . . . . . . . . . . 17
2.2.2 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Parametric Timed Automata . . . . . . . . . . . . . . . . . . 24

2.3 The Good Parameters Problem . . . . . . . . . . . . . . . . . . . . . 34
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Representation of Time . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . 36



viii Contents

2.4.3 Time Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 An Inverse Method for PTAs 41
3.1 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The Inverse Method Algorithm . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Remarks on the Algorithm . . . . . . . . . . . . . . . . . . . . 47

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Application to the Flip-flop Example . . . . . . . . . . . . . . . . . . 61
3.5 Variants of the Inverse Method . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Variant with State Inclusion in the Fixpoint . . . . . . . . . . 62
3.5.2 Variant with Union of the Constraints . . . . . . . . . . . . . 67
3.5.3 Discussion on the Variants . . . . . . . . . . . . . . . . . . . 72

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Case Studies 79
4.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 IMITATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2 IMITATOR II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 SR-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 AND–OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 IEEE 1394 Root Contention Protocol . . . . . . . . . . . . . . . . . . 91
4.5 Bounded Retransmission Protocol . . . . . . . . . . . . . . . . . . . 94
4.6 Latch Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 SPSMALL Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7.2 A Short History . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7.3 Manually Abstracted Model . . . . . . . . . . . . . . . . . . . 103
4.7.4 Automatically Generated Model . . . . . . . . . . . . . . . . 106
4.7.5 Larger Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 Networked Automation System . . . . . . . . . . . . . . . . . . . . . 108
4.9 Summary of the Experiments . . . . . . . . . . . . . . . . . . . . . . 111



Contents ix

4.10 Tools Related to IMITATOR II . . . . . . . . . . . . . . . . . . . . . . 113

5 Behavioral Cartography 115
5.1 Beyond the Inverse Method . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 The Behavioral Cartography Algorithm . . . . . . . . . . . . . . . . 117
5.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 SR-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.3 Flip-flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.4 SPSMALL Memory . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.5 Summary of the Experiments . . . . . . . . . . . . . . . . . . 137

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Extension to Probabilistic Systems 139
6.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Probabilistic Timed Automata . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 Timed Probabilistic Systems . . . . . . . . . . . . . . . . . . 142
6.2.2 Probabilistic Timed Automata . . . . . . . . . . . . . . . . . 143
6.2.3 Parametric Probabilistic Timed Automata . . . . . . . . . . 150

6.3 The Inverse Problem for PPTAs . . . . . . . . . . . . . . . . . . . . . 155
6.4 Extension of the Inverse Method . . . . . . . . . . . . . . . . . . . . 156
6.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.1 Root Contention Protocol . . . . . . . . . . . . . . . . . . . . 158
6.5.2 CSMA/CD Protocol . . . . . . . . . . . . . . . . . . . . . . . . 159
6.5.3 Wireless Local Area Network Protocol . . . . . . . . . . . . . 162

6.6 Cartography of PPTAs . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6.1 Principle of the Extension . . . . . . . . . . . . . . . . . . . . 164
6.6.2 Example: Root Contention Protocol . . . . . . . . . . . . . . 165

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7 An Inverse Method for Weighted Graphs 171
7.1 Directed Weighted Graphs . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.1 The Floyd–Warshall Algorithm . . . . . . . . . . . . . . . . . 173
7.1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1.3 An Inverse Method for Weighted Graphs . . . . . . . . . . . 180
7.1.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.1.5 Implementation and Case Studies . . . . . . . . . . . . . . . 186

7.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 187
7.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.2.2 The Inverse Problem for MDPs . . . . . . . . . . . . . . . . . 194



x Contents

7.2.3 An Inverse Method for MDPs . . . . . . . . . . . . . . . . . . 194
7.2.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.2.5 Implementation and Applications . . . . . . . . . . . . . . . 201

7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8 Conclusion and Perspectives 203
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Bibliography 209

A Classical Notions 223
A.1 LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.2 CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A.3 Time-Abstract Bisimulation . . . . . . . . . . . . . . . . . . . . . . . 226

Notations 227

Glossary 229

Index 231

Résumé substantiel 233



List of Algorithms

1 Inverse method algorithm IM(A ,π) . . . . . . . . . . . . . . . . . . . 45
2 Variant IM⊆(A ,π) of the inverse method . . . . . . . . . . . . . . . . 63
3 Variant IM∪(A ,π) of the inverse method . . . . . . . . . . . . . . . . 68

4 Optimization of IM for IMITATOR II . . . . . . . . . . . . . . . . . . . 83
5 Simpler way to describe IM(A ,π) . . . . . . . . . . . . . . . . . . . . 84

6 Behavioral cartography algorithm BC(A ,V0) . . . . . . . . . . . . . 117

7 Floyd–Warshall algorithm FW (G ) . . . . . . . . . . . . . . . . . . . . 175
8 Parametric Floyd–Warshall algorithm PFW (G ,π0) . . . . . . . . . . 181
9 Algorithm of value determination VD(M ,ν) . . . . . . . . . . . . . 191
10 Algorithm of policy iteration PI(M ) . . . . . . . . . . . . . . . . . . 193
11 Parametric value determination pVD(M ,ν) . . . . . . . . . . . . . . 196
12 Inverse method algorithm for MDPs pPI(M ,π0,ν0) . . . . . . . . . 198



xii List of Algorithms



List of Figures

1.1 Flip-flop circuit (left) and its environment (right) . . . . . . . . . . 3

2.1 An example of Timed Automaton . . . . . . . . . . . . . . . . . . . . 19
2.2 Example of Network of Timed Automata . . . . . . . . . . . . . . . 20
2.3 Example of concrete run for a TA . . . . . . . . . . . . . . . . . . . . 21
2.4 Example of trace associated with a concrete run for a TA . . . . . . 22
2.5 Example of trace set of a TA . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 An example of Parametric Timed Automaton . . . . . . . . . . . . . 25
2.7 Example of Network of Parametric Timed Automata . . . . . . . . 27
2.8 Example of symbolic run for a PTA . . . . . . . . . . . . . . . . . . . 30
2.9 Example of trace associated with a symbolic run of a PTA . . . . . 31
2.10 Example of trace set of a PTA . . . . . . . . . . . . . . . . . . . . . . 32
2.11 A “NOT” gate (left) and its environment (right) . . . . . . . . . . . . 32
2.12 PTA modeling a “NOT” gate using one interval of delays . . . . . . 33
2.13 PTA modeling a “NOT” gate using a bi-bounded inertial model . . 34

3.1 Trace set of the flip-flop circuit under π0 . . . . . . . . . . . . . . . 43
3.2 A toy PTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 PTA showing the necessity of the fixpoint of IM . . . . . . . . . . . 47
3.4 Trace set of A [π0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Trace set of A [π], for any π |= K ′

0 . . . . . . . . . . . . . . . . . . . . 48
3.6 PTA explaining the intersection of constraints returned by IM . . . 48
3.7 An example of PTA for which IM does not terminate . . . . . . . . 54
3.8 PTA showing the non-confluence of algorithm IM . . . . . . . . . . 54
3.9 PTA showing the non-CTL-equivalence of IM . . . . . . . . . . . . 57
3.10 A PTA Avar for comparing the variants of IM . . . . . . . . . . . . . 72
3.11 Trace set of Avar under π0 . . . . . . . . . . . . . . . . . . . . . . . . 73
3.12 Over trace set of Avar[π] for π |= K ⊆ . . . . . . . . . . . . . . . . . . 73
3.13 Possible trace sets of Avar[π] for π |= K ∪ . . . . . . . . . . . . . . . . 74
3.14 Comparison of the constraints synthesized for Avar . . . . . . . . . 75



xiv List of Figures

4.1 IMITATOR II inputs and outputs in inverse method mode . . . . . . 81
4.2 IMITATOR II internal structure . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Example of trace set automatically output by IMITATOR II . . . . . 83
4.4 SR latch (left) and environment (right) . . . . . . . . . . . . . . . . 87
4.5 Trace set for the SR latch under K0 . . . . . . . . . . . . . . . . . . . 88
4.6 AND–OR circuit (left) and its environment (right) . . . . . . . . . . 88
4.7 Trace of the AND–OR circuit under π0 . . . . . . . . . . . . . . . . . 90
4.8 PTA modeling node i in the Root Contention Protocol . . . . . . . 92
4.9 PTA modeling wire i in the Root Contention Protocol . . . . . . . . 93
4.10 Trace set of the RCP output by IMITATOR II . . . . . . . . . . . . . . 94
4.11 A latch circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.12 Environment for the latch circuit . . . . . . . . . . . . . . . . . . . . 97
4.13 Methodology of the VALMEM project . . . . . . . . . . . . . . . . . 99
4.14 Transistor representation of the SPSMALL memory . . . . . . . . . 100
4.15 Environment for the write operation of SPSMALL . . . . . . . . . . 101
4.16 Abstract model of the SPSMALL memory (write operation) . . . . 103
4.17 PTAs modeling the write operation of SPSMALL . . . . . . . . . . . 104
4.18 Abstract model of the SPSMALL memory . . . . . . . . . . . . . . . 107
4.19 Example of Networked Automation Systems (NAS) . . . . . . . . . 109

5.1 IMITATOR II inputs and outputs in cartography mode . . . . . . . . 121
5.2 Example of cartography automatically output by IMITATOR II . . . 122
5.3 Trace set of tile 1 for the SR latch . . . . . . . . . . . . . . . . . . . . 123
5.4 Trace set of tile 2 for the SR latch . . . . . . . . . . . . . . . . . . . . 123
5.5 Trace set of tile 3 for the SR latch . . . . . . . . . . . . . . . . . . . . 123
5.6 Trace set of tile 4 for the SR latch . . . . . . . . . . . . . . . . . . . . 124
5.7 Trace set of tile 5 for the SR latch . . . . . . . . . . . . . . . . . . . . 124
5.8 Trace set of tile 6 for the SR latch . . . . . . . . . . . . . . . . . . . . 124
5.9 Behavioral cartography of the SR latch according to δ1 and δ2 . . . 125
5.10 Behavioral cartography of the flip-flop according to δ+3 and δ+4 . . 127
5.11 Trace set of tile 3 for the flip-flop case study . . . . . . . . . . . . . 127
5.12 Trace set of tile 7 for the flip-flop case study . . . . . . . . . . . . . 128
5.13 Environment for the flip-flop circuit with D = 0 . . . . . . . . . . . 129
5.14 Behavioral cartography of the flip-flop for parameters THold and δ+2 130
5.15 Cartography of the SPSMALL memory . . . . . . . . . . . . . . . . . 132
5.16 Cartography of the SPSMALL memory (after partition) . . . . . . . 132
5.17 Cartography of the SPSMALL memory (generated model) . . . . . 134
5.18 Cartography of the SPSMALL memory (full coverage) . . . . . . . . 135
5.19 Cartography of the generated model of the SPSMALL memory (af-

ter partition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



List of Figures xv

6.1 Example of probabilistic timed automaton . . . . . . . . . . . . . . 144
6.2 Examples of probabilistic timed automata satisfying neither de-

terminism on actions nor reset unicity (left) and satisfying both
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Example of path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4 A probabilistic timed automaton containing a deadlock . . . . . . 149
6.5 Example of PPTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6 Example of trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.7 Example of non-probabilistic version of a PPTA . . . . . . . . . . . 154
6.8 PPTA modeling node i in the Root Contention Protocol . . . . . . 158
6.9 CSMA/CD Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.10 CSMA/CD Station i . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.11 Behavioral cartography of the Root Contention Protocol accord-

ing to delay and s_min . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 An example of Directed Weighted Graph . . . . . . . . . . . . . . . 174
7.2 Example of path of a DWG . . . . . . . . . . . . . . . . . . . . . . . . 174
7.3 An example of PDWG . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.4 An example of Markov Decision Process . . . . . . . . . . . . . . . 189
7.5 Our example of MDP associated with policy ν . . . . . . . . . . . . 191
7.6 An example of Parametric Markov Decision Process . . . . . . . . 195

A.1 LTL semantics for infinite words over 2AP . . . . . . . . . . . . . . . 224



xvi List of Figures



List of Tables

3.1 Locations of the flip-flop circuit . . . . . . . . . . . . . . . . . . . . 43

4.1 Values of the signals for each of the locations of the SR-latch . . . 87
4.2 Locations of the AND–OR circuit . . . . . . . . . . . . . . . . . . . . 90
4.4 Summary of experiments for the inverse method . . . . . . . . . . 112

5.1 Summary of experiments for the cartography algorithm . . . . . . 137

6.1 Results of PRISM for the RCP . . . . . . . . . . . . . . . . . . . . . . 159
6.2 Results of PRISM for the CSMA/CD . . . . . . . . . . . . . . . . . . . 162
6.3 Results of PRISM for the IEE 802.11 Protocol . . . . . . . . . . . . . 163





Chapter 1

Introduction

When did everything start having
an expiration date?

Chungking Express
(Wong Kar-wai)

The importance of computer systems has dramatically increased in the last
decades. Critical systems, involving human lives, need to be perfectly reliable,
with a total absence of any inappropriate behavior, such as failures or unex-
pected sequences of actions. One can test a given system to check the absence
of inappropriate behaviors for a given environment, by directly executing the
system for this environment; however, although testing a system can show the
absence of bad behavior for a given execution, no guarantee is given in the gen-
eral case, for different scenarios of the environment. Moreover, if there is some
nondeterminism in the execution, the correctness of a test case does not give
any guarantee, even exactly for the same environment. As a consequence, test-
ing can be used in order to find possible errors in a system, but usually not
to show its correctness. This is why formal verification is needed, allowing to
prove the correctness of a system with respect to some properties, using math-
ematical models and proofs.

When considering timed systems, i.e., systems involving time elapsing be-
tween actions, correctness also takes timing constraints into account. In a
real-time environment, i.e., for systems working in a highly interactive environ-
ment, such as hardware devices or telecommunication protocols, it is not suf-
ficient to prove that the system behaves well: one also needs to prove that this
good behavior always occurs within a given interval of time. For example, when
designing the computer system of a car, one can formally prove that, in case of
a collision, the airbag will eventually inflate. However, one easily understands



2 Chapter 1. Introduction

that this proof is not enough, and that one should prove that the airbag will
inflate within a given amount of time (hopefully short) after the collision oc-
curred. In other words, timed systems have to meet not only constraints on the
order of the events, but also quantitative constraints on delays between these
events.

Moreover, in a concurrent environment where several timed systems inter-
act with each other, an action occurring too late (or, more generally, at a wrong
time) in a subsystem can change the global behavior of the whole system, and
have dramatic consequences. For example, the Therac-25 machine, a radiation
therapy machine, severely injured and killed several patients in the 1980s be-
cause the patients were given by mistake high overdoses of radiation. Beside
numerous bugs in the software code and in the development process, one of
the causes for this dramatic malfunctioning was a race condition, i.e., an un-
expected ordering of actions leading to unpredictable behaviors. The bug in
the software allowing this race condition was difficult to detect by simple test-
ing, because it occurred only after a specific sequence of actions within a short
amount of time, and the engineers having tested the system were not familiar
enough with the machine for them to perform this sequence of actions quickly
enough.

1.1 The Good Parameters Problem

When designing a real-time system, it is not sufficient to prove the correctness
for some given delays: one also wants to know for which delays the behavior of
the system is correct. Checking the correctness of the system for various values
of those delays can be difficult and time consuming. It is therefore interesting to
reason parametrically, by considering that these delays are unknown constants,
or parameters. The problem then consists in synthesizing good values for those
parameters, i.e., values for which the system is guaranteed to behave well. This
can be done by synthesizing a constraint on these parameters guaranteeing a
correct behavior.

This thesis faces the following good parameters problem, as mentioned
in [FJK08] in the framework of hybrid systems: “given a timed system involv-
ing delays, find values for those delays seen as parameters within a bounded
domain for which the system behaves well”.

Finding suitable values for the timing delays is of interest for guaranteeing
a good behavior in a concurrent timed system. This allows a notion of robust-
ness: one can guarantee that the values around a given value of the delays will
not impact the overall behavior of the system, or will still guarantee a (possibly
different) good behavior. Moreover, it allows the optimization of some of the



1.1. The Good Parameters Problem 3

timing delays, without changing the overall behavior of the system.
However, this problem is generally difficult for concurrent timed systems.

Such systems involve both a functional behavior (i.e., sequences of actions,
possibly concurrent) and a timed behavior (i.e., durations between two ac-
tions). As a consequence, abstracting either time or functionalities leads in
general to too imprecise results. Simple heuristics do generally not apply to
this framework: for example, in order to minimize the response (or computa-
tion) time of a system, one may want to minimize every (or some) interme-
diate timing delay. However, it is unfortunately well known (in particular, in
hardware verification) that diminishing an intermediate timing delay can actu-
ally increase the global response or computation time. As a consequence, one
should consider all possibilities. First, this may not be possible if one consid-
ers real-valued timing delays, because this would result in an infinite number
of models to verify. Second, even with suitable abstractions allowing to group
interval of values together, this may result in the explosion of the state-space if
the considered model is too precise.

A Motivating Example. As an example, consider the asynchronous “D flip-
flop” circuit described in [CC07] and depicted in Figure 1.1 left. It is composed
of 4 elements (G1, G2, G3 and G4) interconnected in a cyclic way. Elements G1

and G3 are made of an “OR” gate and a “NAND” gate. Element G2 is a single
“NAND” gate, and element G4 is a single “NOT” gate (or inverter). The environ-
ment involves two input signals D and CK . The global output signal is Q.

D

CK

Q

G1

G2

G3

G4

[7;7]

[5;6]
[8;10]

[3;7]

D

CK

Q

TSetup THold

TLO

THI

TCK→Q

Figure 1.1: Flip-flop circuit (left) and its environment (right)

We consider a bi-bounded inertial model for gates (see [BS95, MP95]),
where any change of the input may lead to a change of the output (after some
delay). As a consequence, each gate Gi has a timing delay in the paramet-
ric interval [δ−i ,δ+i ], with δ−i ≤ δ+i . There are 4 other timing parameters (viz.,
THI ,TLO,TSetup, and THold) used to model the environment. The output signal
of a gate Gi is denoted by gi (note that g4 =Q). The rising (resp. falling) edge of
signal D is denoted by D↑ (resp. D↓) and similarly for signals CK ,Q, g1, . . . , g4.



4 Chapter 1. Introduction

We consider an environment starting from D = CK = Q = 0 and g1 = g2 =
g3 = 1, with the following ordered sequence of actions for inputs D and CK : D↑,
CK ↑, D↓, CK ↓, as depicted in Figure 1.1 right.

We consider that the behavior of this circuit is correct if, for this environ-
ment, the rise of signal Q (i.e., action Q↑) always occurs before the fall of sig-
nal CK (i.e., action CK ↓).

The question that now arises is: what are the possible values for these
12 timing parameters such that the circuit behaves in a correct way? As said
above, this is a difficult problem, in the sense that testing all the possible values
for those parameters is simply not possible.

We will develop in this thesis techniques allowing to answer this question.

Timed Automata. We will here mostly focus on the good parameters problem
in the framework of timed automata [AD94]. Timed automata are an extension
of the class of standard finite-state automata, making use of clocks, which are
real-valued variables evolving linearly at the same rate. Those clocks are com-
pared with the delays of the system in constraints that must be verified in order
to stay in a state of the automaton, or in order to take a transition. One can also
reset some clocks when firing transitions. The model of timed automata has
been widely used in order to study and verify hardware devices or communica-
tion protocols. However, timed automata can verify the correctness of a system
only for one given set of values for the timing parameters.

When facing the problem of synthesis of parameters ensuring the correct-
ness of the system, one needs to consider parametric timed automata [AHV93].
Parametric timed automata are an extension of timed automata to the paramet-
ric case, allowing in the constraints the use of parameters in place of constants.

Contributions. We propose here a novel approach for solving the good pa-
rameters problem in the framework of parametric timed automata. This ap-
proach relies on the following inverse method: given a reference valuation of
the parameters, we synthesize a constraint on the delays viewed as parameters,
guaranteeing the same time-abstract behavior as for the reference valuation.
Roughly speaking, this time-abstract behavior only relies on actions, and not
on the time elapsing between actions. This method has two main advantages.
First, it gives a criterion of robustness by ensuring the correctness of the system
for other values for the parameters around the reference valuation. This is of
interest when implementing a system: indeed, the exact model with (for exam-
ple) integer values for timing delays that has been formally verified will neces-
sarily be implemented using values which will not be exactly the ones that have
been verified. Second, it allows the system designer to optimize some delays



1.1. The Good Parameters Problem 5

without changing the overall functional behavior of the system.
By iterating this inverse method on various points of a bounded parameter

domain, we are then able to separate parameter zones into zones for which the
time-abstract behavior of the system is uniform. This gives a behavioral car-
tography of the system. One can then partition those zones into good zones
and bad zones, with respect to a given property one wants to verify. The main
interest is that this cartography does not depend on the property one wants to
verify: only the partition into good and bad zones actually does. As a conse-
quence, when verifying other properties, it is sufficient to check the property
for only one point in each zone in order to get the new partition.

Two versions of prototypes have been implemented; in particular, IMITA-
TOR II implements the inverse method, and its behavioral cartography algo-
rithm, in the framework of timed automata. This prototype allowed us to syn-
thesize values for the parameters of several case studies such as abstractions
of a memory circuit sold by the chipset manufacturer ST-Microelectronics, or
communication protocols.

Both this inverse method and the behavioral cartography algorithm natu-
rally extend to probabilistic timed automata. In this framework, the constraint
synthesized guarantees that, for any valuation of the parameters of a constraint
synthesized by the inverse method, the minimum (resp. maximum) probabil-
ities of reaching a given state will be the same. Besides the advantages inher-
ited from the non-probabilistic framework, the main practical advantage of this
extension is that it allows the rescaling of constants. Indeed, when verifying
properties on probabilistic timed systems, for example using the PRISM model
checker [HKNP06], the verification time and memory may highly depend on
the size of the constants of the system. As a consequence, it can sometimes
be extremely difficult (or even impossible) to compute probabilities for the “of-
ficial” constants of a case study, and one has to rescale them in an approxi-
mate way, without much guarantee of correctness. By synthesizing a constraint
guaranteeing the equality of reachability properties, one may safely rescale the
constants of the system, and compute the probabilities for smaller constants
(within the constraint).

The underlying principle of the inverse method is not strongly related to
the framework of timed automata, and may also be applied to other for-
malisms. As a consequence, we generalize the synthesis of parameters in two
untimed frameworks, namely Directed Weighted Graphs and Markov Decision
Processes. In that case, the parameters do not necessarily correspond to timing
delays. We extend the inverse method to those two frameworks as follows. First,
in the framework of Directed Weighted Graphs, we synthesize a constraint on
the costs of the system seen as parameters guaranteeing that the path of opti-
mal cost between any two nodes of a graph will remain the same, for any valu-



6 Chapter 1. Introduction

ation of the parameters satisfying that constraint. Second, in the framework of
Markov Decision Processes, which allow to consider untimed probabilistic sys-
tems, we synthesize a constraint on the costs seen as parameters guaranteeing
that the optimal policy of the system remains the same, for any valuation of the
parameters satisfying that constraint. Prototypes have been implemented.

1.2 Context

This thesis focuses on the verification and synthesis of parameters in the frame-
work of real-time systems. This problem has applications in various domains
such as software analysis, hardware analysis, or networking protocols, and can
be used for industrial applications in the medical industry, aeronautics, biol-
ogy, etc. We develop hereafter some of the classical problems and techniques
related to this problem.

1.2.1 Classical Problems

Computation of Response Time. When verifying a real-time system, one of
the major problems is the computation of the response time of the system. This
classical problem consists, given an environment, i.e., a scenario for the inputs
of the system, in computing the time between the change of the inputs and the
change of a given output. This computation of response time is critical in par-
ticular when considering the verification of hardware, and more specifically of
asynchronous circuits. An approach to compute the response time of a system
is the Time Separation of Events (see, e.g., [CDY01] for an extensive survey).
As said in [CDY01]: “The behavior of asynchronous and concurrent systems is
naturally described in terms of events and their interactions. A fundamental
problem in analyzing such systems is to determine bounds on the time sepa-
ration of events. Stated informally, we seek answers to questions such as: How
late can event i occur after event j ? for arbitrary events i and j . The problem
of computing time separation bounds is compounded in practice by statisti-
cal variations in manufacturing and operating conditions that introduce un-
certainties in component delays. Consequently, finding bounds on time sep-
aration of events in the presence of uncertain component delays is an impor-
tant practical problem.” The system can be represented under the form of an
(oriented) timing constraint graph [CSD97], where nodes represent events, and
the directed edges represent dependencies between them. Various techniques
have been proposed to solve this problem, either exact or using approximations
(see, e.g., [CDY01, EF08] for a survey).



1.2. Context 7

Worst-Case Execution Time. A strongly related problem is the worst-case exe-
cution time (WCET) of some computation of a hardware device. It corresponds
to the maximum length of time it takes to execute a given task on this device,
and thus gives an upper bound on the execution time. Although it is well-
known that giving an upper bound on the execution of a program (in the gen-
eral sense) is impossible, one can compute such an upper bound on real-time
systems, which can be seen as a restricted form of programming [WEE+08]. In
most cases, the state space is too large to exhaustively explore all possible ex-
ecutions and thus determine the exact worst-case execution time. As a con-
sequence, one needs to define methods using abstractions or overapproxima-
tions, with the smallest possible loss of precision. Various techniques can be
used; among them, one can first cite static program analysis [CC77, NNH99],
which creates an abstraction of the device while avoiding to actually execute it.
Second, (exact) simulation is a classical technique to estimate execution time
for hardware verification using an exact model. A survey on techniques for
WCET analysis can be found in [WEE+08], providing in particular a thorough
overview of dedicated tools.

Sensitivity Analysis. Beside the verification of concurrent timed systems, we
are also interested in the synthesis of parameters. In particular, our inverse
method aims at synthesizing parameter valuations around a reference valua-
tion, and corresponding to the same behavior. This problem is related to the
sensitivity analysis, i.e., the study of the variation of some inputs on the global
behavior of a system. This domain has very large applications in areas such as
finance, mathematics, chemistry, environment, etc. In particular, it allows to
give a condition of robustness to the system, by finding sets of parameters or
input behaviors for which the global behavior of the system will remain (rela-
tively) unchanged.

Although, to our knowledge, no attempt of performing a sensitivity analysis
on timed automata has been performed, the notion of robust timed automata
should be mentioned: this approach guarantees the good behavior of timed
automata even for small variations (or drifts) of the clocks. Robust timed au-
tomata will be discussed in Section 2.4.2.

We will also extend our work on timed systems to the untimed world, and
more precisely to directed weighted graphs (see Section 7.1). In that case, we
get much closer to the sensitivity analysis community. In particular, the au-
thors of [ROC05] address a very similar problem to the problem we face in Sec-
tion 7.1. We will be interested in synthesizing constraints on the weights of di-
rected weighted graphs, such that the shortest paths of the graph all remain the
same as for a reference valuation of the weights. The main difference with the



8 Chapter 1. Introduction

work of [ROC05] is that we reason parametrically. Indeed, whereas the authors
of [ROC05] determine the maximum and minimum weights that each edge can
have so that a given path remains optimal, we are able to infer relations un-
der the form of a constraint between the weights of the graph. More will be
discussed in Section 7.3.

1.2.2 Formal Techniques of Verification

Testing the correctness of a system by simulation is often performed when ver-
ifying the correctness of a system in practice. However, simulation and test-
ing techniques only consider specific environments, and cannot give guaran-
tees on all the possible executions. As a consequence, those techniques are
generally inadequate for the verification of critical systems. One needs formal
techniques, involving formal semantics, modeling languages, specification lan-
guages, and verification algorithms.

Model Checking. The model checking approach considers a system and a
property to check on the system, and builds on the one hand a mathemat-
ical model of the system, and on the other hand a mathematical model for
the property [EC80, CE82]. Techniques are then applied, allowing to automati-
cally check whether the mathematical model of the system satisfies the math-
ematical model of the property. If yes, we say that the system meets the spec-
ification. Mathematical models for systems can be oriented graphs, i.e., au-
tomata and their extension (including timed automata [AD94]), as well as Petri
nets [Pet62, Mer74] or process algebra. Properties can also be modeled by var-
ious structures, such as extensions of automata (including timed automata) or
logics, including temporal logics (e.g., [Pnu77, CE82, ACD93]).

Temporal Logics. Temporal logics are extensions of propositional logic, al-
lowing to specify the behavior of a reactive system over time using temporal
modalities. Those logics allow to specify order on events, but generally not to
introduce timing constraints specifying the time value at which an event must
occur. Temporal logics allow in particular the specification of properties such
as reachability (possibility that a certain event occurs), safety (impossibility
that a certain set of events occurs), liveness (ultimate occurrence of a certain
event) or fairness (occurrence infinitely often of a certain event). Temporal log-
ics can be either linear or branching.

Linear Temporal Logic (LTL) is a logic introduced by Pnueli [Pnu77]. It is lin-
ear in the sense that it considers that time steps have only one (discrete) succes-
sor. Therefore, it is possible to express ordering of events on single paths, and



1.3. Organization of the Thesis 9

not on tree structures: LTL expresses path-based properties. Various variants
and extensions of LTL have been studied (see, e.g., [GPSS80, LPZ85, Lam94]).
The logic LTL is widely used in the framework of model checking, and various
algorithms have been proposed. An efficient model checker allowing to check
properties expressed using LTL is Spin [Hol03].

We now consider branching temporal logics. Whereas linear temporal log-
ics focus on infinite sequence on states, branching logics focus on infinite trees
of states. As a consequence, properties specified using branching temporal log-
ics can express the notion of choice, in the sense that one can express the dif-
ferent possible futures of a given state. In particular, CTL [CE82] is a widely
used branching temporal logic. As for LTL, CTL is widely used in the frame-
work of model checking, and various algorithms have been proposed. Model
checkers include SMV [McM93] (which stands for Symbolic Model Verifier) and
NuSMV [CCG+02]. It can be shown that the expressiveness of LTL and CTL is
incomparable, i.e., some properties can be expressed using LTL only, and some
others using CTL only (see, e.g., [BK08] for a survey).

We can consider that temporal logics such as LTL and CTL are time-abstract
logics, in the sense that they only focus on the order of events, and not on the
precise time at which they occur. One can then extend the temporal logics with
time, thus obtaining timed temporal logics. Those logics do not only check that
constraints on the order of the events are satisfied, but also that quantitative
constraints on delays between these events are satisfied. A famous example
of timed temporal logic is the timed CTL (TCTL) logic [ACD93], which allows
to express properties specifying both a branching behavior and interval of time
within which events may occur. The TCTL logic is widely used in the framework
of timed model checking, in particular to verify properties on models expressed
using timed automata. Powerful model checkers for (fragments of) TCTL in-
clude UPPAAL [LPY97] and KRONOS [Yov97].

Formalisms for Modeling Timed Systems. Structures for the modeling and
the verification of real-time systems include Time Petri Nets [Mer74], Timed
Automata, Time Separation of Events using timing constraint graphs [CSD97],
and various extensions. We provide a survey on various formalisms for the
modeling of timed systems in Section 2.4.

1.3 Organization of the Thesis

This thesis is structured as follows.
In Chapter 2, we recall the major formalisms used in this thesis. We first

recall the notion of clocks, parameters and constraints. We then recall timed



10 Chapter 1. Introduction

automata, and their extension to parametric timed automata. We also for-
mally state the good parameters problem we intend to solve in this thesis in
the framework of parametric timed automata. We finally justify our choice of
the formalism of timed automata, and present its specificities with respect to
other timed formalisms (in particular Time Petri Nets).

In Chapter 3, we introduce the inverse method, which allows to generalize
the behavior of a timed automaton by synthesizing a constraint on the param-
eters guaranteeing the same time-abstract behavior.

In Chapter 4, we present our implementation, the tool IMITATOR II, and we
apply our method to various case studies of asynchronous hardware circuits
and communication protocols.

In Chapter 5, we show how an iteration of the inverse method can solve
the good parameters problem for parametric timed automata, by computing a
behavioral cartography of the system. We also apply this algorithm to various
case studies using IMITATOR II.

In Chapter 6, we extend our inverse method, and the behavioral cartogra-
phy, to the framework of probabilistic timed automata. In that case, we synthe-
size a constraint guaranteeing the same values for the minimum and maximum
probabilities of reachability properties.

In Chapter 7, we introduce variants of the inverse method for two different
frameworks: Directed Weighted Graphs, and Markov Decision Processes.

We finally conclude and present directions of future research in Chapter 8.
Related work is mentioned at the end of each chapter.

VALMEM Project. This thesis has been done in the framework of the ANR
VALMEM project “Functional and Timed Validation of Embedded Memories
Using Formal Methods”, grant ANR-06-ARFU-005, involving the LIP 6 labo-
ratory (Université Pierre et Marie Curie), the LSV laboratory (École Normale
Supérieure de Cachan), and the chipset manufacturer ST-Microelectronics.
Many techniques developed in this thesis have been actually designed in order
to be able to synthesize constraints to guarantee the good behavior of various
models and abstractions of the SPSMALL memory, which is a memory circuit
sold by ST-Microelectronics. Due to its internal complexity, this memory has
been a very interesting motivation throughout my thesis.

Joint Work. Most of this work is a joint work with Laurent Fribourg and Em-
manuelle Encrenaz. Thomas Chatain collaborated on the inverse method for
parametric timed automata (Chapter 3). Jeremy Sproston collaborated on the
extension of the inverse method to the framework of probabilistic timed au-
tomata (Chapter 6). The fixpoint of the inverse method benefited from discus-



1.3. Organization of the Thesis 11

sion with Laurent Doyen. The counter-example showing the non-CTL equiva-
lence of the inverse method was proposed by Jeremy Sproston.

The analysis of the SPSMALL memory (Section 4.7) has been done in the
framework of the ANR VALMEM project involving (besides Emmanuelle En-
crenaz, Laurent Fribourg and me) Remy Chevallier (from ST-Microelectronics),
Abdelrezzak Bara, Pirouz Bazargan-Sabet, Dominique Le Du and Patricia Re-
nault (from LIP 6). The analysis of the SIMOP Networked Automation Sys-
tem (Section 4.8) has been done in the framework of the SIMOP project in the
framework of Institut Farman (Fédération de Recherche CNRS, FR3311), with
the contribution of Olivier De Smet, Bruno Denis and Silvain Ruel (LURPA,
École Normale Supérieure de Cachan).

When coming to the design and the implementation of the tool IMITATOR II
(Chapter 4), Ulrich Kühne implemented several modifications allowing to de-
crease the computation time. Bertrand Jeannet has been of great help when
linking the tool with the APRON library. Daphné Dussaud implemented the
graphical output of the cartography. Romain Soulat has been a great contrib-
utor of IMITATOR II by applying the tool to various case studies; in particular,
he applied the cartography algorithm implemented in IMITATOR II to the SPS-
MALL memory, using a very helpful optimization of his own.



12 Chapter 1. Introduction



Chapter 2

Preliminary Definitions

You’re entering a world of pain.

The Big Lebowski
(Joel and Ethan Coen)

In this chapter, we present the formalism used throughout this thesis. We
focus on a way to model timed systems by means of timed automata [AD94].
Timed automata are an extension of standard finite-state automata allowing
the use of clocks, i.e., real-valued variables increasing linearly at the same rate.
Such clocks can be compared with constants in constraints that allow (or not) to
stay in a location (“invariants”) or to take a transition (“guards”). At each tran-
sition, it is possible to reset some of the clocks of the system. This formalism
allows the parallel composition of several timed automata, which behave like
a single one, and thus provides the designer with a powerful and intuitive way
to represent timed systems. Above all, the main theoretical advantage of timed
automata relies in its decidability results. In particular, it has been shown that
the reachability of a state is decidable. Moreover, various timed temporal logics
(e.g., [ACD93]) have been designed, and various decidability results have been
shown (e.g., [ACD93, HRSV02, WY03]). Finally, it is important to note that the
model of Timed Automata is very sensitive to the size of the automata and the
number of automata in parallel, thus often leading to the state-space explosion
problem. However, powerful tools, such as the UPPAAL [LPY97] model checker,
have been designed allowing to model and verify very efficiently timed systems
modeled by Timed Automata.

We are interested in this thesis in synthesizing values for timing parame-
ters of a system, guaranteeing a good behavior. As a consequence, we will
use a parametric extension of timed automata. Those parametric timed au-
tomata [AHV93] allow in guards and invariants the use of parameters (in the



14 Chapter 2. Preliminary Definitions

sense of unknown constants) in place of rational constants. Unfortunately, for
most interesting problems, parametric timed automata lose the decidability re-
sults proved for timed automata. In particular, the reachability of a state is not
decidable (although semi-algorithms do exist, i.e., if the algorithm terminates,
then the result is correct). Moreover, parametric timed automata are even more
sensitive to the state space explosion problem, because of the addition of the
parameters. In practice, this comes also from the fact that the data struc-
tures used to represent parametric timed automata are far less efficient than
the ones used for timed automata (typically Difference Bound Matrices, pro-
posed in [BM83] for the analysis of Time Petri Nets, and introduced in [Dil90]
for Timed Automata). Structures allowing to handle parametric timed mod-
els include Parametric Difference Bound Matrices (an extension of Difference
Bound Matrices, proposed in [HRSV02]), SAT-solvers, SMT-solvers and poly-
hedra. Avoiding the explosion of the state space, and finding cases for which
analyses are decidable for parametric timed automata, are actually some of the
motivations for this thesis.

We will also state formally in this chapter the good parameters problem in
the framework of parametric timed automata. This problem can be considered
as the central problem of this thesis.

Plan of the chapter. We first recall in Section 2.1 the notion of linear con-
straints on the clocks and the parameters. We then describe in Section 2.2
the formalism of Timed Automata, and its extension to Parametric Timed Au-
tomata. We introduce in Section 2.3 the good parameters problem that we will
intend to solve in this thesis. We finally give in Section 2.4 a survey of for-
malisms used to model timed systems, and justify our choice for dense time
representation and parametric timed automata.

2.1 Constraints

2.1.1 Clocks

Let R≥0 be the set of non-negative real numbers.
Throughout this thesis, we assume a fixed set X = {x1, . . . , xH } of clocks. A

clock is a variable xi with value in R≥0. All clocks evolve linearly at the same
rate.

We define a clock valuation as a function w : X → R≥0 assigning a non-
negative real value to each clock variable. We will often identify a valuation w
with the point (w(x1), . . . , w(xH )).



2.1. Constraints 15

Given a constant d ∈R≥0, we use X +d to denote the set {x1 +d , . . . , xH +d}.
Similarly, we write w+d to denote the valuation such that (w+d)(x) = w(x)+d
for all x ∈ X .

2.1.2 Parameters

Throughout this thesis, we assume a fixed set P = {p1, . . . , pM } of parameters,
i.e., unknown constants.

A parameter valuation π is a function π : P → R≥0 assigning a nonnegative
real value to each parameter. There is a one-to-one correspondence between
valuations and points in (R≥0)M . We will often identify a valuation π with the
point (π(p1), . . . ,π(pM )).

2.1.3 Constraints

Definition 2.1 (Linear inequality). Let V be a set of variables of the form
V = {v1, . . . , vN }. A linear inequality on the variables of V is an inequality e ≺ e ′,
where ≺∈ {<,≤}, and e,e ′ are two linear terms of the form∑

1≤i≤N
αi vi +d

where vi ∈V , αi ∈Q≥0, for 1 ≤ i ≤ N , and d ∈Q≥0. �

Note that we define the coefficients of the linear inequalities as positive ra-
tionals. It would of course be equivalent to define them as positive integers, as
it is sometimes the case in the literature.

We assume in the following that all inequalities are linear, and we will sim-
ply refer to linear inequalities as inequalities.

Definition 2.2 (Negation of an inequality). Let V be a set of variables of the
form V = {v1, . . . , vN }. Given an inequality J on the variables of V of the form
e < e ′ (resp. e ≤ e ′), the negation of J , denoted by ¬J , is the linear inequality
e ′ ≤ e (resp. e ′ < e). �

Definition 2.3 (Convex linear constraint). Let V be a set of variables of the form
V = {v1, . . . , vN }. A convex linear constraint on the variables of V is a conjunction
of inequalities on the variables of V . �

We assume in the following that all constraints are both convex and linear,
and we will simply refer to convex linear constraints as constraints.

Definition 2.4 (Constraint on the clocks). An inequality on the clocks is an in-
equality on the set of variables X . A constraint on the clocks is a constraint on
the set of variables X . �



16 Chapter 2. Preliminary Definitions

Definition 2.5 (Constraint on the parameters). An inequality on the parameters
is an inequality on the set of variables P . A constraint on the parameters is a
constraint on the set of variables P . �

Definition 2.6 (Constraint on clocks and parameters). An inequality on the
clocks and the parameters is an inequality on the set of variables X ∪ P . A
constraint on the clocks and the parameters is a constraint on the set of vari-
ables X ∪P . �

Throughout this thesis, we will denote by KX the set of all constraints on
the clocks, by KP the set of all constraints on the parameters, and by KX∪P the
set of all constraints on the clocks and the parameters.

In the sequel, the letter J will denote an inequality on the parameters, the
letter D will denote a constraint on the clocks, the letter K will denote a con-
straint on the parameters, and the letter C will denote a constraint on the clocks
and the parameters.

Semantics of Constraints. Given a constraint D on the clocks and a clock
valuation w , D[w] denotes the expression obtained by replacing each clock x
in D with w(x). A clock valuation w satisfies constraint D (denoted by w |= D)
if D[w] evaluates to true.

Given a parameter valuation π and a constraint C on the clocks and the
parameters, C [π] denotes the constraint on the clocks obtained by replacing
each parameter p in C with π(p). Likewise, given a clock valuation w , C [π][w]
denotes the expression obtained by replacing each clock x in C [π] with w(x).
We say that a parameter valuation π satisfies a constraint C , denoted by π |=C ,
if the set of clock valuations that satisfy C [π] is nonempty. We use the notation
<w,π> |=C to indicate that C [π][w] evaluates to true.

Given two constraints C1 and C2 on the clocks and the parameters, we say
that C1 is included in C2, denoted by C1 ⊆C2, if∀w,π : <w,π> |=C1 ⇒<w,π> |=
C2. We have that C1 =C2 if and only if C1 ⊆C2 and C2 ⊆C1.

Similarly to the semantics of constraints on the clocks and the parame-
ters, we say that a parameter valuation π satisfies a constraint K on the pa-
rameters, denoted by π |= K , if the expression obtained by replacing each pa-
rameter p in K with π(p) evaluates to true. Given two constraints K1 and K2

on the parameters, we say that K1 is included in K2, denoted by K1 ⊆ K2, if
∀π : π |= K1 ⇒ π |= K2. We have that K1 = K2 if and only if K1 ⊆ K2 and K2 ⊆ K1.
We will consider true as a constraint on the parameters, corresponding to the
set of all possible values for P .

Given a constraint C on the clocks and the parameters, we denote by ∃X : C
the constraint on the parameters obtained from C after elimination of the clock
variables, i.e., {π | ∃w : <w,π> |=C }.



2.2. Timed Automata 17

2.2 Timed Automata

2.2.1 Labeled Transition Systems

We first introduce labeled transition systems, which will be used later in this
section to represent the semantics of timed automata.

Definition 2.7 (LTS). A labeled transition system (LTS) over a set of symbols Σ
is a triple L = (S,S0,⇒), with S a set of states, S0 ⊂ S a set of initial states, and

⇒ ∈ S ×Σ× S a transition relation. We write s
a⇒ s′ for (s, a, s′) ∈ ⇒. A run (of

length m) of L is a finite alternating sequence of states si ∈ S and symbols

ai ∈Σ of the form s0
a0⇒ s1

a1⇒··· am−1⇒ sm , where s0 ∈ S0. A state si is reachable if it
belongs to some run r . �

2.2.2 Timed Automata

We introduce here timed automata as defined in [AD94]. Timed automata are
an extension of standard finite-state automata allowing the use of clocks, i.e.,
real-valued variables increasing linearly at the same rate.

Syntax

Definition 2.8 (Timed Automaton). A Timed Automaton (TA) A is a 6-tuple of
the form A = (Σ,Q, q0, X , I ,→), where

• Σ is a finite set of actions,

• Q is a finite set of locations,

• q0 ∈Q is the initial location,

• X is a set of clocks,

• I is the invariant, assigning to every q ∈Q a constraint I (q) on the clocks,
and

• → is a step relation consisting of elements of the form (q, g , a,ρ, q ′), also

denoted by q
g ,a,ρ→ q ′, where q, q ′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clock vari-

ables to be reset by the step, and g (the step guard) is a constraint on the
clocks.



18 Chapter 2. Preliminary Definitions

�

Note that we use a more permissive definition of the constraints used in
guards and invariants than in the original definition of TAs (see [AD94]). In-
deed, we allow the use of conjunctions of any linear inequalities on the clocks,
whereas the original definition usually considers conjunctions of comparisons
of a single clock with a constant. This more permissive definition has usually
an impact on the decidability (the addition of clock values within a constraint
leads to undecidability [AD94]), but this has no impact in this thesis, mainly
because of the use of parametric timed automata, where the parameters bring
themselves undecidability in the general case.

Timed Automata are often extended in practice with discrete variables,
which can be used in guards and transitions, updated within the transitions,
and sometimes even used as a factor for clocks. However, in most cases, there
represent only syntactic sugar for the discrete space (i.e., locations). As a conse-
quence, we will not use them in any theoretical part of this thesis. Note never-
theless that our implementation (see Chapter 4) allows the use of such discrete
variables.

The graphical representation of a TA A is an oriented graph where vertices
correspond to locations, and edges correspond to actions of A . We follow the
following conventions for the graphical representation of timed automata: lo-
cations are represented by nodes, above of which the invariant of the location
is written; transitions are represented by arcs from one location to another lo-
cation, labeled by the associated guard, the action name and the set of clocks
to be reset (guards and invariants equal to true will be omitted). The initial
location is usually represented with a double circle.

Example 2.9. We give in Figure 2.1 an example of Timed Automaton containing
4 locations (viz., q0, q1, q2 and q3), 3 actions (viz., a, b and c) and 2 clocks (viz.,
x1 and x2). The initial location is q0.

In this TA, q0 has invariant x1 ≤ 5, q1 has invariant true, and both q2 and
q3 have invariant x2 ≤ 5. The transition from q0 to q1 has guard x1 ≥ 4 through
action a; no clock is reset. The transition from q0 to q2 has guard x1 ≥ 2∧x2 ≥ 3
through action b, and resets clock x2. The transitions between q2 and q3 can be
explained similarly.

�

Parallel Composition of TAs

We now introduce the notion of network of timed automata, and show in the
following definition how N TAs can be composed into a single TA.



2.2. Timed Automata 19

q0

q1

q2 q3

x1 ≤ 5

x2 ≤ 5 x2 ≤ 5

x1 ≥ 4
a

x1 ≥ 2∧x2 ≥ 3
b

x2 := 0

x2 ≥ 4
c

b
x1 := 0
x2 := 0

Figure 2.1: An example of Timed Automaton

Definition 2.10 (Network of TAs). Let N ∈ N. For all 1 ≤ i ≤ N , let Ai =
(Σi ,Qi , (q0)i , Xi , Ii ,→i ) be a TA. The sets Qi and Xi are mutually disjoint. A net-
work of timed automata (NTA) is A = A1‖ . . .‖AN , where ‖ is the operator for
parallel composition defined in the following way. This NTA corresponds to the
TA A = (Σ,Q, q0, X , I ,→) where

• Σ=⋃N
i=1Σi ,

• Q =ΠN
i=1Qi ,

• q0 = 〈(q0)1, . . . , (q0)N 〉,

• X =⊎N
i=1 Xi ,

• I (〈q1, . . . , qN 〉) =∧N
i=1 Ii (qi ) for all 〈q1, . . . , qN 〉 ∈Q,

and → is defined as follows. For all a ∈ Σ, let Ta be the subset of indices
i ∈ 1, . . . , N such that a ∈ Σi . For all a ∈ Σ, for all 〈q1, . . . , qN 〉 ∈ Q, for all
〈q ′

1, . . . , q ′
N 〉 ∈Q, (〈q1, . . . , qN 〉, g , a,ρ,〈q ′

1, . . . , q ′
N 〉) ∈→ if:

• for all i ∈ Ta , there exist gi ,ρi such that (qi , gi , a,ρi , q ′
i ) ∈→i , g =∧

i∈Ta gi ,
ρ =⋃

i∈Ta ρi , and,

• for all i 6∈ Ta , q ′
i = qi .

�



20 Chapter 2. Preliminary Definitions

Note that the requirement that the set of clocks of each of the TAs in parallel
be mutually disjoint is not a strong requirement from a theoretical point of view
in this thesis. However, it is almost always met in practice.

Example 2.11. We give in Figure 2.2 an example of Network of 2 TAs. The left
one (say, A ′) contains 3 locations (viz., q ′

0, q ′
1, and q ′

2), 2 actions (viz., a and b)
and 1 clock x1. The right one (say, A ′′) contains 3 locations (viz., q ′′

0 , q ′′
2 , and

q ′′
3 ), 2 actions (viz., b and c) and 1 clock x2.

q ′
0

q ′
1

q ′
2

x1 ≤ 5

x1 ≥ 4
a

x1 ≥ 2
b

b
x1 := 0

q ′′
0 q ′′

1 q ′′
2

x2 ≤ 5 x2 ≤ 5

x2 ≥ 3
b

x2 := 0

x2 ≥ 4
c

b
x2 := 0

Figure 2.2: Example of Network of Timed Automata

Then, the composition of those 2 TAs in parallel (viz., A ′‖A ′′) corresponds
to the TA from Example 2.9, where q0 = (q ′

0, q ′′
0 ), q1 = (q ′

1, q ′′
0 ), q2 = (q ′

2, q ′′
1 ) and

q3 = (q ′
2, q ′′

2 ).
�

Semantics

The semantics of TAs is given under the form of a LTS, where states are pairs
made by a location and a valuation for each clock.

Definition 2.12 (Semantics of TAs). Let A = (Σ,Q, q0, X , I ,→) be a Timed Au-
tomaton. The concrete semantics of A is the LTS (S,S0,⇒) over Σwhere

S = {(q, w) ∈Q × (X →R≥0) | w |= I (q)},
S0 = {(q0, w) | w |= I (q0)∧w = (w0, . . . , w0) for some w0}

and the transition predicate ⇒ is specified by the following three rules. For all
(q, w), (q ′, w ′) ∈ S,d ≥ 0 and a ∈Σ,

– (q, w)
a→ (q ′, w ′) if ∃g ,ρ : q

g ,a,ρ→ q ′ and w |= g and w ′ = ρ(w);

– (q, w)
d→ (q ′, w ′) if q ′ = q and w ′ = w +d ;

– (q, w)
a⇒ (q ′, w ′) if ∃d , w ′′ : (q, w)

a→ (q ′, w ′′) d→ (q ′, w ′). �



2.2. Timed Automata 21

We consider with the definition of S0 that all clocks are initially set to 0, or
have evolved linearly in the bounds given by I (q0). A state (resp. run) in the
concrete semantics will be referred to as a concrete state (resp. concrete run).

A concrete run is represented by a directed graph where states are depicted
within nodes containing the name of the location and the value of each of the
clocks, and transitions are depicted using edges labeled with the name of the
action.

Example 2.13. Consider again the timed automaton A of Example 2.1. Then
Figure 2.3 depicts an example of concrete run for A .

q0
x1 = 3
x2 = 3

q2
x1 = 7
x2 = 4

q3
x1 = 7.5
x2 = 4.5

q2
x1 = 4.2
x2 = 4.2

q3
x1 = 5
x2 = 5

. . .b c b c b

Figure 2.3: Example of concrete run for a TA

This run is obtained as follows: one starts from the initial location q0 where
both clocks have evolved during 3 time units. Then, we take action b, reset x2

and spend 4 time units in q2. Then, we take action c, and spend 0.5 time unit
in q3. Then, we take action b, reset both clocks and spend 4.2 time units in q2.
Then, we take action c, and spend 0.8 time units in q3, and so on.

�

The power of timed automata relies in the fact that one can construct a finite
partition of the infinite space of clock valuations. In particular, this construc-
tion is suitable to perform reachability analysis.

The main theoretical advantage of Timed Automata relies in its decidabil-
ity results. In particular, it has been shown that the reachability of a state
is decidable. Moreover, various timed temporal logics (e.g., [ACD93]) have
been designed, and various decidability results have been shown (e.g., [ACD93,
HRSV02, WY03]).

Traces

We now introduce the notion of trace. This notion allows to analyze a system
by abstracting part of its behavior. In the literature, one usually considers ei-
ther a state-based approach or an action-based approach (see, e.g., [BK08]).
We consider here a combined state- and action-based approach: a trace is an
alternating sequence of locations and actions.

Note that, for a deterministic TA, i.e., a TA such that there is at most one
transition leaving a given location with a given action, there is an equivalence
between the state-based, the action-based and the combined approaches (be-
cause of the unicity of the initial location). This can be the case for hardware



22 Chapter 2. Preliminary Definitions

verification when one models circuits at the gate level. Indeed, when one mod-
els each gate of the circuit with a different TA, where each location corresponds
to a different value of the input and output signals of the gate, and each tran-
sition corresponds to a rise or a fall of a signal of the global system, then the
composition of the TAs modeling each gate is deterministic. In that case, if one
considers a sequence of locations, it is possible to retrieve the corresponding
sequence of actions (from a given initial location), and conversely.

We define more formally the notion of trace in the following definition.

Definition 2.14 (Trace associated with a concrete run). Given a TA A and a

concrete run r of A of the form (q0, w0)
a0⇒··· am−1⇒ (qm , wm), the trace associated

with r is the alternating sequence of locations and actions q0
a0⇒··· am−1⇒ qm . We

say that location qi , for 1 ≤ i ≤ m, belongs to the trace. �

Note that a trace is built from a run by removing the valuation of the clock,
and therefore can be seen as a time-abstract run. We depict traces under a
graphical form using boxed nodes labeled with locations and double arrows
labeled with actions.

Example 2.15. The trace associated with the concrete run of Example 2.13 is
depicted in Figure 2.4.

q0 q2 q3 q2 q3 . . .b c b c b

Figure 2.4: Example of trace associated with a concrete run for a TA

�

We define below the notion of acyclic trace as a trace which never passes
twice by the same location, i.e., a trace whose locations are all different.

Definition 2.16 (Acyclic trace). Given a trace T = q0
a0⇒ ··· am−1⇒ qm , T is said to

be an acylic trace if:
∀qi , q j , i < j < m, qi 6= q j

�

Given two traces, we define the following notion of prefix of a trace.

Definition 2.17 (Prefix of a trace). Given a trace T = q0
a0⇒ ··· am−1⇒ qm , the prefix

of length n of T is the trace denoted by |T |n and defined as follows:

|T |n =
{

q0
a0⇒··· an−1⇒ qn if n < m

q0
a0⇒··· am−1⇒ qm else



2.2. Timed Automata 23

Similarly, we say that a trace T1 is a prefix of a trace T2 if there exists n ≥ 0 such
that |T2|n = T1. �

We now define the following notion of trace set.

Definition 2.18 (Trace set). Given a TA A , the trace set of A refers to the set of
traces associated with the runs of A . �

Often, when depicting trace sets, we will not depict each trace separately,
but depict the trace set under the form of a tree or a graph. Note, however,
that this graph structure is only used for the sake of simplicity of representation
of the possible traces, and does not contain any information on the possible
branching behavior of the system.

Example 2.19. The trace set associated with the TA of Example 2.9 is depicted
in Figure 2.5.

q0

q2 q3 q2 q3

q1

b

a

c b
c

b

Figure 2.5: Example of trace set of a TA

This trace set contains an infinite number of finite traces. Note also that
it is obviously not acyclic, because there are (actually infinitely many) traces
passing several times through locations q2 and q3.

�

We extend the notion of acyclicity of a trace to trace sets, and say that a trace
set is acyclic if all its traces are acyclic. We also say that a location q belongs to
the trace set of A if it belongs to a trace of the trace set of A .

In the following, we are interested in verifying properties on the trace set
of A . For example, given a predefined set of “bad locations”, a reachability
property is satisfied by a trace if this trace never contains a bad location; such
a trace is “good” w.r.t. this reachability property. A trace can also be said to be
“good” if a given action always occurs before another one within the trace (see
example in Section 3.1.1).

Definition 2.20 (Good trace set). Given a TA A , and a property on traces, we say
that a trace of A is good if it satisfies the property, and bad otherwise. Likewise,
we say that the trace set of A is good if all its traces are good, and bad otherwise.



24 Chapter 2. Preliminary Definitions

�

Actually, the good behaviors that can be captured with trace sets are rele-
vant to linear-time properties [BK08], which can express properties more gen-
eral than reachability properties. A more precise characterization of those
properties will be done in Section 3.3.3.

2.2.3 Parametric Timed Automata

Parametric Timed Automata are an extension of the class of Timed Automata
to the parametric case. Parametric timed automata allow within guards and
invariants the use of parameters in place of constants [AHV93]. This model
is interesting when one does not only want to check that a system is correct
for one value of the constants, but for a whole dense set of values. The model
of Parametric Timed Automata is also interesting to synthesize parameters for
which a given property is satisfied.

Syntax

Definition 2.21 (Parametric Timed Automaton). A parametric timed automa-
ton (PTA) A is a 8-tuple of the form A = (Σ,Q, q0, X ,P,K , I ,→), where

• Σ is a finite set of actions,

• Q is a finite set of locations,

• q0 ∈Q is the initial location,

• X is a set of clocks,

• P is a set of parameters,

• K is a constraint on the parameters of P ,

• I is the invariant, assigning to every q ∈Q a constraint I (q) on the clocks
and the parameters, and

• → is a step relation consisting of elements of the form (q, g , a,ρ, q ′), also

denoted by q
g ,a,ρ→ q ′, where q, q ′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clock vari-

ables to be reset by the step, and g (the step guard) is a constraint on the
clocks and the parameters.



2.2. Timed Automata 25

�

The constraint K on the parameters corresponds to the initial constraint
on the parameters, i.e., a constraint that will be true in all the states of the
PTA (see semantics in Definition 2.31). In the following, given a PTA A =
(Σ,Q, q0, X ,P,K , I ,→), we will often denote this PTA by A (K ) when clear from
the context, in order to emphasize that only K will change in A .

We make use for PTAs of the same graphical representation as for TAs, i.e.,
an oriented graph where vertices correspond to the locations, and edges corre-
spond to the actions. The graphical representation of a PTA will be referred to
as its associated graph.

Example 2.22. We give in Figure 2.6 an example of PTA containing 4 locations
(viz., q0, q1, q2 and q3), 3 actions (viz., a, b and c), 2 clocks (viz., x1 and x2) and
2 parameters (viz., p1 and p2). The initial location is q0.

q0

q1

q2 q3

x1 ≤ 5p1

x2 ≤ 5p2 x2 ≤ 5p2

x1 ≥ 4p1

a

x1 ≥ 2p1 ∧x2 ≥ 3p2

b
x2 := 0

x2 ≥ 4p2

c

b
x1 := 0
x2 := 0

Figure 2.6: An example of Parametric Timed Automaton

In this PTA, q0 has invariant x1 ≤ 5p1, q1 has invariant true, and both q2

and q3 have invariant x2 ≤ 5p2. The transition from q0 to q1 has guard x1 ≥ 4p1

through action a; no clock is reset. The transition from q0 to q2 has guard x1 ≥
2p1∧x2 ≥ 3p2 through action b, and resets clock x2. The transitions between q2

and q3 can be explained similarly. �

Instantiation of a PTA. Given a PTA A = (Σ,Q, q0, X ,P,K , I ,→), for every pa-
rameter valuation π = (π1, . . . ,πM ), A [π] denotes the PTA A (K ), where K is∧M

i=1 pi = πi . This corresponds to the PTA obtained from A by substituting



26 Chapter 2. Preliminary Definitions

every occurrence of a parameter pi by constant πi in the guards and invariants.
We say that pi is instantiated with πi . Note that, as all parameters are instanti-
ated, A [π] is a standard timed automaton.

Example 2.23. Consider again the PTA A described in Example 2.22. Also con-
sider the following reference valuation π of the parameters:

π : p1 = 1 ∧ p2 = 1

Then, the (non-parametric) timed automaton A [π] is the one described in Ex-
ample 2.9. �

We now define the notion of acyclic PTA. This acyclicity of a PTA can be
deduced purely syntactically from its graphical representation, i.e., if this rep-
resentation is acyclic.

Definition 2.24 (Acyclic PTA). We say that a PTA is graphically acyclic (or, more
simply, acyclic) if its associated graph is acyclic. �

Note that the trace set associated with an acyclic PTA is necessarily acyclic.

Parallel Composition of PTAs. Similarly to the parallel composition of TAs
(see Definition 2.10), we now introduce the notion of network of parametric
timed automata, and show in the following definition how N PTAs can be com-
posed into a single PTA.

Definition 2.25 (Network of PTAs). Let N ∈ N. For all 1 ≤ i ≤ N , let Ai =
(Σi ,Qi , (q0)i , Xi ,Pi ,Ki , Ii ,→i ) be a PTA. The sets Qi , Pi , and Xi are mutually
disjoint. A network of parametric timed automata (NPTA) is A = A1‖ . . .‖AN ,
where ‖ is the operator for parallel composition defined in the following way.
This NPTA corresponds to the PTA A = (Σ,Q, q0, X ,P,K , I ,→) where

• Σ=⋃N
i=1Σi ,

• Q =ΠN
i=1Qi ,

• q0 = 〈(q0)1, . . . , (q0)N 〉,

• X =⊎N
i=1 Xi ,

• P =⊎N
i=1 Pi ,

• K =∧N
i=1 Ki ,

• I (〈q1, . . . , qN 〉) =∧N
i=1 Ii (qi ) for all 〈q1, . . . , qN 〉 ∈Q,



2.2. Timed Automata 27

and → is defined as follows. For all a ∈ Σ, let Ta be the subset of indices
i ∈ 1, . . . , N such that a ∈ Σi . For all a ∈ Σ, for all 〈q1, . . . , qN 〉 ∈ Q, for all
〈q ′

1, . . . , q ′
N 〉 ∈Q, (〈q1, . . . , qN 〉, g , a,ρ,〈q ′

1, . . . , q ′
N 〉) ∈→ if:

• for all i ∈ Ta , there exist gi ,ρi such that (qi , gi , a,ρi , q ′
i ) ∈→i , g =∧

i∈Ta gi ,
ρ =⋃

i∈Ta ρi , and,

• for all i 6∈ Ta , q ′
i = qi .

�

Example 2.26. We give in Figure 2.7 an example of Network of 2 PTAs. The left
one (say, A ′) contains 3 locations (viz., q ′

0, q ′
1, and q ′

2), 2 actions (viz., a and b),
1 clock x1 and 1 parameter p1. The right one (say, A ′′) contains 3 locations (viz.,
q ′′

0 , q ′′
2 , and q ′′

3 ), 2 actions (viz., b and c), 1 clock x2 and 1 parameter p2.

q ′
0

q ′
1

q ′
2

x1 ≤ 5p1

x1 ≥ 4p1

a

x1 ≥ 2p1

b

b
x1 := 0

q ′′
0 q ′′

1 q ′′
2

x2 ≤ 5p2 x2 ≤ 5p2

x2 ≥ 3p2

b
x2 := 0

x2 ≥ 4p2

c

b
x2 := 0

Figure 2.7: Example of Network of Parametric Timed Automata

Then, the composition of those 2 PTAs in parallel (viz., A ′‖A ′′) corresponds
to the PTA from Example 2.22, where q0 = (q ′

0, q ′′
0 ), q1 = (q ′

1, q ′′
0 ), q2 = (q ′

2, q ′′
1 )

and q3 = (q ′
2, q ′′

2 ).
�

Semantics

We now define the semantics of PTAs. We first introduce the notion of symbolic
state.

Definition 2.27 (State). Let A = (Σ,Q, q0, X ,P,K , I ,→) be a PTA. A (symbolic)
state s of A (K ) is a pair (q,C ) where q ∈ Q is a location, and C ∈ KX∪P a con-
straint on the clocks and the parameters. �

For each valuation π of the parameters P , we may view a symbolic state s as
the set of pairs (q, w) where w is a clock valuation such that <w,π> |=C .



28 Chapter 2. Preliminary Definitions

In this thesis, we will be interested in checking whether the constraint asso-
ciated with a symbolic state is satisfied by a given valuation of the parameters.
This refers to the following notion of π-compatibility.

Definition 2.28 (π-compatibility). Let A be a PTA, and s = (q,C ) be a state
of A . The state s is said to be compatible with π or, more simply, π-compatible
if π |=C . �

We now define the inclusion of a state in another one. This notion refers
to the equality of definitions and inclusion of constraints, as formalized in the
following definition.

Definition 2.29 (State inclusion). We say that a state s1 = (q1,C1) is included in
a state s2 = (q2,C2), denoted by s1 ⊆ s2, if q1 = q2 and C1 ⊆C2.

We say that two states s1 = (q1,C1) and s2 = (q2,C2) are equal, denoted by
s1 = s2, if q1 = q2 and C1 =C2. �

We now define the inclusion of a set of states in another one. Observe that
this notion does not refer to the inclusion of each state of the first set into a state
of the second set, but to the equality of each state of the first set with a state of
the second set.

Definition 2.30 (Set inclusion). We say that a set of states S1 is included into a
set of states S2, denoted by S1 v S2, if

∀s : s ∈ S1 ⇒ s ∈ S2.

We say that two sets of states S1 and S2 are equal, denoted by S1 = S2, if
S1 v S2 and S2 v S1. �

The initial state of A (K ) is a symbolic state s0 of the form (q0,C0), where
C0 = K ∧ I (q0)∧∧H−1

i=1 xi = xi+1. In this expression, K is the initial constraint
on the parameters, I (q0) is the invariant of the initial state, and the rest of the
expression lets clocks evolve from the same initial value.

The semantics of PTAs is given in the following under the form of a LTS.

Definition 2.31 (Semantics of PTAs). Let A = (Σ,Q, q0, X ,P,K , I ,→) be a PTA.
The symbolic semantics of A is the LTS (S,S0,⇒) over Σwhere

S = {(q,C ) ∈Q ×KX∪P |C ⊆ I (q)},
S0 = {(q0,K ∧ I (q0)∧∧H−1

i=1 xi = xi+1)}

and the transition predicate ⇒ is specified by the following three rules.



2.2. Timed Automata 29

• (q,C )
a→ (q ′,C ′) if (q, g , a,ρ, q ′) ∈→, and C ′ is a constraint on the clocks

and parameters defined, using the set of (renamed) clock variables X ′,
by:

C ′(X ′) = (∃X : (C (X )∧ g (X )∧X ′ = ρ(X )∧ I (q ′)(X ′))).

• (q,C )
d→ (q,C ′), where d is a new parameter with values in R≥0, which

means that C ′ is given by:

C ′(X ′) = (∃X : (C (X )∧X ′ = X +d ∧ I (q)(X ′))).

• (q,C )
a⇒ (q ′,C ′) if ∃C ′′ such that (q,C )

a→ (q ′,C ′′) and (q ′,C ′′) d→ (q ′,C ′),
i.e., C ′ is a constraint on the clocks and the parameters obtained by re-
moving X and d from the following expression1:

C ′(X ′) = (∃X ,d : (C (X )∧ g (X )∧X ′ = ρ(X )∧ I (q ′)(X ′)∧ I (q ′)(X ′+d))).

It can be shown that C ′ can be put under the form of a (convex) constraint
on the clocks and the parameters (using, e.g., Fourier-Motzkin elimina-
tion [Sch86]) of X and d .

�

Definition 2.32 (Symbolic run). A step of the semantics of a PTA A (K ) will be
referred to as a symbolic step of A (K ). Similarly, a run of the semantics of a
PTA A (K ) will be referred to as a symbolic run of A (K ). �

A symbolic run of A (K ) is a finite alternating sequence of symbolic states

and actions of the form s0
a0⇒ s1

a1⇒ ··· am−1⇒ sm , such that for all i = 0, . . . ,m −1,

ai ∈Σ and si
ai⇒ si+1 is a symbolic step of A (K ).

A symbolic run is represented by a directed graph where states are depicted
within nodes containing the name of the location and the constraint on the
clocks and the parameters, and transitions are depicted using edges labeled
with the name of the action.

Example 2.33. Consider again the parametric timed automaton A of Exam-
ple 2.22. Then Figure 2.8 depicts an example of symbolic run of A .

�

We give below some results on the constraints on the parameters associated
with the symbolic runs of a PTA, which will be used later in this thesis.

We first show that the constraint on the parameters associated with the sym-
bolic states become more restrictive within a run, i.e., the constraint on the

1In C ′(X ′), we use the expression I (q ′)(X ′)∧ I (q ′)(X ′+d) instead of ∀0 ≤ e ≤ d : I (q ′)(X ′+e),
using the fact that I (q ′) is convex.



30 Chapter 2. Preliminary Definitions

q0

x1 ≤ 5p1
∧ x1 = x2

q2
x1 ≥ x2 +2p1

∧ x1 ≥ x2 +3p2
∧ x2 ≤ 5p2
∧ x1 ≤ x2 +5p1

q3
x1 ≥ x2 +2p1

∧ x1 ≥ x2 +3p2
∧ x2 ≤ 5p2
∧ x1 ≤ x2 +5p1
∧ x2 ≥ 4p2

q2

x1 = x2
∧ x1 ≤ 5p2
∧ 3p2 ≤ 5p1

. . .b c b c

Figure 2.8: Example of symbolic run for a PTA

parameters of a given state of a run is included into the constraint on the pa-
rameters of a previous state of the same run.

Lemma 2.34. Let A (K ) be a PTA, and R a symbolic run of A of the form

(q0,C0)
a0⇒··· (qi ,Ci )

ai⇒ (qi+1,Ci+1)
ai+1⇒ ··· am−1⇒ (qm ,Cm). Then, we have:

(∃X : Ci+1) ⊆ (∃X : Ci ).

Proof. From the semantics of PTAs, Ci+1 can be computed from Ci by addition
of new constraints on the clocks and the parameters and elimination of clock
variables only. Thus, Ci+1 is more restrictive. �

Note that the above result does not mean that the constraints on the clocks
and the parameters become more restrictive within a run, due to the elimina-
tion of clock variables. The relation Ci+1 ⊆Ci does not hold in the general case.

We now state that, given a PTA A (K ), the constraint on the parameters as-
sociated with any symbolic state of A is included into K .

Lemma 2.35. Let A (K ) be a PTA, and (q,C ) a symbolic state of a symbolic run
of A. Then, we have:

(∃X : C ) ⊆ K .

Proof. From the definition of the initial state (q0,C0) (see Definition 2.31), we
have: (∃X : C0) ⊆ K . The result is then obtained by recurrence on Lemma 2.34.

�

Reachability and Post Computation

Recall from Definition 2.7 that a symbolic state s is reachable in one step from
another symbolic state s′ if s is the successor of s′ in a symbolic run. This def-
inition extends to sets of states. One defines Posti

A (K )(S) as the set of states
reachable from a set S of states in exactly i steps, and Post∗

A (K )(S) as the set of

all states reachable from S in A (K ) (i.e., Post∗
A (K )(S) =⋃

i≥0 Posti
A (K )(S)).

In this thesis, we will be in particular interested in computing the
set Post∗

A (K )({s0}), where s0 is the initial state of A (K ). Note that if

Posti+1
A (K )({s0}) = ; (or, more generally, if Posti+1

A (K )({s0}) ⊆ ⋃i
j=0 Post j

A (K )({s0})),

then Post∗
A (K )({s0}) =⋃i

j=0 Post j
A (K )({s0}).



2.2. Timed Automata 31

Traces

The notion of trace associated with a concrete run, and the notion of trace set
associated with a TA apply in a straightforward manner to PTAs.

Definition 2.36 (Trace associated with a symbolic run). Given a PTA A and a

symbolic run r of A of the form (q0,C0)
a0⇒··· am−1⇒ (qm ,Cm), the trace associated

with r is the alternating sequence of locations and actions q0
a0⇒··· am−1⇒ qm . We

say that location qi , for 1 ≤ i ≤ m, belongs to the trace. �

Note that the traces associated with symbolic runs of PTAs are the same
mathematical object (i.e., alternating sequences of locations and actions) as the
traces associated with concrete runs of TAs. As a consequence, we extend the
notions of acyclicity and prefixes, defined for traces associated with concrete
runs, to traces associated with symbolic runs. Moreover, we depict them un-
der the same graphical form as traces associated with concrete runs, i.e., boxed
nodes labeled with locations and double arrows labeled with actions.

Example 2.37. The trace associated with the symbolic run of Example 2.33 is
depicted in Figure 2.9.

q0 q2 q3 q2 . . .b c b c

Figure 2.9: Example of trace associated with a symbolic run of a PTA

�

Definition 2.38 (Trace set). Given a PTA A , the trace set of A refers to the set of
traces associated with the runs of A . �

As for the traces associated with concrete runs, we extend the notion of
acyclicity of a trace to trace sets, and say that a trace set is acyclic if all its traces
are acyclic.

Example 2.39. The trace set associated with the PTA of Example 2.22 is depicted
in Figure 2.10.

�

Modeling Asynchronous Circuits Using PTAs

An application of TAs and PTAs is the modelization and the verification of asyn-
chronous circuits. Throughout this thesis, we will model several asynchronous
circuits using PTAs.



32 Chapter 2. Preliminary Definitions

q0

q2 q3 q2 q3

q1

b

a

c b
c

b

Figure 2.10: Example of trace set of a PTA

We consider a bi-bounded inertial model for gates (see [BS95, MP95]),
where any change of the input may lead to a change of the output (after some
delay). For a gate with n input signals, the delay associated with the change of
the output signal of the gate depends on the configuration (low or high) of the n
input signals, thus leading to 2n different delays. Modeling those n possibilities
would dramatically increase the complexity of the model. As a consequence,
we usually use intervals of delays. Often, we consider only one interval for a
gate, i.e., the minimum and the maximum of the possible delays associated
with the 2n input configurations. This option is usually a good compromise
between precision of the result, and size of the model.

Another classical option is to consider two intervals, one corresponding to
the rise of the output signal, the other corresponding to the fall of the output
signal. This representation is interesting because delays corresponding to rise
and fall can be very different. Although the size of the model is bigger than in
the model with one interval of delays, this usually leads to a more precise state
space containing less false executions, i.e., executions involving constraints on
clocks and parameters which are actually not satisfiable.

Example 2.40. Consider the “NOT” gate depicted in Figure 2.11. This “NOT”
gate has one input signal a, and one output signal b.

We first consider only one interval of delays. As a consequence, the interval
of time between a change of the input and the change of the output is [δ−;δ+],
both for a rise and for a fall of the output.

a b

[δ−;δ+]

a

b

δ+

δ−

δ+

δ−

Figure 2.11: A “NOT” gate (left) and its environment (right)

Recall that, in stable mode, the output is equal to the inversion of the in-



2.2. Timed Automata 33

put. However, there may be configurations were both a and b are equal to each
other, because of the delay between the change of the input and the change
of the output. As a consequence, the PTA modeling this “NOT” gate contains
four locations n00,n01,n10,n11, where ni j stands for a configuration of the gate
where the input a is equal to i and the output b is equal to j . We give in Fig-
ure 2.12 the PTA modeling this “NOT” gate, where the delay is modeled with an
interval. This PTA contains one clock x and, as explained above, contains two
parameters δ− and δ+, where [δ−;δ+] represents the interval of time between a
change of the input and the change of the output. Actions a↑ (resp. a↓) denotes
the rise (resp. the fall) of signal a, and similarly for b.

n00 n01

n10 n11

x ≤ δ+

a↑

x ≥ δ−
b↑

a↑

x := 0
a↓

x := 0

x ≤ δ+

a↓

x ≥ δ−
b↓

Figure 2.12: PTA modeling a “NOT” gate using one interval of delays

Let us first consider the stable configuration where a is equal to 0, and b
is equal to 1, modeled by location n01. When the input signal a changes (i.e.,
action a↑), the system enters an unstable configuration (location n11), where it
cannot stay more than δ+ units of time: this is modeled by the reset of clock x
on the transition labeled with a↑ from location n01 to location n11, and the
guard x ≤ δ+ in location n11. Moreover, the output b cannot change before δ−

units of time, which is modeled by the invariant x ≥ δ− associated with the tran-
sition labeled with b↓ from location n11 to location n10. Finally note that, if the
input a falls again while in location n11, i.e., before the output could change, the
system goes back to the initial stable configuration (location n01) without any
change of the output signal. The other stable configuration where a is equal
to 1 and b is equal to 0, and modeled by location n10, can be explained in a
similar manner.

Let us now consider the model of this “NOT” gate using two intervals of
delays. As a consequence, the interval of time between a change of the input
and the change of the output is [δ−↑ ;δ+↑ ] for a rise of the output, and [δ−↓ ;δ+↓ ] for a
fall of the output. We give the model using two interval of delays in Figure 2.13.



34 Chapter 2. Preliminary Definitions

n00 n01

n10 n11

x ≤ δ+↑

a↑

x ≥ δ−↑
b↑

a↑

x := 0
a↓

x := 0

x ≤ δ+↓

a↓

x ≥ δ−
b↓

Figure 2.13: PTA modeling a “NOT” gate using a bi-bounded inertial model

Note that, in the case of this “NOT” gate, the number of locations and transi-
tions remains the same as for the case with one interval (see Figure 2.12). Only
the number of parameters gets multiplied by two. However, for systems with
more that one input, the number of locations and transitions also increases
when one switches from the model with one interval to the model with two
intervals. �

2.3 The Good Parameters Problem

We now formally state the main problem we are interested to face in this thesis.
As stated in Chapter 1, we are interested in finding correct values for the param-
eters of parametric timed automata. This synthesis of good parameters corre-
sponds to the good parameters problem, as defined in [FJK08] in the framework
of linear hybrid automata. We recall this problem below.

The Good Parameters Problem
Given a PTA A and a rectangular parameter domain V0 ⊆ RM

≥0, what is the
largest set of parameter values within V0 for which A is safe?

As in [FJK08], we suppose that we are given a bounded rectangular param-
eter domain within which we want to synthesize good parameters. As a con-
sequence, this problem could be referred to as a “bounded good parameters
problem”. However, for the sake of coherence with [FJK08], we will stick to the
good parameter problems.

Note also that, as in [FJK08], we do not explicitly mention the property that
makes the PTA A “safe”. This only requirement is that this “safety” must be
checked using the trace set of PTA. The fact that the main problem of this thesis



2.4. Related Work 35

does not mention the property is important, because we will see that some of
the techniques we propose in this thesis do actually not depend on the property
one wants to check.

2.4 Related Work

We discuss in this section several approaches to model distributed timed sys-
tems. We first justify our choice for the dense-time formalism in Section 2.4.1.
We then recall Timed Automata in Section 2.4.2, and show some of the advan-
tages of such a formalism. We present Time Petri Nets, and compare them to
Timed Automata in Section 2.4.3. We also recall hybrid systems in Section 2.4.4,
and compare them to Timed Automata. We finally justify in Section 2.4.5 our
choice for the model of timed automata.

2.4.1 Representation of Time

When modeling timed systems, two major representations of time are used in
the literature: the discrete time representation, and the dense (or continuous)
time representation.

In the discrete time model, events can happen only at the integer time val-
ues. This allows the designer to describe the behavior of synchronous systems,
where all components are driven by a single common global clock. This dis-
crete time representation is the traditional model for synchronous hardware
verification, where events (i.e., changes of signals) happen only at clock ticks,
i.e., at the integer time values.

On the contrary, in the dense time representation, events can occur at any
real (or rational) time value. As a consequence, models making use of a dense
time representation are usually more complex than models using a discrete
representation, but also more expressive.

In this thesis, we will focus on the dense time representation, and more
specifically on the model of timed automata (see below). A classical formal
justification for the dense time model can be found in [Alu92]. Furthermore,
in this thesis, we will be in particular interested in verifying asynchronous cir-
cuits, where events (changes of signals) can happen at any real time value. As
a consequence, the dense time representation is certainly more suitable than
the discrete time representation. However, one could argue that, for a discrete
time with enough precision (i.e., using time steps small enough), the discrete
time representation can be suitable for the study of asynchronous circuits. Ac-
tually, it was shown that, in certain cases, finding the appropriate time step
can be as difficult as doing the real-time model checking. The main interest



36 Chapter 2. Preliminary Definitions

of dense time representation, though, is that it gives a criterion of robustness.
The discrete time representation can prove the correctness of a timed system
for several integer values of the timing delays, but no information can be given
inbetween two integers, whereas the dense time representation is able to guar-
antee intervals of values for which the system is correct. This is of particular
interest in the sense that, when implementing a timed system, timing delays
may slightly differ from the (exact and punctual) integer value they have been
designed for.

2.4.2 Timed Automata

Timed Automata have been introduced in [AD94] as an extension of finite-state
automata. Timed Automata allow the use of clocks, i.e., real-valued variables
increasing linearly at the same rate (see Section 2.2.2).

Timed Automata have been used to model and successfully verify vari-
ous case studies, e.g., communication protocols [DKRT97, CS01], and allowed
famous bug discoveries [HSLL97]. It has been shown that model-checking
for properties expressed the Timed CTL logic [ACD93] is decidable [ACD93,
HNSY94] for timed automata and some of their extensions (e.g., [BDFP04]).

Recent work on Timed Automata focused on the notion of robustness, or
implementability. As mentioned in [DDMR04], Timed Automata consider per-
fect clocks with infinite precision while implementations can only access time
through finitely precise clocks. Moreover, Timed Automata react instanta-
neously to events while implementations can only react within a given usu-
ally small, but not zero, reaction delay. Also note that Timed Automata may
describe control strategies that are unrealistic, like zeno-strategies or strate-
gies that ask the controller to act faster and faster [CHR02]. As a consequence,
models that have been proven correct may not be implementable. A first no-
tion of robust timed automata has been considered in [GHJ97], with the fol-
lowing semantics: “if a robust timed automaton accepts a trajectory, then it
must accept neighboring trajectories also and if a robust timed automaton re-
jects a trajectory, then it must reject neighboring trajectories also”. The authors
show in particular that the emptiness problem for robust timed automata is
still decidable. Another work introducing the notion of “implementable” timed
automata is given in [DDMR04]. This work is based on the “Almost ASAP se-
mantics” (AASAP) defined in [DWDR05]. This semantics relaxes the classical
semantics of timed automata in the sense that it does not impose a transition
to be taken instantaneously but within a (very small) amount of time. The au-
thors also show in [DDMR04] that the notion of robustness defined in [Pur00]
is closely related to their notion of implementability. Robust model checking in
this framework has been considered in [BMR06] with results of decidability.



2.4. Related Work 37

The parametrization of Timed Automata into Parametric Timed Au-
tomata [AHV93], where parameters are used in guards and invariants in place
of constants, allows parametric model checking. In other words, instead of
checking if a given location can be reached, or if a given formula (expressed,
e.g., using TCTL) is satisfiable, one can synthesize sets of values for the param-
eters under which the location can be reached (or under which the formula
is satisfied). Unfortunately, most interesting problems related to PTAs have
been shown to be undecidable for non-trivial PTAs. In particular, the empti-
ness problem is undecidable [AHV93] in the general case. However, decidability
results are given in [HRSV02] for the verification of a special class, called “L/U
automata”, for which the emptiness problem is decidable. The authors also give
a model-checking algorithm that uses parametric Difference Bound Matrices.
Two subclasses of L/U automata, called lower-bound and upper-bound PTA,
are also considered in [WY03], with decidability results. In [ZC05], the authors
present a method to model check a real time system using parametric timed
automata when a constraint over the parameter is given, i.e.: “given a real-time
system and temporal formula, both of which may contain parameters, and a
constraint over the parameters, does every allowed parameter assignment en-
sure that the real-time system satisfies the formula?” They then introduce an
on-the-fly algorithm for solving this parametric model-checking problem. We
also mention works related to the synthesis of parameters in the framework of
PTAs in Section 3.6.

Various powerful model checkers allow to verify several classes of Timed
Automata and their extensions (see Section 4.10 for a survey).

2.4.3 Time Petri Nets

Time Petri Nets [Mer74] are a classical and widely used extension of Petri Nets,
allowing to model timed distributed systems using places, tokens and transi-
tions that can be fired within a time interval. It has been shown that state reach-
ability is decidable for bounded Time Petri Nets.

Both Time Petri Nets and Timed Automata are dense-time formalisms,
which allow to study and verify dense-timed models, e.g., asynchronous cir-
cuits. As a consequence, their underlying state space is infinite, and verifica-
tion techniques which enumerate exhaustively the state space cannot be ap-
plied. The main difference relies in the fact that, although both formalisms
may be considered as infinite-state because of the real-valued time values, the
number of locations in Timed Automata is finite, whereas Time Petri Nets re-
main an infinite marking model. Although the number of places of a Time Petri
Net is bounded, the number of tokens in each node is (in the general case) un-
bounded, thus leading to a potentially infinite number of markings. Note how-



38 Chapter 2. Preliminary Definitions

ever that several subclasses of Petri Nets consider a bounded number of tokens
per place.

A further difference between Time Petri Nets and Timed Automata relies in
the compositional approach. In Timed Automata, the compositional is purely
syntactic and is defined by the formalism (the composition of Timed Automata
is actually recalled in this thesis in Definition 2.10). On the contrary, compo-
sition of Time Petri Nets is less straightforward, because one has to specify the
rules needed for composition within the Petri Net model.

Several classes of Time Petri Nets were shown to be equivalent to several
classes of Timed Automata, and several approaches for translations from Time
Petri Nets to Timed Automata have been proposed (see a survey in [PP06], as
well as more recent work, e.g., [CR06, DDSS07, LRST09]).

A parametrization of Time Petri Nets with stopwatches (i.e., an extension
of traditional clocks that can be suspended and resumed) has been considered
in [TLR08], which allows to perform parametric model checking. As for Para-
metric Timed Automata, the parameters are used instead of constants in the
firing conditions associated with the transitions. The authors propose semi-
algorithms for the synthesis of parameter valuations satisfying a formula ex-
pressed using a subset of parametric TCTL formulae. Those algorithms have
been implemented in the tool Roméo [LRST09], a software for Time Petri Nets
analysis, making use of the Parma Polyhedra Library [BHZ08].

2.4.4 Hybrid Systems

Hybrid systems can be seen as a generalization of timed automata, where
clocks may evolve at different rates. Actually, those “clocks” do not necessar-
ily model the time elapsing, but can represent any real-valued continuous vari-
able, such as temperature, speed, geographical position, etc. Hybrid automata
were introduced in [ACHH92] and allow to define in any location a law of evolu-
tion with respect to time for each of the dynamic variables. A common subclass
of hybrid systems consists in linear hybrid systems, where the derivatives of the
variables are given within a (constant) interval for each location. An interesting
survey on the different models of hybrid systems and linear hybrid automata,
mostly in the 1990s, is given in [Fre05a] (Chapter 5).

The HYTECH [HHWT95] model checker was one of the first tools allowing
to model and verify hybrid systems. The tool PHAVer [Fre05b], which can be
seen as a successor of HYTECH, provides the user with a very efficient analysis
of hybrid systems, using the Parma Polyhedra Library [BHZ08] (see Section 4.10
for a more complete survey on tools).



2.4. Related Work 39

2.4.5 Discussion

Timed Automata provide the system designer with an intuitive and powerful
way to verify distributed timed systems. Their compositional ability allow them
to model distributed systems easily, using a single timed automaton for each
component.

Moreover, they can be parameterized into Parametric Timed Au-
tomata [AHV93], allowing to synthesize parameter valuations corresponding to
a given good behavior. The common drawbacks of Parametric Timed Automata
rely in the state-space explosion problem, i.e., the quick saturation of the mem-
ory, and the undecidability of many standard problems [AHV93]. Concerning
the former problem, we will introduce techniques allowing to avoid the state-
space explosion problem. Concerning the latter, we will identify subclasses
for which our techniques are decidable. When compared to hybrid automata,
timed automata are less expressive, but also more efficient for to verification
algorithms. The case studies we are interested in verifying in this thesis, viz.,
communication protocols and asynchronous circuits, can usually be modeled
using standard timed automata, without the use of hybrid variables. Timed
Automata (and their parametrization) can actually be seen as a formalism be-
tween Time Petri Nets and hybrid systems, in the sense that their composition
can be seen as more intuitive than the composition of Time Petri Nets, and their
formalism can be seen as less complex than hybrid automata.

Note that some of the results of this thesis apply to Time Petri Nets, when
there exist translations from Timed Automata to Time Petri Nets. Extending
the techniques introduced in this thesis to hybrid systems will be the subject of
future work.



40 Chapter 2. Preliminary Definitions



Chapter 3

An Inverse Method for Parametric
Timed Automata

I’ll sleep better knowing my good
friend is by my side to protect me.

The Good, the Bad and the Ugly
(Sergio Leone)

In Chapter 2, we introduced the good parameters problem, that aims at syn-
thesizing values for timing parameters such that a system modeled by Paramet-
ric Timed Automata behaves well. In this chapter, we first consider the follow-
ing inverse problem: “Given a reference valuation of the parameters, synthesize
a constraint on the parameters such that, for any valuation satisfying this con-
straint, the trace set of the system is the same as under the reference valuation”.
This notion of equality of trace sets gives a guarantee of time-abstract equiva-
lence of the behavior of the system. This problem can be seen as a subproblem
of the good parameters problem for parametric timed automata, as defined in
Section 2.3, and we will show in Chapter 5 how this inverse problem will allow
us to solve the good parameters problem.

We introduce in this chapter a method solving the inverse problem. This in-
verse method supposes that we are given a parametric timed automaton A and
a reference valuation π0 of the parameters that one wants to generalize. The in-
verse method synthesizes a constraint K0 on the parameters that corresponds
to a set such that, for all valuations π of parameters in this set, the trace sets of
A [π0] and A [π] are equal, i.e., the behavior of the timed automaton A [π] is
(time-abstract) equivalent to the behavior of A [π0].

This method has three main advantages. First, it gives a criterion of robust-
ness by ensuring the correctness of the system for other values for the param-
eters around the reference valuation. This is of interest when implementing a



42 Chapter 3. An Inverse Method for PTAs

system: indeed, the exact model with (for example) integer values for timing
delays that has been formally verified will necessarily be implemented using
values which will not be exactly the ones that have been verified. Second, it al-
lows the system designer to optimize some delays without changing the overall
functional behavior of the system. Third, it allows us to rescale the constants of
the system, allowing to verify the system (e.g., using an external model checker)
with much smaller constants, often leading to a high decrease of the verifica-
tion time and the state space.

Plan of the Chapter. We first formally define the inverse problem in Sec-
tion 3.1 by using the example of “flip-flop” asynchronous circuit considered in
the introduction. We then introduce the inverse method in Section 3.2. We then
give in Section 3.3 results of correctness and termination, and state properties
of the method. We also show the advantages of the inverse method. We apply
our inverse method to the motivating example in Section 3.4. In Section 3.5,
we present variants of the inverse method, solving different problems from the
inverse problem, and discuss the applications. We finally present work related
to the synthesis of parameters for timed systems in Section 3.6.

3.1 The Inverse Problem

3.1.1 A Motivating Example

Consider again the example of flip-flop circuit, introduced in Section 1.1. Let
us model this circuit using the formalism of Parametric Timed Automata de-
scribed in Chapter 2.

Each gate is modeled by a PTA, as well as the environment. Note that ele-
ment G4 is a “NOT” gate; recall that an example of PTA modeling such a “NOT”
gate is given in Figure 2.12 page 33. The PTA A modeling the system results
from the composition of those 5 PTAs. Each location of A corresponds to a
different value of the signals D , CK , g1, g2, g3 and g4 (recall that g4 =Q).

The initial location q0 corresponds to the initial levels of the signals accord-
ing to the environment. Recall that we consider an environment starting from
D = CK = Q = 0 and g1 = g2 = g3 = 1, with the following ordered sequence of
actions for inputs D and CK : D↑, CK ↑, D↓, CK ↓, as depicted in Figure 1.1 right.
Therefore, we have the implicit constraint TSetup ≤ TLO ∧THold ≤ THI . The ini-
tial constraint C0 (regardless of the equality between the clock variables, see
Section 2.2.3) is:

TSetup ≤ TLO ∧THold ≤ THI ∧
∧

i=1,..,4
δ−i ≤ δ+i



3.1. The Inverse Problem 43

We consider that the circuit has a good behavior if it verifies the following
property Prop1: “every trace contains both Q↑ and CK ↓, and Q↑ occurs before
CK ↓”.

We consider the following valuation π0 of the parameters1:

THI = 24 TLO = 15 TSetup = 10 THold = 17
δ−1 = 7 δ+1 = 7 δ−2 = 5 δ+2 = 6
δ−3 = 8 δ+3 = 10 δ−4 = 3 δ+4 = 7

Let us study the behavior of the flip-flop circuit under π0. The trace set
of A [π0] is depicted in Figure 3.1, where the meaning of each location in terms
of signals is given in Table 3.1. Recall that we do not depict each trace sepa-
rately, but depict the trace set under the form of a tree or a graph. However, this
graph structure is only used for the sake of simplicity of representation of the
possible traces, and does not contain any information on the possible branch-
ing behavior of the system.

q0 q1 q2 q3 q5 q7

q6

q9

q9

q10

q10

D↑ G↓
1 CK ↑ G↓

3 D↓
Q↑

Q↑

D↓

CK ↓

CK ↓

Figure 3.1: Trace set of the flip-flop circuit under π0

Location D CK g1 g2 g3 g4

q0 0 0 1 1 1 0
q1 1 0 1 1 1 0
q2 1 0 0 1 1 0
q3 1 1 0 1 1 0
q4 0 1 0 1 1 0
q5 1 1 0 1 0 0
q6 1 1 0 1 0 1
q7 0 1 0 1 0 0
q8 0 0 0 1 0 0
q9 0 1 0 1 0 1
q10 0 0 0 1 0 1

Table 3.1: Locations of the flip-flop circuit

Each of the two traces depicted in this trace set contains both Q↑ and CK ↓,
and Q↑ occurs before CK ↓. As a consequence, this trace set is a good trace set
according to the property we want to verify.

1This valuation was actually synthesized in order to satisfy the constraint guaranteeing a
good behavior and given in [CC07]. We give this constraint Z in Section 3.4.



44 Chapter 3. An Inverse Method for PTAs

We are now interested in studying the evolution of the behavior of the sys-
tem if one changes some of the values of the parameters. More precisely, we are
interested in identifying parameter valuations for which the system has exactly
the same (good) behavior, i.e., exactly the same trace set.

3.1.2 The Problem

More generally, the inverse problem can be stated as follows [ACEF09]:

The Inverse Problem
Given a PTA A and a reference valuation π0, find a constraint K0 on the
parameters such that:

• π0 |= K0, and

• for all π |= K0, the trace sets of A [π] and A [π0] are the same.

This problem considers an equality of trace sets between A [π] and A [π0],
and thus guarantees a time-abstract equivalence between the behavior of A [π]
and A [π0]. This problem is a subproblem of the good parameters problem, as
introduced in Section 3.1, in the sense that the inverse problem focuses on the
synthesis of parameters for which the system has the same behavior as under
a given reference valuation, whereas the good parameters problem focuses on
the synthesis of all the parameter valuations (within a finite parameter subset)
corresponding to (possibly different) good behaviors. We will see in Chapter 5
how the inverse method solving this inverse problem can be used to solve the
good parameters problem.

3.2 The Inverse Method Algorithm

3.2.1 Principle

We introduce in the following the inverse method [ACEF09], which is a solution
to the inverse problem stated above. The inverse method consists in generating
runs starting from the initial state, and removing states incompatible with the
reference values by appropriately refining the current constraint K0 on the pa-
rameters. The generation procedure is then restarted until a new incompatible
state is produced, and so on, iteratively until no incompatible state is gener-
ated.

We first informally describe the algorithm IM in the following. Starting with
K = true, we iteratively compute a growing set of reachable states. When a
π-incompatible state (q,C ) is encountered (i.e., when π 6|=C ), K is refined as



3.2. The Inverse Method Algorithm 45

follows: a π-incompatible inequality J (i.e., such that π 6|= J ) is selected within
the projection of C onto the parameters and ¬J is added to K . The procedure is
then started again with this new K , and so on, until no new state is computed.
We finally return the intersection of the projection onto the parameters of all
the constraints associated with the reachable states.

Algorithm 1: Inverse method algorithm IM(A ,π)

input : A PTA A of initial state s0 = (q0,C0)
input : Valuation π of the parameters
output: Constraint K0 on the parameters

1 i ← 0; K ← true ; S ← {s0}
2 while true do
3 while there are π-incompatible states in S do
4 Select a π-incompatible state (q,C ) of S (i.e., s.t. π 6|=C ) ;
5 Select a π-incompatible J in (∃X : C ) (i.e., s.t. π 6|= J ) ;
6 K ← K ∧¬J ;

7 S ←⋃i
j=0 Post j

A (K )({s0}) ;

8 if PostA (K )(S) v S then
9 return

⋂
(q,C )∈S(∃X : C )

10 i ← i +1 ;

11 S ← S ∪PostA (K )(S) ; // S =⋃i
j=0 Post j

A (K )({s0})

We now give the inverse method algorithm IM(A ,π) in Algorithm 1. The
algorithm is made of two do loops. The inner do loop removes all the π-
incompatible states for a given depth i of the runs, i.e., states of Posti

A (K )({s0}).
This removal is made by removing a π0-incompatible inequality randomly se-
lected within the projection onto the parameters of the constraint C associated
with a π0-incompatible state; this projection onto the parameters, i.e., elimina-
tion of the clocks, is denoted by ∃X : C in the algorithm. The outer do loop it-
eratively computes the set of all reachable states. When the fixpoint is reached,
i.e., when all new states computed at iteration i are equal to states computed at
previous iterations (PostA (K )(S) v S), the intersection K0 of all the constraints
on the parameters associated with the states of S is returned.

Actually, the two major steps of the algorithm are the following ones:

1. the iterative negation of the π-incompatible states (by negating a π-
incompatible inequality J ) prevents for anyπ′ |= K0 the behavior different
from π;



46 Chapter 3. An Inverse Method for PTAs

2. the intersection of the constraints associated with all the reachable states
guarantees that all the behaviors under π are allowed for all π′ |= K0.

3.2.2 A Toy Example

Let us consider the PTA given in Figure 3.2, following the formalism defined in
Chapter 2. This PTA contains two clocks x1 and x2, three parameters p1, p2

and p3, and three locations q0, q1 and q2. The initial location q0 has invariant
x1 ≤ p1. The transition from q0 to q1, labeled a, has guard x2 ≥ p2, and resets
x1. The transition from q0 to q2, labeled b, has guard x1 ≥ p3, and does not reset
any clock.

q0

q1

q2

x1 ≤ p1

x2 ≥ p2

a
x1 :=0

x1 ≥ p3

b

Figure 3.2: A toy PTA

Let us assume that q2 corresponds to a “bad location”. Classical methods,
using this information, will synthesize the constraint Z : p1 < p3, which guar-
antees that the location is not reachable. Suppose now that we are given the
following “good” valuation of the parameters π0 : p1 = 4∧p2 = 2∧p3 = 6, under
which the PTA is assumed to have a “good” behavior. Then our inverse method
will synthesize the constraint K0 : p1 < p3 ∧p2 ≤ p1. For all valuations π of the
parameters satisfying K0, our method guarantees that the PTA behaves in the
same manner as under π0. We are thus ensured that the behavior of the PTA is
correct. We can note that K0 is strictly smaller than Z . On the one hand, this
may be viewed as a limitation of our method. On the other hand, this may in-
dicate that there are incorrect behaviors other than those corresponding to the
reaching of q2. For example, there are some parameter valuations satisfying Z ,
under which a deadlock of the PTA occurs at the initial location q0. In contrast,
our inverse method guarantees that such a deadlock is impossible under any
instance satisfying K0 (because the deadlock does not occur under π0).



3.2. The Inverse Method Algorithm 47

3.2.3 Remarks on the Algorithm

We explain in the following some of our choices.

Fixpoint. As shown in Line 8 in Algorithm 1, the algorithm stops when
PostA (K )(S) v S, i.e., when each of the new states encountered at step i is equal
to a previously encountered state (see Definition 2.30). A more standard solu-
tion would be to consider an inclusion of the states, i.e., each of the new states
encountered at step i is included in a previously encountered state (recall that
state inclusion means equality of locations and inclusion of constraints, see
Definition 2.29). More formally, this more standard fixpoint condition would
be:

∀s ∈ PostA (K )(S)∃s′ ∈ S : s ⊆ s′.

However, this condition is not sufficient, because we do not guarantee the
equality of traces in that case.

q0

x1 ≤ p1
x2 ≥ p2

a
x2 := 0

Figure 3.3: PTA showing the necessity of the fixpoint of IM

Consider the PTA A depicted in Figure 3.3, containing 2 clocks x1 and x2,
two parameters p1 and p2, and a single state q0 with invariant x1 ≤ p1. The only
transition is a self-loop through action a from q0, with guard x2 ≥ p2 and reset-
ting x2. Now consider the following reference valuation π0 of the parameters:
p1 = 3∧p2 = 1. The trace set of A [π0], depicted in Figure 3.4, is made of three
self-transitions from q0.

q0 q0 q0 q0
a a a

Figure 3.4: Trace set of A [π0]

Let us apply the inverse method to A and π0. Consider for the sake of
simplicity that we have initially x1 = x2 = 0. Then the initial state after time-
elapsing is (q0,C0), with C0 : x2 = x1 ∧x1 ≥ 0∧p1 ≥ x1. After one iteration of IM ,
the state (q0,C1) is reachable, with C1 : x1 ≥ x2 +p2 ∧ x2 ≥ 0∧ x1 ≥ x2 ∧p1 ≥ x1.
The projection of C1 onto the parameters is p1 ≥ p2, which is π0-compatible.
Since C1 is obviously not included into C0, the algorithm goes further. We then
reach state (q0,C2), with C1 : x1 ≥ x2 +2p2 ∧ x2 ≥ 0∧ x1 ≥ x2 ∧p1 ≥ x1. The pro-
jection of C2 onto the parameters is p1 ≥ 2p2, which is π0-compatible. Now,



48 Chapter 3. An Inverse Method for PTAs

we have C2 ⊆ C1. So this more standard fixpoint condition given above is sat-
isfied, and the algorithm would return the intersection of the projection onto
the parameters of the constraints associated with the 2 states, i.e., p1 ≥ p2. The
problem is that, under this constraint, say K ′

0, the trace set is the one depicted in
Figure 3.5, which is not equal to the trace set of A [π0] (depicted in Figure 3.4).

q0 q0
a

a

Figure 3.5: Trace set of A [π], for any π |= K ′
0

Note that the correct constraint K0 guaranteeing the same trace set
as A [π0], and output by our algorithm IM , is actually: 4p2 > p1 ∧p1 ≥ 3p2.

This variant of the algorithm may actually still be of interest when one wants
to consider the equality of the traces of A [π0] and the traces of A [π] up to
some length, for any π |= IM(A ,π0), or when one is only interested in non-
reachability properties. This will be formalized in the variant IM⊆ of the inverse
method, detailed in Section 3.5.1.

Final intersection. The reason why the intersection of the constraints associ-
ated with all the reachable states is returned (see line 9 in Algorithm 1), and not
the current constraint K as one could have expected, comes from the necessity
to avoid deadlocks which do not occur in A [π0]. Consider the PTA A depicted
in Figure 3.6, containing one clock x and two parameters p1 and p2, and the
following reference valuation of the parameters π0: p1 = 2∧p2 = 1. It is easy to

see that the trace set of A [π0] corresponds to the only trace: q0
a⇒ q1.

q0 q1

x ≤ p1
a

x ≥ p2

Figure 3.6: PTA explaining the intersection of constraints returned by IM

When applying the inverse method algorithm to A and π0, one can see that
the constraint on the parameters associated with q0 is true, and the constraint
associated with q1 is p2 ≤ p1, which are both obviously π0-compatible. As a
consequence, we have that K = true at the end of IM . Consider now the fol-
lowing valuation π1: p1 = 1∧p2 = 2. It is easy to see that the trace set of A [π1]
corresponds to the only trace q0, i.e., only the initial location, because the con-
straint associated with q1 is not satisfied by π1. As a consequence, the trace
sets of A [π0] and A [π1] are different, although π1 |= K . By adding to K the



3.2. The Inverse Method Algorithm 49

intersection of the constraint associated with all the reachable states, we have
the guarantee that all the transitions will be fired, thus avoiding the deadlocks
which do not occur in A [π0]. Note that this intersection is included in K (see
Lemma 3.1), which is the reason why only the intersection is returned. Also
note that this intersection is necessarily satisfiable, because all the constraints
associated with a reachable state are π0-compatible (see Lemma 3.2, and para-
graph below).

Interest of the Reference Valuation. The test of π0-compatibility, i.e., the
comparison to a reference valuation of the parameters, is essential in the al-
gorithm, and is the reason why the constraint output is necessarily satisfiable.
Suppose that the inverse method was based on a reference trace set (or, more
simply, a reference trace) instead of a reference valuation: when encountering
a bad state (i.e., a state which would not belong to the reference trace), one
could negate any inequality of the constraint associated with this state. As a
consequence, we would have no guarantee that the constraint K is satisfiable.
In our inverse method, only the test of π0-compatibility guarantees that the se-
lected inequality is π0-incompatible (and thus its negation is π0-compatible),
which guarantees that the constraint K is necessarily π0-compatible, and thus
satisfiable.

We also investigated variants of the algorithm with two reference valua-
tions (say, π1 and π2), but this case is much more tricky than with a single
reference valuation, and does not seem to bring interesting results. Indeed, if
one removes inequalities incompatible either with π1 or with π2, then the con-
straint K soon gets insatisfiable. If one removes inequalities incompatible both
withπ1 and withπ2, then one may keep bad behaviors (depending with our def-
inition of bad behavior). And if one removes all π1-incompatible inequalities,
but try to select only π2-incompatible inequalities within the π1-incompatible
inequalities (unless there is no other choice), then in practice we eventually
still have to negate at least one π2-compatible inequality, which lets K become
π2-incompatible, and does not bring anything more than our algorithm IM ap-
plied to π1 only.

Nondeterminism. Note that there are two possible sources of nondetermin-
ism in the algorithm:

1. when one selects a π0-incompatible state (q,C ) (i.e, π0 6|= ∃X : C ), and

2. when one selects an inequality J among the conjunction of inequalities
∃X : C , that is “responsible” for this π0-incompatibility (i.e., such that
π0 6|= J , hence π0 |= ¬J ).



50 Chapter 3. An Inverse Method for PTAs

This nondeterminism is the reason why the algorithm IM is non-confluent,
i.e., several applications of IM to the same input may lead to the output of dif-
ferent constraints (see Proposition 3.12).

3.3 Results

3.3.1 Correctness

We now formally establish the correctness of Algorithm IM .
We suppose in this subsection that IM(A ,π0) terminates with output K0.

Let K (resp. S) be the current constraint on the parameters (resp. the current set
of reachable states) when the algorithm terminates. We have S = Post∗

A (K )({s0})
and K0 =⋂

(q,C )∈S(∃X : C ).

Lemma 3.1. We have K0 ⊆ K .

Proof. From Lemma 2.35, for all states (q,C ) ∈ S, we have (∃X : C ) ⊆ K , since
S = Post∗

A (K )({s0}). As K0 =⋂
(q,C )∈S(∃X : C ), then K0 ⊆ K . �

Let us now show that π0 |= K0. Formally:

Lemma 3.2. Let A be a PTA and π0 a valuation of the parameters. Let K0 =
IM(A ,π0). We have: π0 |= K0.

Proof. When Algorithm IM terminates, the set S is π0-compatible (i.e., π0 |=
(∃X : C ), for all (q,C ) ∈ S). Thus, the intersection K0 of the constraints associ-
ated with the states of S, i.e.,

⋂
(q,C )∈S(∃X : C ), is satisfied by π0. �

Let us now show that the set of traces in the concrete semantics and the set
of traces in the symbolic semantics are equal. This will lead to Theorem 3.8,
stating the correctness of Algorithm IM .

First of all, we state that, for all π |= K0, for each symbolic run of A (K ), we
can find an equivalent concrete run of A [π].

Lemma 3.3. Let A be a PTA and π0 a valuation of the parameters. Let K0 =
IM(A ,π0). For all π such that π |= K0, for each symbolic run of A (K ) reaching
(q,C ), there exists a clock valuation w such that <w,π> |=C .

Proof. For each symbolic run of A (K ) reaching (q,C ), we have (q,C ) ∈ S since
S = Post∗

A (K )({s0}). Moreover, we have K0 =⋂
(q,C )∈S(∃X : C ). Thus, for allπ |= K0,

for all (q,C ) ∈ S, we have π |= (∃X : C ). Hence, there exists a clock valuation w
such that <w,π> |=C . �



3.3. Results 51

Lemma 3.4. Let A (K ) be a PTA. For each symbolic run of A (K ) reaching (q,C ),
for each parameter valuation π and clock valuation w such that <w,π> |= C ,
there exists an equivalent concrete run of A [π] reaching (q, w).

Proof. The proof of Proposition 3.17 in [HRSV02] can be adapted in a straight-
forward manner. �

Proposition 3.5. Let A be a PTA and π0 a valuation of the parameters. Let
K0 = IM(A ,π0). For all π |= K0, for each symbolic run of A (K ), there exists an
equivalent concrete run of A [π].

Proof. From Lemma 3.3 and Lemma 3.4. �

Conversely, we now state that, for all π |= K0, for each concrete run of A [π],
we can find an equivalent symbolic run of A (K ).

Proposition 3.6. Let A be a PTA and π0 a valuation of the parameters. Let
K0 = IM(A ,π0). For all π |= K0, for each concrete run of A [π], there exists an
equivalent symbolic run of A (K ).

Proof. The proof of Proposition 3.18 in [HRSV02] can be adapted in a straight-
forward manner to show that, for allπ |= K , for each concrete run of A [π], there
exists an equivalent symbolic run of A (K ). The result follows from the fact that
π |= K0 implies π |= K (by Lemma 3.1). �

We can thus now state the equivalence of trace sets.

Proposition 3.7. Let A be a PTA and π0 a valuation of the parameters. Let K0 =
IM(A ,π0). For all π |= K0, the sets of runs of A (K ) and A [π] are equivalent, i.e.,
the trace sets are equal.

Proof. From Proposition 3.5 and Proposition 3.6. �

The following theorem formally states the correctness of our inverse
method algorithm, and shows that it solves the inverse problem as defined in
Section 3.1.2.

Theorem 3.8 (Correctness of IM). Let A be a PTA and π0 a valuation of the
parameters. Suppose that IM(A ,π0) terminates with output K0. Then, we have:

1. π0 |= K0, and

2. for all π |= K0, the sets of concrete runs of A [π0] and A [π] are equivalent,
i.e., the trace sets are equal.

Proof. From Lemma 3.2 and Proposition 3.7. �



52 Chapter 3. An Inverse Method for PTAs

3.3.2 Termination

Reachability analysis is known to be undecidable in the framework of
PTAs [AHV93, Doy07], and computations performed with tools on PTAs (such
as HYTECH [HHWT95]) do not always terminate. However, we give a sufficient
condition for ensuring termination of our method.

We first show that, if all traces of A [π0] are finite, i.e., if there exists n ∈N s.t.
Postn

A [π0]({s0}) =;, then the algorithm terminates.

Proposition 3.9 (Termination in the acyclic case). Let A be a PTA and π0

be a valuation of P. If there exists n ∈ N s.t. Postn
A [π0]({s0}) = ;, then algo-

rithm IM(A ,π0) terminates in at most n iterations of the outer do loop.

Proof. Let us first consider the inner do loop for a given i . At each iteration,
we select a state s = (q,C ) of Posti

A (K )({s0}). We select an inequality J in ∃X :

C , negate J , and add it to K . Hence, s does not belong to Posti
A (K∧¬J )({s0}).

The traces of A (K ) of length j ≤ i can be organized under the form a finite
tree, say T . Likewise, the traces of A (K ∧¬J ) of length j ≤ i can be organized
under the form a finite tree, say T ′. It is easy to show that T ′ is a subtree of T ,
i.e., each branch starting from the root of T ′ is a (sub)branch starting from the
(same) root in T . Thus no new state can be reached in A (K ∧¬J ). Moreover,
the branch of T reaching the location corresponding to s does not belong to T ′.
So, the number of nodes of T ′ is less than the number of nodes of T . Hence,
the number of states of Posti

A (K∧¬J )({s0}) is less than the number of states of

Posti
A (K )({s0}). Thus, the inner do loop terminates.

Let us now consider the outer do loop. Since Postn
A [π0]({s0}) = ;, the con-

crete runs of A [π0] have at most length n−1. Let us show by reductio ad absur-
dum that the outer do loop terminates at iteration i ≤ n −1. Suppose that we
are still in the outer do loop at i = n. Thus, there exists a symbolic run of A (K )

of length n of the form (q0,C0)
a0⇒ ··· an−2⇒ (qn−1,Cn−1)

an−1⇒ (qn ,Cn). Moreover,
since all the states in S = Posti

A (K )({s0}) are π0-compatible, we have π0 |= Ci ,
for 0 ≤ i ≤ n. Hence, there exists w such that <w,π0> |= Cn . Therefore, by
Lemma 3.4, there exists an equivalent concrete run of length n of A [π0] reach-
ing (qn , w), which contradicts the assumption Postn

A [π0]({s0}) =;. �

A sufficient (but non necessary) condition so that there exists n ∈ N such
that Postn

A [π0]({s0}) =; is that the trace set of A [π0] be acyclic, i.e., the oriented
graph depicting the trace set be acyclic. Recall from Definition 2.16 that, in that
case, traces never pass twice by the same location. This is generally the case for
synchronous circuits analyzed over a fixed number (typically, 1 or 2) of clock
cycles.



3.3. Results 53

A sufficient (but non necessary) condition for the acyclicity of the trace set
of A is that A be itself acyclic (see Definition 2.24).

Now, notice that the fixpoint condition given at line 8 of Algorithm 1 is not
that there exists n ∈ N such that Postn

A (K )({s0}) = ;, but that there exists n ∈ N
such that all the states computed at iteration n are included into states com-
puted at previous iterations, i.e., Postn

A (K )({s0}) v⋃n−1
j=0 Post j

A (K )({s0}). Consider-
ing the fixpoint condition, it is straightforward to show that, if there exists n ∈N
such that, for all K , Postn

A (K )({s0}) v⋃n−1
j=0 Post j

A (K )({s0}), then Algorithm IM ter-
minates. In such a case, the oriented graph depicting the trace set of A [π0] is
not necessarily acyclic and may contain loops.

Theorem 3.10 (Termination in the cyclic case). Let A be a PTA and π0

be a valuation of P. If there exists n ∈ N such that Postn
A (true)({s0}) v⋃n−1

j=0 Post j
A (true)({s0}), then algorithm IM(A ,π0) terminates.

Proof. From the semantics of PTAs, given K a constraint on the parameters syn-
thesized during our algorithm, the set of runs of A (K ) is more restricted than
the set of runs of A (true): less states may be reachable, and the constraints
associated with the states are more restrictive (in the sense of constraint inclu-
sion). This comes from the finiteness of the number of inequalities possibly
synthesized by our algorithm, due to the finiteness of the symbolic structure
(set of symbolic cyclic runs) representing the semantics of A (true). As a conse-

quence, if there exists n ∈N such that Postn
A (true)({s0}) v⋃n−1

j=0 Post j
A (true)({s0}),

then we have Postn
A (K )({s0}) v ⋃n−1

j=0 Post j
A (K )({s0}), for any K . Finally, from the

fixpoint of Algorithm IM , it is straightforward to see that, if there exists n ∈ N
such that, for all K , Postn

A (K )({s0}) v⋃n−1
j=0 Post j

A (K )({s0}), then Algorithm IM ter-
minates. �

Although the cyclicity of runs of A (K ) is a sufficient condition of termina-
tion of IM , it is important to point out that the cyclicity of traces of A (K ) is
not a sufficient condition for the termination. Indeed, recall that traces are
time-abstract runs, and cyclic traces may refer to diverging runs, where the
constraints on the clocks and the parameters associated with the locations are
incomparable.

For most of the case studies the inverse method was applied to, termination
was ensured. However, it is possible to find examples for which the inverse
method does not terminate.

Example 3.11. Consider the PTA depicted in Figure 3.7, which contains one
location, and two clocks x1 and x2 (although x1 does not appear on the graph
depicting the PTA). Consider the reference valuation π0 : p1 = 1.



54 Chapter 3. An Inverse Method for PTAs

q0
x2 ≥ p1

x2 := 0

Figure 3.7: An example of PTA for which IM does not terminate

The application of the inverse method algorithm to this PTA andπ0 does not
terminate, because the algorithm will generate an infinite sequence of states
with constraints of the form x1 ≥ x2 + i ∗ p1, with i increasing. Actually, the
application of the inverse method algorithm to this PTA does not terminate for
any reference valuation of the parameter. �

Recall that a decidable subclass of PTAs is introduced in [HRSV02], namely
L/U automata. For this subclass of PTAs, our algorithm IM may also not ter-
minate. Actually, the PTA considered in Example 3.11 above and for which IM
does not terminate falls into this class of L/U automata, because the only pa-
rameter p1 only appears as an upper bound.

3.3.3 Properties

Non-confluence. We first show that the algorithm IM is non-confluent: for a
given input PTA A and a reference valuation π0, the output of IM(A ,π0) is not
necessarily always the same. This comes in particular from the nondetermin-
istic choice of the π0-incompatible inequality J to negate in the algorithm (see
line 5 in Algorithm 1 page 45).

Proposition 3.12 (Non-confluence). There exist a PTA A and a reference valu-
ation π0 such that the output of IM(A ,π0) is not always the same.

Proof. Consider the PTA depicted in Figure 3.8. This PTA contains 2 locations
q0 and q1, one clock x, and 3 parameters p1, p2, p3.

q0 q1

x ≤ p1 ∧x ≤ p2

x > p3

Figure 3.8: PTA showing the non-confluence of algorithm IM

We consider the following reference valuation π0 of the parameters:

p1 = 1 ∧ p2 = 1 ∧ p3 = 2

It is easy to see that an application of IM to this PTA and this valuation π0 will
output a constraint K0 either equal to p1 ≤ p3, or equal to p2 ≤ p3, depending
on which inequality ¬J is selected in the algorithm. �



3.3. Results 55

Non-maximality. It follows from this property of non-confluence that the
constraint K0 output by IM is not maximal, i.e., there may exist π 6|= K0 such
that the traces of A [π0] and the traces of A [π] are identical. The maximal con-
straint is actually not necessarily in conjunctive form in the general case: on the
example of Figure 3.8, it is easy to see that the maximal constraint guaranteeing
the same behavior as under π0 is p1 ≤ p3 ∨p2 ≤ p3, which is not in conjunctive
form.

This can be stated more formally in the following corollary.

Corollary 3.13 (Non-maximality). Let A be a PTA, and π0 be a valuation of the
parameters. Then there may exist π 6|= K0 such that the trace sets of A [π0] and
A [π] are the same.

Proof. From Proposition 3.12. �

A variant of the inverse method synthesizing constraints in a non-
conjunctive form is presented in Section 3.5.2. However, the constraint output
by this variant is not maximal either.

LTL-equivalence. We are now interested in studying which properties on
trace sets are preserved by our inverse method. Actually, because the inverse
method guarantees the equality of trace sets, all properties on traces are pre-
served. This in particular the case of linear-time properties and, more specif-
ically, of properties specified using the Linear Temporal Logic. This logic is an
extension of the propositional logic with modalities, allowing to express prop-
erties on the execution of an infinite reactive system, such as the safety, the
fairness or the liveness (see, e.g., [BK08]). Properties expressed using LTL can
express, for example, the fact that atomic propositions occur always, eventu-
ally, at the next state, or hold for all states from the current state until another
atomic proposition holds. Since this thesis is not centered on LTL, we will not
go further into details. For a brief reminder of the syntax and the semantics of
LTL properties, refer to Appendix A.1.

The LTL logic requires a set of atomic propositions, which does not appear
in our formalism of trace sets. Several possibilities can be used to overcome
this aspect. First, we may consider only the locations of our trace sets, and
thus abstract again from the alternating sequence of locations and actions. In
that case, we can either change the formalism of our PTAs and add to the tuple
defining a PTA a labeling function from the locations to a given set of atomic
propositions, or simply consider that our locations are the atomic propositions
themselves. Second, we can consider that the atomic propositions are the ac-
tions. This case is very similar to the first case. The last option is to consider
both locations and actions, which is equivalent to the two previous cases, but



56 Chapter 3. An Inverse Method for PTAs

needs more tricky considerations [BK08]. We will consider in the following that
the atomic propositions are the locations themselves. Our results can be ex-
tended in a straightforward manner to the other cases, because our method
guarantees the equality of trace sets, and thus of any abstraction made of those
trace sets.

Now, recall that, from their intrinsic definition, the traces we consider are
finite (see Definition 2.14). As a consequence, the formulae preserved by the in-
verse method are only the formulae involving properties verifiable using finite
traces only. Such properties correspond to the reachability and safety prop-
erties. However, the fairness or liveness properties, which check if the system
goes infinitely often in a given location, do not apply to finite traces. Extending
the correctness of our inverse method to infinite traces, and thus preserving full
LTL properties, is the subject of future work (see Remark 3.16 below).

We first define the satisfiability of a LTL-formula by a TA.

Definition 3.14 (Satisfiability). Let ϕ be a LTL formula verifiable using finite
traces.

Let T = q0
a0⇒ q1

a1⇒ ··· an−1⇒ qn be a (finite) trace. We say that T satisfies ϕ,
denoted by T |=ϕ, if q0q1 . . . qn |=ϕ (as defined in Appendix A.1).

Let TS be a trace set. We say that TS satisfies ϕ, denoted by TS |=ϕ if, for all
T ∈ TS, T |=ϕ.

Let A be a TA. We say that A satisfies ϕ, denoted by A |= ϕ if its trace set
satisfies ϕ. �

We can now state the preservation of the satisfiability of LTL-formulae for
finite traces by the constraint synthesized by our inverse method.

Proposition 3.15 (LTL-Equivalence). Let A be a PTA, π0 a valuation of the pa-
rameters, and ϕ a LTL formula verifiable using finite traces. Let K0 = IM(A ,π0).
Then, for all π |= K0, A [π] |=ϕ if and only if A [π0] |=ϕ.

Proof. From Theorem 3.8 guaranteeing the equality of trace sets. �

Remark 3.16 (Preservation of full LTL). It would be interesting to show the
preservation (or possibly the non-preservation) of the full set of LTL properties,
i.e., the equivalence of sets of infinite traces. This could be done using theo-
rem 3.30 of [BK08], relating finite trace and trace inclusion. However, applying
directly this theorem to our framework does not hold, because this theorem
supposes that the trace sets have a finite branching structure, and contain no
terminal states. As a consequence, although it seems to be an interesting direc-
tion of research, proving the result would deserve further investigation. �



3.3. Results 57

Non-preservation of bisimulation. We saw that our equality of trace sets pre-
serves LTL formulae verifiable using finite traces. However, because the inverse
method preserves only the trace sets and not necessarily the branching struc-
ture, the inverse method does not necessarily preserve formulae expressed us-
ing branching logics. In particular, we show below using a counter-example
that the Computation Tree Logic (CTL) is not preserved. We briefly recall the
CTL syntax and semantics in Appendix A.2.

Proposition 3.17 (Non-CTL-Equivalence). Let A be a PTA, and π0 be a valua-
tion of the parameters. Let K0 = IM(A ,π0). Then there may exist a CTL-formula
which is true for A [π0], and not for A [π] for some π |= K0.

Proof. Consider the PTA A depicted in Figure 3.9.

q0 q1

q2

q3

x ≤ 1
y := 0

x = p1 ∧ y = p2

x = p2 ∧ y = p2

Figure 3.9: PTA showing the non-CTL-equivalence of IM

We consider the following reference valuation of the parameters:

π0 : p1 = 2∧p2 = 1

One can easily see that, for this example, the inverse method algorithm
IM(A ,π0) outputs the following constraint K0:

p2 ≤ p1 ∧p1 ≤ p2 +1

Now, consider the following CTL formula ϕ:

∃© (∃©q2 ∧∃©q3)

This formula says that, from the initial state, there exists a next state such that,
from this state, there exist both a next state labeled with q2 and a next state
labeled with q3. The conjunction implies that there exists a run from q0 such
that both q2 and q3 must be reachable from q1.



58 Chapter 3. An Inverse Method for PTAs

Recall that the CTL logic relates to the branching behavior of a system. As a
consequence, it is not enough to check the trace set, but we need also to have a
look at the semantics of the system in terms of a labeled transition system, i.e.,
taking into account the value of the clocks.

We will show that (1) the formula ϕ does not hold for A [π0], and that (2)
there exists π |= K0 such that the formula ϕ holds for A [π]. Actually, the dura-
tion of the stay in the initial location q0 will impact the behavior of the system.

(1) Behavior underπ0. Three different cases are considered forπ0, depending
on the duration of the stay in q0.

1. If an execution stays in q0 for a null duration, once in q1 it is possible to
go only to q3, at time t = p2 = 1. However, it is impossible to reach q2,
since x = y but p1 6= p2. Thus, ϕ does not hold.

2. If an execution stays exactly 1 unit of time in q0, once in q1 it is possible
to go only to q2, at time t = 2 (thus after 1 unit of time in q1). In that case,
y = p2 = 1 and x = p1 = 2. Thus, ϕ does not hold.

3. For any other duration in q0, the system gets deadlocked in q1 because
neither the guard of the transition to q2 nor the guard of the transition
to q3 will ever be satisfied. Thus, ϕ does not hold.

(2) Behavior underπ. Let us consider the following valuation π of the param-
eters:

π : p1 = 1∧p2 = 1

Note that we have π |= K0. Consider the case where an execution stays in q0 for
a null duration. Then, if one stays in q1 for exactly one unit of time, both the
guard of the transition to q2 and the guard of the transition to q3 are satisfied.
Thus, we found a run such that both q2 and q3 are reachable from q1. Thus,
ϕ holds.

Actually, more generally, it can be shown that the formula ϕ holds if and
only if p1 = p2. �

As a consequence, one can show that the algorithm IM does not involve a
(time-abstract) bisimulation, i.e., there is no bisimulation (in the general case)
between A [π0] and A [π], for all π |= IM(A ,π0). We briefly recall the notion of
time-abstract bisimulation relation in Appendix A.3.

Proposition 3.18 (Non-bisimulation). There exist a PTA A , a valuationπ0 of the
parameters, and a valuation π |= IM(A ,π0) such that there is no time-abstract
bisimulation between A [π0] and A [π].



3.3. Results 59

Proof. By Proposition 3.17 and equivalence between CTL-equivalence and
bisimulation [BCG88]. �

Remark 3.19. It may be useful to mention that our inverse method does also not
preserve properties expressed using the TCTL logic. Recall that TCTL [ACD93]
is a timed extension of CTL to the timed case, allowing to express proper-
ties specifying both the branching behavior and interval of time within which
events may occur. TCTL properties are not preserved by our inverse method
for two reasons. First, TCTL is a timed extension of CTL, based on the branch-
ing structure of the system. Our inverse method does not preserve CTL, and
will not preserve TCTL for the same reasons. Second, TCTL properties are not
time-abstract properties, because they express facts involving time, such as “an
event must occur within a 2 seconds”. Our inverse method is based on time-
abstract traces, and therefore cannot guarantee any timed behavior, but only
the preservation of the ordering between events. �

Commutation of the Instantiation. We finally show a result stating the com-
mutation of the instantiation of some parameters with the application of the
inverse method. In other words, we show that the application of the inverse
method to a system in which some of the parameters are instantiated is equiv-
alent to applying the inverse method to the fully parametric model, and then
instantiating some of the parameters in the resulting constraint.

Let us first introduce some notation. Let σ : P * Q≥0 be a partial function
assigning a rational value to some of the parameters P (we assume that * is
the operator for partial functions). Then, given a PTA A , we denote by A/σ

the PTA obtained from A by replacing, for each parameter pi for which σ is
defined, any occurrence of pi within guards and invariants of A by σ(pi ). Sim-
ilarly, given a constraint K on the parameters, we denote by K/σ the constraint
obtained from K by replacing, for each parameter pi for whichσ is defined, any
occurrence of pi by σ(pi ). Observe that K/σ = K ∧∧

pi∈Dσ
pi =σ(pi ), where Dσ

denotes the domain of σ, i.e., the set of parameters for which σ is defined.
We can now state more formally this result below.

Proposition 3.20 (Commutation). Let A be a PTA, and π0 be a valuation of the
parameters. Let σ : P * Q≥0 be a partial valuation of the parameters P. Then,
we have:

IM(A/σ,π0) = (IM(A ,π0))/σ.

The proof of this proposition is rather straightforward, and is based on the
equivalence of the application of the inverse method to the partially instan-
tiated PTA, and of the partial instantiation of the constraint resulting from the



60 Chapter 3. An Inverse Method for PTAs

inverse method applied to the non-instantiated PTA. More details can be found
in [Sou10c].

This result has two implication. First, when one is interested into optimiz-
ing only some of the timing bounds, it does not bring anything to apply the
inverse method to the fully parameterized system, and then instantiating all
the parameters but these timing bounds. One can directly apply it to the “semi-
instantiated” system where only the timing bounds we are interested to opti-
mize are parametric. Actually, those two different techniques are also almost
equivalent in practice, when using the implementation IMITATOR II (see Chap-
ter 4).

Second, it may also be interesting to reason in a fully parametric way. Con-
sider the case of the Root Contention Protocol [HRSV02, CS01], which will
be studied in Section 4.4, and in Chapter 6. The IEEE reference valuation of
the parameters prevents the use of the probabilistic model checker PRISM for
computing probabilities because some of the instantiated parameters were too
large (e.g., s_min = 1590) to be handled by PRISM. Instead, a fully-parametrized
analysis allowed the authors to rescale all the parameters to as low as desired
(around 1) so that PRISM would be able to handle the analysis. In our case, we
see that the application of the inverse method to a semi-instantiated model (de-
picted as tile 1 in Figure 6.11 page 166) allows us to rescale s_min to around 850.
But the application of the inverse method to the fully parametrized model al-
lows us to rescale s_min as low as one wants, e.g., to 7 (see Section 4.4, as well
as Table 6.1 page 159), allowing a much faster computation by PRISM.

3.3.4 Discussion

The first advantage of the inverse method is that it gives a criterion of robust-
ness by ensuring the correctness of the system for other values for the param-
eters around the reference valuation. This is of interest when implementing a
system: indeed, the exact model with (for example) integer values for timing
delays that has been formally verified will necessarily be implemented using
values which will not be exactly the ones that have been verified.

Moreover, it allows the system designer to optimize the value of some pa-
rameters without changing the overall functional behavior of the system. By
instantiating within the constraint output by the algorithm all but some pa-
rameters, one can get lower (or upper) bounds on their possible values, and
thus optimize them without changing the time-abstract behavior of the sys-
tem. This has numerous applications, especially in hardware verification (see
Chapter 4).

A further advantage of the method is to allow the rescaling of constants. In-
deed, it is possible that verifying a timed concurrent system using an external



3.4. Application to the Flip-flop Example 61

model checker is sensitive to the size of the constants. As a consequence, for
systems with large constants that one can hardly verify using external tools, it
is interesting to run the inverse method implemented to get a constraint. Then,
one can infer from this constraint much smaller values of the parameters hav-
ing the same time-abstract behavior as under the original (large) valuation. The
verification of such a rescaled system can then lead to a high decrease of the
verification time and the state space.

Also observe that the inverse method does not depend on a property one
wants to check; actually, the algorithm does not take into account the fact that
the trace set under the reference valuation is good or bad. Actually, although the
final constraint K0 output by the inverse method induces a behavioral property
of the system related to traces, only states (and not traces) are manipulated by
the algorithm.

Although most examples detailed in this thesis are relevant to the synthesis
of good parameters, the method can also be applied to synthesize parameters
with a “bad” behavior. In particular, it can be interesting, once one has discov-
ered a parameter valuation leading to a bad behavior, to find other such param-
eter valuations; an application can be to find the smallest parameter valuation
leading to a given bad behavior.

The main shortcoming of the inverse method is that the constraint output
by the algorithm is not maximal, i.e., there may exist other parameter valua-
tions outside K0 with the same trace set as under the reference valuation (see
Proposition 3.13). Moreover, recall that the good parameters problem we are
interested to solve in this thesis relates to the synthesis of parameter valuations
corresponding to any good behavior, not to a single one. There may actually
exist different good behaviors from the one corresponding to the reference val-
uation. We will address those issues in Chapter 5.

Rewriting the Algorithm. The inverse method algorithm has been presented
as such in Algorithm 1 both for historical and correctness reasons. Indeed, al-
though several computations are redundant, it was rather easy to prove the cor-
rectness of IM using that version. However, the inverse method can be rewrit-
ten in a simpler manner, saving two variables (viz., K and i ). This version,
which is close to the version implemented, is sketched in Section 4.1.2.

3.4 Application to the Flip-flop Example

Let us now apply the inverse method to the flip-flop example of Section 3.1.1.
Applying the inverse method algorithm to this model, the following con-
straint K0 is computed after 9 iterations:



62 Chapter 3. An Inverse Method for PTAs

δ+3 +δ+4 ≥ THold ∧ δ−1 > 0
∧ THold ≥ δ−3 +δ−4 ∧ THold > δ+3
∧ THI > δ+3 +δ+4 ∧ TSetup > δ+1

It can be checked (using, e.g., a parametric reachability analysis) that the
trace sets of A [π0] and A [π] are the same, for any π |= K0. This trace set corre-
sponds to the one depicted in Figure 3.1 page 43.

Note that this constraint K0 guarantees a good behavior of the system, be-
cause the behavior of A [π0] is a good behavior (see Section 3.1.1). However,
there may exist other good behaviors for this system. Finding the maximal set
of parameter valuation corresponding to good behaviors will be the purpose of
Chapter 5.

Comparison. In [CC07], a constraint, say Z , is synthesized in order to prevent
bad system behaviors. The bad state is defined as the case where CK ↓ occurs
before Q↑. This constraint Z is the following:

TCK→Q ≤ δ+2 +δ+3 +δ+4 ∧ TSetup > δ+1 +δ+2 −δ−2
∧ THold > δ+2 +δ+3 ∧ THI > δ+2 +δ+3 +δ+4
∧ THI > THold ∧ TLO > TSetup

∧ δ−1 > δ+2
One can see that Z and K0 are incomparable, i.e., Z 6⊆ K0 and K0 6⊆ Z . The

method introduced in Chapter 5 will allow us to synthesize a constraint strictly
weaker (i.e., containing a strictly larger set of parameter valuations) than Z for
2 parameter dimensions (see Section 5.4.3).

3.5 Variants of the Inverse Method

The standard inverse method algorithm IM presented above guarantees the
equality of trace sets. This guarantee can sometimes be considered as too
strong for what the designer is interested in. In particular, this equality of trace
sets is too strong with respect to our good parameters problem, as defined in
Section 2.3. Indeed, the good parameters problem focuses on the synthesis of
all good behaviors, not only one specific good behavior.

We present in this section two variants of the inverse method, not anymore
guaranteeing the equality of trace sets, but still featuring interesting properties
when one is interested in synthesizing good values for the parameters.

3.5.1 Variant with State Inclusion in the Fixpoint

As shown in line 8 in Algorithm 1, the standard inverse method algorithm stops
when PostA (K )(S) v S, i.e., when each of the new states encountered at step i



3.5. Variants of the Inverse Method 63

is equal to a previously encountered state (see Definition 2.30). A variant of the
algorithm consists in considering an inclusion of the states, i.e., each of the new
states encountered at step i is included in a previously encountered state (recall
that state inclusion means equality of locations and inclusion of constraints,
see Definition 2.29).

We give in Algorithm 2 the lines replacing lines 8 and 9 of Algorithm 1, thus
obtaining variant IM⊆.

Algorithm 2: Variant IM⊆(A ,π) of the inverse method

1 if ∀s ∈ PostA (K )(S),∃s′ ∈ S : s ⊆ s′ then
2 return

⋂
(q,C )∈S(∃X : C )

Note that the computation of the constraint returned by the algorithm is
not modified itself; only the termination condition is.

Termination for this variant IM⊆ may happen earlier than using the stan-
dard algorithm IM , due to this weaker condition of fixpoint. The implemen-
tation also uses less memory, because one can merge states as soon as one is
included into another one. As a consequence, this variant IM⊆ may terminate
in some cases where the standard algorithm IM does not terminate. This bet-
ter termination condition is a major advantage of this variant. The constraint
output is also weaker than the constraint output by the standard algorithm IM .

Although the equality of trace sets stated by Theorem 3.8 for IM does ob-
viously not hold any longer for IM⊆, this variant still has interesting proper-
ties. First, we will show that the trace sets of A [π0] and A [π] are equal up to
length n, where n is the number of iterations of IM⊆(A ,π0). In other words, the
set of prefixes of length n of the traces of A [π0] is equal to the set of prefixes of
length n of the traces of A [π]. We formalize this property in Proposition 3.26.
Second, we will show that the non-reachability of a location is preserved, i.e., a
location which does not belong to the trace set of A [π0] does also not belong
to the trace set of A [π], for all π |= IM⊆(A ,π0). We formalize this property in
Proposition 3.27.

Following a reasoning similar to the proof of Theorem 3.8 for the algo-
rithm IM , we first need to prove several propositions. In the following, we con-
sider given a PTA A , and a reference valuation π0. We denote by n the number
of iterations of IM⊆(A ,π0), and by K the constraint at the end of the algorithm.

We first show that π0 |= K0.

Lemma 3.21. Let A be a PTA, and π0 be a valuation of the parameters. Let
K0 = IM⊆(A ,π0). Then, we have π0 |= K0.



64 Chapter 3. An Inverse Method for PTAs

Proof. When Algorithm IM⊆ terminates, the set S is π0-compatible (i.e., π0 |=
(∃X : C ), for all (q,C ) ∈ S). Thus, the intersection K0 of the constraints associ-
ated with the states of S, i.e.,

⋂
(q,C )∈S(∃X : C ), is satisfied by π0. �

We then prove the following lemma, used to prove Proposition 3.26.

Lemma 3.22. Let A be a PTA, and π0 be a valuation of the parameters. Let
K0 = IM⊆(A ,π0). Then, we have K0 ⊆ K , where K corresponds to the negation of
all inequalities at the end of the algorithm.

Proof. From Lemma 2.35, for all states (q,C ) ∈ S, we have (∃X : C ) ⊆ K , since
S = Postn

A (K )({s0}). As K0 =⋂
(q,C )∈S(∃X : C ), then K0 ⊆ K . �

We now state that, for all π |= K0, for each symbolic run of A (K ) of length
smaller or equal to n, we can find an equivalent concrete run of A [π].

Lemma 3.23. For allπ such thatπ |= K0, for each symbolic run of A (K ) of length
smaller or equal to n reaching (q,C ), there exists a clock valuation w such that
<w,π> |=C .

Proof. For each symbolic run of A (K ) of length smaller or equal to n reach-
ing (q,C ), we have (q,C ) ∈ S since S = Postn

A (K )({s0}). Moreover, we have
K0 =⋂

(q,C )∈S(∃X : C ). Thus, for allπ |= K0, for all (q,C ) ∈ S, we haveπ |= (∃X : C ).
Hence, there exists a clock valuation w such that <w,π> |=C . �

Proposition 3.24. For all π |= K0, for each symbolic run of A (K ) of length
smaller or equal to n, there exists an equivalent concrete run of A [π].

Proof. From Lemma 3.23 and Lemma 3.4. �

Conversely, we now state that, for all π |= K0, for each concrete run of A [π]
of length smaller or equal to n, we can find an equivalent symbolic run of A (K ).

Proposition 3.25. For all π |= K0, for each concrete runs of A [π] of length
smaller or equal to n, there exists an equivalent symbolic run of A (K ).

Proof. The proof of Proposition 3.18 in [HRSV02] can be adapted in a straight-
forward manner to show that, for all π |= K , for each concrete run of A [π] of
length smaller or equal to n, there exists an equivalent symbolic run of A (K ).
The result follows from the fact thatπ |= K0 impliesπ |= K (by Lemma 3.22). �

We now show Proposition 3.26, stating that the set of prefixes of length n
of the traces of A [π0] is equal to the set of prefixes of length n of the traces
of A [π], where n is the number of iterations of IM⊆ (i.e., the value of i at the
end of the algorithm).



3.5. Variants of the Inverse Method 65

Proposition 3.26 (Prefix traces). Let A be a PTA, and π0 a valuation of the pa-
rameters. Suppose that IM⊆(A ,π0) terminates with output K0 after n iterations
of the outer do loop. Then, we have:

1. π0 |= K0,

2. for allπ |= K0, for each trace T0 of A [π0], there exists a trace T of A [π] such
that the prefix of length n of T0 and the prefix of length n of T are equal,
and

3. for allπ |= K0, for each trace T of A [π], there exists a trace T0 of A [π0] such
that the prefix of length n of T0 and the prefix of length n of T are equal.

Proof. From Lemma 3.21, Proposition 3.24 and Proposition 3.25. �

When considering the absence of bad behavior, i.e., the non-reachability
of a given location, the above proposition only shows that, if a location is not
reachable in A [π0], it is also not reachable in A [π], for all π |= IM⊆(A ,π0),
within traces up to length n. Although this may be of interest for bounded veri-
fication, it is usually more interesting to guarantee that a given location is never
reachable, i.e., does not belong to any trace of unbounded length. We now show
that, if a given location is not reachable in A [π0], it will also not be reachable
in A [π], for all π |= IM⊆(A ,π0). Besides the weaker constraint and the better
termination, this is certainly the most interesting property of this variant IM⊆.

Proposition 3.27 (Preservation of non-reachability). Let A be a PTA, π0 a valu-
ation of the parameters, and q a location of A . Suppose that IM⊆(A ,π0) termi-
nates with output K0. If q does not belong to the trace set of A [π0], then q does
not belong to the trace set of A [π], for all π |= K0.

Proof. Let A be a PTA, and π0 be a valuation of the parameters. Suppose that
IM⊆(A ,π0) terminates with output K0 after n iterations. Let π |= K0. Let q be a
location of A such that q does not belong to the trace set of A [π0]. By Proposi-
tion 3.26, q does not belong to any trace of A [π] of length lower or equal to n.

Moreover, from the fixpoint of the algorithm IM⊆, all states reached after n
iterations are included into states computed previously. Recall from Defini-
tion 2.29 that the state inclusion involves equality of locations and inclusion of
constraints. From the semantics of PTAs, the states reachable from those new
states will themselves be included into states computed previously. As a conse-
quence, no location not reachable previously can be reached after n iterations,
which proves the proposition. �



66 Chapter 3. An Inverse Method for PTAs

Non-maximality. It can be shown (e.g., using the PTA depicted in Figure 3.8
page 54 and used to prove the non-confluence of the standard version IM) that
this variant IM⊆ is also non-confluent. As a consequence, the constraint output
by IM⊆ is also non-maximal. Still, the constraint output by IM⊆ is weaker than
the one output by IM for the same input (see Proposition 3.28 below).

Advantages. Although the equality of trace sets is not guaranteed anymore,
this variant IM⊆ is interesting when one is interested in safety properties. In-
deed, if a given “bad” location is not reached under a reference valuation, it will
also not be reached under any valuation satisfying the constraint output by this
variant. Moreover, termination is ensured more often than for IM .

Proposition 3.28. Let A be a PTA, and π0 a valuation of the parameters. If
IM(A ,π0) terminates, then IM⊆(A ,π0) also terminates.

Proof. Based on the fact that the two algorithms are equal, except the fixpoint
condition, which is weaker for IM⊆. �

Note that the reciprocal statement does not hold: there are actually exam-
ples of PTAs for which the application of IM⊆ terminates although IM does not
terminate.

Example 3.29. Consider again the PTA depicted in Figure 3.7 page 54. As said in
Example 3.11, the application of IM to this PTA does not terminate. However,
the application of IM⊆ to this PTA and any reference valuation of the parame-
ters terminates (and outputs the constraint true). �

Also note that, even in the cases where termination occurs for both IM
and IM⊆, termination of IM⊆ may occur earlier (in term of number of itera-
tions) than IM because of the weaker fixpoint condition.

Finally, we state in the following proposition that the constraint output
by IM⊆ is weaker (i.e., corresponds to a larger set of parameter valuations) than
the one output by IM .

Proposition 3.30. Let A be a PTA, and π0 a valuation of the parameters. Then,
we have:

IM(A ,π0) ⊆ IM⊆(A ,π0).

Proof. Suppose IM⊆(A ,π0) terminates after n iterations. Up to the nth itera-
tion, IM behaves exactly like IM⊆ (because both algorithms are identical, ex-
cept the fixpoint condition). After the nth iteration, K may be restricted in IM
with the addition of inequalities. Moreover, new states may be computed, but
their associated constraint on the parameters will be more restrictive than (i.e.,



3.5. Variants of the Inverse Method 67

included into) the constraints associated with the states of S at the nth itera-
tion (by Lemma 2.34). Thus, the intersection of K with the constraints on the
parameters associated with the reachable states is included into this same in-
tersection at the nth iteration. �

This variant has been implemented (see Chapter 4) and applied to several
case studies.

3.5.2 Variant with Union of the Constraints

As shown in line 9 in Algorithm 1, the standard inverse method algorithm re-
turns the intersection of the constraints associated with all the reachable states,
when the fixpoint is reached. As a consequence, all the states reachable un-
der π0 will be reachable, for any π |= K0.

Let us now consider what would happen if one replaces the intersection of
all the constraints with the union of all the constraints. Actually, we do not con-
sider the union of the constraints associated with all the reachable states, but
the union of the constraints associated with each of the last state of a symbolic
run. This notion of last state is easy to understand for finite symbolic runs.
However, when considering infinite (and necessarily cyclic) symbolic runs, the
last state refers to the second occurrence of a same state within a symbolic run,
i.e., to the first time that a state is equal to a previous state of the same symbolic
run. Such symbolic runs are necessarily cyclic because, if there are any infinite
runs with diverging states, then the algorithm does not terminate.

We give this variant IM∪ in Algorithm 3. This algorithm is identical to the
standard inverse method IM (see Algorithm 1) except in two points:

1. Lines 8 to 10 allow the computation of the last states of each run: either
states being the last of a finite run (i.e., when PostA (K )({s}) is empty), or
states being equal to states computed previously (i.e., when s ∈ S).

2. Line 12 returns the union of the constraints on the parameters associ-
ated with the last states of the runs, instead of the intersection of the con-
straints associated with all the states computed.

Note that the lines mentioned at item 1 are actually modified in this algo-
rithm only in order to compute the different return of item 2, and do not inter-
fere with the rest of the algorithm.

Correctness. Although it is clear that the equality of trace sets is no longer
guaranteed for π |= IM∪(A ,π0), some properties are still preserved by this vari-
ant. By performing the union of the last states of each trace, we have the guar-
antee that, for all π |= K0, the trace set of A [π] is a subset of the trace set



68 Chapter 3. An Inverse Method for PTAs

Algorithm 3: Variant IM∪(A ,π) of the inverse method

input : A PTA A of initial state s0 = (q0,C0)
input : Valuation π of the parameters
output: Constraint K0 on the parameters

1 i ← 0; K ← true ; S ← {s0} ; Slast ← {}
2 while true do
3 while there are π-incompatible states in S do
4 Select a π-incompatible state (q,C ) of S (i.e., s.t. π 6|=C ) ;
5 Select a π-incompatible J in (∃X : C ) (i.e., s.t. π 6|= J ) ;
6 K ← K ∧¬J ;

7 S ←⋃i
j=0 Post j

A (K )({s0}) ;

8 foreach s ∈ PostA (K )(S) do
9 if PostA (K )({s}) =; or s ∈ S then

10 Slast ← Slast ∪ {s}

11 if PostA (K )(S) v S then
12 return

⋃
(q,C )∈Slast

(∃X : C )

13 i ← i +1 ;

14 S ← S ∪PostA (K )(S) ; // S =⋃i
j=0 Post j

A (K )({s0})



3.5. Variants of the Inverse Method 69

of A [π0]. In other words, for all π |= K0, for each trace of the trace set of A [π],
there exists an identical trace in the trace set of A [π0].

This gives in particular a criterion of safety by guaranteeing that a “bad”
location which is not reachable under π0 is also not reachable under π.

In the following, we consider given a PTA A , and a reference valuation π0.
We denote by K the constraint at the end of the algorithm.

We first prove that π0 |= K0.

Lemma 3.31. We have π0 |= K0.

Proof. By construction, the states in Slast are π0-compatible. Moreover, the
constraint K is made by construction of negations of π0-incompatible inequal-
ities, and is thus also π0-compatible. As a consequence, K0 is π0-compatible.

�

We now prove that K0 ⊆ K .

Lemma 3.32. Let A be a PTA, and π0 be a valuation of the parameters. Let
K0 = IM∪(A ,π0). Then, we have K0 ⊆ K .

Proof. From Lemma 2.35, for each state (q,C ) ∈ S, we have (∃X : C ) ⊆ K , since
S = Post∗

A (K )({s0}). As K0 =⋃
(q,C )∈Slast

(∃X : C ), with Slast ⊆ S, then K0 ⊆ K .
�

Now, recall that we stated both for the standard version IM (Proposition 3.5)
and for the variant IM⊆ (Proposition 3.24) that, for all π |= K0, for each symbolic
run of A (K ), we can find an equivalent concrete run of A [π]. This does not
hold here, because we do not necessarily have that π |= s for all s ∈ S (where S is
the set of reachable states at the end of IM∪). However, we can show this for π0,
because all states are π0-compatible at the end of IM∪.

Lemma 3.33. For each symbolic run of A (K ) reaching (q,C ), there exists a clock
valuation w such that <w,π0> |=C .

Proof. For each symbolic run of A (K ) reaching (q,C ), we have (q,C ) ∈ S since
S = Post∗

A (K )({s0}). By construction, all states in S are π0-compatible, i.e., π0 |=
(∃X : C ). Hence, there exists a clock valuation w such that <w,π0> |=C . �

This implies that, for each symbolic run of A (K ), there exists an equivalent
concrete run of π0.

Proposition 3.34. For each symbolic run of A (K ), there exists an equivalent con-
crete run of A [π0].

Proof. From Lemma 3.33 and Lemma 3.4. �



70 Chapter 3. An Inverse Method for PTAs

Although we could not show that, for all π |= K0, for each symbolic run
of A (K ), we can find an equivalent concrete run of A [π], we can neverthe-
less show the converse: for all π |= K0, for each concrete run of A [π], we can
find an equivalent symbolic run of A (K ).

Proposition 3.35. For all π |= K0, for each concrete run of A [π], there exists an
equivalent symbolic run of A (K ).

Proof. The proof of Proposition 3.18 in [HRSV02] can be adapted in a straight-
forward manner to show that, for allπ |= K , for each concrete run of A [π], there
exists an equivalent symbolic run of A (K ). The result follows from the fact that
π |= K0 implies π |= K (by Lemma 3.32). �

Since π0 |= K0, we can state the equality of trace sets between A (K )
and A [π0].

Proposition 3.36. Let A be a PTA and π0 a valuation of the parameters. Let
K0 = IM∪(A ,π0). Then the trace sets of A (K ) and A [π0] are equal.

Proof. From Lemma 3.31, we have π0 |= K0. The result then comes from Propo-
sition 3.34 and Proposition 3.35. �

This brings us to the proof of the correctness of this variant.

Theorem 3.37 (Correctness). Let A be a PTA and π0 a valuation of the param-
eters. Let K0 = IM∪(A ,π0). Then, for all π |= K0, every trace of A [π] is equal to a
trace of A [π0].

Proof. Let π |= K0. Let r be a run of A [π]. By Proposition 3.35, there exists an
equivalent symbolic run r ′ of A (K ). Thus the traces associated with r and r ′

respectively are equal. By Proposition 3.36, there exists a trace which is equal
in A [π0]. �

Now, let us show that no location unreachable under π0 can be reached un-
der any π |= K0. More formally, we show in the following that, if a given location
is not reachable in A [π0], it will also not be reachable in A [π], for all π |= K0.
This proposition is actually similar to Proposition 3.27 in the framework of the
variant IM⊆.

Proposition 3.38 (Preservation of non-reachability). Let A be a PTA, π0 a valu-
ation of the parameters, and q a location of A . Suppose that IM∪(A ,π0) termi-
nates with output K0. If q does not belong to the trace set of A [π0], then q does
not belong to the trace set of A [π], for all π |= K0.

Proof. By contraposition on Theorem 3.37. �



3.5. Variants of the Inverse Method 71

Let us also note that the termination is the same as for IM .

Proposition 3.39 (Termination). Let A be a PTA, and π0 a valuation of the pa-
rameters. Then, IM∪(A ,π0) terminates if and only if IM(A ,π0) terminates.

Proof. Based on the fact that the fixpoint conditions of the two algorithms are
the same, and the variables involved in the fixpoint (viz., S and K ) are computed
in the same way. �

Non-maximality. One may wonder whether the fact that the constraint out-
put is under a disjunctive form implies the maximality of the constraint. In
other words, does the constraint K0 output by IM∪ correspond to the maxi-
mal set of parameters valuations satisfying Theorem 3.37? The answer is no.
It can be shown (e.g., using the PTA depicted in Figure 3.8 page 54 and used
to prove the non-confluence of the standard version IM) that this variant IM∪

is also non-confluent. As a consequence, the constraint output by IM∪ is also
non-maximal. Still, the constraint output by IM∪ is weaker than the one output
by IM for the same input (see Proposition 3.40 below).

Advantages. Similarly to the variant IM⊆, although the equality of trace sets is
not guaranteed anymore, this variant IM∪ is interesting when one is interested
in safety properties. Indeed, if a given “bad” location is not reached under a
reference valuation, it will also not be reached under any valuation satisfying
the constraint output by this variant.

Beside the fact that the non-reachability is preserved, the other main advan-
tage of this variant is that the constraint corresponds to a larger set of valuations
of the parameters than in the standard algorithm IM , because we perform the
union of some states, instead of the intersection of all the reachable states. We
formalize this property below.

Proposition 3.40. Let A be a PTA, and π0 a valuation of the parameters. Then:

IM(A ,π0) ⊆ IM∪(A ,π0).

Proof. First recall that the two algorithms have the same fixpoint condition.
Then, the proof is based on the fact that IM returns the intersection of all the
states in S, whereas the variant IM∪ returns the union of some of the states
in S. �

However, the constraints output by the two variants IM⊆ and IM∪ for the
same input are incomparable in the general case.

Also recall that the termination of IM⊆ occurs exactly in the same cases as
the termination of IM (see Proposition 3.39).



72 Chapter 3. An Inverse Method for PTAs

Observe that, in contrast to the standard algorithm IM and to the first vari-
ant IM⊆, the constraint output by this variant IM∪ is not under a convex form.

Combination of Variants. One can actually combine both variants IM⊆

and IM∪, by considering the fixpoint condition of IM⊆ and the return under
a disjunctive form of IM∪. Let us name IM⊆∪ this combination. This variant
has the properties of both variants IM⊆ and IM∪. In short, the constraint syn-
thesized is weaker than the one synthesized by either IM , IM⊆ or IM∪, the al-
gorithm terminates more often that the three other versions of the algorithm,
non-reachability of a location is preserved, and the constraint synthesized is
still not necessarily maximal. We will not formally investigate further this vari-
ant, but we will consider it in the discussion below.

3.5.3 Discussion on the Variants

We discuss here the advantages of each variant on an example of PTA, and com-
pare the constraints synthesized by each variant.

An Example of PTA. Let us consider the PTA Avar depicted in Figure 3.10 and
containing in particular 2 parameters.

q0

q1

q2

q3

x1 ≤ 5p1

x1 ≤ p1

x2 ≤ p2

x1 ≥ p2

a

x2 ≤ p2

bx2 ≥2p2

c

b

x1 ≥ p1

b
x1 :=0c

x1 :=0
x2 :=0

Figure 3.10: A PTA Avar for comparing the variants of IM

Consider the following reference valuation π0 of the parameters:

p1 = 1 ∧ p2 = 2

Reference Behavior. The trace set of Avar under the reference valuation (i.e.,
Avar[π0]) is given in Figure 3.11.

Note in particular that location q1 is not reachable under π0.



3.5. Variants of the Inverse Method 73

q0

q2 q2 q2

q3

b
b b

c

c

Figure 3.11: Trace set of Avar under π0

Classical Inverse Method. Let us first apply the standard version IM of our
inverse method to Avar and π0. The following constraint K is synthesized:

p2 ≥ 2∗p1 ∧ 3∗p1 > p2 ∧ 5∗p1 ≥ 2∗p2

By Theorem 3.8, the trace set is exactly the same as under π0, i.e., the one de-
picted in Figure 3.11.

First Variant. Now apply to Avar andπ0 the variant IM⊆ of the inverse method
with inclusion of constraints within the fixpoint. The following constraint K ⊆

is synthesized:
p2 > p1 ∧ 5∗p1 ≥ 2∗p2

As stated by Proposition 3.30, it is easy to see that K ⊆ K ⊆.
The trace set of Avar[π], for any π |= K ⊆, is such that it contains the trace set

of Figure 3.11, and is a sub trace set of the one given in Figure 3.12.

q0

q2 q2

q3

b
b

b

c

c

Figure 3.12: Over trace set of Avar[π] for π |= K ⊆

Second Variant. Now apply to Avar and π0 the variant IM∪ of the inverse
method returning the union of the constraints associated with the last states
of traces. The following constraint K ∪ is synthesized:

p2 ≥ 2∗p1 ∧ 3∗p1 > p2

∨ p2 > p1 ∧ 5∗p1 ≥ 2∗p2



74 Chapter 3. An Inverse Method for PTAs

q0 q2 q2 q2
b b b

q0

q2 q2

q3

b
b

c

c

Figure 3.13: Possible trace sets of Avar[π] for π |= K ∪

As stated by Proposition 3.40, it is easy to see that K ⊆ K ∪.
It can be shown that the trace set of Avar[π], for any π |= K ∪, is either the

trace set given in Figure 3.11 or one of the two trace sets given in Figure 3.13.
Actually, it can be shown that the trace set of Avar[π] is the one of Figure 3.11
for π taken in 2.5∗p1 ≥ p2 ≥ 2∗p1; it corresponds to the trace set of the lower
part of Figure 3.13 for π taken in 2∗p1 > p2 > p1; and it corresponds to the trace
set of the upper part of Figure 3.13 for π taken in 3∗p1 > p2 > 2.5∗p1.

Combined Variant. Now apply to Avar and π0 the variant IM⊆∪ of the inverse
method, i.e., the variant combining IM⊆ and IM⊆. The following constraint K ⊆∪
is synthesized:

p2 > p1

∨ p2 > p1 ∧ 5∗p1 ≥ 2∗p2

which is actually equivalent to p2 > p1. It is easy to see that K ⊆ K ⊆∪ , K ⊆ ⊆ K ⊆∪
and K ∪ ⊆ K ⊆∪ .

It can be shown that the trace set of Avar[π], for any π |= K ⊆∪ , is actually a
sub trace set of the trace set given in Figure 3.12, depending on the value of π.

Comparison of the Constraints. Let us suppose that a bad behavior corre-
sponds to the fact that a trace goes into location q1. Under π0, the system has
a good behavior, since the trace set (see Figure 3.11) does not contain q1. By
property of the inverse method and its three variants, the constraint synthe-
sized by any of the four versions also prevents the traces to enter q1, by preser-
vation of the non-reachability of a location. More generally, one can see intu-
itively that the parameter valuations allowing the system to enter the bad loca-
tion q1 are comprised in the domain p1 ≥ p2.

Let us compare the size of the constraints synthesized. We give in Fig-
ure 3.14 the four constraints synthesized by the four versions of the inverse



3.6. Related Work 75

method. For each graphics, we depict in dark blue the parameter domain cov-
ered by the constraint, and in light red the parameter domain corresponding to
a bad behavior. The “good” zone not covered by the constraint is depicted in
very light gray. The point represents π0.

p1

p2

0 1 2 3 4 5

0

1

2

3

4

5
K

p1

p2

0 1 2 3 4 5

0

1

2

3

4

5
K ⊆

p1

p2

0 1 2 3 4 5

0

1

2

3

4

5
K ∪

p1

p2

0 1 2 3 4 5

0

1

2

3

4

5
K ⊆∪

Figure 3.14: Comparison of the constraints synthesized for Avar

One sees that the constraint K ⊆∪ is the maximal constraint guaranteeing
that Avar behaves well. This is actually not the case in general. One can con-
sider the PTA depicted in Figure 3.8 page 54 to be convinced that even IM⊆∪
will not output the maximal constraint. Developing techniques resulting in the
synthesis of the maximal constraint will be the purpose of Chapter 5.

3.6 Related Work

History of the Inverse Method. The inverse method has been initially pro-
posed in the framework of “time separation of events” [EF08]. Although the
framework of timed automata is more expressive and complex than the one of
timing constraint graphs, and although the algorithm presented in Section 3.2
is different from the one given in [EF08], it is nevertheless certain that the un-
derlying idea of our inverse method takes its origin in [EF08].

The “direct problem” in the framework of time separation of events can be
stated as follows: “Given a system made of several connected components,



76 Chapter 3. An Inverse Method for PTAs

each one entailing a local delay known with uncertainty, what is the maxi-
mum time for traversing the global system?” This problem is useful, e.g., in
the domain of digital circuits, for determining the global traversal time of a
signal from the knowledge of bounds on the component propagation delays.
The uncertainty on each component delay is given under the form of an inter-
val. In [EF08], the authors focus on the following inverse problem for timing
constraint graphs [CSD97]: “find intervals for component delays for which the
global traversal time is guaranteed to be no greater than a specified maximum”.
The authors then introduce a method, the so-called inverse method, and show
that this method solves the inverse problem in polynomial time.

The underlying principle of the inverse method may also be applied to other
formalisms. Beside the extension to the probabilistic framework discussed in
Chapter 6, other domains of applications of the inverse method are considered
in Chapter 7, viz., directed weighted graphs and Markov decision processes.
Research work related more specifically to those two frameworks are discussed
at the end of Chapter 7.

Time-Abstract Bisimulation. The notion of time-abstract bisimulation,
where one abstracts away both from the internal actions and from the time-
elapsing, has been proposed in [LY93] in the context of a real-time process al-
gebra. This notion of time-abstract bisimulation was then used in [TY01] in the
framework of Timed Automata. Minimization algorithms for the region graph
have also been proposed for Timed Automata in [ACH+92, YL97] using bisimu-
lations.

Synthesis of Parameters for Parametric Timed Automata. Parametric
model-checking can be used to synthesize a constraint on the parameters such
that a given property is verified.

The parameter design problem for timed automata (and more gener-
ally, for linear hybrid automata) was formulated and solved by Henzinger et
al. in [HWT96], where a straightforward solution is given, based on the gener-
ation of the whole parametric state space until a fixpoint is reached. Unfortu-
nately, in all but the most simple cases, this is is prohibitively expensive due, in
particular, to the brute force exploration of the whole parametric state space.

The synthesis of constraints has been implemented in the context of PTAs
or hybrid systems, e.g., in [AAB00] using tool TREX [CS01], or in [HRSV02] us-
ing an extension of UPPAAL [LPY97] for linear parametric model checking. Note
that [AAB00] is able to infer non-linear constraints. Another interesting re-
lated work on PTA is presented in [HRSV02], which gives decidability results
for the verification of a special class, called “L/U automata”. Two subclasses of



3.6. Related Work 77

L/U automata, called lower-bound and upper-bound PTA, are also considered
in [WY03], with decidability results.

The problem of parameter synthesis for timed automata has been applied
in particular to two main domains: telecommunication protocols and asyn-
chronous circuits. For example, concerning telecommunication protocols, the
Bounded Retransmission Protocol has been verified in [DKRT97] using UP-
PAAL [LPY97] and Spin [Hol03], and the Root Contention Protocol in [CS01]
using TREX [ABS01]. The synthesis of constraints has also been studied more
specifically in the context of asynchronous circuits, mainly by Myers and co-
workers (see, e.g., [YKM02]), and by Clarisó and Cortadella (see, e.g., [CC05,
CC07]), who have proposed methods with approximations. They also pro-
ceed by analyzing failure traces and generating timing constraints that prevent
the occurrence of such failures. A difference with the work of [CC05, CC07]
is that our method is an exact method. Also note that the approach pro-
posed in [CPR08] allows to compute parametric regions guaranteeing a feasible
schedule in the domain of schedulability analysis.

In [FJK08], the authors propose an extension based on the counterexample
guided abstraction refinement (CEGAR) [CGJ+00]. When finding a counterex-
ample, the system obtains constraints on the parameters that make the coun-
terexample infeasible. When all the counterexamples have been eliminated,
the resulting constraints describe a set of parameters for which the system is
safe.

The authors of [KP10] show how to synthesize a part of the set of all the
parameter valuations under which a given property holds in a system modeled
by a etwork of PTAs. This is done by using bounded model checking techniques
applied to parametric timed automata. The central idea of this work is to unfold
the computation tree of the considered model up to some depth, and then syn-
thesize values for the parameters. As a consequence, this approach is limited
by the fact that it is possible to synthesize parameters for existential properties
only, actually properties specified in the existential part of CTL without the next
operator (ECTL−X ). Our work differs to their work in the sense that the inverse
method does not depend on a reference property but on a reference valuation.

When considering hybrid systems, an interesting approach allows
in [AKRS08] to synthesize initial values for the variables of a linear hybrid sys-
tem. Given an initial state and a “discrete-time trajectory” (which corresponds
basically to our traces), their method synthesizes values for the system (hybrid)
variables such that the behavior of the system starting from any of those val-
ues will be the same in term of “discrete-time trajectories”. Although the hybrid
variables in linear hybrid systems are closer to our clocks (which are variables
evolving with the time) rather than to our parameters (which are unknown con-
stants), this work is interestingly linked to ours, because their method makes



78 Chapter 3. An Inverse Method for PTAs

use of a reference valuation of the state variables and, as a consequence, can
also be seen as an “inverse method”.



Chapter 4

Case Studies

– How would you account for this
discrepancy between you and the
twin 9000?
– Well, I don’t think there is any
question about it. It can only be
attributable to human error.

2001: A Space Odyssey
(Stanley Kubrick)

In Chapter 3, we introduced the inverse method, allowing to synthesize pa-
rameters valuations guaranteeing the same behavior in term of trace sets as
under a given parameter valuation. In this chapter, we show the practical inter-
est of such a method. A first tool, IMITATOR was implemented under a Python
script calling the HYTECH model checker. Because of various weaknesses due
to HYTECH features and to the program itself, a second tool, IMITATOR II, was
implemented in OCaml.

We already introduced a flip-flop circuit in Section 3.1.1, and synthesized
a constraint guaranteeing its good behavior in Section 3.4. We consider here
a range of case studies, asynchronous circuits and telecommunication proto-
cols, and synthesize constraints for each of these case studies. We show for
each example the interest of our method, by giving a criterion of robustness,
or by optimizing some of the timing bounds of the system. We then compare
the constraints synthesized by our method with constraints from the literature,
when applicable. In particular, we apply our method to several abstractions of
the SPSMALL memory sold by the chipset manufacturer ST-Microelectronics.

We give for each case study sufficient details to understand the model. For
a fully detailed description, refer to [And10c].



80 Chapter 4. Case Studies

Plan of the Chapter. We first present in Section 4.1 the two versions of the
tool implementing the inverse method. We quickly introduce IMITATOR, and
present more thoroughly IMITATOR II. In particular, we give implementation
details and explain algorithmic optimizations.

We then present a range of case studies, i.e.:

• a sample example of “SR-latch” (Section 4.2),

• an “AND–OR” circuit (Section 4.3),

• the Root Contention Protocol (Section 4.4),

• the Bounded Retransmission Protocol (Section 4.5),

• an example of latch circuit (Section 4.6),

• various abstractions of a memory circuit built and sold by ST-
Microelectronics (Section 4.7), and

• an example of networked automation system (Section 4.8).

We summarize the experiments in Section 4.9, and compare the computa-
tion times of IMITATOR and IMITATOR II. We finally compare in Section 4.10 the
features offered by IMITATOR II with various other tools allowing to model and
verify timed systems using timed automata or similar formalisms.

4.1 Tools

4.1.1 IMITATOR

The inverse method algorithm has first been implemented in the proto-
type IMITATOR [And09a], which is a script written in Python, driving the
HYTECH [HHWT95] model checker for the computation of the Post operation.
As a consequence, the input syntax is (almost exactly) the syntax of HYTECH.
The Python program contains about 1500 lines of code, and it took about
4 man-months of work.

Various experiments have been conducted, allowing to synthesize parame-
ters guaranteeing a “good” behavior (see [AEF09] for a summary).

Although IMITATOR allowed us to synthesize constraints on various case
studies, the tool suffered from several limitations due to its interface with
HYTECH. First, the arithmetics of HYTECH uses a limited precision, thus of-
ten leading to overflows. Second, it performs a static composition of the timed
automata, thus preventing the designer from verifying more than a dozen of



4.1. Tools 81

automata in parallel. Moreover, its fixpoint condition is as follows: the com-
putation stops when all the states computed at some step are included (in the
sense of constraint inclusion) in the states computed at previous steps. How-
ever, in the standard IM algorithm, the computation stops when all the states
computed at some step are equal the states computed previously. As a con-
sequence, the algorithm really implemented in IMITATOR was the variant IM⊆

described in Section 3.5.1 rather than the standard inverse method IM .
All those reasons led to a new implementation of IMITATOR.

4.1.2 IMITATOR II

We introduce in this section the tool IMITATOR II [And10a].

IMITATOR II
PTA A

Reference
valuation π0

Constraint K0 on
the parameters

Trace set
(graphical form)

Figure 4.1: IMITATOR II inputs and outputs in inverse method mode

Structure. Whereas IMITATOR was a prototype written in Python calling
HYTECH for the computation of the Post operation, IMITATOR II is a standalone
tool written in OCaml. The Post operation has been fully implemented, and
the inverse method algorithm entirely rewritten. As depicted in Figure 4.2, IM-
ITATOR II makes use of an external library for manipulating convex polyhedra.
Depending on the user’s preference, IMITATOR II can call either the NewPolka
library, available in the APRON library [JM09], or the Parma Polyhedra Library
(PPL) [BHZ08]. The trace sets are output under a graphical form using the DOT

module of the graph visualization software Graphviz [gWp].
The syntax is close to the HYTECH syntax, with a few minor improvements.

See [And10b] for the detailed syntax.
IMITATOR II contains about 9000 lines of code, and its development took

about 6 man-months.

Internal Representation. States are represented using a triple (q, v,C ) made
of the current location q in each automaton, a value for each discrete vari-
able1 v , and a constraint C on the clocks and the parameters. In order to op-
timize the test of equality between a new computed state and the set of states

1Recall that discrete variables are syntactic sugar allowing to factorize several locations into
a single one. In IMITATOR II, discrete variables are integer variables that can be updated using



82 Chapter 4. Case Studies

IMITATOR II (OCaml)

APRON PPL

NewPolka

DOT

Figure 4.2: IMITATOR II internal structure

computed previously, the states are stored in a hash table as follows: to a given
key (q, v) of the hash table, we associate a list of constraints C1, . . . ,Cn , corre-
sponding to the n states (q, v,C1), . . . , (q, v,Cn).

Note that, like PHAVer but unlike HYTECH, IMITATOR II uses exact arith-
metics with unlimited precision.

Contrarily to HYTECH which performs an a priori static composition of the
automata, thus leading to a dramatical explosion of the number of locations,
IMITATOR II performs an on-the-fly composition of the automata. This on-the-
fly composition allows to analyze bigger systems, and decreases drastically the
computation time compared to IMITATOR (see Section 4.9).

Features. IMITATOR II includes the following features:

• Full reachability analysis: given a PTA A , compute the set of all the reach-
able states (as it is done in tools such as, e.g., HYTECH and PHAVer);

• Inverse method algorithm: given a PTA A and a reference valuation π0,
synthesize a constraint guaranteeing the same trace set as for A [π0];

• Variant IM⊆ of the inverse method algorithm (see Section 3.5.1);

• Automatic generation of the trace sets, for the reachability analysis and
for the inverse method algorithm IM ;

• Output of the trace sets under a graphical form using DOT. An example
of trace set2 automatically generated by IMITATOR II is given in Figure 4.3
under the form of an oriented graph, where nodes correspond to loca-
tions, and arrows correspond to transitions; note that locations of the
same color are identical.

constants or other discrete variables. They can be used in guards and invariants, and can be
compared with integers, clocks or parameters.

2This trace set actually corresponds to the trace set of the Bounded Retransmission Protocol,
which will be studied in Section 4.5.



4.1. Tools 83

Note that IMITATOR II also features an implementation of the behavioral car-
tography algorithm, which will be described in Chapter 5.

Figure 4.3: Example of trace set automatically output by IMITATOR II

Optimizations. The main optimization brought to the inverse method algo-
rithm is the replacement of line 7 in Algorithm 1 by the portion of algorithm
given in Algorithm 4.

Algorithm 4: Optimization of IM for IMITATOR II

1 for (q,C ) ∈ S do
2 C ←C ∧¬J

Line 7 in Algorithm 1 corresponds to the computation of all the states reach-
able in up to i steps from the initial state, with the new constraint K that has
just been updated with the addition of some ¬J . However, this computation is
redundant because we can show that:

• no new state can be computed (because K has been restrained with ¬J ),
and

• no state previously computed can be removed (because both ¬J and the
states previously computed are π-compatible).



84 Chapter 4. Case Studies

As a consequence, it is safe to remove line 7 in Algorithm 1, thus avoiding a
costly computation. Instead, we simply update the set S of states by adding ¬J
to all the states computed, as shown in Algorithm 4.

Algorithm 5: Simpler way to describe IM(A ,π)

input : A PTA A of initial state s0

input : Valuation π of the parameters
output: Constraint K0 on the parameters

1 S ← {s0}
2 while true do
3 while there are π-incompatible states in S do
4 Select a π-incompatible state (q,C ) of S (i.e., s.t. π 6|=C ) ;
5 Select a π-incompatible J in (∃X : C ) (i.e., s.t. π 6|= J ) ;
6 for (q,C ) ∈ S do
7 C ←C ∧¬J

8 if PostA (K )(S) v S then
9 return

⋂
(q,C )∈S(∃X : C )

10 S ← S ∪PostA (K )(S)

We present this simpler way of describing the inverse method in Algo-
rithm 5. As a consequence of this simplification, we can save the use of vari-
ables i and K . Note also that the computation of the set PostA (K )(S) is still
redundant in Algorithm 5 because it is performed twice in this algorithm for
the sake of clarity. Of course, only one such computation is performed in our
implementation.

We also considered the following optimization: in order to reduce the size of
the constraints in the memory, we factorize the constraint K as follows. Instead
of adding ¬J to each state of S, we only add ¬J to K , and keep this constraint K
separate. We add K to the constraint associated with a new state only when
performing the equality test between this new constraint, and the constraints
associated with the previous states, in which case we have to add K to both
sides of the equality. Unfortunately, for the set of benchmarks we considered,
this modification did not bring a significant gain in term of memory space, and
the computation time raised significantly because of the repeated addition of K
to constraints. As a consequence, this optimization has been discarded in the
current version of the tool.

Options. The most useful options available for IMITATOR II are explained in
the following. See [And10b] for a full list.



4.1. Tools 85

-acyclic (default: false) Does not test if a new state was already encoun-
tered. In a normal use, when IMITATOR II encounters a new state, it checks if
it has been encountered before. This test may be time consuming for systems
with a high number of reachable states. For acyclic systems, all traces pass only
once by a given location. As a consequence, there are no cycles, so there should
be no need to check if a given state has been encountered before. This is the
main purpose of this option.

However, even for acyclic systems, several (different) traces can pass by the
same state. In such a case, if the -acyclic option is activated, IMITATOR II will
compute twice the states after the state common to the two traces. As a conse-
quence, activating this option might even lead to a decrease of speed in some
cases.

Note also that activating this option for non-acyclic systems may lead to an
infinite loop in IMITATOR II.

-inclusion (default: false) Consider an inclusion of region instead of the
equality when performing the Post operation. This corresponds to the vari-
ant IM⊆ of the inverse method. When encountering a new state, IMITATOR II
checks if the same state (same location and same constraint) has been encoun-
tered before and, if yes, does not consider this “new” state. However, when the
-inclusion option is activated, it suffices that a previous state with the same
location and a constraint greater or equal to the constraint of the new state has
been encountered to stop the analysis. This option corresponds to the way that,
e.g., HYTECH works, and suffices when one wants to check the non-reachability
of a given bad state.

-no-random (default: false) No random selection of theπ0-incompatible in-
equality (select the first found). By default, select an inequality in a random
manner.

-post-limit <limit> (default: none) Limits the number of iterations in the
Post exploration, i.e., the depth of the traces.

-sync-auto-detect (default: false) IMITATOR II considers that all the au-
tomata declaring a given synchronization label must be able to synchronize all
together, so that the synchronization can happen. By default, IMITATOR II con-
siders that the synchronization labels declared in an automaton are those de-
clared in the synclabs section. Therefore, if a synchronization label is declared



86 Chapter 4. Case Studies

but never used in (at least) one automaton, this label will never be synchronized
in the execution3.

The option -sync-auto-detect allows to detect automatically the syn-
chronization labels in each automaton: the labels declared in the synclabs

section are ignored, and IMITATOR II considers that only the labels really used
in an automaton are those considered to be declared.

-time-limit <limit> (default: none) Try to limit the execution time (the
value <limit> is given in seconds). Note that, in the current version of IMITA-
TOR II, the test of time limit is performed at the end of an iteration only (i.e., at
the end of a given Post iteration).

Advantages. In practice, the computation time of the inverse method imple-
mented in IMITATOR II is (almost) insensitive to the size of the constants. How-
ever, it is possible that verifying a timed concurrent system using an external
model checker is sensitive to the size of the constants. As a consequence, for
systems with large constants that one can hardly verify using external tools, it
is interesting to run the inverse method implemented in IMITATOR II to get a
constraint. Then, one can infer from this constraint much smaller values of the
parameters having the same behavior as under the original (large) valuation.
The verification of such a rescaled system can then be much quicker in prac-
tice. Note, however, that the inverse method is more sensitive to the number
of clocks and parameters, to the number of iterations, and to the branching of
the PTA.

4.2 SR-Latch

We consider in this section a SR “NOR” latch, which is one of the most funda-
mental latches. S and R stand for set and reset. This latch (described in, e.g.,
[HH07]) is depicted in Figure 4.4 left. This circuit is made of two “NOR” gates.
There are two input signals R and S, and two output signals Q and Q. The stored
bit is present on the output Q.

The possible configurations of the latch are the following ones:

3In such a case, the synchronization label is actually completely removed before the execu-
tion, in order to optimize the execution, and the user is warned of this removal.



4.2. SR-Latch 87

Q

QR

S

NOR1

NOR2

S

R

t↓

Figure 4.4: SR latch (left) and environment (right)

S R Q Q
0 0 latch latch
0 1 0 1
1 0 1 0
1 1 0 0

We consider an initial configuration with R = S = 1 and Q = Q = 0. As de-
picted in Figure 4.4 right, the signal S first goes down. Then, the signal R goes
down after a time t↓.

We consider that the gate NOR1 (resp. NOR2) has a punctual parametric de-
lay δ1 (resp. δ2). Moreover, the parameter t↓ corresponds to the time duration
between the fall of S and the fall of R.

Each location of the PTA A modeling this SR-latch corresponds to a differ-
ent configuration of the signals R, S, Q and Q. We give in Table 4.1 the corre-
spondence between the name of the location qi , for i = 0, . . . ,5, and the values
of the four signals (only the locations that are actually reachable from the initial
state using our environment are depicted).

Location S R Q Q
q0 1 1 0 0
q1 0 1 0 0
q2 0 0 0 0
q3 0 1 0 1
q4 0 0 0 1
q5 0 0 1 0

Table 4.1: Values of the signals for each of the locations of the SR-latch

We consider the following reference valuation π0 of the parameters:

δ1 = 2 δ2 = 2 t↓ = 1

Underπ0, it can be shown (e.g., using IMITATOR II in reachability mode) that the
corresponding trace set is the one depicted in Figure 4.5.



88 Chapter 4. Case Studies

q0 q1 q2 q4
S↓ R↓ Q

↑

Figure 4.5: Trace set for the SR latch under K0

Synthesis of Parameters. Our goal is to synthesize a set of parameters guar-
anteeing the following good behavior: “the system always ends in a state where
Q = 1”. This behavior corresponds to trace sets such that, for any trace of the
trace set, the last location of the trace is such that Q = 1. From Table 4.1, such
locations are q3 or q4. One can see that the trace set of A [π0], which is made of
a single trace, satisfies this requirement, because the last location of the trace
is q4. As a consequence, A has a good behavior under π0.

Let us now synthesize other parameters valuations corresponding to this
behavior, by applying the inverse method to A and π0. IMITATOR II synthesizes
the following constraint K0:

δ2 > t↓ ∧ t↓+δ1 > δ2

From Theorem 3.8, the trace set corresponding to the system under any π |= K0

is equal to the one given in Figure 4.5. It can be shown that this constraint K0

is not maximal, i.e., there exist other parameters valuations having the same
good behavior. It will be the purpose of Section 5.4.2 to synthesize the maximal
constraint for this example.

4.3 AND–OR

This example deals with an “AND–OR” circuit described in [CC05] and depicted
in Figure 4.6 (left). It is composed of 2 gates (one “AND” gate and one “OR” gate)
which are interconnected in a cyclic way. The environment, depicted in Fig-
ure 4.6 (right), corresponds to 2 input signals a and b, with cyclic alternating
rising edges and falling edges.

x

t

a b

a

b

[δ−
a↑ ,δ+

a↑] [δ−
a↓ ,δ+

a↓]

[δ−
b↑ ,δ+

b↑] [δ−
b↓ ,δ+

b↓]

Figure 4.6: AND–OR circuit (left) and its environment (right)



4.3. AND–OR 89

Each rising (resp. falling) edge of signal a, is denoted by a↑ (resp. a↓), and
similarly for b, t , x. The delay between the rising edge a↑ and the falling edge a↓

(resp. between a↓ and a↑) of signal a is in [δ−
a↑ ,δ+

a↑] (resp. [δ−
a↓ ,δ+

a↓]), and simi-

larly4 for b. The traversal of the gate “OR” gate takes also a delay in [δ−Or ,δ+Or ],
and likewise for the “AND” gate. Those 12 timing parameters are bound by the
following implicit constraint:

δ−And ≤ δ+And ∧ δ−Or ≤ δ+Or ∧ δ−
a↓ ≤ δ+

a↓
∧ δ−

a↑ ≤ δ+
a↑ ∧ δ−

b↓ ≤ δ+
b↓ ∧ δ−

b↑ ≤ δ+
b↑

Each of the 2 gates is modeled by a PTA, as well as the environment. We
consider an inertial model for gates, where any change of the input may lead
to a change of the output (after some delay). The PTA A modeling the system
results from the composition of those 3 PTAs.

A bad state expresses the fact that the rising edge of output signal x occurs
before the rising edge of a within the same cycle. We set the parameters to the
following values, ensuring that the bad state is not reachable:

δ−
a↑ = 13 δ+

a↑ = 14 δ−
a↓ = 16 δ+

a↓ = 18

δ−
b↑ = 7 δ+

b↑ = 8 δ−
b↓ = 19 δ+

b↓ = 20

δ−And = 3 δ+And = 4 δ−Or = 1 δ+Or = 2

We consider an environment starting at location q0 with a = b = x = t =
1, and the following repeated cycle of alternating rising and falling edges of a
and b: b↓, a↓,b↑, a↑. For the given environment and the valuation π0, the set
of traces of the system is depicted in Figure 4.7 under the form of an oriented
graph, where qi , 0 ≤ i ≤ 7, are locations of A . The values of the signals of the
system for each location qi are given in Table 4.2. We can check that, in this
graph, the bad state is not reached, i.e., the rising edges and falling edges of a,
b, x alternate properly.

Using IMITATOR II applied to the PTA A modeling the system and the ref-
erence instantiation π0, the following constraint K0 is computed after 14 itera-
tions:

δ−
b↓ +δ−b↑ > δ+Or +δ+a↑ ∧ δ−

b↑ > δ+And +δ+Or
∧ δ+

a↓ +δ+a↑ ≥ δ−
b↓ +δ−b↑ ∧ δ−

a↑ > δ+And +δ+b↑

Under any instantiation of the parameters π |= K0, the set of traces under π
is guaranteed to be identical to the set of traces underπ0 given in Figure 4.7 and,
therefore, does not reach any bad state. In [CC05], the generated constraint is
not given.

4Note however that the interval [δ−
b↑ ;δ+

b↑ ] has a slightly different meaning, because it corre-
sponds to the interval of delays between the rise of a and the fall of b, as shown in Figure 4.6
(right). This choice allows an easier modeling, and a more frequent termination of the analysis.



90 Chapter 4. Case Studies

q0 q1 q2 q3 q4

q5q6q7q0q1q2q3q4

b↓ x↓ a↓ t↓

b↑
a↑t↑x↑b↓x↓a↓t↓

b↑

Figure 4.7: Trace of the AND–OR circuit under π0

Location a b t x
q0 1 1 1 1
q1 1 0 1 1
q2 1 0 1 0
q3 0 0 1 0
q4 0 0 0 0
q5 0 1 0 0
q6 1 1 0 0
q7 1 1 1 0

Table 4.2: Locations of the AND–OR circuit



4.4. IEEE 1394 Root Contention Protocol 91

This constraint gives a criterion of robustness for this system by guaran-
teeing that, for values of the parameters around the reference valuation, the
system will still behave well. It is in particular interesting to note that several
parameters do not appear in the constraint synthesized (and are actually only
bound by the implicit constraint given earlier). This is the case of parameters
δ−

a↓ , δ+
b↓ , δ−And and δ−Or. This means that, for the considered environment, the

value of these parameters has no influence on the behavior of the system.

4.4 IEEE 1394 Root Contention Protocol

Description of the Model. This case study concerns the Root Contention Pro-
tocol of the IEEE 1394 (“FireWire”) High Performance Serial Bus, considered in
the parametric framework in [CS01, HRSV02], and in the probabilistic frame-
work in [KNS03]. As described in [HRSV02], this protocol is part of a leader
election protocol in the physical layer of the IEEE 1394 standard, which is used
to break symmetry between two nodes contending to be the root of a tree,
spanned in the network technology. The protocol consists in first drawing a
random number (0 or 1), then waiting for some time according to the result
drawn, followed by the sending of a message to the contending neighbor. This
is repeated by both nodes until one of them receives a message before sending
one, at which point the root is appointed.

We consider the following five timing parameters:

• f _min (resp. f _max) gives the lower (resp. upper) bound to the waiting
time of a node that has drawn 1;

• s_min (resp. s_max) gives the lower (resp. upper) bound to the waiting
time of a node that has drawn 0;

• delay indicates the maximum delay of signals sent between the two con-
tending nodes.

Those timing parameters are bound by the following implicit constraint:

f _min ≤ f _max ∧ s_min ≤ s_max
The model we consider is a nonprobabilistic version of the probabilistic

given in [KNS03, pWpb], where the probabilistic distributions have been re-
placed with nondeterminism. We give in Figure 4.8 the PTA model of node i ,
and in Figure 4.9 the PTA model of wire i . We make use in Figure 4.8 of the no-
tion of urgent locations: the semantics is that the time cannot pass inside these
locations, and one must take a transition immediately after entering it. This
is only syntactic sugar which is equivalent to the use of one more clock that is



92 Chapter 4. Case Studies

ROOT_CONT
urgent

ROOT_IDLE
urgent

REC_REQ_FAST
xi ≤ f _max

A_ROOT
urgent

REC_IDLE_FAST
xi ≤ f _max

SNT_REC

REC_REQ_SLOW
xi ≤ s_max

REC_IDLE_SLOW
xi ≤ s_max

ROOT
A_CHILD

urgentCHILD

rec_idle_i

snd_idle_i
xi := 0

snd_idle_i
xi := 0

rec_req_i snd_idle_i
xi := 0

snd_idle_i
xi := 0

rec_idle_i
xi ≥ f _min
snd_ack_i

root_i

rec_req_i

xi ≥ f _min
snd_req_i

rec_ack_i

rec_req_i

rec_idle_i

xi ≥ s_min
snd_ack_i

rec_req_i

xi ≥ s_min
snd_req_i

child_i

Figure 4.8: PTA modeling node i in the Root Contention Protocol

reset when entering the location, and that must be equal to 0 when leaving the
location through any transition. Moreover, in both Figure 4.8 and Figure 4.9, we
exceptionally integrate the invariant in the location, for the sake of readability.
As usual, a location without any invariant is considered to have an invariant
equal to true.

Synthesis of Constraints. We aim at synthesizing a constraint for the follow-
ing reference valuation π0, which corresponds to the IEEE standard with wire
length near to the maximum possible according to [HRSV02] (timings are given
in ns):

f _min = 760 f _max = 850 delay = 360
s_min = 1590 s_max = 1670

By applying IMITATOR II to this model and the reference valuation π0, we
synthesize the following constraint K0:

s_min > 2∗delay+ f _max∧delay ≥ 0∧ f _min > 2∗delay

Observe that this constraint is exactly the same as the one synthesized
in [HRSV02]. This constraint is also very similar to the one synthesized
in [CS01]; the only difference is that our constraint is larger, because we do not
constraint delay to be strictly positive.

We give in Figure 4.10 the trace set of the protocol under any π |= K0, as
automatically output by IMITATOR II.

The main interest brought by the synthesis of this constraint is that it gives
a criterion of robustness to the system. Similarly, it shows that this protocol is



4.4. IEEE 1394 Root Contention Protocol 93

EMPTY
REC_ACK_IDLE

x ≤ delay
REC_IDLE_ACK

x ≤ delay
REC_REQ
y ≤ delay

REC_ACK
y ≤ delay

REC_REQ_ACK
x ≤ delay

REC_ACK_REQ
x ≤ delay

REC_IDLE
y ≤ delay

REC_IDLE_REQ
x ≤ delay

REC_REQ_IDLE
x ≤ delay

snd_ack_i
x, y := 0

snd_idle_i

snd_req_i
x, y := 0

rec_ack_ j

snd_idle_i

rec_idle_ j

snd_ack_i

rec_req_ j

snd_idle_i
y := 0

snd_ack_i

snd_req_i

snd_idle_i
y := 0

snd_req_i
y := 0

rec_ack_ j

snd_ack_i

rec_req_ j

snd_req_i

rec_ack_ j

snd_idle_i

snd_ack_i
y := 0

snd_req_i
y := 0

rec_idle_ j

snd_req_i

rec_idle_ j

snd_idle_i

rec_req_ j

Figure 4.9: PTA modeling wire i in the Root Contention Protocol

also correct for values of the parameters other than the ones given by the IEEE
reference.

We will enlarge in Section 6.6.2 this constraint K0 by computing a behavioral
cartography (see Chapter 5) of the Root Contention Protocol according to the 3
parameters delay, s_min and s_max. We will also see in Chapter 6 that this
constraint becomes very interesting in the probabilistic framework, because it
will preserve the values of probabilities, in a probabilistic version of this model.



94 Chapter 4. Case Studies

Figure 4.10: Trace set of the RCP output by IMITATOR II

4.5 Bounded Retransmission Protocol

We study here the Bounded Retransmission Protocol described and modeled
using timed automata in [DKRT97]. As said in [DKRT97], this protocol, used
in one of Philips’ products, is based on the well-known alternating bit protocol
but is restricted to a bounded number of retransmissions of a chunk, i.e., part
of a file. So, eventual delivery is not guaranteed and the protocol may abort the
file transfer. Timers are involved in order to detect the loss of chunks and the
abortion of transmission.

The protocol consists of a sender equipped with a timer, and a receiver
equipped with another timer, which exchange data via two unreliable (lossy)
channels.

The model considered here is a slightly simplified version of the model
of [DKRT97]. In particular, a loop in the model of the sender has been dis-
carded, implying the fact that the sender tries to send only one file.

As in [DKRT97], we consider the following five timing parameters for the
model.

• N stands for the number of chunks of a file;



4.5. Bounded Retransmission Protocol 95

• SYNC corresponds to the delay added after a failure in order to assure that
the sender does not start transmitting a new file before the receiver has
properly reacted to the failure;

• T1 corresponds to the time-out of the sender for initiating a retransmis-
sion when the sender has not received an acknowledgment from the re-
ceiver;

• TR corresponds to the time-out of the receiver for indicating failure when
it has not received the last chunk of a file

• TD corresponds to the maximum delay in communication channels.

We consider the following valuation π0 of the parameters of the system:

MAX = 2 N = 2 TD = 1
T1 = 3 TR = 16 SYNC = 17

We consider a slightly simplified model of the protocol, where the system
stops when one file has been successfully sent. Using IMITATOR II applied to
the PTA A modeling the system and the reference valuation π0, the following
constraint K0 is computed:

N = 2 ∧ MAX = 2
∧ TR+TD > 5∗T1 ∧ TR ≥ 3∗TD+4∗T1
∧ 2∗TD+5∗T1 > TR ∧ SYNC +TD ≥ TR
∧ T1 > 2∗TD

Recall that the corresponding trace set, automatically generated by IMITA-
TOR II, was given in Figure 4.3 page 83. As for the Root Contention Protocol, the
main interest brought by the synthesis of this constraint is that it gives a crite-
rion of robustness to the system. Similarly, it shows that this protocol is also
correct for values of the parameters other than the ones given by the reference
valuation π0.

Comparison with other methods. In [DKRT97], the authors synthesize the
following (non-linear) constraints guaranteeing that (1) premature time-outs
are not possible, and (2) sender and receiver resynchronize after an abort.

Z : T1 > 2∗TD ∧ SYNC ≥ T R ≥ 2∗MAX ∗T1+3∗TD

Note that, sinceπ0 |= Z , our constraint K0 also guarantees that the assumptions
of [DKRT97] are satisfied. It can be shown that our constraint K0 is incompara-
ble with this constraint Z .



96 Chapter 4. Case Studies

The analysis of the complete model of the protocol (as described
in [DKRT97]) has also been considered in [Sou10b] using the variant IM⊆ im-
plemented in IMITATOR II. The following constraint K ⊆ is computed using the
same reference valuation π0:

N = 2 ∧ MAX = 2
∧ TR+TD ≥ 5∗T1 ∧ TR ≥ 3∗TD+4∗T1
∧ 2∗TD+5∗T1 ≥ TR ∧ T1 ≥ 2∗TD
∧ SYNC +T1 ≥ TR+TD

It can be shown that this constraint K ⊆ is incomparable both with our con-
straint K0, and with the constraint Z of [DKRT97].

4.6 Latch Circuit

We consider in this section a latch circuit studied in the case of ANR project
VALMEM (see Section 4.7 for a description of the project). This circuit, depicted
in Figure 4.11, contains 5 elements: 2 “NOT” gates (viz., Not1 and Not2), one
“XOR” gate (viz., element Xor), one “NAND” gate (viz., element And), as well as
one “latch” element (viz., element Latch).

QD

CK

Not1 Not2

Xor
A n d

Latch

Figure 4.11: A latch circuit

Each of the four gates has a constant delay for a change of an input leading
to a rising edge in the output, and another constant delay for a change of an
input leading to a falling edge of the input. For example, when the input of
the gate Not1 is equal to 0 and raises, then the output will change after delay
δNot1↑ . If the input is equal to 1 and falls, the delay before the output changes is
δNot1↓ , and similarly for the other 3 gates. The latch has a single constant delay
δLatch↑ corresponding to the time needed between a change of its inputs and
the raise of Q. There are 4 other parameters (viz., THI ,TLO,TSetup, and THold)
used to model the environment. The rising (resp. falling) edge of signal D is
denoted by D↑ (resp. D↓), and similarly for signals CK and Q.

We consider an environment starting from D = CK = Q = 0, with the fol-
lowing ordered sequence of actions for inputs D and CK : D↑, CK ↑, D↓, CK ↓,



4.6. Latch Circuit 97

as depicted in Figure 4.12. Therefore, we have the implicit constraint TSetup ≤
TLO ∧THold ≤ THI .

CK

D

Q

TLO THI

TSetup THold

TCK→Q

Figure 4.12: Environment for the latch circuit

Each element is modeled by a PTA, as well as the environment. The PTA A

modeling the system results from the composition of those 6 PTAs.
The following valuation π0 of the 13 parameters (in ps) was extracted from

the circuit description by simulation computed in the VALMEM project:

THI = 1000 TLO = 1000 THold = 350 TSetup = 1
δNot1↑ = 219 δNot1↓ = 147 δNot2↑ = 155 δNot2↓ = 163
δXor↑ = 147 δXor↓ = 416 δAnd↑ = 80 δAnd↓ = 155

δLatch↑ = 240

A bad state corresponds to the fact that the output signal Q has not changed
before the end of the cycle of signal CK . Under this valuation, we can show that
the system does not reach any bad state.

Applying IMITATOR II to the PTA version of this model and the reference val-
uation π0, the following constraint K0 is synthesized:

∧ δXor↓ +δNot2↑ +δNot1↓ > THold

∧ δLatch↑ +δAnd↑ > δNot2↑ +δNot1↓

∧ δNot1↓ > δAnd↑

∧ THold > δLatch↑ +δAnd↑

∧ TLO ≥ TSetup

∧ THI ≥ δAnd↓ +δXor↓ +δNot2↑ +δNot1↓

Under this constraint, the system has the same behavior as under the refer-
ence valuation, and therefore guarantees a good behavior of the system. Sup-
pose now that we are interested in minimizing the THold value, provided the
system keeps its good behavior. Such a minimization has the following prac-
tical interest: since THold corresponds to the duration during which the input
signal D should be stable before the rise of the clock, minimizing this value al-
lows to integer this portion of circuit in a faster environment. By instantiating



98 Chapter 4. Case Studies

all the parameters in K0 with their value inπ0, except THold, we get the following
constraint:

320 < THold < 718

So we can minimize the value of THold to 321, and we guarantee that the system
will have exactly the same behavior as before.

4.7 SPSMALL Memory

We consider in this section the SPSMALL memory, which is a memory
circuit sold by ST-Microelectronics. This memory has been first stud-
ied in the MEDEA+BLUEBERRIES (T126) European project involving ST-
Microelectronics and the LSV laboratory (École Normale Supérieure de
Cachan). It was then studied in the ANR VALMEM project involving, be-
sides ST-Microelectronics and LSV, the LIP 6 laboratory (Université Pierre et
Marie Curie).

4.7.1 Description

The SPSMALL memory actually corresponds to a class of small memories with
a maximum total capacity of 64 kbits. Each instance of the memory is built
by a parametrized compiler, where the number of words and the size of the
words are parameters5. The number of words is ranking from 3 to 512 words,
and the number of bits from 2 to 256 bits. We consider throughout this section
the smallest memory consisting in 3 words of 2 bits (or abstractions of it), which
leads to a netlist of 305 transistors.

The SPSMALL is manually built directly at the transistor level. Indeed, in
order to be able to optimize the memory array part of the circuit, one must tune
it manually. Moreover, the control logic and the decoder logic uses hand-made
cells, and these complex structures cannot be automatically generated.

Our Approach. Before describing the memory and the model considered in
this section, we first give the methodology used in the VALMEM project.

As depicted in Figure 4.13, a description of the memory under the form of
a transistor netlist is given by ST-Microelectronics. Then, a functional abstrac-
tion generates a description of the memory in the functional description lan-
guage VHDL, using automatic techniques developed by LIP 6 [SRD09]. At the

5This notion of parameter is not anyhow linked to the timing parameters (set P ) mentioned
throughout this thesis. We will study this memory for a given instance of these words and size
parameters, and the parameters that we will consider correspond to internal timing delays, as
for the other case studies.



4.7. SPSMALL Memory 99

Transistor netlist

Functional abstraction + Timing extraction

VHDL – RTL description Timings

Modeling

Parametric Timed Automata

Synthesis of constraints

Figure 4.13: Methodology of the VALMEM project

same time, timings are extracted under the form of traversal delays of the ele-
ments. The next step is the translation by LIP 6 of the VHDL code into a network
of (instantiated) timed automata, using the tool VHDL2TA [Bar09] developed in
the framework of the VALMEM project. Finally, using a parametric version of
those timed automata, and the reference instantiation of the parameters, we
synthesize using IMITATOR II constraints guaranteeing a good behavior for the
memory. Although we will mostly focus on this latter task in this section, we
recall various information on the global process for the sake of understanding.

Level of Modeling. We borrow part of the following description to [BC05,
CEFX09]. A memory circuit aims at storing data at some addressed locations,
and is associated with two operations: write and read. A memory can be mod-
eled at different levels of complexity, e.g., in an increasing order: at the func-
tional block level, at the “latch” level, at the gate level, or at the transistor level.
For the SPSMALL memory, the model can thus be implemented using 3 main
components at the block level (see [BC05]), a few dozens of components at the
latch level, about one hundred components at the gate level, or 305 compo-
nents at the transistor level. There is a tradeoff in finding the appropriate level
of modeling. The lower the level of modeling is, the more faithful to the reality
the model is, but the more difficult the verification process is. In [CEFX09] and
in this section, we choose to represent the memory at the latch level. The ad-
vantage is to limit the number of components at a reasonable size, and to have



100 Chapter 4. Case Studies

a “schematics” describing the architecture of the memory at this level, which
closely corresponds to the VHDL code automatically produced.

Figure 4.14: Transistor representation of the SPSMALL memory

In order to better illustrate the complexity of this memory, we give in Fig-
ure 4.14 a graphical representation of the memory at the transistor level.

Inputs and Outputs. The SPSMALL memory circuit has several input ports
and one output port. The signals driven by input ports are:

• CK , the signal of the periodic clock;

• D , the n-bit width signal representing the data to be stored;

• A, the log2(m)-bit width signal representing the address of an internal
memory location;

• WEN , the 1-bit width signal representing either a write or a read opera-
tion.

The signal driven by the output port is Q (of n-bit width). The data are
stored in a memory array composed of m ×n memory points. A memory lo-
cation is a collection of n memory points. The write operation (WEN = 0 when
CK is rising) writes the value of D in the internal memory location selected by A,
and propagates D on output port Q. Such a memory is called a write-through
memory. The read operation (WEN = 1 when CK is rising) outputs on port Q a
copy of the data stored in the memory location selected by A.



4.7. SPSMALL Memory 101

Timing Parameters. We consider here the write operation. The environment
for this operation is depicted in Figure 4.15.

CK

WEN

D

Q

THI TLO

t WEN
setup

t D
setup

TCK→Q

Figure 4.15: Environment for the write operation of SPSMALL

The duration of the clock cycle is parameterized by THI (duration of the high
edge) and TLO (duration of the low edge). We study this operation for two clock
cycles. The parameter t WEN

setup corresponds to the time during which the WEN sig-
nal should be stable before the beginning of the second clock cycle, i.e., the sec-
ond rise of CK . Similarly, the parameter t D

setup corresponds to the time during
which the D signal should be stable before the beginning of the second clock
cycle. Finally, the parameter TCK→Q corresponds to the maximal time between
the beginning of the second clock cycle and the rise of the output signal Q. Be-
sides these 5 parameters, the SPSMALL memory is characterized by other pa-
rameters corresponding to the traversal delays of the gates and latches of the
circuit.

Each of those parameters is given a valuation. Parameters valuations cor-
responding to the environment (viz., THI , TLO, t WEN

setup , t D
setup) are taken from the

datasheet of the memory given by ST-Microelectronics. Parameters valuations
corresponding to internal delays are synthesized as follows. In the BLUEBER-
RIES project, they were manually computed by electrical simulation for a single
configuration of the environment. In the VALMEM project, there are automat-
ically retrieved using the transistor netlist (see Figure 4.13 page 99): from all
possible inputs and outputs for a given component, only two values are kept,
namely the lower and the upper bounds of the traversal time taken on all the
possible configurations. Although this gives suitable results for the gates, the
bounds are sometimes far from each other for memory points, thus weakening
the precision of the verification. Those internal delays depend on the size of
the transistors and on the technology used. This is the value of those internal
delays which induces the possible values of the environment parameters.



102 Chapter 4. Case Studies

Actually, this memory circuit has two different implementations for the
same architecture. In other words, for the same schematics of gates and latches,
there are two different sets of valuations of the parameters (i.e., environment
parameters and traversal delays). The first implementation (SP1) corresponds
to a fast component with a high power consumption, whereas the second im-
plementation (SP2) corresponds to a slower component with a lower power
consumption.

4.7.2 A Short History

The SPSMALL memory was first studied in [BC05], where the authors verify this
memory component modeled by timed automata, using the real-time model
checkers HYTECH and UPPAAL. In particular, the authors take into account
the electrical propagation delays through gates and along wires. The authors
propose an abstraction of the memory sufficiently small to be (manually) de-
scribed in the model-checker UPPAAL. Then they verify that, for some inter-
nal timings given by ST-Microelectronics, the read and write access timings are
correct. Moreover, they verify that those access timings (viz., TCK→Q for the
write operation) are optimal by showing that the memory model has correct
behaviors with those timings, whereas incorrect behaviors occur when choos-
ing smaller timings. This is done by manually decreasing those timings, and
checking that the behavior remains correct. Note that the authors consider
here only integer timings, and do not investigate what is happening between
two integer values.

The SPSMALL memory was then studied in [CEFX06], where the authors
propose a high-level formalism, called Abstract Functional and Timing Graph
(AFTG), for describing the memory. This formalism allows in particular to com-
bine logical functionality and timing. After translation of the AFTG into the
form a timed automaton, the authors are able to compute the response times
of the modeled memory, and check their consistency with the values specified
in the datasheet. The authors then go one step further by showing not only that
the access timings are correct, but they also give the optimal input setup and
hold timings such that the access timings remain correct. This is done by man-
ually decreasing those input timings, and check that the access timings remain
correct. Note that the authors also consider here only integer timings, and do
not investigate what is happening between two integer values.

In [CEFX09], the authors then manually synthesize constraints on the setup
and internal timings seen as parameters guaranteeing that the response times
to a write command or a read command lie between certain bounds. Those
constraints, derived using the SP1 implementation of the memory, can be im-
mediately applied to other instances of the parameters to verify the behavior



4.7. SPSMALL Memory 103

of other versions of the memory, such as SP2. Contrarily to the first two ap-
proaches, this work allows to consider dense (i.e., real) values for the timings,
and give a criterion of robustness to the timings of the memory.

Our aim is to automatically derive constraints on the internal timings seen
as parameters, such that the memory behaves well. We study in the forthcom-
ing sections several abstractions of the SPSMALL memory.

4.7.3 Manually Abstracted Model

Description. We consider here a model manually abstracted, close to the
model considered in [CEFX06]. We recall the model considered in [CEFX06]
in Figure 4.16 under the form of an AFTG. This model was abstracted in order
to consider that only one bit is stored. As a consequence, D becomes a 1-bit
signal. Furthermore, we consider only the portion of the circuit relevant to the
write operation.

Figure 4.16: Abstract model of the SPSMALL memory (write operation)

Although the model we consider here is close to the model considered
in [CEFX06], a major difference with the model of [CEFX06] though is that de-
lays are not only associated with latches and wires anymore, but with latches,
wires and gates, depending on the components. This model has been designed
partially automatically from the VHDL code, using abstractions. This VHDL
source code (available in [vWp]) was itself manually written.

This model, depicted in Figure 4.17, results in 9 components. Components
delayD and delayWEN are delays (i.e., the logical functionality is the identity),
components NOT 1, NOT 2 and NOT 3 are “NOT” gates, WEL is an “OR” gate,
and components delayWEN , latchD and net27 are latches. A further difference
with the model considered in [CEFX06] is that several components have been



104 Chapter 4. Case Studies

grouped together in order to avoid the state-space explosion problem6. For
example, several delays associated with wires have been incorporated into the
previous elements: this is the case, e.g., of component wire5 from Figure 4.16,
the delay of which has been incorporated into the element latchD , resulting in
only one component (latchD ) in our model depicted in Figure 4.17.

delayD

NOT1

NOT2

NOT3

delayWEN

latchD

net45

WEL
net27

D

CK

WEN

Q

Figure 4.17: PTAs modeling the write operation of SPSMALL

Each of the components depicted in Figure 4.17 (wires, gates, latches) is
modeled using a PTA. The translation of the gates into PTAs has been per-
formed automatically using a preliminary version of VHDL2TA. The other com-
ponents were manually written, and so was the composition of all compo-
nents together. The environment is also modeled using a PTA. This results
in a model containing 10 automata, 10 clocks and 26 parameters correspond-
ing to the traversal delays of the components and the environment. Con-
trary to [CEFX06], the PTAs modeling the gates are actually complete, in the
sense that all possible configurations and transitions are modeled, not only the
configurations that will be met for a precise environment, as it was the case
in [CEFX06]. This is in particular due to the automatic generation of the PTAs.

Implementation SP1. We give below the set of parameters valuations (say,π1)
coming from the implementation SP1 and adapted to this first model (timings
are given in tens of pico-seconds).

6This model was actually first designed to be analyzed using HYTECH, which can hardly
accept more than 10 components modeled by PTAs in parallel. However, analyzing this model
using IMITATOR II is performed easily in a couple of seconds.



4.7. SPSMALL Memory 105

d_up_q_0 = 21 d_dn_q_0 = 20 d_up_net27 = 0
d_dn_net27 = 0 d_up_d_inta = 22 d_dn_d_inta = 45
d_up_wela = 0 d_dn_wela = 22 d_up_net45a = 5

d_dn_net45a = 4 d_up_net13a = 19 d_dn_net13a = 13
d_up_net45 = 21 d_dn_net45 = 22 d_up_d_int = 14
d_dn_d_int = 18 d_up_en_latchd = 28 d_dn_en_latchd = 32

d_up_en_latchwen = 5 d_dn_en_latchwen = 4 d_up_wen_h = 11
d_dn_wen_h = 8 d_up_d_h = 95 d_dn_d_h = 66

THI = 45 TLO = 65 t D
setup = 108

t WEN
setup = 48

Constraint. Applying IMITATOR II to this model and the reference valuationπ1

(corresponding to the SP1 implementation), one synthesizes the following con-
straint K1 after 32 iterations (31 reachable states with 30 transitions):

THI +d_up_net13a > d_dn_net13a+d_dn_wela+d_up_net27 +d_up_q_0
∧ TLO > d_up_en_latchd+d_up_d_int +d_up_d_inta
∧ t D

setup +d_dn_en_latchd > d_up_d_h+d_up_d_int +d_up_d_inta

∧ t WEN
setup +d_up_d_h > t D

setup +d_dn_wen_h+d_dn_net45+d_dn_net45a+d_up_wela

∧ TLO +d_dn_wen_h > t WEN
setup +d_up_net13a+d_up_wela

∧ THI > d_dn_net13a+d_dn_wela
∧ TLO > t WEN

setup +d_up_en_latchwen

∧ t D
setup > d_up_d_h

∧ t D
setup ≥ TLO

∧ TLO +THI ≥ t D
setup

∧ d_dn_en_latchwen ≥ 0
∧ d_up_en_latchwen ≥ 0
∧ t WEN

setup +d_up_en_latchd > TLO +d_dn_wen_h

∧ d_dn_net13a > d_dn_en_latchwen
∧ t WEN

setup +d_up_net13a > TLO

∧ d_up_en_latchwen+d_up_net45+d_up_net45a > d_up_en_latchd
∧ d_dn_net13a+d_dn_wela > d_dn_en_latchd
∧ d_up_wela ≥ 0
∧ t D

setup +d_up_en_latchd+d_dn_d_int +d_dn_d_inta > TLO +d_up_d_h

∧ d_up_en_latchd+d_up_d_int +d_up_d_inta > d_up_en_latchwen+d_dn_net45+d_dn_net45a
∧ d_up_d_h+d_up_d_int +d_up_d_inta > t D

setup +d_dn_net13a

∧ d_dn_net13a+d_dn_wela+d_up_net27 +d_up_q_0 > THI +d_up_en_latchwen

Interpretation. The main advantage of the constraint synthesized by IMITA-
TOR II is that it allows to show the link between the internal timing delays and
the external values of the environment. Indeed, the timing parameters corre-
sponding to the environment are constrained by the internal traversal delays of
the gates, wires and latches. Despite the complex form of the constraint syn-
thesized, it is possible to give an interpretation for some of the inequalities.

First of all, some inequalities are actually synthesized because of the envi-
ronment that we consider. Inequalities such as t D

setup ≥ TLO or TLO +THI ≥ t D
setup

come from the way we modeled the environment, and are bound by the model



106 Chapter 4. Case Studies

more than the system.
Moreover, other inequalities can be interpreted as a guarantee on the order

of the events. Recall that our inverse method guarantees the same trace sets
and, as a consequence, the same ordering of events. For example, the inequal-
ity t WEN

setup +d_up_en_latchd > TLO +d_dn_wen_h implies that the (timed) path
through wire delayWEN is greater than the path through gate NOT 3. In other
words, the upper input of latch net45 must change before its left input.

Optimization. By replacing within K1 every parameter except t D
setup and t WEN

setup

by its valuation as defined in π1, one gets the following constraint on t D
setup

and t WEN
setup :

46 < t WEN
setup < 54 ∧ 99 < t D

setup ≤ 110 ∧ t D
setup < t WEN

setup +61

It is then interesting to minimize those setup timings. Indeed, if one minimizes
the setup duration of the input signals without changing the overall behavior
of the system, then this means that the memory can be inserted in a faster en-
vironment where the input signals change faster. One can thus minimize t D

setup

and t WEN
setup according to K1 as follows:

t WEN
setup = 47 ∧ t D

setup = 100

By comparison with the original parameter valuation π1 (viz., t D
setup = 108

and t WEN
setup = 48), this results in a decreasing of the setup timing of signal D

(resp. WEN) of 7.4 % (resp. 2.1 %).
In [CEFX06], the authors compute a minimum value of 95 for t D

setup, and

a minimum value of 29 for t WEN
setup . As a consequence, our values may still be

improved. Improving those values for this model will be the purpose of Sec-
tion 5.4.4.

4.7.4 Automatically Generated Model

This second version of the SPSMALL memory is a more complete model of the
memory, representing not only the portion of the memory corresponding to
the write operation, but the complete architecture. As in the previous section,
this model was abstracted in order to consider that only one bit is stored. As
a consequence, D becomes a 1-bit signal. We give in Figure 4.18 the schemat-
ics from [CEFX06] depicting the wires, gates and latches under the form of an
Abstract Functional and Timing Graph, and corresponding to the complete ar-
chitecture of SPSMALL.



4.7. SPSMALL Memory 107

��
��
��
��

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

pass

enable

wel

net13

16/15

passa

net13c

net13b
enable

net39

em

emaenable

d_inth

extenable

gate15

Ah

wenh

Dh

11/8
WEN

CK

A

D

95/66

2

5

8

11

13

16

22

10

net45

28 net45a

26 net13e

welb

net27 net27a

4.3/3.2

7

0/21.5

14/11

27

20.6/19.7

net13a

5.2/5.2

17

d_int

d_inta

net13f

row

rowa

23
net13d

15/12

22/45
5/4

gate17

5/2

4

3

20

19

18
23/30

Q

14/18 8.6/8.6

21/22

31/31

15 21

6

1

24 25

0/0

0/0

29
40/29

wela

6/6

9

14

12

or

nor

or

0/0

23/23

0/0

Figure 4.18: Abstract model of the SPSMALL memory

A further major difference with the manual model described in the previ-
ous section is that the PTAs are here fully automatically generated. Recall that,
in the previous section, the PTAs were written in a partially manual way, and
the model was then simplified by grouping together several automata. Here,
we first manually wrote the VHDL code corresponding to the different ele-
ments of the memory (which is much quicker and less error-prone than de-
scribing the PTAs), and then automatically synthesized the PTAs using the tool
VHDL2TA [Bar09]. This leads to more parameters, including a slightly richer
environment, involving explicitly signal A, characterized by its setup value,
viz., t A

setup. This technique results in a model containing 28 automata, 28 clocks,
32 discrete variables and 62 parameters.

Due to the high number of parameters and the complexity of the model, we
do not give here the set of parameters valuations coming from the datasheet
of SP1 and adapted to this second model, but it can be found in [vWp, And10c].
We only give below the set of parameters valuations (say, π′

1) corresponding to
the three input timings we are interested in optimize (timings are given in tens
of pico-seconds):

t D
setup = 108 t WEN

setup = 48 t A
setup = 58

Applying IMITATOR II to this model and this reference valuationπ′
1, one syn-

thesizes a constraint K ′
1, projected below onto t A

setup, t D
setup and t WEN

setup . The inter-
ested reader may refer to [And10c] for the complete valuation and the complete
constraint on the whole set of parameters.

t D
setup = 108 ∧ t WEN

setup = 48 ∧ 56 < t A
setup < 60

This constraint is an “interesting” (though unfortunate) example of con-
straint for which the output parameter domain is (almost) reduced to a single



108 Chapter 4. Case Studies

point. Thus, it is not possible to optimize values of t D
setup and t WEN

setup according to
this constraint. Nevertheless, the cartography algorithm introduced in Chap-
ter 5 will allow us to overcome this shortcoming, and synthesize a dense set of
parameters allowing us to minimize those input timing parameters (see Sec-
tion 5.4.4).

4.7.5 Larger Models

Two other versions of the SPSMALL memory have been considered. The first
one is actually the full SPSMALL memory with 1 memory point of 2 bits. The
model described as a network of PTAs has been automatically generated from
the VHDL code using VHDL2TA. The VHDL code itself was also automatically
generated from the transistor netlist given by ST-Microelectronics. This chain
of analysis has been performed in the framework of the VALMEM project (see
Figure 4.13 page 99). Unfortunately, because of the high size of this model
(101 automata, 101 clocks, 200 parameters, 130 discrete variables, which result
in more than 6000 lines of code described in the IMITATOR II syntax), IMITA-
TOR II does not succeed to synthesize a constraint after several hours.

The second version corresponds to a larger version of the SPSMALL mem-
ory, with 3 memory points of 2 bits. Due to the even larger size of this model
(more than 130 automata), IMITATOR II does not succeed to synthesize a con-
straint either.

Improving IMITATOR II so that it can synthesize constraints for such large
systems is the subject of future work. It is also interesting to note that non-
parametric analyses of these two models have been successfully performed us-
ing the UPPAAL model checker [LPY97], allowing to verify several properties.

4.8 Networked Automation System

In this section, we consider a Networked Automation System studied in the
framework of the SIMOP project of Institut Farman (Fédération de Recherche
CNRS, FR3311). This project is a joint work between two laboratories of École
Normale Supérieure de Cachan, namely LSV and LURPA. The goal of this
project was to define several good behavior zones for a distributed control sys-
tem, using different techniques of timed verification.

Description of the Model. We are here interested in Networked Automa-
tion Systems (NAS). NAS with Ethernet-based fieldbuses (instead of traditional
fieldbuses) are more and more often used in the industry, even for critical sys-
tems such as chemical or power plants. To ensure the reliability of such sys-



4.8. Networked Automation System 109

tems, not only the functionalities but also the timing performances must be
validated.

switched
ethernet-based 

network
Controllers

Remote 
Inputs
outputs

Controlled
plant

input

output

Figure 4.19: Example of Networked Automation Systems (NAS)

The main features of the physical components of these architectures is de-
scribed in Figure 4.19 (see, e.g., [RDS08, DRF+07]):

• Programmable Logical Controllers (PLCs) are modular. Within each con-
troller, a calculus processor runs a program cyclically, while a commu-
nication processor performs a periodic scanning of some Remote Input-
Output Modules (RIOMs), termed I/O scanning. It matters to underline
that the cycles of these two processors are asynchronous, data exchanges
being made by means of a shared memory.

• The network includes Ethernet switches and Ethernet links and is dedi-
cated only to communications between the PLCs and RIOMs; there is no
other additional traffic.

• Inputs and outputs from/to the plant are gathered in RIOMs which are
directly connected to the network. One RIOM may be shared by several
PLCs.

In the following we will use a simple example of NAS, which includes an
item of each component: one controller, one Ethernet switch, one RIOM and
no particular behavior for the plant. Only one input signal is considered, pro-
ducing a causal output signal after processing into the controller. Moreover, it
will be assumed that there is no frame loss, which is a quite reasonable assump-
tion for this kind of switched industrial Ethernet solution in the concerned op-
eration conditions.

The full description of the model is available in [AAC+09].



110 Chapter 4. Case Studies

In the design and the development process of NAS, engineers have to se-
lect and setup components that involves delay parameters. When setting the
parameters, the engineer must preserve the expected performance of the NAS,
i.e., the response time between the input signal and the output signal. This re-
sponse time should remain below a maximum limit to get an assessed NAS. The
assessment of a NAS is difficult because, for each valuation of the parameters
and each input signal, the response time may be different.

The aim of the SIMOP project [AAC+09] is to propose an approach able to
assist engineers to design, setup and/or reconfigure Networked Automation
Systems, by synthesizing values for the parameters of the NAS guaranteeing a
correct response time.

Definition of a Zone of Good Behavior. The system is modeled by a PTA A

containing 7 parameters COMct, COMd, NETd, PLCct, COMct, RIOd, SIGmrt,
corresponding to various timing delays of the system (see the description of
the model in [AAC+09]). We consider the following reference valuation π0 of
the parameters

PLCct = 600 COMct = 500 SIGmrt = 2071 PLCmtt = 100
RIOd = 70 COMd = 25 NETd = 10

It can be shown (e.g., using the model checker UPPAAL [LPY97] for timed
automata) that the system under π0 behaves well (this notion of good behavior
corresponds here to the response time of the system being under a given value).
The goal of the SIMOP project is to find other valuations of the parameters with
a good behavior.

Using our program IMITATOR II applied to A and π0, we infer the following
constraint K0 defining a good functioning zone.

4∗COMct ≥ NETd+COMd+3∗PLCct +PLCmtt
∧ 4∗COMct ≥ RIOd+2∗NETd+3∗PLCct +PLCmtt
∧ PLCct ≥ COMct +PLCmtt
∧ PLCct < RIOd+NETd+COMct +COMd
∧ SIGmrt > RIOd+4∗COMct
∧ NETd > 0
∧ PLCmtt > NETd+COMd
∧ PLCmtt > RIOd+2∗NETd
∧ 4∗COMct < RIOd+NETd+COMd+3∗PLCct +PLCmtt

Note that this constraint was synthesized using IMITATOR II with the “in-
clusion” mode. This mode is the implementation of the variant IM⊆ of IM ,
which allows to terminate earlier by modifying the fixpoint of the algorithm (see
Section 3.5). This good behavior of the NAS is modeled by an observer which
checks that the response time is correct, and then goes into a good or a bad



4.9. Summary of the Experiments 111

state, depending on the response time. As a consequence, although this variant
does not guarantee the equality of trace sets, the system under any π |= K0 will
not contain any bad state because this variant preserves the non-reachability
(see Proposition 3.27).

By applying IMITATOR II in the standard mode, the analysis does not termi-
nate, due to the explosion of the state space.

Comparison with Other Methods. In [AAC+09], we consider two different ap-
proaches: our inverse method, synthesizing a constraint on the parameters,
and a dichotomy method, testing (using the UPPAAL model checker) the cor-
rectness of a great number of integer points. The dichotomy method synthe-
sizes a cloud of “good” points, which is obviously much bigger than the zone
defined by our constraint K0 (see the graphical comparison in [AAC+09]). How-
ever, this discrete approach suffers from several limitations. First, only the dis-
crete integer points are guaranteed to be correct, whereas our inverse method
synthesizes a dense zone for which the behavior is guaranteed to be correct.
This gives a criterion of robustness for the system, which is interesting in prac-
tice, where the real values of the timing delays may not always be exactly equal
to the values specified by the designer. Second, only 3 dimensions (viz., COMct,
PLCct and SIGmrt) have been considered in the discrete approach, whereas our
constraint K0 is given in 7 dimensions.

The final remarks of [AAC+09] suggests the idea to combine both ap-
proaches in order to synthesize a much larger dense zone in 7 dimensions: by
iterating the inverse method on points synthesized by the dichotomy method,
one gets a set of constraints guaranteeing a good behavior. This is actually the
idea of the behavioral cartography developed in Chapter 5. However, this idea
has not been experimented in the SIMOP project for two reasons. First, the car-
tography algorithm did not exist at the time of the project. Second, the first ver-
sion of the tool IMITATOR used in the framework of this project needed almost
7 hours to synthesize a constraint, and iterating it manually would have been
highly time-consuming. It would be interesting to investigate this idea again
using the new version IMITATOR II, implementing the cartography algorithm.

4.9 Summary of the Experiments

The results of the application of the inverse method to various case studies are
given in Table 4.4. We give from left to right the name of the example with its
appropriate reference, the number of PTAs composing the global system A ,
the lower and upper bounds on the number of locations per PTA, the num-
ber of clocks and parameters of A , the number of iterations of the algorithm,



112 Chapter 4. Case Studies

the number of inequalities within K0, the number of states and transitions, the
computation time in seconds using IMITATOR, and the computation time in
seconds using IMITATOR II. Experiments were conducted on an Intel Core2 Duo
2.4 GHz with 2 Gb. Note that the CSMA/CD case study was not detailed in this
chapter, but will be mentioned in Section 6.5.2. All case studies are also detailed
in [And10c].

Example PTAs loc./PTA |X | |P | iter. |K0| states trans. Time1 Time2
SR-latch 3 [3,8] 3 3 5 2 4 3 0.11 0.007

Flip-flop [CC07] 5 [4,16] 5 12 9 6 11 10 1.6 0.122
AND–OR [CC05] 3 [4,8] 4 12 14 4 13 13 1.81 0.15

Latch 7 [2,5] 8 13 12 6 18 17 14.4 0.345
CSMA/CD [KNSW07] 3 [3,8] 3 3 19 2 219 342 41 1.01

RCP [KNS03] 5 [6,11] 6 5 20 2 327 518 64 2.3
SPSMALL1 [CEFX09] 10 [3,8] 10 26 32 23 31 30 4680 2.6

BRP [DKRT97] 6 [2,6] 7 6 30 7 429 474 901 34
SIMOP [ACD+09] 5 [5,16] 8 7 53 9 1108 1404 23455 67

SPSMALL2 [CEFX09] 28 [2,11] 28 62 94 45 129 173 - 461

Table 4.4: Summary of experiments for the inverse method

The SPSMALL1 case study corresponds to the model manually written and
described in Section 4.7.3. The SPSMALL2 case study corresponds to the model
automatically generated and described in Section 4.7.4. Both computation
times refer to the first implementation of the memory (SP1, with the reference
valuation π1). It is impossible to analyze the version automatically generated
(SPSMALL2) using the first version of IMITATOR because HYTECH runs out of
memory when trying to statically compose the 28 automata in parallel.

When considering the cyclicity of the trace sets, note that, for the respective
reference valuation considered, the trace sets of the following case studies are
acyclic: SR-latch, flip-flop, latch, SPSMALL1, BRP and SPSMALL2. The other
trace sets (viz., AND–OR, CSMA/CD, RCP and SIMOP) are cyclic and thus fea-
ture infinite behavior.

Note that the computation time using IMITATOR II has dramatically de-
creased compared to IMITATOR for all examples: the time has been divided at
least by 10, and up to 2000 for the SPSMALL1 memory. Explanations for this
high improvement are the rewriting of the tool using a library of convex poly-
hedra instead of the call to HYTECH, the on-the-fly composition of the differ-
ent PTAs, and the optimization of the algorithm described in Section 4.1.2.



4.10. Tools Related to IMITATOR II 113

4.10 Tools Related to IMITATOR II

IMITATOR II has been designed to implement the inverse method and the car-
tography algorithm and, as far as we know, it is the only tool implementing
those algorithms. As a consequence, it is not possible to compare directly the
features and computation times of IMITATOR II with other tools of the litera-
ture. Nevertheless, it is interesting to point out the following tools allowing to
perform several kinds of analyses on various classes of timed automata.

One of the first powerful model checkers for analyzing parametric timed
automata is HYTECH [HHWT97], which is a tool designed by Henzinger et al.
for model checking parametric hybrid systems. HYTECH features an intuitive
but powerful input syntax and the capability of performing various computa-
tions on hybrid systems, such as (non)reachability analysis, operations on sets
of states, etc. Although HYTECH has been used to verify several interesting case
studies, it can hardly verify even medium sized examples for two reasons. First,
its exact arithmetics with limited precision often leads to overflows. Second, it
performs an a priori composition of the timed automata given as input, thus
preventing the designer from verifying more than a dozen of automata in par-
allel.

The tool PHAVer [Fre05b] has been designed by Goran Frehse in particular
to overcome HYTECH’s weaknesses. It highly improves the scalability compared
to HYTECH, and performs analyses on parametric hybrid systems using exact
arithmetics with unlimited precision and convex polyhedra (using the Parma
Polyhedra Library (PPL) [BHZ08]). Moreover, PHAVer offers various features
such as automatic partitioning, graphical outputs, and forward/backward ab-
straction refinement. Various case studies have been verified, in particular in
the framework of analog circuits [FKR06].

The KRONOS model checker [Yov97] allows to verify real-time systems mod-
eled using networks of timed automata. The properties to be verified are ex-
pressed using the real-time temporal logic TCTL [ACD93]. Various case studies
in the framework of hardware circuits or communication protocols have been
studied [DY95, MY96, TY98].

UPPAAL is a powerful tool for modeling timed systems modeled as networks
of timed automata extended with several data types [LPY97]. In particular, it
verifies very efficiently timing properties such as reachability, safety or live-
ness properties on timed automata. Various extensions have been developed
for frameworks such as timed games or probabilistic systems. However, al-
though an extension of UPPAAL allowing to perform parametric model check-
ing is mentioned in [ABB+01], the standard version of UPPAAL does not allow
the verification of hybrid or parametric systems.

TREX [ABS01] is a model checker allowing to verify properties on para-



114 Chapter 4. Case Studies

metric timed automata extended with integer counters and finite-domain vari-
ables. TREX features on-the-fly verification of safety properties, as well as pa-
rameter synthesis either using parametric reachability, or in order to satisfy
properties. Various representations are allowed and both forward and back-
ward exploration algorithms can be used. Also note that TREX allows the syn-
thesis of non-linear constraints on the parameters.

The RED library [Wan06] features analysis of real-time systems using Clock-
Restriction Diagrams, as well as parametric analysis of hybrid systems using
Hybrid-Restriction Diagrams.

The TINA toolbox (TIme petri Net Analyzer) [BRV04, BV06] is a tool allow-
ing the construction of reachability graphs in the framework of Time Petri Nets.
It features the computation of the coverability graph of a Petri Net, the mark-
ing graph of a bounded Petri net, and allows various state space abstractions
for Time Petri nets, possibly preserving some temporal logics (LTL and CTL∗)
properties. It also features an editor for graphically or textually describing Time
Petri Nets.

Finally, the tool Roméo [LRST09] is a software for Time Petri Nets anal-
ysis, making use of the UPPAAL DBP library and the Parma Polyhedra Li-
brary [BHZ08]. It allows TCTL model-checking for (bounded) Time Petri Nets
and for stopwatch models. An interesting feature allows to check parametric
TCTL formulae, and thus synthesize parameters valuations for which the for-
mula is satisfied. These sets of parameters valuations are expressed using linear
constraints allowing the use of disjunctions.



Chapter 5

Behavioral Cartography

– Didn’t you say you could read a
map? We’re miles off!
– So what’s the big deal? Turn
around and find the road.

Happy Together
(Wong Kar-wai)

In Chapter 3, we introduced the inverse method, allowing to synthesize
constraints on a system modeled by parametric timed automata. Starting from
a reference valuation of the parameters, the inverse method outputs a con-
straint such that, for any valuation satisfying this constraint, the trace set of the
system is the same as under the reference valuation. The inverse method, and
its implementation IMITATOR II described in Chapter 4, allowed us to synthe-
size constraints guaranteeing the good behavior of various examples of asyn-
chronous circuits and communication protocols. However, the inverse method
suffers from two limitations. First, the constraint output by the method is not
necessarily maximal, i.e., there may exist parameter valuations outside the con-
straint such that the behavior is the same as under the reference valuation. Sec-
ond, the method focuses on the equality of trace sets, which can be seen as a
rather strong property, because the good behavior of a timed system can corre-
spond to different trace sets.

In this chapter, we introduce a novel approach for solving the following
good parameters problem: Given a PTA A and a rectangular real-valued pa-
rameter domain V0, what is the largest set of parameters values for which A

behaves well? This approach is based on the inverse method, and overcomes
its limitations. Indeed, we show that, by iterating the inverse method of Chap-
ter 3 on the integer points of the rectangular parametric domain V0, we are able



116 Chapter 5. Behavioral Cartography

to decompose the parametric space into behavioral tiles, i.e., parameter zones
with a uniform time-abstract behavior. Then, according to a property on traces
that one wants to check, it is easy to partition the parametric space into a sub-
set of “good” tiles (which correspond to “good behaviors”) and a subset of “bad”
ones. This gives us a behavioral cartography of the system.

Recall that A has a good behavior if it satisfies a certain set of properties
invariant for automata having the same set of traces. This is in particular the
case of linear-time properties [BK08].

Often in practice, what is covered by the behavioral cartography algorithm
is not the bounded and integer subspace of the parameter rectangle V0, but two
major extensions: first, not only the integer points but all the real-valued points
of the rectangle are covered by the tiles; second, the tiles are often unbounded
and cover most of the parametric space beyond V0. Although the cartography
may contain holes, i.e., zones not covered by the algorithm, we give sufficient
condition for the full coverage of the real-valued bounded parameter domain.

A major interest is that this behavioral cartography does not depend on the
property one wants to verify: only the partition into good and bad tiles actually
does. As a consequence, when verifying other properties, it is sufficient to check
the property for only one point in each tile in order to get the new partition.

Plan of the Chapter. We first recall in Section 5.1 the good parameters prob-
lem, using a motivating example. In Section 5.2, we introduce the behavioral
cartography algorithm. We give properties of the algorithm in Section 5.3, and
present various case studies in Section 5.4, analyzed using IMITATOR II. We fi-
nally present related work in Section 5.5.

5.1 Beyond the Inverse Method

In Chapter 3, we were able to synthesize a set of parameters, under the form of
a convex linear constraint, preserving the time-abstract behavior, i.e., the trace
sets. However, this method suffers from several drawbacks. First, the synthe-
sized set of parameters is not necessarily maximal, i.e., there may exist other
valuations (outside this set) having the same trace set. As pointed out in Propo-
sition 3.13, this maximal set may not exist under a convex form. Moreover, the
equality of trace sets may appear too strong a condition: a system designer may
want to allow different behaviors (i.e., different trace sets), provided those be-
haviors are all considered as “good” with respect to some property.

As a consequence, we are interested here in synthesizing a set of parameters
(possibly the maximal one) such that, for any parameter valuation, the system



5.2. The Behavioral Cartography Algorithm 117

behaves well with respect to some property on trace. Formally, we recall below
the good parameters problem as defined in Section 2.3.

The Good Parameters Problem
Given a PTA A and a rectangular real-valued parameter domain V0, what is
the largest set of parameters values within V0 for which A behaves well?

In the following, we will aim at solving this problem by iterating on the in-
verse method defined in Chapter 3.

5.2 The Behavioral Cartography Algorithm

By iterating the inverse method IM of Chapter 3 over all the integer points of
a rectangle1 V0 (of which there are a finite number), one is able to decompose
(most of) the parametric space included into V0 into behavioral tiles. We give
the behavioral cartography algorithm BC in Algorithm 6 [AF10].

Algorithm 6: Behavioral cartography algorithm BC(A ,V0)
input : A PTA A

input : A finite rectangle V0 ⊆RM
≥0

output: Tiling: list of tiles (initially empty)

1 repeat
2 select an integer point π ∈V0;
3 if π does not belong to any tile of Tiling then
4 Add IM(A ,π) to Tiling;

5 until Tiling contains all the integer points of V0;

Note that two tiles with distinct trace sets are necessarily disjoint. On the
other hand, two tiles with the same trace sets may overlap.

In many cases, all the real-valued space of V0 is covered by Tiling (see case
studies in Section 5.4). Besides, the space covered by Tiling often largely ex-
ceeds the limits of V0 (see Section 5.3 for a sufficient condition of full coverage
of the parametric space).

Partition Between Good and Bad Tiles. If now a decidable trace property is
given then one can check which tiles are good (i.e., the tiles whose trace set sat-
isfies the property), and which ones are bad. One can thus partition the rectan-
gle V0 into a good (resp. bad) subspace, i.e., a union of good (resp. bad) tiles.

1Actually, V0 can be more generally a convex set containing a finite number of integer points.



118 Chapter 5. Behavioral Cartography

Advantages. First, the cartography itself does not depend on the property one
wants to check. Only the partition between good and bad tiles involves the
considered property.

Moreover, the algorithm is interesting because one does not need to com-
pute the set of all the reachable states. On the contrary, each call to the inverse
method algorithm quickly reduces the state space by removing the incompati-
ble states. This allows us to overcome the state space explosion problem, which
prevents other methods, such as the computation of the whole set of reachable
states (and then the intersection with the bad states) [HWT96], to terminate in
practice.

Also note that the cartography algorithm makes use of no approximation.

5.3 Properties

In this section, we show that for acyclic PTAs (see Definition 2.24), a variant
of the cartography algorithm allows us to cover the whole real-valued space of
parameters within V0.

Lemma 5.1 (Termination). Given an acyclic PTA A and a rectangle V0, the al-
gorithm BC(A ,V0) always terminates.

Proof. Based on the termination of the inverse method (see Proposition 3.9)
and the finite number of integer points in V0. �

Note that, just as for the inverse method, the acyclicity of the PTA is a suffi-
cient, but non-necessary, termination condition of BC. We will provide in Sec-
tion 6.6.2 an example of non acyclic PTA for which the cartography algorithm
terminates.

The algorithm BC guarantees to cover the integer points within V0. How-
ever, there may exist a finite number of “small holes” within V0 (containing no
integer point) that are not covered by any tile of Tiling. A possible refinement
of the algorithm is to consider a tighter grid, i.e., not only integer points, but
rational points multiple of a smaller step than 1.

This algorithm, say BC′, is similar as BC, except that it takes one more pa-
rameter as input, viz., the step between two points on which the inverse method
shall be called. As a consequence, instead of calling the inverse method on all
the integer points, it will be called on all rational point multiple of the chosen
step.

Acyclic PTAs. In the case of acyclic PTAs, we show in the following that the ter-
mination of BC′ is guaranteed, and allows to cover the whole parameter space



5.3. Properties 119

using a step small enough. This is due to the finiteness of the number of differ-
ent tiles which can be output by IM(A ,π), for any rational point π. Formally:

Lemma 5.2 (Finite number of tiles). Let A be an acyclic PTA. The set of tiles
{IM(A ,π) |π ∈QM

≥0} is finite.

Proof. First, the number of possible trace sets is finite from the acyclicity of A .
Moreover, the set Post∗

A (K )({s0}) of reachable states is finite for any K , due to the
acyclicity of A . As a consequence, for a given K , the number of π0-inequalities
is also finite. Thus, there is a finite number of possibilities to refine K by the
addition of the negation of a π0-inequality. As a consequence, there is a finite
number of possible constraints K at the end of the algorithm. And, from the
finiteness of the number of possible trace sets, the number of possible inter-
sections of K with the constraints associated with the reachable states (i.e., K0)
is finite, which proves the result. �

Now, one can show that BC′ covers the whole parametric space, for a “suffi-
ciently large” V0 and a step “sufficiently small”, for acyclic PTAs. Formally:

Proposition 5.3. Let A be an acyclic PTA. Then there exist a rectangle V0 and a
step such that BC′(A ,V0) covers the whole real-valued parametric space.

Proof. From the finiteness of the number of tiles possibly output by IM (see
Lemma 5.2). �

General Case. For the general case (i.e., possibly cyclic PTAs), it is also possi-
ble to identify classes of systems for which the full coverage of the rectangle V0

is guaranteed using the classical version BC of the behavioral cartography al-
gorithm. In particular, this is the case of PTAs corresponding to the following
requirements:

1. the set P of 2M parameters is partitioned into a subset P−{p−
1 , . . . , p−

M , }
and a subset P+{p+

1 , . . . , p+
M , } of parameters, with p−

i ≤ p+
i , for all i =

1, . . . , M ;

2. invariants are all of the form x ≤ ∑
1≤i≤M αi p+

i , with αi ∈ N, for all i =
1, . . . , M ;

3. guards are all of the form x ≥∑
i≤i≤M αi p−

i , withαi ∈N, for all i = 1, . . . , M .

See [Sou10a] for more details and proofs. Although this class of PTAs may seem
restrictive, this is actually the case of most of the case studies we met in practice,
particularly in hardware verification.



120 Chapter 5. Behavioral Cartography

Actually, the finiteness of the number of tiles, and thus the full coverage
of V0, can also be proven in more general cases. For example, the proof of
Lemma 5.2 can be adapted to show the finiteness of the number of tiles when
the reachability graph of A (true) is finite, i.e., when there exists n ∈ N such

that Postn
A (true)({s0}) v⋃n−1

j=0 Post j
A (true)({s0}).

Remark 5.4. In order to fill the possible holes when using the standard ver-
sion BC of the behavioral cartography algorithm, it may be more efficient in
practice to proceed as follows:

1. call the standard version BC of the behavioral cartography algorithm (i.e.,
by calling the inverse method on integer points);

2. fill the possible holes by calling again manually the inverse method on
one (non-integer) point within each hole.

This is often more efficient in practice. In the case of acyclic PTAs, the termina-
tion of this variant is guaranteed. This is also due to the finiteness of the number
of different tiles which can be output by IM(A ,π), for any rational pointπ of V0.

Finally note that an interesting variant of the algorithm would be a dynamic
cartography, where the step would be automatically refined in order to fill the
possible holes. This is the subject of ongoing work. �

5.4 Case Studies

We consider a range of case studies, asynchronous circuits and telecommu-
nication protocols, and synthesize constraints for each those case studies. We
then compare the constraints synthesized by our method with constraints from
the literature, when applicable. We give for each case study sufficient details to
understand the model. For a fully detailed description, refer to [And10c].

We first introduce the implementation within IMITATOR II of the behavioral
cartography algorithm (Section 5.4.1). We then present a range of case studies,
i.e.:

• a “SR-latch” circuit (Section 5.4.2),

• the flip-flop circuit introduced in Chapter 1 (Section 5.4.3), and a variant
for another environment, and

• two different abstractions of the SPSMALL memory (Section 5.4.4).

We summarize the experiments in Section 5.4.5.



5.4. Case Studies 121

5.4.1 Implementation

The behavioral cartography algorithm has been implemented in the tool IMI-
TATOR II [And10a], already mentioned in Section 4.1.2 in the framework of the
inverse method.

When calling IMITATOR II to apply the behavioral cartography algorithm,
the tool takes as input two files, one describing the network of PTAs modeling
the system, and the other describing the reference rectangle, i.e., the bounds
to consider for each parameter. As depicted in Figure 5.1, it synthesizes a list
of tiles, as well as the trace set corresponding to each tile under a graphical
form. The description of all the parametric reachable states for each tile is also
returned.

IMITATOR II

PTA A

Reference
rectangle V0

List of tiles

List of trace sets
(graphical form)

Figure 5.1: IMITATOR II inputs and outputs in cartography mode

Two different modes can be considered for this algorithm:

1. cover all the integer points of V0, or

2. call a given number of times the inverse method on an integer point se-
lected randomly within V0 (which is interesting for rectangles containing
a very big number of integer points but few different tiles).

For both modes, the inverse method is not called if the selected point has al-
ready been covered by some of the tiles in Tiling.

For systems with only two parameter dimensions, the cartography is also
automatically returned under a graphical form using the graph utility of gnu-
plot, a portable command-line driven graphing utility [pWpa]. An example2 of
such an output is given in Figure 5.2, where each tile is depicted with a color.
The reference rectangle V0 is depicted in dashed. The white zone corresponds
to points which are not covered by any tile. Note that, due to a limitation of
the number of colors (actually only 4) of the external tool allowing to generate
automatically the cartography, two tiles depicted with the same color do not
necessarily correspond to the same trace sets.

2This example actually corresponds to the Root Contention Protocol, which will be studied
in Section 6.6.



122 Chapter 5. Behavioral Cartography

Figure 5.2: Example of cartography automatically output by IMITATOR II

Note that the variant presented in Section 5.3 (i.e., BC′) has also been im-
plemented. In other words, the step (by default, the integers) can be given as
an input, and the analysis is then performed automatically using this step.

5.4.2 SR-Latch

We consider the SR-latch described in Section 4.2. We now perform a behav-
ioral cartography of this system in order to synthesize a maximal constraint
guaranteeing that the system always ends in a state where Q = 1. We consider
the following rectangle V0 for the parameters.

t↓ ∈ [0,10]
δ1 ∈ [0,10]
δ2 ∈ [0,10]

Using IMITATOR II, we get the following six behavioral tiles. For each of those
tiles, we will give the corresponding trace set, where the value of the signals
corresponding to each location is given in Table 4.1 page 87.

Tile 1. This tile corresponds to the values of the parameters verifying the fol-
lowing constraint:

t↓ = δ2 ∧ δ1 = 0

The trace set of this tile is given in Figure 5.3.

Since t↓ = δ2, R↓ and Q
↑

will occur at the same time. Thus, the order of those
two events is unspecified, which explains the choice between going to q2 or q3.



5.4. Case Studies 123

q0 q1 q2

q3

q4

q5

q4

S↓

R↓

Q
↑

Q
↑

Q↑

R↓

Figure 5.3: Trace set of tile 1 for the SR latch

When in state q2, either Q↑ can occur (since δ1 = 0), in which case the system is

stable, or Q
↑

can occur, which also leads to stability.

Tile 2. This tile corresponds to the values of the parameters verifying the fol-
lowing constraint:

t↓ = δ2 ∧ δ1 > 0

The trace set of this tile is given in Figure 5.4.

q0 q1 q2

q3

q4

q4

S↓

R↓

Q
↑

Q
↑

R↓

Figure 5.4: Trace set of tile 2 for the SR latch

Since t↓ = δ2, R↓ and Q
↑

will occur at the same time. Thus, the order of those
two events is unspecified, which explains the choice between going to q2 or q3.

When in state q2, Q↑ cannot occur (since δ1 > 0), so Q
↑

occurs immediately
after R↓, which leads to stability.

Tile 3. This tile corresponds to the values of the parameters verifying the fol-
lowing constraint:

δ2 > t↓+δ1

The trace set of this tile is given in Figure 5.5.

q0 q1 q2 q5
S↓ R↓ Q↑

Figure 5.5: Trace set of tile 3 for the SR latch

In this case, since δ2 > t↓ +δ1, S↓ will occur before the gate Nor2 has the
time to change. For the same reason, Q↑ will change before Nor1 has the time
to change. With Q = 1, the system is now stable: Nor1 does not change.



124 Chapter 5. Behavioral Cartography

Tile 4. This tile corresponds to the values of the parameters verifying the fol-
lowing constraint:

t↓+δ1 = δ2 ∧ δ2 ≥ δ1 ∧ δ1 > 0

The trace set of this tile is given in Figure 5.6.

q0 q1 q2

q4

q5
S↓ R↓

Q
↑

Q↑

Figure 5.6: Trace set of tile 4 for the SR latch

Since t↓+δ1 = δ2, both Q↑ or Q
↑

can occur. Once one of them occured, the
system gets stable, and no other change occurs.

Tile 5. This tile corresponds to the values of the parameters verifying the fol-
lowing constraint:

δ2 > t↓ ∧ t↓+δ1 > δ2

Note that this constraint is equal to K0. The trace set of this tile is given in
Figure 5.7.

q0 q1 q2 q4
S↓ R↓ Q

↑

Figure 5.7: Trace set of tile 5 for the SR latch

Since δ2 > t↓, the gate Nor2 cannot change before R↓ occurs. However, since

t↓+δ1 > δ2, the gate Nor2 changes before Q↑ can occur, thus leading to event Q
↑
.

Tile 6. This tile corresponds to the values of the parameters verifying the fol-
lowing constraint:

t↓ > δ2

The trace set of this tile is given in Figure 5.8.

q0 q1 q3 q4
S↓ Q

↑
R↓

Figure 5.8: Trace set of tile 6 for the SR latch

Since t↓ > δ2, Q
↑

occurs before S↓. The system is then stable.



5.4. Case Studies 125

Cartography. We give in Figure 5.9 the cartography of this SR-latch case study.
For the sake of simplicity of representation, we consider only parameters δ1

and δ2. Therefore, we set t↓ = 1.

3

5

6

δ1

δ2 4

21

Figure 5.9: Behavioral cartography of the SR latch according to δ1 and δ2

The rectangle V0 is represented with dashed lines. Note that tile 1 corre-
sponds to a point, and tiles 2 and 4 correspond to lines. Note also that all tiles
(except tile 1) are unbounded. As a consequence, the cartography covers, not
only V0, but the whole positive real-valued parametric space. Constraints syn-
thesized using our algorithm in order to guarantee a given behavior will thus
necessarily be maximal for this case study.

Verification of Properties. Recall that we aim at synthesizing the maximal set
of parameters guaranteeing the following behavior: “the system always ends in
a state where Q = 1”, i.e., each trace ends either in state q3 or in state q4. One
can easily infer from the six trace sets that tiles 2, 5 and 6 are good tiles, and the
other tiles are bad tiles. As a consequence, the maximal set of parameters cor-
responding to all the good behaviors is the union of the constraints associated
with the three good tiles, i.e.:

t↓ = δ2 ∧ δ1 > 0
∨ δ2 > t↓ ∧ t↓+δ1 > δ2

∨ t↓ > δ2

It can be shown that this constraint is actually equivalent to t↓ +δ1 > δ2.
Note that this constraint is maximal, because our cartography algorithm covers
the whole parametric space.



126 Chapter 5. Behavioral Cartography

If one now considers another property, we will get a different partition be-
tween good and bad tiles, and thus a different constraint. For example, if one
wants to synthesize parameter valuations such that “the system always ends in
a state where Q = 0” (i.e., each trace ends in state q5), only tile 3 is a good tile,
leading to the maximal constraint δ2 > t↓+δ1.

Comparison with other methods. Due to the simplicity of this example, it is
possible to apply the method introduced in [HWT96], consisting in comput-
ing the whole set of reachable states, and then intersect it with the bad states.
We first consider the property “the system always ends in a state where Q = 1”.
We introduce one more PTA in parallel with the others, which plays the role
of an observer. This PTA goes into a “good” location when synchronizing with

action Q
↑
, and into a “bad” location when synchronizing with action Q↑. Us-

ing the HYTECH model checker, we can compute the whole set of reachable
states, project the constraint onto the parameters, and intersect with “the bad”
locations, i.e., keep only the states where the observer is in the bad location.
The constraint on the parameters associated with the bad states is t↓+δ1 ≤ δ2.
Thus, by negating it, one finds back the constraint found by our algorithm, i.e.,
t↓+δ1 > δ2.

Similarly for the second property (i.e., “the system always ends in a state
where Q = 0”), we slightly modify the observer (i.e., swap the good and the bad
location), and this method also allows to synthesize the same constraint as our
algorithm.

5.4.3 Flip-flop

We will consider two different versions of the flip-flop case study. The first one
is the same as the one described in Section 1.1 and Section 3.1.1. The second
one is a variant of this example, using the same model and a different environ-
ment.

First environment

We apply here the behavioral cartography to the flip-flop example described
in Section 3.1.1. For the sake of simplicity, we consider a model with only 2
parameters, with the following V0:

δ+3 ∈ [8,30] and δ+4 ∈ [3,30].

The other parameters are instantiated as follows:
THI = 24 TLO = 15 TSetup = 10 THold = 17 δ−1 = 7
δ+1 = 7 δ−2 = 5 δ+2 = 6 δ−3 = 8 δ−4 = 3



5.4. Case Studies 127

We compute the cartography of the flip-flop circuit according to δ+3 and δ+4 ,
depicted in Figure 5.10. The dashed rectangle corresponds to V0.

1 2 3 4 5

6 78

δ+3

δ+4

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Figure 5.10: Behavioral cartography of the flip-flop according to δ+3 and δ+4

First note that the whole (real-valued) V0 is covered. Note also that tiles 5
to 8 are unbounded. Actually, this cartography covers the whole3 real-valued
parametric space R≥0 ×R≥0. According to the nature of the trace sets, we can
easily partition the tiles into good and bad tiles with respect to property Prop1.

For example, the trace set of tile 3 (corresponding to the constraint δ+3 +δ+4 <
24∧δ+3 ≥ 17∧δ+4 ≥ 3) is given in Figure 5.11, where the meaning of each location
in terms of signals is given in Table 3.1 page 43. This tile is a good tile because
Q↑ occurs before CK ↓ for all traces.

q0 q1 q2 q3

q4

q5

q7

q7

q6

q9

q9

q9

q10

q10

q10

D↑ G↓
1 CK ↑

D↓

G↓
3

G↓
3

D↓
Q↑

Q↑

Q↑

D↓

CK ↓

CK ↓

CK ↓

Figure 5.11: Trace set of tile 3 for the flip-flop case study

Likewise, the trace set of tile 7 (corresponding to the constraint δ+3 ≥ 24∧
δ+4 ≥ 7) is given in Figure 5.12, where the meaning of each location in terms of

3Apart from the irrelevant zone originating from the model (δ+3 < 8 or δ+4 < 3).



128 Chapter 5. Behavioral Cartography

signals is given in Table 3.1 page 43. This is a bad tile because there exist traces
where Q↑ occurs after CK ↓.

q0 q1 q2 q3 q4

q5

q11

q7

q7

q6

q8

q9

q8

q9

q9

q10

q10

q10

q10

q10

D↑ G↓
1 CK ↑

D↓

G↓
3

G↓
3

CK ↓

D↓
Q↑

CK ↓

Q↑

CK ↓

Q↑

D↓

Q↑

CK ↓

Q↑

CK ↓

CK ↓

Figure 5.12: Trace set of tile 7 for the flip-flop case study

One sees more generally that tiles 1 to 3 are good while tiles 4 to 8 are bad.
From this partition into good and bad tiles, we infer the following constraint:

δ+3 +δ+4 ≤ 24 ∧ δ+3 ≥ 8 ∧ δ+4 ≥ 3

which gives the maximal set of good parameters, thus solving the good param-
eters problem for this example.

Comparison with other methods. By computing in a brute manner the whole
set of reachable states for all possible valuations of the parameters, and per-
forming the intersection with the set of bad locations, we get the same con-
straint ensuring the good behavior of the system. Note that this comparison
is possible because this example is rather simple; for bigger examples, such a
computation would be impossible because of the state space explosion prob-
lem (see the cartography Root Contention Protocol in Section 6.6.2).

In [CC07], a constraint Z guaranteeing a good behavior is given (see Sec-
tion 3.4). The projection of this constraint Z onto δ+3 and δ+4 gives

δ+3 < 11∧δ+3 +δ+4 < 18∧δ+3 ≥ 8∧δ+4 ≥ 3,

which is strictly included in our constraint4.

4Actually, the comparison is not completely fair, because the two models are slightly differ-
ent: in particular, the authors of [CC07] consider an environment where D is initially either
equal to 0 or to 1.



5.4. Case Studies 129

Second environment

We now consider a variant of this case study, using the same model, as depicted
in Figure 1.1 (left) page 3, the same timing parameters, and the new environ-
ment depicted in Figure 5.13.

D

CK

Q

TSetup THold

TLO

THI

TCK→Q

Figure 5.13: Environment for the flip-flop circuit with D = 0

This new environment starts from D = g2 = Q = 1 and CK = g1 = g3 = 0,
with the following ordered sequence of actions for inputs D and CK : D↓, CK ↑,
D↑, CK ↓. Therefore, we have the implicit constraint TSetup ≤ TLO ∧THold ≤ THI .

The initial location q0 corresponds to the initial levels of the signals accord-
ing to the environment. The initial constraint K0 corresponds to:

TSetup ≤ TLO ∧THold ≤ THI ∧
∧

i=1,..,4
δ−i ≤ δ+i

We now consider that the circuit has a good behavior if every trace contains
both Q↓ and CK ↓, and Q↓ occurs before CK ↓. We are interested in identifying
parameter valuations for THold and δ+2 for which the system has such a good be-
havior. As a consequence, we perform a behavioral cartography of the system
according to parameters THold and δ+2 . We consider the following V0:

THold ∈ [0,50] and δ+2 ∈ [5,40].

The other parameters are instantiated as follows (note that this reference valu-
ation is not the same as in the previous section):

THI = 40 TLO = 20 TSetup = 19 δ−1 = 18 δ+1 = 18
δ−2 = 5 δ−3 = 8 δ+3 = 10 δ−4 = 3 δ+4 = 7

The cartography is computed automatically by IMITATOR II. We then parti-
tion the tiles into good and bad. This partition is depicted under a graphical
form in Figure 5.14, where the light red (resp. dark blue) zones correspond to
the bad (resp. good) values of the parameters.

First note that all outer zones are infinite: as a consequence, the cartogra-
phy covers the whole5 dense real-valued set of parameters outside V0. However,

5Apart from the irrelevant zone originating from the model (δ+2 < 5).



130 Chapter 5. Behavioral Cartography

δ+2

THold

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

Figure 5.14: Behavioral cartography of the flip-flop for parameters THold and δ+2

there are two holes within V0, i.e., zones not covered by any tile. The full cover-
age can be achieved using two different methods:

1. by calling manually the inverse method on one (non-integer) point
within each of the two holes, or

2. by performing again the cartography using a tighter grid than integers
(actually calling the inverse method on rational points multiple of 1/3 is
enough in this case).

Both methods allow us to get similarly the full coverage of the parametric space
within V0. We do not redraw here the cartography again. The hole in the bad
zone turns out to correspond to a bad behavior; similarly, the hole in the good
zone turns out to correspond to a good behavior.

As a consequence, one is now able to infer the following constraint corre-
sponding to the set of parameters for which the flip-flop circuit behaves well:

5 ≤ δ+2 ≤ 18 ∧ 0 ≤ THold ≤ 40
∨ 18 ≤ δ+2 ≤ 23 ∧ δ+2 −18 ≤ THold ≤ 18

This constraint corresponds to the maximal constraint solving the good pa-
rameters problem for parameters THold and δ+2 for this case study, because the
whole parameter domain has been covered by the tiles. Also note that this con-
straint is not under convex form.



5.4. Case Studies 131

5.4.4 SPSMALL Memory

We consider again the SPSMALL memory, described in Section 4.7. We will
consider here two versions of the memory: the manually abstracted model (de-
scribed and analyzed using the inverse method in Section 4.7.3), and the auto-
matically generated model (described and analyzed in Section 4.7.4).

Manually Abstracted Model

We first consider here the model manually abstracted, described in Sec-
tion 4.7.3. We are interested in minimizing the values of the setup timing pa-
rameters, viz., t D

setup and t WEN
setup , so that they still verify the following good prop-

erty mentioned in [CEFX06]: “the response time of the memory must be smaller
than 56” (recall that units are given in tens of ps). This response time corre-
sponds to the value TCK→Q depicted in Figure 4.15 page 101, and represents the
time between the second rise of input signal CK and the rise of the output sig-
nal Q. Note that this good property does not strictly speaking correspond to a
property on traces. As a consequence, we make use of an observer (as in [BC05]
and [CEFX06]), i.e., an additional PTA which waits for the rise of Q and, depend-
ing on the time of this action, goes into a good location or into a bad location.
Locations are observable within traces, thus this property is now a property on
traces.

We perform a behavioral cartography of the SPSMALL memory, for the fol-
lowing V0:

t D
setup ∈ [65;110] ∧ t WEN

setup ∈ [0;66].

The other parameters are instantiated like in π1. We give in Figure 5.15 the
cartography of the SPSMALL memory, as automatically output by IMITATOR II.
The dashed rectangle corresponds to V0. The red zone above t WEN

setup is infinite,
and corresponds to a bad behavior.

Recall that each different colored zone corresponds to a different behavior6.
Note that the cartography actually contains a few holes, i.e., zones (depicted in
white) covered by no tile. We manually “filled” those zones by calling again the
inverse method on one point in each zone, which allowed us to cover the whole
rectangle V0.

We then partition the tiles into good and bad. This partition is depicted un-
der a graphical form in Figure 5.16, where the light red (resp. dark blue) zone
corresponds to the bad (resp. good) values of the parameters. After partitioning

6Recall that this cartography has been automatically output by IMITATOR II which can only
represent a few colors (due to the use of an external plot tool). As a consequence, different
zones depicted using the same color do not necessarily have the same trace set.



132 Chapter 5. Behavioral Cartography

Figure 5.15: Cartography of the SPSMALL memory

the tiles into good and bad, one is able to infer the following constraint corre-
sponding to the set of parameters for which the memory circuit behaves well:

99 < t D
setup ≤ 110 ∧ 30 < t WEN

setup ≤ 65

This constraint corresponds to the maximal constraint solving the good param-
eters problem for the SPSMALL memory within V0, because the whole rectangle
has been covered by the tiles.

t D
setup

t WEN
setup

50 60 70 80 90 100 110 120
00

10

20

30

40

50

60

70

80

Figure 5.16: Cartography of the SPSMALL memory (after partition)

Due to the way we modeled the system (in particular the environment), val-
ues such that t D

setup < 65 or t D
setup > 110 do not correspond to any proper behav-



5.4. Case Studies 133

ior. As a consequence, the constraint synthesized corresponds to the maximal
constraint for the whole parameter space of this model.

One can thus minimize t D
setup and t WEN

setup according to the cartography as fol-
lows:

t D
setup = 100 ∧ t WEN

setup = 31

By comparison with the original datasheet π1 (viz., t D
setup = 108 and t WEN

setup = 48),
this results in a decreasing of the setup timing of signal D of 7.4 %, and a de-
creasing of the setup timing of signal WEN of 35.4 %.

Comparison with Other Methods. In [CEFX06], the authors synthesize a min-
imum for these setup timings, by iteratively decreasing the setup timings un-
til the system does not behave well anymore, i.e., until the response time is
not guaranteed anymore. When compared to our approach, the approach
of [CEFX06] has the following limitation: they test only the integer points, and
do not have any guarantee for the dense set of parameters between two integer
points. In [CEFX06], a minimum value of 95 is given for t D

setup. However, our ap-
proach indicates that the value of 95 corresponds to a bad behavior, and there-
fore shows a discrepancy between our respective models. A minimum value
of 29 is given for t WEN

setup , which is slightly smaller as ours. Again, this indicates a
discrepancy between our respective models.

Automatically Generated Model

We now consider the model automatically generated, described in Sec-
tion 4.7.4. As in the previous section, we are interested in minimizing the val-
ues of the setup timing parameters, viz., t D

setup and t WEN
setup , so that they still verify

the following good property mentioned in [CEFX06]: “the response time of the
memory must be smaller than 56” (recall that units are given in dozens of ps).
Again, we make use of an observer in order to transform this property into a
property on traces.

We perform a behavioral cartography of the SPSMALL memory, for the fol-
lowing V0:

t D
setup ∈ [89;98] ∧ t WEN

setup ∈ [25;34].

Due to the complexity of this model, note that the rectangle V0 is not as large
as for the manual model. We give in Figure 5.17 the cartography of the SPS-
MALL memory, as automatically output by IMITATOR II. The dashed rectangle
corresponds to V0.

Recall that each different colored zone corresponds to a different behavior.
This cartography, though interesting, contains many holes, i.e., zones (depicted
in white) covered by no tile.



134 Chapter 5. Behavioral Cartography

Figure 5.17: Cartography of the SPSMALL memory (generated model)

We then chose to launch again the analysis using a tighter grid, viz., by call-
ing the inverse method on points multiple of 1/3 instead of integer points. This
corresponds to the algorithm BC′ sketched in Section 5.3. The reason for the
choice of 1/3 is that, with such a step, one is sure to cover any tile delimited by
integer points. This is not the case of a step of 1 (or even 1/2), because tiles de-
limited by integer points may exclude those integer points in the case of strict
inequalities.

This second cartography of the SPSMALL, with step 1/3, is given in Fig-
ure 5.18. This cartography is this time successful in the sense that the whole
bounded parameter domain V0 is covered by the tiles. Furthermore, a signifi-
cant part of the parametric space outside V0 is also covered.

We then partition the tiles into good and bad. This partition is depicted un-
der a graphical form in Figure 5.19, where the light red (resp. dark blue) zone
corresponds to the bad (resp. good) values of the parameters. From this par-
tition, one is able to infer the following constraint corresponding to the set of
parameters within V0 for which the memory circuit behaves well:

96 ≤ t D
setup ≤ 98 ∧ 29 ≤ t WEN

setup ≤ 34

This constraint corresponds to the maximal constraint solving the good param-
eters problem for the SPSMALL memory within V0, because the whole rectan-
gle has been covered by the tiles. Also note that the cartography gives further
information outside V0.

One can thus minimize t D
setup and t WEN

setup according to the cartography as fol-



5.4. Case Studies 135

Figure 5.18: Cartography of the SPSMALL memory (full coverage)

t D
setup

t WEN
setup

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

23

24

25

26

27

28

29

30

31

32

33

34

35

Figure 5.19: Cartography of the generated model of the SPSMALL memory (af-
ter partition)

lows:

t D
setup = 96 ∧ t WEN

setup = 29

By comparison with the original valuation for t D
setup and t WEN

setup (viz., t D
setup = 108

and t WEN
setup = 48), this results in a decreasing of the setup timing of signal D

of 11.1 %, and a decreasing of the setup timing of signal WEN of 39.6 %. Such
an important decreasing of some of the values of the environment show the in-
terest of the cartography algorithm for the optimization of timing parameters.



136 Chapter 5. Behavioral Cartography

Comparison with Other Methods. Recall that, in [CEFX06], the authors also
synthesize a minimum for these setup timings, by iteratively decreasing the
setup timings until the system does not behave well anymore. In [CEFX06],
a minimum value of 95 is given for t D

setup. However, our approach indicates
that the value of 95 corresponds to a bad behavior, and therefore shows a
slight discrepancy between our respective models. Also observe that the au-
thors of [CEFX06] find a minimum value of 29 for t WEN

setup , which is exactly the
same as ours. This shows the interest of our method, which computes a con-
straint allowing to retrieve fully automatically the (manually computed) results
from [CEFX06], with the advantages that we considered the full model of the
memory (not only the write operation), that we give relations between the pa-
rameters (under the form of a constraint), and above all that we now give con-
ditions of correctness on the dense space of parameters.

Due to the high size of this model (viz., an NPTA composed of 28 PTA con-
taining 28 clocks, 32 discrete variables and 62 parameters) and to the practical
interest of the constraint output, this case study can be considered as an ex-
tremely interesting application of IMITATOR II.

Remark 5.5. In [CEFX06], values corresponding to simulation are given. Sim-
ulation is a technique based on an exact virtual version of the memory. It is
usually extremely costly to perform (and is suitable for only one environment)
but its results can be considered as exact for this particular case. For this case
study, a simulation has been performed using the entire system (i.e., without
cutting away some parts of the memory), for some (punctual) values of the in-
put timings. For this environment and those values of the parameters, accord-
ing to [CEFX06], the minimum possible value computed by simulation for t WEN

setup

is 36, and the minimum possible value for t D
setup is 95. For t D

setup, this means that
the value we compute is suitable, because it is greater than the minimum pos-
sible value. Moreover, it is almost the optimal value, since our method allows to
minimize t D

setup to 96, whereas the minimum value is 95. For t WEN
setup , however, our

value is strictly smaller than the value computed using the simulation, which
represents a minimum. This indicates that (at least) one delay assigned to a
gate of our model (which has been automatically computed in the framework
of the VALMEM project) is too approximative. Note that this limitation is of
course not due to the methods developed here, but to the way the PTAs and the
reference valuation were automatically generated, which is completely beyond
the scope of this thesis. �



5.4. Case Studies 137

5.4.5 Summary of the Experiments

The results of the application of the behavioral cartography algorithm to var-
ious case studies are given in Table 5.1. We give from left to right the name
of the example with its appropriate reference, the number of PTAs composing
the global system A , the lower and upper bounds on the number of locations
per PTA, the number of clocks of A , the number of parameters varying in the
cartography, the number of integer points within V0, the number of tiles com-
puted, the average number per tile of states and transitions of the trace set, and
the computation time in seconds. Experiments were conducted on an Intel
Core2 Duo 2.4 GHz with 2 Gb. Case studies not mentioned in this chapter are
detailed in [And10c].

Example PTAs loc./PTA |X | |P | |V0| tiles states trans. Time
SR-latch 3 [3,8] 3 3 1331 6 5 4 0.3

Flip-flop [CC07] 5 [4,16] 5 2 644 8 15 14 3
Latch circuit 7 [2,5] 8 4 73062 5 21 20 96.3

AND–OR [CC05] 3 [4,8] 4 6 75600 4 64 72 118
CSMA/CD [KNSW07] 3 [3,8] 3 3 2000 140 349 545 269
SPSMALL1 [CEFX09] 10 [3,8] 10 2 3149 259 60 61 1194

RCP [KNS03] 5 [6,11] 6 3 186050 19 5688 9312 7018
SPSMALL2 [CEFX09] 28 [2,11] 28 3 784 213 145 196 31641

Table 5.1: Summary of experiments for the cartography algorithm

Recall that the SPSMALL1 case study corresponds to the model manually
written, and the SPSMALL2 case study corresponds to the model automatically
generated. For the SPSMALL2 case study, the statistics given correspond to the
cartography performed using a step of 1/3 and allowing us to cover the whole
parameter space within V0: as a consequence, the number of points within V0

correspond for this case study, not to the number of integer points, but of ra-
tional points multiple of 1/3.

For all those examples, the cartography covers 100 % of the real-valued
space of V0, except for the Root Contention Protocol, where “only” 99,99 % of V0

is covered. Moreover, a significant part of the real-valued space outside V0 is
also often covered.

Note that, in contrast to the inverse method (Section 4.9), no comparison
with the computation time of the first version of IMITATOR is possible, because
this first version did not feature the behavioral cartography algorithm.



138 Chapter 5. Behavioral Cartography

5.5 Related Work

For work related on parameter synthesis in general in the framework of para-
metric timed automata, see Section 3.6.

When coming to the good parameters problem with respect to a property
one wants to check, the authors of [KP10] (see Section 3.6) synthesize a set of
parameter valuations satisfying a given property. This is an interesting way to
solve the good parameters problem, in the case where the “good” behavior of
the system can be expressed under the form of an ECTL−X formula. In par-
ticular, recall that our algorithm does not guarantee the branching structure
of properties (and thus does not preserve CTL and its variants). However, our
cartography algorithm synthesizes sets of valuations both satisfying and not
satisfying the formula one is interested in. Indeed, recall that the cartography
does not depend on the property one considers; only the partition into good
and bad tiles does.

One can also see as a kind of behavioral cartography the dichotomy method
considered in [AAC+09], and discussed in Section 4.8. Indeed, this method syn-
thesizes a cloud of “good” and “bad” points with respect to a property. How-
ever, this discrete approach suffers from several limitations. First, only the dis-
crete integer points are guaranteed to be correct (whereas our inverse method
synthesizes a dense zone for which the behavior is guaranteed to be correct).
Second, only a limited number of dimensions can be considered. Third, this
dichotomy approach intrinsically depends on the property one wants to ver-
ify, whereas our cartography algorithm is independent from the property. As
a consequence, for another property, the dichotomy approach should start ev-
erything again from the beginning, whereas our algorithm only needs to parti-
tion again the computed zones into good and bad by testing only one point in
each zone.

To our knowledge, no other method allows a pavement of the dense para-
metric space with respect to the time-abstract behavior of the system.



Chapter 6

Extension to Probabilistic Systems

Il y a 90 chances pour 100 que je
me trompe — mais ça n’a aucune
importance.

Ma nuit chez Maud
(Éric Rohmer)

In Chapter 3, we presented the inverse method synthesizing a constraint on
the parameters guaranteeing the same time-abstract behavior as under a refer-
ence valuation. In Chapter 5, we extended this method in order to synthesize
a behavioral cartography of the system. In this chapter, we now extend those
results to the probabilistic case.

We consider here the model of probabilistic timed automata, where discrete
actions in timed automata are replaced with distributions of actions. In other
terms, in a given location, for a given action, one can reach several locations
with distinct probabilities. This formalism is interesting to model probabilistic
systems, e.g., randomized protocols.

As for standard timed automata, the behavior of probabilistic timed au-
tomata is very sensitive to the values of the constants compared with the clocks
within the guards and invariants. It is thus interesting to consider them to
be unknown constants, or parameters. Verification of probabilistic timed au-
tomata models is generally performed with regard to a single reference valu-
ation π0 of those timing parameters. Given such a parameter valuation, we
present in this chapter a method for obtaining automatically a constraint K0 on
timing parameters for which the reachability probabilities (1) remain invariant,
and (2) are equal to the reachability probabilities for the reference valuation.

The method relies on parametric analysis of a non-probabilistic version of
the probabilistic timed automata model, using the inverse method described



140 Chapter 6. Extension to Probabilistic Systems

in Chapter 3.

This extension of our method to the probabilistic case presents the follow-
ing advantages. First, as for the non-probabilistic framework, since K0 corre-
sponds to a dense domain around π0 on which the system behaves uniformly,
it gives us a measure of robustness of the system. Second, it allows us to rescale
the timing constants used in the system to a valuation in K0 much smaller
thanπ0, thus making the probabilistic analysis of the system easier and faster in
practice. Indeed, probabilistic analyses of timed systems are often performed
using an integer time semantics, which allows to take into account the branch-
ing structure of the system. Such analyses using an integer semantics often
highly depend on the size of the timing constants used in the system. There-
fore giving a formal justification for the rescaling of such constants is of interest
for improving the performance of the analysis. Our approach is also useful for
avoiding repeated executions of probabilistic model checking analyses for the
same model with different parameter valuations.

We also show that the behavioral cartography introduced in Chapter 5 can
be applied to probabilistic systems as well, thus allowing to synthesize a “prob-
abilistic cartography” of a system. As a consequence, the value of the reacha-
bility probabilities is uniform in each tile.

We provide examples of the application of our technique to models of ran-
domized protocols, and show that the computation time of reachability prob-
abilities drastically decrease when applied to much smaller values than π0

within K0.

Plan of the Chapter. We first introduce in Section 6.1 a motivating exam-
ple, which allows us to informally describe the problem we are interested in
solving in this chapter. We then recall in Section 6.2 the framework of prob-
abilistic timed automata, and introduce a syntactic extension to the paramet-
ric case, viz., parametric probabilistic timed automata. We then formally state
in Section 6.3 the problem we aim at solving in this chapter, using a motivat-
ing example of randomized protocol. We show in Section 6.4 how the inverse
method of Chapter 3 can be used to compute constraints preserving proba-
bilities of reachability properties in this probabilistic framework. We present
in Section 6.5 various case studies of randomized protocols, and give the con-
straints synthesized using IMITATOR II. In Section 6.6, we then show that the
cartography algorithm of Chapter 5 can be applied to the probabilistic frame-
work in a straightforward manner, and apply it to the example of randomized
protocol. We finally discuss in Section 6.7 works related to our approach.



6.1. A Motivating Example 141

6.1 A Motivating Example

We consider here again the Root Contention Protocol, which was mentioned in
Section 4.4 in the non-probabilistic framework. Recall that this protocol, used
for the election of a leader in the physical layer of the IEEE 1394 standard, con-
sists in first drawing a random number (0 or 1), then waiting for some time
according to the result drawn, followed by the sending of a message to the con-
tending neighbor. This is repeated by both nodes until one of them receives a
message before sending one, at which point the root is appointed.

The main difference with the model of Section 4.4 is that whereas the draw
of the random number was performed in a non-deterministic manner in Sec-
tion 4.4, we consider it here as a probabilistic choice. The timed automa-
ton model given in Section 4.4 now becomes a probabilistic timed automaton
model. Without going into details (which will be given in further sections), it
is possible to compute for such probabilistic timed automata the minimum or
maximum probabilities to reach a given location.

Let us consider the minimum probability that a leader is elected af-
ter 3 rounds or less. When trying to compute probabilities in the frame-
work of probabilistic timed automata, one can make use of the PRISM model
checker [HKNP06]. This model checker actually uses an integer semantics,
and uses only integer values for the time stamps and the constants used in the
model [KNPS06]. Each elapsing of a time unit is modeled by a transition within
a (probabilistic) timed automaton. This integer semantics is of practical inter-
est in order to take into account the branching structure of the system. As a
consequence, PRISM is very sensitive to the size of the constants of the model,
because big constants quickly lead to the explosion of the state-space.

Recall that the IEEE reference valuation for the 5 parameters of the Root
Contention Protocol is the following one:

f _min = 760 f _max = 850 delay = 360
s_min = 1590 s_max = 1670

In the case of the Root Contention Protocol with those 5 parameters, the
PRISM model checker does not succeed in computing this minimum probabil-
ity that a leader is elected after 3 rounds or less. As a consequence, one usually
rescales down the constants. But, because of the integer semantics, one gen-
erally needs to round them to the next integer value. This is generally done
in a conservative way, as follows: constants appearing as an upper bound in
an inequality are rounded up, and constants appearing as a lower bound are
rounded down. As a consequence, computed maximum probabilities on the
verified probabilistic timed automata model can be greater than those on the
hypothetical probabilistic timed automata model. Vice versa, computed mini-



142 Chapter 6. Extension to Probabilistic Systems

mum probabilities on the verified probabilistic timed automata model can be
less than those on the hypothetical probabilistic timed automata model.

Our aim is to synthesize a constraint on the timing constants seen as param-
eters such that, for any valuation of the parameters satisfying this constraint,
the minimum and maximum probabilities of reaching a given location is the
same. This will allow us to safely rescale the constants without changing the
probabilities, and therefore provide us with a formal justification of rescaling
and rounding.

6.2 Probabilistic Timed Automata

6.2.1 Timed Probabilistic Systems

A (discrete) probability distribution over a countable set Z is a function µ : Z →
[0,1] such that

∑
z∈Z µ(z) = 1. We define support(µ) = {z ∈ Z | µ(z) > 0}. Then

for an uncountable set Z we define Dist(Z ) to be the set of functions µ : Z →
[0,1], such that support(µ) is a countable set and µ restricted to support(µ) is
a (discrete) probability distribution. A point distribution is a distribution µ ∈
Dist(Z ) such that µ(z) = 1 for some (unique) z ∈ Z . Often we write µz for the
point distribution such that µ(z) = 1.

Definition 6.1 (TPS). A timed probabilistic system (TPS) is a tuple T =
(S,S0,Σ,⇒) where: S is a set of states, including a set S0 of initial states; Σ is
a finite set of actions (disjoint from R); ⇒ ⊆ S ×R≥0 ×Σ×Dist(S) is a prob-
abilistic transition relation. We assume that the probabilistic transition rela-
tion is total; that is, for every state s ∈ S, there exists (s,d , a,µ) ∈ ⇒ for some
d ∈R≥0, a ∈Σ,µ ∈Dist(S).

A transition s
d ,a,µ−−−→ s′ is made from a state s ∈ S by first nondeterministically

selecting a duration-action-distribution triple (d , a,µ) such that (s,d , a,µ) ∈⇒,
and second by making a probabilistic choice of target state s′ according to dis-
tribution µ, such that µ(s′) > 0.

A path of a TPS is a non-empty finite sequence of transitions ω= s0
d0,a0,µ0−−−−−→

s1
d1,a1,µ1−−−−−→ ·· · dn−1,an−1,µn−1−−−−−−−−−−→ sn . Given a path ω = s0

d0,a0,µ0−−−−−→ s1
d1,a1,µ1−−−−−→

·· · dn−1,an−1,µn−1−−−−−−−−−−→ sn , we let l ast (ω) = sn . The set of paths of a TPS T is de-
noted by PathT

fin. When clear from the context we omit the superscript T and
write Pathfin. We let Pathfin(s) denote the set of paths commencing in the state
s ∈ S. �

A scheduler is a function which chooses an outgoing transition in the last
state of a path. Formally, a scheduler of a TPS is a functionσ such that, for each



6.2. Probabilistic Timed Automata 143

path ω of the TPS, if σ(ω) = (d , a,µ) then (l ast (ω),d , a,µ) ∈⇒.
A scheduler resolves the nondeterminism by choosing a transition based on

the path executed so far. Intuitively, if a TPS is guided by scheduler σ and has
the path ω as its history, then it will be in state s in the next step with prob-
ability µ(s), where σ(ω) = (d , a,µ). We denote the set of paths induced by a

given scheduler σ to be Pathσfin = {ω = s0
d0,a0,µ0−−−−−→ ·· · dn−1,an−1,µn−1−−−−−−−−−−→ sn | σ(ω↓i ) =

(di , ai ,µi ) for all i < n}, where ω↓i returns the prefix of ω up to length i . Then
we define Pathσfin(s) = Pathσfin ∩Pathfin(s). For each s ∈ S and scheduler σ, we

can define the probability measure Probσs over measurable sets of paths in the
standard way [KSK76].

6.2.2 Probabilistic Timed Automata

Probabilistic timed automata [GJ95, KNSS02] are an extension of classical
timed automata [AD94] with discrete probability distributions, and can be used
to model probabilistic real-time systems, such as timed randomized protocols
or fault-tolerant systems. This probabilistic extension adds discrete probability
distributions over edges, so that the choice of the next location of the automa-
ton is not only nondeterministic, but now also probabilistic.

Syntax

We recall below the definition of probabilistic timed automata.

Definition 6.2 (Probabilistic Timed Automaton). A probabilistic timed automa-
ton A is a tuple A = (Σ,Q, q0, X , I ,→), where:

• Σ is a finite set of actions,

• Q is a finite set of locations with an initial location q0 ∈Q,

• X is a set of clocks,

• I is the invariant function, assigning to every q ∈ Q a constraint I (q) on
the clocks X , and

• → is the probabilistic edge relation consisting of elements of the form
(q, g , a,η), where q ∈ Q, g is a constraint on the clocks X , a ∈ Σ, and
η ∈Dist(2X ×Q).

�

We follow the following conventions for the graphical representation of
probabilistic timed automata: locations are represented by nodes, above of



144 Chapter 6. Extension to Probabilistic Systems

which the invariant of the location is written; probabilistic edges are repre-
sented by arcs from locations, labeled by the associated guard and action, and
which split into multiple arcs, each of which leads to a location and is labeled
by a set of clocks and a probability (probabilistic edges which correspond to
probability 1 are illustrated by a single arc from location to location). Note that,
like for TAs, we omit guards and invariants equal to true.

Example 6.3. We give in Figure 6.1 an example of probabilistic timed automa-
ton, containing 4 locations (viz., q0, q1, q2 and q3) and 2 clocks (viz., x and y).

q0

q1

q2

q3

y ≤ 2

x ≥ 3
a

x ≥ 2
b 2

3

1
3

y := 0

x ≥ 3
a

c

y ≥ 1
c

Figure 6.1: Example of probabilistic timed automaton

From location q0, one can choose nondeterministically between actions a
and b. When choosing action a, one can reach location q1 (with probability 1)
if the guard x ≥ 3 is satisfied. When choosing action b, if the guard x ≥ 2 is sat-
isfied, then one can reach location q2 with probability 2/3, or reach location q3

with probability 1/3 and reset y . The rest of this probabilistic timed automaton
does not feature probabilistic edges, and can be explained in a similar way as
for timed automata. �

Assumptions. We make the following syntactic assumptions on probabilistic
timed automata.

Determinism on actions: Given a location q ∈ Q and action a ∈ Σ, there is at
most one probabilistic edge of the form (q,_, a,_) ∈→.

Reset unicity: For any probabilistic edge (q, g , a,η) ∈ → and location q ′ ∈ Q,
there exists at most one ρ ∈ 2X such that η(ρ, q ′) > 0.



6.2. Probabilistic Timed Automata 145

Example 6.4. In Figure 6.2 we give an example of a probabilistic timed automa-
ton fragment which satisfies neither determinism on actions nor reset unicity
(left), and an example of a probabilistic timed automaton fragment which sat-
isfies both assumptions (right).

q0

x ≤ 10

q1

y ≤ 20

q2

x ≤ 3

a
x ≥ 1

a
x ≥ 2

1
3

x := 0
1
3

x := 0

1
3

y := 0

q0

x ≤ 10

q1

y ≤ 20

q2

x ≤ 3

q3

z = 0

b
x ≥ 1

a
x ≥ 2∧x ≤ 3

1
3

x := 0

1
3

x := 0

1
3

y := 0
z := 0

Figure 6.2: Examples of probabilistic timed automata satisfying neither deter-
minism on actions nor reset unicity (left) and satisfying both (right)

The probabilistic timed automaton fragment on the left does not satisfy de-
terminism on actions, because there are two probabilistic edges labeled by a
exiting the location q0; it also does not satisfy the assumption of reset unicity,
because the lower probabilistic edge has two distinct probabilistic alternatives
which lead to location q2.

�

Neither determinism on actions nor reset unicity is restrictive, because a
probabilistic timed automaton not satisfying the assumptions can be trans-
formed into a probabilistic timed automaton which does: for determinism on
actions, it is necessary to add and rename actions, whereas, for reset unicity, it
suffices to add an extra clock and additional locations (for example, see the use
of the clock z and location q3 in the right-hand probabilistic timed automaton
in Figure 6.2). The assumptions of determinism on actions and reset unicity
are commonly met in practice, and they simplify the proofs of our subsequent
results.

Note that the probabilistic timed automaton considered in Example 6.3 sat-
isfies both assumptions.

Network of Probabilistic Timed Automata. Networks of Probabilistic Timed
Automata can be defined by using parallel composition based on the synchro-



146 Chapter 6. Extension to Probabilistic Systems

nization of discrete transitions of different components sharing the same ac-
tion in a similar manner to networks of TAs. For the sake of simplicity, we will
suppose that synchronized actions are non-probabilistic (their distribution is a
point distribution).

The following definition is similar to the notion of parallel composition of
Probabilistic Timed Automata of [KNS03], with the difference that we here con-
sider N probabilistic timed automata (instead of 2 in [KNS03]).

Definition 6.5 (Network of Probabilistic Timed Automata). Let N ∈ N. For all
1 ≤ i ≤ N , let Ai = (Σi ,Qi , (q0)i , Xi , Ii ,→i ) be a probabilistic timed automaton.
The sets Qi and Xi are mutually disjoint. A network of probabilistic timed au-
tomata is A =A1‖ . . .‖AN , where ‖ is the operator for parallel composition de-
fined in the following way. This network of probabilistic timed automata corre-
sponds to the probabilistic timed automaton A = (Σ,Q, q0, X , I ,→) where

• Σ=⋃N
i=1Σi ,

• Q =ΠN
i=1Qi ,

• q0 = 〈(q0)1, . . . , (q0)N 〉,

• X =⊎N
i=1 Xi ,

• I (〈q1, . . . , qN 〉) =∧N
i=1 Ii (qi ) for all 〈q1, . . . , qN 〉 ∈Q,

and → is defined as follows.
We first define the notation ⊗. Given N distributions ηi ∈ Dist(2Xi ×Qi ),

with 1 ≤ i ≤ N , we define η1 ⊗ ·· ·⊗ηN ∈ Dist(2X ×Q) in the following way: for
each ρ1 ∈ X1, . . . ,ρN ∈ XN and q = 〈q1, . . . , qN 〉 ∈Q, let η1 ⊗·· ·⊗ηN (

⊎N
i=1ρi , q) =∏N

i=1ηi (ρi , qi ).
For all a ∈ Σ, let Ta be the subset of indices i ∈ 1, . . . , N such that a ∈ Σi .

For all a ∈ Σ, for all 〈q1, . . . , qN 〉 ∈ Q, for all 〈q ′
1, . . . , q ′

N 〉 ∈Q, we have that
(〈q1, . . . , qN 〉, g , a,η) ∈→ if:
for all i ∈ Ta , there exist (qi , gi , a,ηi ) ∈→i such that

• g =∧
i∈Ta gi , and

• η=⊗
i∈Ta

ηi ⊗⊗
i∉Ta

µ(;,qi ).

�



6.2. Probabilistic Timed Automata 147

Semantics

In this section, we will consider the probabilistic timed automaton A =
(Σ,Q, q0, X , I ,→).

A state of A is a pair (q, w) ∈Q×RH
≥0 such that w |= I ′(q). Informally, the be-

havior of A can be understood as follows. The model starts in the initial loca-
tion q0 with all clocks set to 0. In this, and any other state (q, w), there is a non-
deterministic choice of (1) the amount of time which then passes, and (2) which
discrete transition is then taken. Note that, for point (1), time can pass only if
invariant I ′(q) is satisfied while time elapses. Furthermore, for point (2), a dis-
crete transition can be made according to any probabilistic edge (q, g , a,η) ∈→′

with source location q which is enabled; that is the constraint g is satisfied by
the current clock valuation w . Then the probability of moving to the location q ′

and resetting all of the clocks in ρ to 0 is given by η(ρ, q ′).
A probabilistic timed automaton can be interpreted as an infinite TPS. Due

to the continuous nature of clocks, the underlying TPS has uncountably many
states, and are uncountably branching. A probabilistic timed automaton can
thus be considered as a finite description of infinite TPS. Formally, we define
as follows the semantics of a probabilistic timed automaton as an associated
infinite-state, infinite-branching TPS.

Definition 6.6 (Semantics of probabilistic timed automata). Let
A = (Σ,Q, q0, X , I ,→) be a probabilistic timed automaton. The semantics
of A is the TPS TA = (S,S0,Σ,⇒) with S = {(q, w) ∈ Q × (X → R≥0) | w |= I (q)},
S0 = {(q0,0)} where 0(x) = 0 for all x ∈ X , and where ((q, w),d , a,µ) ∈⇒ if both
of the following conditions hold :

Time elapse: w +d |= I (q) ;

Edge traversal: there exists a probabilistic edge (q, g , a,η) ∈ → such that w +
d |= g and, for each (ρ, q ′) ∈ support(η), we have µ(q ′,ρ(w +d)) = η(ρ, q ′).

�

The semantics of a probabilistic timed automaton is then given in terms

of paths of the form: ω = (q0, w0)
d0,a0,µ0−−−−−→ (q1, w1)

d1,a1,µ1−−−−−→ ·· · dn−1,an−1,µn−1−−−−−−−−−−→
(qn , wn). We will represent paths graphically in a similar way as for runs in
the non-probabilistic framework (see Definition 2.12). More precisely, a path
is represented by a directed graph where states are depicted within nodes con-
taining the name of the location and the value of each of the clocks, and proba-
bilistic edges are depicted using edges labeled with a triple containing the time
duration, the name of the action, and the probability.



148 Chapter 6. Extension to Probabilistic Systems

q0
x = 0
y = 0

q3
x = 3
y = 0

q0
x = 4.5
y = 1.5

q2
x = 5
y = 2

q1
x = 8
y = 5

. . .(3,b, 1
3 ) (1.5,c,1) (0.5,b, 2

3 ) (3, a,1) (2,c,1)

Figure 6.3: Example of path

Example 6.7. Consider again the probabilistic timed automaton A of Exam-
ple 6.3. Then Figure 6.3 depicts an example of path for A .

�

We write PathA
fin for PathTA

fin . Observe that the rule for discrete transitions
is a simplified version of the standard rule [KNSS02], which is permitted by the
assumption of reset unicity. The definition of TA also relies on the fact that A

satisfies the well-formedness assumption explained below.
In order to define the notion of well-formedness for probabilistic timed au-

tomata, we introduce below the notions of admissible target and no deadlock.

Admissible Targets. A probabilistic timed automaton has admissible targets
if whenever a probabilistic edge is enabled, all of the probabilistic alternatives
(pairs of target location and clock reset) result in valid states; that is, they do
not result in pairs (q, w) in which w does not satisfy I (q). We introduce more
formally this notion in the following definition.

Definition 6.8 (Admissible targets). A probabilistic timed automaton is said to
have admissible targets if, for each probabilistic edge (q, g , a,η) ∈→ and state
(q, w) ∈ S such that w |= g , we require that (q ′,ρ(w)) ∈ S for each (ρ, q ′) ∈
support(η). �

Example 6.9. An example of a probabilistic timed automaton which does not
have admissible targets is illustrated in Figure 6.2 (left) page 145. It is possi-
ble that the value of the clock x exceeds 3 when the lower probabilistic edge
from q0 is taken, in which case, on taking the probabilistic alternative labeled
by y := 0, the invariant of q2 is not satisfied. Instead, both the probabilistic
timed automaton fragment on the right-hand side of Figure 6.2 and the proba-
bilistic timed automaton of Example 6.3 have admissible targets. �

A probabilistic timed automaton can be transformed into a probabilistic
timed automaton with admissible targets by incorporating the invariant asso-
ciated with the target location into the guard of each probabilistic edge (along
the lines of the transformation in [KNSW07]).

No Deadlock. To guarantee the existence of at least one transition from each
state, we assume that A has no deadlock, as explained in the following defini-
tion [Spr01].



6.2. Probabilistic Timed Automata 149

Definition 6.10 (No deadlock). A probabilistic timed automaton A is said to
have no deadlock if, in all states of A reachable from (q0,0) (i.e., final states of
paths in PathTA

fin ), it is always possible to take some probabilistic edge, possibly
after letting time elapse. �

This assumption guarantees that the probabilistic transition relation of the
associated probabilistic system is total (see Section 6.2.1).

Example 6.11. We give in Figure 6.4 an example of probabilistic timed automa-
ton which is not well-formed because, although it has admissible targets, it
does not verify the no deadlock assumption. Indeed, after several transitions
between q0 and q3, it may happen that the systems gets deadlocked in loca-
tion q3 with x > 10, because x is never reset. In that case, it is not possible to
get leave q3 to q0 because the invariant of q0 is not verified anymore.

q0

x ≤ 10

q1

q2

q3

y ≤ 2

x ≥ 3
a

x ≥ 2
b 2

3

1
3

y := 0

x ≥ 3
a

c

y ≥ 1
c

Figure 6.4: A probabilistic timed automaton containing a deadlock

�

We can now define the notion of well-formedness for probabilistic timed
automata.

Definition 6.12 (Well-formedness). A probabilistic timed automaton is said to
be well-formed if it satisfies the following two assumptions:

• admissible targets, and

• no deadlock.

�

For the remainder of this chapter, we assume that all of the probabilistic
timed automata we consider are well-formed.



150 Chapter 6. Extension to Probabilistic Systems

6.2.3 Parametric Probabilistic Timed Automata

We now introduce in the following definition an extension of probabilistic
timed automata to the parametric case [AFS09]. Parametric probabilistic timed
automata allow the use of parameters in place of constants within guards and
invariants, and are based on the parameterization of timed automata into para-
metric timed automata [AHV93].

Definition 6.13 (PPTA). Given a set X of clocks and a set P of parameters,
a parametric probabilistic timed automaton (PPTA) A is a tuple of the form
A = (Σ,Q, q0, X ,P, I ,→), where:

• Σ is a finite set of actions,

• Q is a finite set of locations with an initial location q0 ∈Q,

• X is a finite set of clocks,

• P is a finite set of parameters,

• I is the invariant function, assigning to every q ∈ Q a constraint I (q) on
the clocks X and the parameters P , and

• → is the probabilistic edge relation consisting of elements of the form
(q, g , a,η), where q ∈Q, g is a constraint on the clocks X and the param-
eters P , a ∈Σ, and η ∈Dist(2X ×Q).

�

Example 6.14. We give in Figure 6.5 an example of PPTA, containing 4 locations
(viz., q0, q1, q2 and q3), 2 clocks (viz., x and y) and 3 parameters (viz., p1, p2

and p3)
�

Instantiation of a PPTA. Similarly to the instantiation of a PTA into a TA (see
Section 2.2.3), we now define the instantiation of a PPTA into a probabilistic
timed automaton. Given a PPTA A = (Σ,Q, q0, X ,P, I ,→), for every param-
eter valuation π = (π1, . . . ,πM ), A [π] denotes the PPTA obtained from A by
substituting every occurrence of a parameter pi by constant πi in the guards
and invariants of A . We say that pi is instantiated with πi . Formally, A [π] =
(Σ,Q, q0, X ,P, I ′,→′), where I ′ and →′ are defined in the following way: for each
location q ∈ Q, we let I ′(q) = I (q)[π], and we let →′ be the smallest set such
that, for each (q, g , a,η) ∈ →, we have (q, g [π], a,η) ∈ →′. Note that, as all pa-
rameters are instantiated, A [π] is a standard probabilistic timed automaton.



6.2. Probabilistic Timed Automata 151

q0

q1

q2

q3

y ≤ p2

x ≥ p3
a

x ≥ p2
b 2

3

1
3

y := 0

x ≥ p3
a

c

y ≥ p1
c

Figure 6.5: Example of PPTA

Strictly speaking, A [π] is a probabilistic timed automaton only when π assigns
a natural number (rather than a real) to each parameter, but this does not mat-
ter in our context. Note also that, for each location q ∈Q of A [π], we have that
I ′(q) is a constraint only on clocks, and, for each edge (q, g , a,η) ∈→, we have
that g is a constraint only on clocks.

Example 6.15. Consider again the PPTA A of Example 6.14 and the following
reference valuation π0 of the parameters: π0 : p1 = 1∧ p2 = 2∧ p3 = 3. Then,
A [π0] corresponds to the (non-parametric) probabilistic timed automaton of
Example 6.3. �

Assumptions. As for the probabilistic timed automata, we make for the PPTAs
the following assumptions, as defined in Section 6.2.2 page 144.

Determinism on actions: Given a location q ∈ Q and action a ∈ Σ, there is at
most one probabilistic edge of the form (q,_, a,_) ∈→.

Reset unicity: For any probabilistic edge (q, g , a,η) ∈ → and location q ′ ∈ Q,
there exists at most one ρ ∈ 2X such that η(ρ, q ′) > 0.

Well-formedness of PPTAs. We say that a PPTA A is well-formed if, for each
parameter valuation π, the resulting probabilistic timed automaton A [π] is
well-formed, as defined in Definition 6.12. For the remainder of this chapter,
we assume that all of the PPTAs we consider are well-formed.



152 Chapter 6. Extension to Probabilistic Systems

Network of PPTAs. Networks of PPTAs can be defined by using parallel com-
position based on the synchronization of discrete transitions of different com-
ponents sharing the same action in a very similar manner to networks of prob-
abilistic timed automata (see Definition 6.5).

Trace distributions

Let A = (Σ,Q, q0, X ,P, I ,→) be a PPTA, and letπbe a valuation of the parameters

in P . Given a pathω= (q0, w0)
d0,a0,µ0−−−−−→ (q1, w1)

d1,a1,µ1−−−−−→ ·· · dn−1,an−1,µn−1−−−−−−−−−−→ (qn , wn)
of A [π], we let the time-abstract trace of ω be the sequence of alternating
locations and actions q0a0q1a1 · · ·an−1qn . In the remainder of this chapter,
for the sake of simplicity and coherence with the traces defined in the non-
probabilistic framework (see Definition 2.14), we will simply refer to time-
abstract traces as traces.

As for the non-probabilistic framework, we depict traces under a graphical
form using boxed nodes labeled with locations and double arrows labeled with
actions.

Example 6.16. Consider again the path depicted in Example 6.7. Then the as-
sociated trace is the one depicted in Figure 6.6.

q0 q3 q0 q2 q1 . . .b c b a c

Figure 6.6: Example of trace

�

Given a scheduler σ, we let traceσ : Pathσfin → (Q ×Σ)∗ be the function asso-

ciating the trace with each path of Pathσfin. Then the (time-abstract) trace dis-
tribution of σ and state s ∈ S is the probability measure over traces denoted
by tdσs defined according to traceσ and the trace distribution construction of
Segala [Seg95]. Although we do not consider the details of the construction of
trace distributions in this thesis, we note that, for example, the probability as-
signed by tdσs to traces in which a certain location is reached is defined to be
the same as the probability assigned by Probσs to the set of paths in which this
location is reached. The set of trace distributions of the TPS TA [π] is denoted
by tdist(TA [π]) = {tdσs |σ is a scheduler of TA [π] and s ∈ S0}.

Let π and π′ be two valuations of the parameters in P . We say that A [π]
and A [π′] are (time-abstract) trace distribution equivalent, written A [π] ≈tdist

A [π′], if tdist(TA [π]) = tdist(TA [π′]). If A [π] ≈tdist A [π′], we can conclude that
the TPSs have time-abstract equivalent finite behaviors: for example, they as-
sign the same maximum and minimum probabilities of reaching a certain lo-



6.2. Probabilistic Timed Automata 153

cation [KNS02]. Actually, more generally, they assign the same maximum and
minimum probabilities to linear-time properties on finite traces.

We now recall from [KNS02, KNS03] a sufficient condition for guaranteeing
trace distribution equivalence between A [π] and A [π′], which will be useful in
Section 6.4. First we introduce the notion of time-abstract path equivalence.

Definition 6.17. The path ω = (q0, w0)
d0,a0,µ0−−−−−→ ·· · dn−1,an−1,µn−1−−−−−−−−−−→ (qn , wn)

of TA [π], is said to be time-abstract path equivalent to the path ω′ =
(q ′

0, w ′
0)

d ′
0,a′

0,µ′0−−−−−→ ·· · d ′
n−1,a′

n−1,µ′n−1−−−−−−−−−−→ (q ′
n , w ′

n) of TA [π′], written ω ≡ ω′, if qi = q ′
i ,

ai = a′
i , and µi (qi+1, wi ) =µ′

i (q ′
i+1, w ′

i ) for all i = 0, . . . ,n −1, and qn = q ′
n .

We extend the notion of time-abstract path equivalence to sets of paths: two
sets of pathsΩ⊆ PathA [π]

fin andΩ′ ⊆ PathA [π′]
fin are time-abstract path equivalent,

writtenΩ≡Ω′, if

1. for each path ω ∈Ω, there exists ω′ ∈Ω′ such that ω≡ω′, and

2. conversely, for each path ω ∈Ω′, there exists ω′ ∈Ω such that ω≡ω′.

�

The following result from [KNS02, KNS03] allows us to relate time-abstract
equivalence on paths to (time-abstract) trace distribution equivalence. This
proposition states that time-abstract path equivalence implies also trace distri-
bution equivalence.

Proposition 6.18. Let A be a PPTA, and let π and π′ be valuations of parame-

ters P. If PathA [π]
fin (q0,0) ≡ PathA [π′]

fin (q0,0), then A [π] ≈tdist A [π′].

Non-probabilistic Version of a PPTA

In this subsection, along the lines of [KNS02, KNS03], we explain how proba-
bility values can be abstracted away from a PPTA to result in a classical, non-
probabilistic parametric timed automaton. First we explain how a PPTA can be
transformed into a PPTA featuring point distributions only. This is done by re-
placing probabilistic choice within a single probabilistic edge by nondetermin-
istic choice between multiple probabilistic edges, each of which corresponds
to a point distribution.

Definition 6.19 (Non-probabilistic version of a PPTA). Let A be a PPTA of the
form (Σ,Q, q0, X ,P, I ,→). The non-probabilistic version of A , written A ∗ =
(Σ,Q, q0, X ,P, I ,→∗), is a PPTA which agrees with A on all elements apart from



154 Chapter 6. Extension to Probabilistic Systems

the probabilistic edge relation: let →∗ be the smallest probabilistic edge rela-
tion such that for every edge (q, g , a,η) ∈ → and (ρ, q ′) ∈ support(η), we have
(q, g , a,η(ρ,q ′)) ∈→∗. �

Recall that, in the previous definition, η(ρ,q ′) denotes the point distribution
assigning probability 1 to the element (ρ, q ′).

We note that a PPTA featuring point distributions only has a one-to-one
mapping with a classical parametric timed automaton: a probabilistic edge
(q, g , a,η(ρ,q ′)) of the PPTA corresponds to the edge (q, g , a,ρ, q ′) of a classical
parametric timed automaton. In subsequent sections of this chapter, this will
allow us to apply methods for classical parametric timed automata to PPTAs
featuring point distributions.

Example 6.20. Consider again the PPTA A of Example 6.14. Then the non-
probabilistic version A ∗ of A is the non-probabilistic parametric timed au-
tomaton depicted in Figure 6.7.

q0

q1

q2

q3

y ≤ p2

x ≥ p3
a

x ≥ p2
b

x ≥ p2
b

y := 0

x ≥ p3
a

c

y ≥ p1
c

Figure 6.7: Example of non-probabilistic version of a PPTA

�

Observe that the state sets of TA [π] and TA ∗[π] are equal.

Proposition 6.21. Let π be a valuation of P and (q, w) be a state of TA [π]

(and TA ∗[π]). For each step (q, w)
d ,a,µ−−−→ (q ′, w ′) of TA [π], there exists the step

(q, w)
d ,a,µ(q′,w ′)−−−−−−−→ (q ′, w ′) of TA ∗[π]. Conversely, for each step (q, w)

d ,a,µ(q′,w ′)−−−−−−−→
(q ′, w ′) of TA ∗[π], there exists a step (q, w)

d ,a,µ−−−→ (q ′, w ′) of TA [π].

Proposition 6.21 allows us to obtain a one-to-one mapping between transi-
tions of A [π] and A ∗[π]. By reasoning inductively, we can extend the proposi-
tion to obtain a one-to-one mapping between paths of A [π] and A ∗[π]. Note



6.3. The Inverse Problem for PPTAs 155

that, by the combination of determinism on actions and reset unicity, the prob-
ability of the transitions of A [π] is encoded in the actions and target locations
of the associated transitions of A ∗[π]. This, together with the one-to-one map-
ping between paths of A [π] and A ∗[π], implies that, for any pair ω∗,ω′∗ of

paths such that ω∗ ∈ PathA ∗[π]
fin (q0,0), ω′∗ ∈ PathA ∗[π′]

fin (q0,0) and ω∗ ≡ ω′∗, we

can generate the paths ω,ω′, such that ω ∈ PathA [π]
fin (q0,0), ω′ ∈ PathA [π′]

fin (q0,0)

and ω ≡ ω′. Together, these facts allow us to show that, given a PPTA A and π

and π′ valuations of the parameters, if the paths of the non-probabilistic ver-
sion of A are equivalent for π and π′, then the paths are also equivalent in A

for π and π′. This is formalized in the following proposition.

Proposition 6.22. Let A be a PPTA, and let π and π′ be valuations of

the parameters. If PathA ∗[π]
fin (q0,0) ≡ PathA ∗[π′]

fin (q0,0), then PathA [π]
fin (q0,0) ≡

PathA [π′]
fin (q0,0).

It is on this proposition that the extension of the inverse method to the
probabilistic framework relies.

6.3 The Inverse Problem for PPTAs

We can now state formally the inverse problem for PPTAs, which was sketched
in Section 6.1.

The Problem. Given a PPTA A and a valuation π0 of the parameters, we
present in the following a method allowing to synthesize a constraint K0 on the
parameters of A such thatπ0 |= K0 and, for allπ |= K0, A [π] and A [π0] are trace
distribution equivalent. As a consequence, they assign the same maximum and
minimum probabilities to linear-time properties on finite traces.

More formally, the problem can be stated as follows [AFS09].

The Inverse Problem for PPTAs
Let A a PPTA and π0 a valuation of the parameters. Find a constraint K0

such that :

1. π0 |= K0, and

2. A [π] ≈tdist A [π0], for all π |= K0.

In Chapter 3, we introduced the inverse method algorithm IM , which allows
us to solve the inverse problem in the non-probabilistic framework. Following
the notations of this chapter, the result of the algorithm IM can be rewritten



156 Chapter 6. Extension to Probabilistic Systems

as follows: Given a (non-probabilistic) parametric timed automaton A and a
reference valuation π0, IM(A ,π0) synthesizes a constraint K0 such that

1. π0 |= K0, and

2. PathA [π0]
fin (q0,0) ≡ PathA [π]

fin (q0,0) for all π |= K0.

We now show how the results of Chapter 3 can be extended to the synthesis
of parameters preserving the value of minimum and maximum probabilities
for reachability properties.

6.4 Extension of the Inverse Method

Principle. Given a PPTA A , we can now solve the inverse problem for A by
applying the algorithm IM to the non-probabilistic version A ∗ of A [AFS09].

Properties. We state below the correctness of our method.

Theorem 6.23 (Correctness). Given a PPTA A and a reference valuation π0, the
constraint K0 returned by IM(A ∗,π0) solves the inverse problem for PPTAs, i.e.:

1. π0 |= K0, and

2. A [π] ≈tdist A [π0], for all π |= K0.

Proof. Since K0 is a solution of the inverse problem for A ∗, we have
PathA ∗[π]

fin (q0,0) ≡ PathA ∗[π0]
fin (q0,0) for all π |= K0; hence, we have by Proposi-

tion 6.22 that PathA [π]
fin (q0,0) ≡ PathA [π0]

fin (q0,0) for all π |= K0. From Proposi-

tion 6.18, we conclude that A [π] ≈tdist A [π0] for all π |= K0. �

Application to the Computation of Probabilities. Given a PPTA A and a val-
uation π0 of the parameters, in order to determine the minimum (resp. max-
imum) probability pr of reaching a given location of A [π0], it is sufficient to
proceed as follows:

1. Compute K0 = IM(A ∗,π0);

2. Compute pr (using, e.g., PRISM) for A [π1], for some π1 |= K0.

As a consequence of Theorem 6.23, given the computation of K0 using
IM(A ∗,π0), the minimum and maximum probabilities of satisfying linear-time
properties on finite traces will be the same in A [π1] and A [π0].



6.5. Case Studies 157

An advantage of our method is that one can take π1 small enough in order
to make the computation of PRISM easier, because the performance of PRISM

depends on the size of the state space of the model used as input, which in
turn depends on the size of the constants used in the PTA (see Section 6.5 for a
comparison for various case studies).

Remark 6.24. The constraint K0 output by our method is not (in general) the
weakest constraint satisfying the inverse problem as defined in Section 6.3. One
reason for this is that the constraint output by the inverse method defined in
Chapter 3 for (non-probabilistic) parametric timed automata is always in con-
junctive form. In contrast, the weakest constraint may be in disjunctive form
(see Proposition 3.13 and the following remarks on the non-maximality of the
inverse method in the non-probabilistic framework). We will address this prob-
lem in Section 6.6. �

6.5 Case Studies

In this section, we show the interest of the inverse method in the context of
three case studies. More precisely, we consider three protocols, each modeled
as a PPTA, and each with a reference valuation π0 taken from the associated
standard.1

Our approach consists of the following two phases:

1. Using the tool IMITATOR II which implements the inverse method in the
non-probabilistic framework (see Section 4.1.2), we synthesize a con-
straint K0 for the non-probabilistic version of the protocol.

2. Using the probabilistic model-checking tool PRISM [HKNP06, pWpb],
we compute minimum/maximum reachability probabilities for various
properties with regard to a number of parameter valuations satisfying or
not K0. For parameter valuations satisfying K0, the probabilities com-
puted by PRISM are equal (as stated by Theorem 6.23); we also compute
the probabilities for some parameter valuations not satisfying K0.

Experiments were performed on an Intel Core 2 Duo with 2GB of RAM. We
will consider the following three randomized protocols:

1. the IEEE 1394 Root Contention Protocol (Section 6.5.1);

1Note that we consider acyclic versions of those protocols (roughly speaking, by bounding
the number of rounds in Section 6.5.1, and by bounding the maximal number of collisions in
Section 6.5.2 and Section 6.5.3).



158 Chapter 6. Extension to Probabilistic Systems

2. the CSMA/CD Protocol (Section 6.5.2);

3. the IEEE 802.11 Wireless Local Area Network Protocol (Section 6.5.3).

6.5.1 Root Contention Protocol

Consider again the Root Contention Protocol introduced in the probabilistic
framework in Section 6.1. We consider the probabilistic timed automata model
of [KNS03]. We give in Figure 6.8 the PPTA model of node i .

ROOT_CONT
urgent

ROOT_IDLE
urgent

REC_REQ_FAST
xi ≤ f _max

A_ROOT
urgent

REC_IDLE_FAST
xi ≤ f _max

SNT_REC

REC_REQ_SLOW
xi ≤ s_max

REC_IDLE_SLOW
xi ≤ s_max

ROOT
A_CHILD

urgentCHILD

rec_idle_i

snd_idle_i

1
2

xi := 0

1
2

xi := 0

rec_req_i

snd_idle_i

1
2

xi := 0

1
2

xi := 0

rec_idle_i
xi ≥ f _min
snd_ack_i

root_i

rec_req_i

xi ≥ f _min
snd_req_i

rec_ack_i

rec_req_i

rec_idle_i

xi ≥ s_min
snd_ack_i

rec_req_i

xi ≥ s_min
snd_req_i

child_i

Figure 6.8: PPTA modeling node i in the Root Contention Protocol

Due to the absence of probabilities in the wire, the model of the wire actu-
ally corresponds to the one given in Figure 4.9 page 93 in the non-probabilistic
framework.

Also recall the reference valuation π0:

f _min = 760 f _max = 850 delay = 360
s_min = 1590 s_max = 1670

Let us now consider a non-probabilistic model of this protocol. The non-
probabilistic version of the PPTA modeling the node (given in Figure 6.8) is the
PTA given in Figure 4.8 page 92. The non-probabilistic model of the wire re-
mains the one given in Figure 4.9 page 93.

Recall from Section 4.4 that, by applying IMITATOR II to this non-
probabilistic parametric timed automaton version of the protocol and the ref-
erence valuation π0, we synthesize the following constraint in about 2 s:

K0 : 2delay < rc_fast_min ∧ rc_fast_max+2delay < rc_slow_min.



6.5. Case Studies 159

Recall also that this constraint is the same as the one synthesized
in [HRSV02]. We now consider the following properties:

• Prop3: minimum probability that a leader is elected after 3 rounds or less.

• Prop5: minimum probability that a leader is elected after 5 rounds or less.

Name f _max f _min s_max s_min delay |= K0 States Constr. Prop3 Prop5 =π1

π0 850 760 1670 1590 360 yes - - - - -
π1 85 76 167 159 36 yes 857631 41 47 124 yes
π2 4 3 8 7 1 yes 1168 0.2 0.1 0.2 yes
π3 85 76 167 159 37 no 915926 40 49 121 no

Table 6.1: Results of PRISM for the RCP

The results of the application of PRISM to different parameter valuations
are given in Table 6.1. The second to sixth columns give the considered pa-
rameter values. The seventh column indicates whether the parameter valua-
tion satisfies K0, while the eighth and ninth columns give the number of states
corresponding to the valuation, together with the time in seconds required by
PRISM for the construction of the model. The following two columns give the
time in seconds used by PRISM to perform verification of the two considered
properties.2 For the parameter valuations π2 and π3, the final column indicates
whether the probabilities computed for the properties are the same as those
computed for π1.

For the reference valuation π0, PRISM did not terminate after 2 hours. The
probabilities for Prop3 and Prop5 are 0.75 and 0.94, respectively, for all parame-
ter valuations except π3, which does not satisfy K0. In the case of π3, the prob-
abilities of the two properties are 0.63 and 0.79, respectively. The parameter
valuation π1 is an exact rescaling of π0; thus it is trivial to see that the parame-
ter valuations π0 and π1 result in equivalent models. However, we note that π2

obtained from K0 is associated with a significantly smaller state space, which
leads to significantly lower analysis times, than π1.

6.5.2 CSMA/CD Protocol

We now apply our method to the CSMA/CD Protocol, as studied in the context
of probabilistic timed automata in [KNSW07]. We consider the case when there
are two stations, 1 and 2, trying to send data at the same time. The overall model
is given by the parallel composition of three probabilistic timed automata rep-
resenting the medium and two stations trying to send data.

2The verification engine used was the sparse matrix engine.



160 Chapter 6. Extension to Probabilistic Systems

INIT
true

TRANSMIT
true

COLLIDE
y ≤ δ

send1
y := 0

send2
y := 0

end1

end2

y ≤ δ
send1
y := 0

y ≤ δ
send2
y := 0

y ≥ δ
busy1

y ≥ δ
busy2

cd

Figure 6.9: CSMA/CD Medium

The probabilistic timed automaton representing the medium is given in
Figure 6.9. The medium is initially ready to accept data from any station (event
send1 or send2). Once a station, say 1, starts sending its data there is an interval
of time (at most δ), representing the time it takes for a signal to propagate be-
tween the stations3. When a collision occurs, there is a delay (again at most δ)
before the stations realize there has been a collision, after which the medium
will become free. If the stations do not collide, then when station 1 finishes
sending its data (event end1) the medium becomes idle.

The probabilistic timed automaton representing a station i (i = 1,2) is given
in Figure 6.10. Station i starts by sending its data. If there is no collision, then,
after λ time units, the station finishes sending its data (event endi ). On the
other hand, if there is a collision (event cd), the station attempts to retrans-
mit the packet. The delay before retransmitting is a random integer number of
time slots (each of length slot). More precisely, the number of slots that station i
waits after the nth transmission failure is chosen as a uniformly distributed ran-
dom integer in the range: 0,1,2, . . . ,2bci+1 −1, where bci = min(n,bcmax), and
bcmax is a fixed upper bound for bci (initially: bci = n = 0). This random choice
is depicted in Figure 6.10 by the assignment backoff i := RAND(bci )∗slot. Once
this time has elapsed, if the medium appears free the station resends the data
(event sendi ), while if the medium is sensed busy (event busyi ) the station re-
peats this process.

We consider the following reference valuation π0 taken from the IEEE stan-
dard 802.3 for 10 Mbps Ethernet:

λ= 808µs slot = 52µs δ= 26µs.

3In the literature, the propagation time between the stations is usually denoted by variableσ.
We choose here to make use of δ in order not to create any confusion with the schedulers that
we name σ in this chapter.



6.5. Case Studies 161

TRANSMIT
xi ≤λ

INIT
true

DONE
true

WAIT
xi ≤ backoff i

COLLIDE
xi = 0

sendi
xi := 0

xi =λ
endi

cd
xi := 0

bci := min(bci +1,bcmax)

xi = backoff i
sendi
xi := 0

xi = backoff i
busyi
xi := 0

bci := min(bci +1,bcmax)

backoff i := RAND(bci )∗ slot

Figure 6.10: CSMA/CD Station i

As described in Section 6.4, from a PPTA describing this system, we can then
obtain a non-probabilistic parametric timed automaton. Applying IMITATOR II
to this non-probabilistic model and the reference valuation π0, we obtain the
following constraint:

K0 : 0 < δ< slot ∧ 15slot <λ< 16slot.

This constraint is such that A [π] and A [π0] are trace-distribution equivalent,
for any π |= K0. We consider the following three properties:

• Prop j , for j ∈ {1,2}: minimum probability that station 1 transmits its mes-
sage after exactly j collisions.

• Prop≤3: minimum probability that station 1 transmits its message with
no more than 3 collisions.

We apply PRISM to the system with the parameters set to different valua-
tions (including π0). The probabilities corresponding to the three properties,
for the reference valuation π0, are 0.5, 0.38 and 0.97, respectively. From the
results of Section 6.4, the probabilities for π0, π1 and π2 are identical. Instead,
forπ3, in which the constraint K0 is violated by considering the limit case where
δ = slot, the probabilities of the properties are 0, 0.19 and 0.61, respectively. A
further observation is that, even if the value of λ violates K0 (this is the case
of π4), the probabilities can remain the same as for π0. Indeed, as noted in Sec-
tion 3.3.3, the constraint synthesized by the algorithm IM is not necessarily the
weakest.



162 Chapter 6. Extension to Probabilistic Systems

Name λ slot δ |= K0 States Constr. Prop1 Prop2 Prop≤3 =π0

π0 808 52 26 yes 36335 17 6 10 14 -
π1 31 2 1 yes 1746 0.1 0.1 0.1 0.1 yes
π2 940 60 59 yes 42260 32 11 15 21 yes
π3 940 60 60 no 42753 37 10 16 25 no
π4 52 52 26 no 6212 2 0.9 2 3 yes

Table 6.2: Results of PRISM for the CSMA/CD

Additional information is given in Table 6.2. The significance of the
columns is similar to that for Table 6.1. For the parameter valuations π1 to π4,
the final column indicates whether the probabilities computed for the proper-
ties are the same as those computed for π0.

6.5.3 Wireless Local Area Network Protocol

We also applied our method to the IEEE 802.11 Wireless Local Area Network
Protocol, considering the following valuation π0 of the parameters correspond-
ing to the IEEE 802.11 standard and given, e.g., in [pWpb, KNS02]. (Timing val-
ues are given in µs.)

ASLOTTIME = 50 DIFS = 128 VULN = 48
TTMAX = 15717 TTMIN = 224 ACKTO = 300

ACK = 205 SIFS = 28

In order to apply the inverse method, we have to use for this particular ex-
ample the first version of IMITATOR (see Section 4.1.1), and not IMITATOR II. In-
deed, the new version IMITATOR II does not allow the use of urgent actions (or
“as soon as possible” actions), i.e., actions that the system must take as soon as
the guards of the different transitions synchronizing on this action are all ver-
ified. On the contrary, IMITATOR is based on HYTECH, which allows the use of
such actions. The implementation of this feature to IMITATOR II is the subject
of future work (see Section 8.2).

Taking a parametric timed automaton version of the model and the pa-
rameter valuation π0 as input, the tool IMITATOR computes the following con-
straint K0 in about 7 hours:

SIFS+ACK < 6ASLOTTIME ∧ 0 < VULN
∧ D I F S < 3ASLOTTIME ∧ 0 < SIFS
∧ 2ASLOTTIME < DIFS ∧ 0 < ACK
∧ VULN < ASLOTTIME ∧ SIFS < DIFS
∧ 5ASLOTTIME < VULN +DIFS+TTMIN ∧ TTMIN ≤ TTMAX
∧ 6ASLOTTIME = ACKTO



6.5. Case Studies 163

We consider the maximum probability that either station’s collision counter
reaches k, for k = 2,3, as considered in [KNS02].

Name p1 p2 p3 p4 p5 p6 p7 p8 States Constr. Prop2 Prop3

π0 50 128 48 15717 224 300 205 28 - - - -
π1 50 128 48 224 224 300 205 28 1671933 250 750 898
π2 50 128 48 301 224 300 205 28 1751320 273 799 953
π3 50 128 48 75 75 300 205 28 1527254 204 721 786
π4 2 5 1 5 5 12 1 1 117510 0.97 3.59 4.19
π5 4 10 2 10 10 24 2 2 169881 1.97 7.44 8.25
π6 2 5 1 629 5 12 1 1 760854 27 27 25

Table 6.3: Results of PRISM for the IEE 802.11 Protocol

The results of the application of PRISM are given in Table 6.3, where the
properties are denoted by Propk for k = 2,3. The parameters p1, p2, . . . , p8 stand
for ASLOTTIME, DIFS, VULN , TTMAX , TTMIN , ACKTO, ACK , SIFS respectively.
The significance of the columns is similar to that for Table 6.1. Note that all
the parameter valuations considered satisfy K0, and therefore the computed
probabilities for all parameter valuations are the same: The probabilities for
Prop2 and Prop3 are 0.0625 and 0.001953125, respectively.

The constraint K0 establishes that the value of the probabilities associated
with Propk , k = 1,2, is insensitive to important variations of TTMAX , i.e., pa-
rameter p4 (provided its value remains greater or equal to TTMIN , i.e, p4 ≥ p5).
Although PRISM is unable to build the model for the original valuation π0, we
are able to compute the probabilities when rescaling down p4 (compare, e.g.,
the results for π0 and π1). Also note that π4 corresponds to one of the smallest
possible integer valuations according to K0: the computation time in this case
is dramatically decreased compared to, e.g., π1, thus showing the interest of our
method. Finally note that π6 gives an idea of what the effect of a “realistic” ap-
proximation of TTMAX , using 25 as the time unit (here p4 = 629 corresponds to
15717/25 rounded up, and p1 = 2 corresponds to 50/25), has on the size on the
model, even if other parameters are kept as in the lowest valuation (viz., π4).

Remark 6.25. We consider here a model with a maximal exponential backoff of
BOFF = 1, whereas the model given in [pWpb, KNS02] considers that BOFF = 6.
The inverse method and its implementations IMITATOR and IMITATOR II are in
general not much sensitive to the size of the constants of the model. However,
for this particular protocol, the waiting time before a retransmission is mod-
eled by a nondeterministic choice between 2BOFF transitions leading to 2BOFF

different loops. Each of those loops can be repeated up to 2BOFF ∗ASLOTTIME
times, thus leading to a dramatic explosion of the number of states. This, to-
gether with the fact that IMITATOR is by far less efficient than IMITATOR II (see



164 Chapter 6. Extension to Probabilistic Systems

comparison in Table 4.4 page 112), explains the much higher computation time
(7 hours instead of a few seconds for the two other case studies) of K0. For big-
ger values of BOFF , IMITATOR does not succeed to synthesize a constraint. �

6.6 Cartography of PPTAs

In this section, we address the following weakness of the inverse method ap-
plied to probabilistic timed automata: Given a PPTA A and a valuation π0, the
constraint K0 = IM(A ∗,π0) may not be the largest set of parameter valuations
solving the inverse problem.

We presented in Chapter 5 the behavioral cartography algorithm iterating
the inverse method in the framework of non-probabilistic parametric timed
automata. Recall that this algorithm allows us to cover (part of) the paramet-
ric space with behavioral tiles, i.e., constraints for which the sets of traces are
uniform.

In this section, we extend this algorithm to the probabilistic case. We first
describe the extension of Algorithm BC to the probabilistic framework (Sec-
tion 6.6.1), and then give an application to the Root Contention Protocol (Sec-
tion 6.6.2).

6.6.1 Principle of the Extension

Using the Behavioral Cartography Algorithm and the application of the inverse
method to PPTAs described in Section 6.4, we can construct a cartography of a
PPTA A . This can be done in a straightforward manner by applying the algo-
rithm BC to the non-probabilistic version A ∗ of A .

From Theorem 6.23, we have the following proposition.

Proposition 6.26. Let A be a PPTA and let V0 be a rectangle. Let Tiling =
BC(A ∗,V0). Then for each tile K ∈ Tiling, for all π,π′ |= K , A [π] ≈tdist A [π′].

Given a reachability property, one can then construct a probabilistic cartog-
raphy of the system. Formally, given a PPTA A , a rectangle V0 and a reachability
property prop:

1. Compute Tiling = BC(A ∗,V0);

2. For each tile K ∈ Tiling, select π |= K , and compute the minimum (resp.
maximum) probability of satisfying prop in A [π] (using, e.g., PRISM).



6.6. Cartography of PPTAs 165

Discussion. An advantage of the cartography algorithm is that, if one wants
to consider another reachability property prop′, one can keep Tiling as com-
puted in step 1, and only needs to redo step 2. Only the value of the considered
probability in each tile changes, leading to different partitions into good and
bad subspaces.

Note also that, as we proposed in general for the inverse method, for the
sake of efficiency when using PRISM, one should rather select a “small” π for
each tile K (i.e., a valuation with small constants).

It is perfectly possible that several tiles correspond to the same trace sets.
Indeed, the constraint synthesized by each call to IM is not necessarily the max-
imal one as stated in Proposition 3.13. In that case, it is possible to group several
tiles into a single one (possibly non convex). As a consequence, it is enough to
compute a probability for only one of those tiles, and one can apply it to the
different tiles having the same trace sets. This is in particular interesting when
one wants to compute values of probabilities for a lot of different properties. In
that case, the cost induced by testing the equality of trace sets may be smaller
than the gain of computing probabilities for fewer tiles.

6.6.2 Example: Root Contention Protocol

We compute a cartography of the Root Contention Protocol as described in Sec-
tion 6.5.1 using the following rectangle V0:

s_min ∈ [140,200] s_max ∈ [140,200] delay ∈ [1,50].

The two other parameters remain constant, i.e., f _min = 76 and f _max = 85.
Note that, in order to reduce the number of points to be covered by the algo-
rithm, we divided by 10 the reference valuation π0 of the parameters given in
Section 6.5.1. This is equivalent to calling the inverse method only on the inte-
ger points which are multiples of 10 instead of on all integer points.

Using IMITATOR II, we compute the cartography given in Figure 6.11. Re-
call that we gave in Figure 5.2 page 122 this cartography as automatically out-
put by IMITATOR II. For the sake of clarity, we project onto delay and s_min.
In each tile, the parameter s_max is only bound by the implicit constraint
s_min ≤ s_max.

Remark 6.27. Tiles 1 and 6 are infinite towards dimension s_min, and all tiles
are infinite towards dimension s_max. Moreover, although all the integer val-
uations within V0 are covered (from the algorithm), the real-valued part of V0

is not fully covered, because there are some “holes” (real-valued zones without
integer valuations) in the lower right corner. An example of point which is not
covered by the cartography is delay = 50, s_min = 140.4 and s_max = 141. �



166 Chapter 6. Extension to Probabilistic Systems

1

2

3

4

5

6

7

9

11

12
8

10
13

14

15

16
17

18

19

delay

s_min

00 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

Figure 6.11: Behavioral cartography of the Root Contention Protocol according
to delay and s_min

First property. We are first interested in computing the minimum probability
pr1 of satisfying the property that a leader is elected after three rounds or less.
Using PRISM, we compute pr1 = 0.75 for tile 1, pr1 = 0.625 for tiles 2, 3 and 6,
and pr1 = 0.5 for the other tiles.

Let us suppose that a tile is good when the probability pr1 ≥ 0.7, and bad
otherwise. In this case, the good subspace is only made of tile 1, depicted in
blue in Figure 6.11. Note that, in Figure 6.11, two tiles with the same color have
the same probability pr1.

Second property. We are now interested in computing the minimum proba-
bility pr2 of satisfying the property that a leader is elected after five rounds or
less. We do not need to compute the cartography again, but only the value of



6.7. Related Work 167

pr2 for one valuation in each tile. We get pr2 = 0.936 for tile 1, pr2 = 0.789 for
tiles 2 and 3, pr2 = 0.664 for tile 6, and pr2 = 0.5 for the other tiles.

Let us suppose that a tile is good when the probability pr2 ≥ 0.7, and bad
otherwise. In this case, the good subspace is made of tiles 1, 2 and 3. (For the
sake of concision, we do not give the new coloring of the cartography given in
Figure 6.11.)

6.7 Related Work

Probabilistic Timed Automata. Probabilistic Timed Automata were intro-
duced in [GJ95, KNSS02]. In this thesis, we used the notation for probabilistic
timed automata presented in [KNSS02]. This model has similarities with other
frameworks for probabilistic real-time systems. The approach of [GJ95] is also
to augment timed automata with discrete probability distributions; however,
these distributions are obtained by normalization of edge-labeling costs.

A dense time, automata-based model with discrete and continuous prob-
ability distributions is presented in [ACD91]. However, this model does not
permit any nondeterministic choice, and its use of continuous probability dis-
tributions, while a highly expressive modeling mechanism, does not permit
the model to be automatically verified against logics which include bounds on
probability.

In [Bea03], a further model of probabilistic timed automata is introduced.
The main difference with the model introduced in [KNSS02], beside the exis-
tence of acceptance locations, is the existence of a “trap” location. This allows
to define Büchi acceptance conditions. The author provides in particular an
algorithm of model-checking for properties of the form “is there a policy which
realizes a correct behavior of the system with probability at least p”.

Rescaling of Constants. Our approach provides us with a justification of the
rescaling done in [KNS02], consisting in reducing the time scale of the model.
However, our approach improves on the rescaling approach of [KNS02] in the
following way. First recall that, in [KNS02], the rescaling is done as follows: con-
stants appearing as an upper bound in an inequality are rounded up, and con-
stants appearing as a lower bound are rounded down. This results in an overap-
proximation of the model. For example, in the example of the IEEE 802.11 Wire-
less Local Area Network Protocol (see Section 6.5.3), for SIFS, the constraint
x = 48 was rescaled to x = 0.96, which was then transformed into the constraint
x ≥ 0∧ x ≤ 1. This type of overapproximation can result in behaviors which do
not correspond to the hypothetical probabilistic timed automata model. As a
consequence, computed maximum probabilities on the verified probabilistic



168 Chapter 6. Extension to Probabilistic Systems

timed automata model can be greater than those on the hypothetical proba-
bilistic timed automata model. Vice versa, computed minimum probabilities
on the verified probabilistic timed automata model can be less than those on
the hypothetical probabilistic timed automata model.

Our approach is different, because we do not introduce intervals in guards
to overapproximate rescaled values. For example, we replace the constraint x =
48 by the constraint x = 1. Indeed, we identify the following problem with the
results of [KNS02]: in certain cases, the intervals used included values which do
not satisfy K0. In the case of SIFS, for example, the constraint K0 includes the
inequality SIFS > 0, and hence it is important that the model cannot behave
as if the value of SIFS is 0. In the case in which the constraint x ≥ 0∧ x ≤ 1
is used, the model can behave as if the value of SIFS is 0. Indeed, following
the approach of [KNS02], for the verified probabilistic timed automaton with
intervals, the computed probabilities were 1, 0.18 and 0.02 for the properties
Propi for k = 2,3. However, for our PPTA model, for the considered parameter
valuations, the computed probabilities were 0.96, 0.06 and 0.002.

Representation of Time. The main reason why PRISM is so sensitive to
the size of the constants is because of the use of the digital clock seman-
tics [KNPS06]. PRISM now has a dense-time implementation for probabilistic
timed automata which performs better, and which is the subject of ongoing
work. This extension of PRISM is based on zone-based probabilistic timed au-
tomata model checking techniques [KNP09]. The authors show in particular
that forwards reachability techniques can be generalized to produce a stochas-
tic game that yields lower and upper bounds on either minimum or maximum
reachability probabilities in probabilistic timed automata. Then, using various
refinement methods, the authors are able to tighten these bounds, until they
reach the exact value of reachability probabilities in a finite number of steps.
The computation time for probabilities using this extension of PRISM is much
better than using the standard version of the tool.

Synthesis of Parameters. As noted in [HKM08], parameter synthesis of prob-
abilistic models has received scant attention. Lanotte et al. [LMST07] con-
sider parametric discrete-time Markov chains (DTMCs), and establish mini-
mal (and maximal) parameter values for the probabilities associated with tran-
sitions in order to ensure reachability properties. Daws [Daw04] also con-
sider DTMCs in which the transition probabilities are parameters. The model
checker PARAM [HHWZ10] for parametric DTMCs allows to synthesize sym-
bolic expressions on the parametric probabilities ensuring, e.g., the probability
of reaching a goal state. Han et al. [HKM08] study continuous-time Markov



6.7. Related Work 169

chains in which the average speed (rate) of state changes are parameters. In
contrast to [LMST07, Daw04, HKM08], we consider here the model of proba-
bilistic timed automata. The parameters correspond to the timings that appear
in guards of transitions and invariants of locations. Such a parametric frame-
work of probabilistic timed automata appears in [CDF+08], but the model there
did not feature nondeterministic choice. In contrast, our model here features
both nondeterministic and probabilistic choice.

It is also important to point out that, unlike the other chapters of this thesis,
we here guarantee not only a qualitative behavior, but also a quantitative be-
havior. Indeed, we guarantee in Chapter 3 the ordering on the actions, but not
the global traversal time of the system. Similarly, we will introduce in Chapter 7
other methods guaranteeing the shortest path of a graph, but not the value of
the path itself. In contrast, although we neither guarantee here the value of the
timing delays, we give a guarantee on the value of the probabilities.

Finally, note that, to our knowledge, no other method allows us to synthe-
size sets of parameters for which the computation of probabilities is preserved.



170 Chapter 6. Extension to Probabilistic Systems



Chapter 7

An Inverse Method for Weighted
Graphs

– Are you just looking to lose
weight, or do you want increased
strength and flexibility as well?
– I want to look good naked.

American Beauty
(Sam Mendes)

In Chapter 3, we presented the inverse method in the framework of timed
automata, which allows to synthesize a constraint preserving the untimed be-
havior of the system. In this chapter, we present variants of the inverse method
in the frameworks of two kinds of weighted graphs, namely Directed Weighted
Graphs, and Markov Decision Processes. The inverse problem becomes the
following one in this frameworks: “considering the costs of the graph to be
unknown constants or parameters, given a reference valuation of those costs,
compute a constraint on the parameters under which an optimal policy for
the reference valuation is still optimal”. In the framework of Directed Weighted
Graphs, this notion of optimal policy refers to the path of optimal cost between
any two points of the graph. In the framework of Markov Decision Processes, it
refers to the optimal policy with respect to costs.

As in the framework of timed automata, these variant of the inverse method
provide us with some criteria of robustness, in the sense that the initial property
is guaranteed around the reference valuation.

We present an application of both methods to simple examples. Two proto-
type implementations have been done.



172 Chapter 7. An Inverse Method for Weighted Graphs

Plan of the Chapter. In Section 7.1, we first consider Directed Weighted
Graphs. We present the standard formalism, and introduce a parameteriza-
tion of Directed Weighted Graphs, where costs are seen as parameters. We then
state the shortest path guarantee problem, and show how an extension of the
Floyd–Warshall algorithm can synthesize constraints on the parameters, guar-
anteeing that the path of optimal cost in a graph remains the same, for any
valuation of the parameters satisfying this constraint. We also present the new
prototype tool INSPEQTOR, implementing our algorithm.

We adopt a similar approach in Section 7.2 for Markov Decision Pro-
cesses. We present the standard formalism, and introduce a parameterization
of Markov Decision Processes, where costs are seen as parameters. We then
state the optimal policy problem, and introduce an extension of a classical al-
gorithm for policy iteration, which synthesizes constraints on the parameters
guaranteeing that the optimal policy in a Markov Decision Process remains the
same, for any valuation of the parameters satisfying this constraint. We also
present the new prototype tool IMPRATOR, implementing our algorithm.

We finally discuss related work in Section 7.3.

7.1 Directed Weighted Graphs

We are interested in this section in systems modeled by directed weighted
graphs. This rather simple structure (obviously less powerful and expressive
than timed automata) is made of a set of nodes, and a set of directed edges be-
tween some pairs of nodes. Those edges are weighted, i.e., taking a transition
has a cost. Directed weighted graphs allow to model various kinds of systems,
including timed systems, by considering that the costs associated with the tran-
sitions correspond to timing durations. In hardware verification, one may want
to model a circuit using a DWG, where the gates are modeled by the nodes of
the DWG, and the wires are modeled by the edges. The cost associated with the
edge corresponds to the traversal delay of the wires. Note in that case that this
model does not allow to consider the functional behavior of the gates (i.e., the
logical function associated with the gates).

A classical problem for directed weighted graphs is to compute the optimal
path between two given nodes of the graph with respect to the cost associated
with the transitions of the path. This optimal path can refer either to the mini-
mum or the maximum cost between those two nodes. In hardware verification,
one is generally interested in the critical path of an asynchronous circuit, i.e.,
the longest path between the input and the output of the circuit.

For the sake of simplicity, we will consider in this section the shortest path
problem, i.e., the path corresponding to the minimal cost. The results naturally



7.1. Directed Weighted Graphs 173

extend to the optimal path problem (viz., shortest or longest path). In the con-
text of timed systems, this corresponds to compute the smallest possible timing
delay between two nodes.

7.1.1 The Floyd–Warshall Algorithm

We make use in this section of the standard notations for matrices. In partic-
ular, recall that, given a matrix C , we denote by Ci j the element of C at line i
and column j .

We first recall formally the definition of Directed Weighted Graphs. We
make use of a standard notation for DWGs, and we will mainly consider that
the set Q of nodes is a set of n integers {1, . . . ,n}. We will consider the matrix
representation: given a set Q of n nodes, the transitions are represented under
the form of a matrix C of size n ×n indexed by the nodes. For any two nodes i
and j , Ci j represents the cost to go from node i to node j . If there is no transi-
tion between i and j , then Ci j is set to infinity.

Definition 7.1 (Directed Weighted Graph). A directed weighted graph (DWG) G

is a pair (Q,C ), where

• Q is a set of nodes, and

• C is a matrix of costs with values in R≥0 ∪ {∞} such that, for all (i , j ) ∈
Q ×Q, Ci j represents the cost to go from node i to node j ; if Ci j = ∞,
then we consider that there is no transition from i to j .

We assume that, for all i ∈Q, Ci i = 0. �

The fact that the matrix of costs has its values in R≥0 ∪ {∞} implies that we
do not allow the use of negative costs here. This simplifies subsequently the al-
gorithms and techniques developed in this section. In particular, this allows us
to assume that there are no negative cycles (i.e., cycles in the graph whose sum
of costs is negative), which allows us to define the Floyd–Warshall algorithm,
mentioned below, in a more intuitive way.

We make use of the classical graphical representation for DWGs, where a
weighted edge is depicted from node i to node j if Ci j 6=∞.

Example 7.2. Consider the example of DWG depicted in Figure 7.1, containing
6 nodes and 9 weighted transitions. One may see this example as a geographical
representation of cities connected with various means of transportation1. Then

1Actually, this example, taken from [And09b] represents the (real!) shortest path problem
between Rennes and LSV in Cachan, using slow train (TER), fast train (TGV), suburbian train
(RER), bus or walk. For the reader interested in the practical solution, note that node 1 stands
for Rennes, 2 for Le Mans, 3 for Paris, 4 for Massy, 5 for Bagneux and 6 for Cachan.



174 Chapter 7. An Inverse Method for Weighted Graphs

the cost between two nodes represents the time needed to go from one city to
another one.

1 2

3

4 5

6

80

125

130

180

55 25

40

60

10

Figure 7.1: An example of Directed Weighted Graph

The corresponding cost matrix C is the following one:

C =



∞ 80 125 130 ∞ ∞
∞ ∞ 180 55 ∞ ∞
∞ ∞ ∞ ∞ 40 60
∞ ∞ ∞ ∞ 25 ∞
∞ ∞ ∞ ∞ ∞ 10
∞ ∞ ∞ ∞ ∞ ∞


�

We now recall below the notion of path in the framework of DWGs.

Definition 7.3 (Path). Let G = (Q,C ) be a DWG. A path (of length m − 1) is a
sequence of nodes of the form q1 → q2 → ··· → qm , such that qi ∈ Q for all
1 ≤ i ≤ m and Cqi ,qi+1 6= ∞ for all 1 ≤ i ≤ m − 1. The node qi+1 is called the
successor of node qi on this path. The cost associated with a path is the sum of
the costs of any two successors of the path, i.e.,

∑m
i=1 Cqi ,qi+1 . �

We depict paths under a graphical form using boxed nodes and double ar-
rows labeled with costs.

Example 7.4. Consider again the DWG of Example 7.2. We give in Figure 7.2 an
example of path of length 3 for this DWG, going from node 1 to node 6.

1 4 5 6
130 25 10

Figure 7.2: Example of path of a DWG

The cost associated with this path is 165.



7.1. Directed Weighted Graphs 175

�

We now define the notion of shortest path. Recall that we consider here the
notion of path of minimal cost. This work naturally extends to the optimal path
(i.e., path of minimal or maximal cost).

Definition 7.5 (Shortest path). Let G be a DWG, and i and j two nodes of G . A
path P from i and j is said to be a shortest path from i to j if no other path from i
to j has an associated cost strictly smaller than the cost associated with P . �

Note that, given two nodes i and j of a DWG, several paths can be defined
as a shortest path from i and j (if their associated cost is the same).

Let us consider the shortest path problem, consisting in finding a path of
minimal cost between any two nodes of a DWG.

A solution to the shortest path problem is given by the Floyd–Warshall algo-
rithm [Flo62], which computes the shortest path between any pairs of nodes of
a DWG. This algorithm FW (G ), recalled in Algorithm 7, computes on the one
hand the shortest path matrix V , giving the cost of the shortest path between
any two nodes of the graph, and computes on the other hand the successor
matrix S , such that Si j gives the successor node of a node i on a shortest path
to j , for any pair of nodes (i , j ). We see matrices as two-dimensional arrays
that one can update using operator ←. The value ∞ is defined as follows: for all
i ∈ R≥0, i +∞=∞, min(i ,∞) = i and we have i ≤∞ if and only if i 6= ∞. This
last equivalence means in particular that the relation ∞≤∞ does not hold.

We initialize matrix S to 0, which is a matrix of same size as S where all
values are set to ;, where ; is the notation for an undefined node.

Algorithm 7: Floyd–Warshall algorithm FW (G )
input : A DWG G = (Q,C )
output: V : shortest path matrix
output: S : successor matrix

1 V ←C

2 S ← 0
3 for k = 1 to n do
4 for i = 1 to n do
5 for j = 1 to n do
6 Vij ← min(Vij,Vik +Vkj)

7 Sij ←
{

j if Vij ≤ Vik +Vkj

k if Vik +Vkj < Vij



176 Chapter 7. An Inverse Method for Weighted Graphs

Example 7.6. Let us apply the Floyd–Warshall algorithm to the DWG of Exam-
ple 7.2. Initially, we have:

V =



∞ 80 125 130 ∞ ∞
∞ ∞ 180 55 ∞ ∞
∞ ∞ ∞ ∞ 40 60
∞ ∞ ∞ ∞ 25 ∞
∞ ∞ ∞ ∞ ∞ 10
∞ ∞ ∞ ∞ ∞ ∞

 S =



; ; ; ; ; ;
; ; ; ; ; ;
; ; ; ; ; ;
; ; ; ; ; ;
; ; ; ; ; ;
; ; ; ; ; ;


Let us consider the first iteration of the outer loop (with k = 1). For i = 1

and j = 2, we have that V12 ≤ V11+V12. Hence, we update S as follows: S12 ← 2.
Similarly, for i = 1 and j = 3, we have that V13 ≤ V11 +V13. Hence, we update S

as follows: S13 ← 3. We continue this process with the other entries of S . At
the end of this first iteration, matrix V remains unchanged, and S has been
updated several times. We have:

V =



∞ 80 125 130 ∞ ∞
∞ ∞ 180 55 ∞ ∞
∞ ∞ ∞ ∞ 40 60
∞ ∞ ∞ ∞ 25 ∞
∞ ∞ ∞ ∞ ∞ 10
∞ ∞ ∞ ∞ ∞ ∞

 S =



; 2 3 4 ; ;
; ; 3 4 ; ;
; ; ; ; 5 6
; ; ; ; 5 ;
; ; ; ; ; 6
; ; ; ; ; ;


The next iteration of the outer loop (for k = 2) leaves both matrices V and S

unchanged. This comes from the fact that the direct path from node 1 to
nodes 3 and 4 is better (i.e., of lower cost) than through node 2.

Now consider the third iteration of the outer loop (for k = 3). For i = 1
and j = 5, we have that V13+V35 ≤ V15, because V15 is infinite. Hence, we update
S15 ← 3, V15 ← V13 +V35 = 165. Similarly, for i = 1 and j = 6, we update S16 ← 3,
V16 ← V13 +V36 = 185. Similarly for i = 2 and j = 5, and for i = 2 and j = 6. This
gives:

V =



∞ 80 125 130 165 185
∞ ∞ 180 55 220 240
∞ ∞ ∞ ∞ 40 60
∞ ∞ ∞ ∞ 25 ∞
∞ ∞ ∞ ∞ ∞ 10
∞ ∞ ∞ ∞ ∞ ∞

 S =



; 2 3 4 3 3
; ; 3 4 3 3
; ; ; ; 5 6
; ; ; ; 5 ;
; ; ; ; ; 6
; ; ; ; ; ;


For k = 4, it turns out that node 5 has a lower cost from node 1 and 2 through



7.1. Directed Weighted Graphs 177

node 4 rather than through node 3. We now have:

V =



∞ 80 125 130 155 185
∞ ∞ 180 55 80 240
∞ ∞ ∞ ∞ 40 60
∞ ∞ ∞ ∞ 25 ∞
∞ ∞ ∞ ∞ ∞ 10
∞ ∞ ∞ ∞ ∞ ∞

 S =



; 2 3 4 4 3
; ; 3 4 4 3
; ; ; ; 5 6
; ; ; ; 5 ;
; ; ; ; ; 6
; ; ; ; ; ;


For k = 5, it turns out that node 6 is reachable from nodes 1, 2, 3 and 4

through node 5, which always has a lower cost than through the current node.
For k = 6, the matrices remains unchanged. Hence, at the end of the algorithm,
we have:

V =



∞ 80 125 130 155 165
∞ ∞ 180 55 80 90
∞ ∞ ∞ ∞ 40 50
∞ ∞ ∞ ∞ 25 35
∞ ∞ ∞ ∞ ∞ 10
∞ ∞ ∞ ∞ ∞ ∞

 S =



; 2 3 4 4 5
; ; 3 4 4 5
; ; ; ; 5 5
; ; ; ; 5 5
; ; ; ; ; 6
; ; ; ; ; ;


�

Observe that, although the cost of the shortest path between any two nodes
of the DWG is computed by the Floyd–Warshall algorithm (this is matrix V ), the
shortest path itself is not explicitly computed. However, it can be retrieved in
a very straightforward manner using S , which gives the successor of the node
on the shortest path to another node.

Example 7.7. Consider again the DWG of Example 7.2. Let us compute the
shortest path from node 1 to node 6. Using the matrices V and S computed by
the Floyd–Warshall algorithm (see Example 7.6 above), one sees that the cost
of the shortest path from node 1 to node 6 is V1,6 = 165. From matrix S , one
sees that a successor of 1 on the way to 6 is S1,6 = 5. Recursively, a successor
of 1 on the way to 5 is S1,5 = 4. Since the successor of 1 on the way to 4 is 4
and the successor of 5 on the way to 6 is 6, the shortest path from node 1 to
node 6 is 1 ⇒ 4 ⇒ 5 ⇒ 6. This corresponds actually to the path considered in
Example 7.4. �

7.1.2 The Problem

Now suppose that some of the costs of a DWG are not reliable, i.e., can be sub-
ject to changes. One may wonder whether the shortest path between any two



178 Chapter 7. An Inverse Method for Weighted Graphs

nodes (computed, e.g., using the Floyd–Warshall algorithm) remains the same.
More generally, we are interested to know until which augmentation or diminu-
tion of the costs the shortest paths remain the same.

This approach can be motivated in the framework of timed systems, where
costs actually model timing delays, to verify if the change of a delay will impact
the shortest paths between any two nodes. More specifically, in hardware veri-
fication, this is of interest to know whether the replacement of a gate or a wire
by another one (faster or slower) will or not impact the global behavior of the
system, and in particular the shortest (or longest) path between the input and
the output.

A solution to this problem would be to change the delays, and apply again
the Floyd–Warshall algorithm. However, this may be time-consuming if sev-
eral delays are subject to changes. Moreover, when looking for the maximal (or
minimal) possible change of a particular delay without impacting the shortest
path, several applications of the Floyd–Warshall algorithm will only result in an
approximate value for the optimal delay (e.g., using a dichotomic approach),
because this optimal delay may be rational valued. As a consequence, as in the
framework of Timed Automata considered earlier in this thesis, it is interest-
ing to reason parametrically, and synthesize a constraint on the costs seen as
parameters guaranteeing that the shortest paths remain the same.

Parametric Graphs. We now introduce the formalism of parametric directed
weighted graphs, i.e., directed weighted graphs where the costs are not any
longer constants but parameters. Recall that a parameter is a constant with un-
known value. This parametrization of DWGs into parametric directed weighted
graphs is actually similar to the parametrization of TAs into PTAs (see Sec-
tion 2.2).

The following definition introduces more formally Parametric Directed
Weighted Graphs [And09b]. 2

Definition 7.8 (Parametric Directed Weighted Graph). A Parametric Directed
Weighted Graph (PDWG) G is a triple (Q,P,D), where:

• Q is a set of nodes,

• P is a set of parameters, and

2The name of Parametric Weighted Graphs may refer in the literature to graphs with a sin-
gle parameter x, where costs are functions (e.g., linear or polynomial) of x. Our formalism is
different but, in order to remain consistent with the names used in this thesis (e.g., Parametric
Timed Automata or Parametric Probabilistic Timed Automata), we keep the name of Parametric
Directed Weighted Graphs.



7.1. Directed Weighted Graphs 179

• D is a matrix of costs with values in P ∪{∞} such that, for all (i , j ) ∈Q×Q,
Di j represents the parametric cost to go from node i to node j ; if Di j =∞,
we consider that there is no transition from i to j .

We assume that, for all i ∈Q, Ci i = 0. �

Note that one could easily extend this formalism to costs with values in P ∪
R∪ {∞}, i.e., allowing the use of both parametric or constant costs. However,
note that parameters have values in R≥0, not in R≥0 ∪ {∞}: this means that a
parametric cost cannot be infinite, and thus that the transition to which it is
associated does exist with a (finite) cost, whatever the value of the parameter
is.

We represent PDWGs under a graphical form in the same way as for DWGs,
except that the costs associated with the edges are no longer constants but pa-
rameters.

Example 7.9. Consider the example of PDWG depicted in Figure 7.3, containing
6 nodes, 9 weighted transitions and 9 parameters.3

1 2

3

4 5

6

p1,2

p1,3

p1,4

p2,3

p2,4 p4,5

p3,5

p3,6

p5,6

Figure 7.3: An example of PDWG

The corresponding parametric cost matrix D is the following one:

D =



∞ p1,2 p1,3 p1,4 ∞ ∞
∞ ∞ p2,3 p2,4 ∞ ∞
∞ ∞ ∞ ∞ p3,5 p3,6

∞ ∞ ∞ ∞ p4,5 ∞
∞ ∞ ∞ ∞ ∞ p5,6

∞ ∞ ∞ ∞ ∞ ∞


�

3For the sake of simplicity, we do not give to our parameters names of the form pi , but of the
form pi , j to underline the fact that this parameter corresponds to the cost associated with the
edge from node i to node j .



180 Chapter 7. An Inverse Method for Weighted Graphs

Let G = (Q,P,D) be a PDWG. Given a valuation π = {π1, . . . ,πM } of the pa-
rameters, we denote by D[π] the matrix of costs where each parameter pi has
been replaced with value πi . By extension, we denote by G [π] the standard
non-parametric DWG (Q,D[π]).

Example 7.10. Consider again the PDWG, say G , of Example 7.9. Consider also
the following valuation π0 of the parameters:

p1,2 = 80 p1,3 = 125 p1,4 = 130
p2,3 = 180 p2,4 = 55 p3,5 = 40
p3,6 = 60 p4,5 = 25 p5,6 = 10

Then the standard, non-parametric DWG G [π0] is the DWG considered in
Example 7.2. �

Recall that we now suppose that some of the costs of a DWG are not reliable,
i.e., can be subject to changes. The problem we are interested in is the follow-
ing one: “until which variation of the costs of a DWG seen as parameters the
shortest paths between any two nodes of the DWG remain the same?”

More formally, we state below the problem we face in this section.

The shortest path guarantee problem
Let G be a PDWG, and π0 a reference valuation of the parameters. Synthe-
size a constraint K0 on the parameters such that:

1. π0 |= K0, and

2. for all π |= K0, given any two nodes i and j of G , a shortest path be-
tween i and j in G [π0] is also a shortest path between i and j in G [π].

7.1.3 An Inverse Method for Weighted Graphs

Let us adapt the Floyd–Warshall algorithm (given in Algorithm 7) in order to
synthesize a constraint K0 solving the shortest path guarantee problem.

We will follow in a straightforward manner the inverse method algo-
rithm IM defined in the framework of PTAs (see Algorithm 1 in Chapter 3). As a
consequence, we will synthesize a constraint at each modification of Si j . This
constraint will be of the form Wi k +Wk j ≤ Wi j or Wi j ≤ Wi k +Wk j . At the end
of the algorithm, those constraints guarantee that, for each parameter valua-
tion modeling this constraint, each shortest path in the original DWG is also a
shortest path in the DWG instantiated with this parameter valuation.

This algorithm, denoted by PFW (G ), is given in Algorithm 8 [And09b]. It
takes as an input a PDWG G = (Q,P,D) and a valuation π0 of the parameters,
and returns a constraint K0 on the parameters solving the shortest path guar-
antee problem.



7.1. Directed Weighted Graphs 181

Algorithm 8: Parametric Floyd–Warshall algorithm PFW (G ,π0)
input : A DWG G = (Q,P,D)
input : A reference valuation π0

output : K0: constraint on the parameters
variable: V : shortest path matrix
variable: W : parametric shortest path matrix
variable: S : successor matrix

1 V ←D[π0]
2 W ←D

3 S ← 0
4 K0 ← true

5 for k = 1 to n do
6 for i = 1 to n do
7 for j = 1 to n do
8 if Vi j ≤ Vi k +Vk j then
9 Si j ← j ;

10 K0 ← K0 ∧ {Wi j ≤Wi k +Wk j };

11 else if Vi k +Vk j < Vi j then
12 Si j ← k;
13 K0 ← K0 ∧ {Wi k +Wk j ≤Wi j };
14 Vi j ← Vi k +Vk j ;
15 Wi j ←Wi k +Wk j ;

This set of nested loops computes, as in the standard Floyd–Warshall algo-
rithm, the (instantiated) shortest path matrix V , as well as the successor ma-
trix S . Note that this latter matrix is not used in the computation of K0, and is
only given for the sake of consistency with the standard Floyd–Warshall algo-
rithm. Moreover, the algorithm also computes the matrix W of the parametric
shortest path. Each element of Wi j contains the sum of parametric costs (i.e.,
parameters) corresponding to the shortest path from i to j , or is equal to ∞ if
there is no path from i to j . Note that, by construction, we have that V =W [π0].

When a modification of the successor matrix S is done (i.e., in both the
if and the else if conditions), we synthesize a new inequality within K0. The
addition of an inequality in the if condition (resp. in the else if condition) can
be summarized as follows: in the shortest path from i to j , the path through k
is necessarily longer (resp. shorter) or equal to the path directly from i to j . As
a consequence, this constraint guarantees that the shortest path is indeed the



182 Chapter 7. An Inverse Method for Weighted Graphs

one computed by the classical Floyd–Warshall algorithm.
Note that the addition of an inequality to K0 has been simplified in Algo-

rithm 8 for the sake of understanding. No inequality is actually synthesized if
one of the two members is infinite, i.e., if there is no path from i to j , from i
to k, or from k to j . Moreover, we only synthesize a large inequality in the case
where the path through k is strictly smaller than the path through j (i.e., in the
else if condition) because we are interested in guaranteeing that a shortest path
under π0 remains one shortest path under π, not necessarily the only one (see
Remark 7.15 page 186).

Example 7.11. Consider again the PDWG, say G , of Example 7.9. Consider also
the following valuation π0 of the parameters:

p1,2 = 80 p1,3 = 125 p1,4 = 130
p2,3 = 180 p2,4 = 55 p3,5 = 40
p3,6 = 60 p4,5 = 25 p5,6 = 10

Let us apply Algorithm PFW to G and π0. We will not explicitly recall the
computation of V and S , which is exactly the same as in Example 7.6, and
focus only on the computation of W , and of the set K0 of inequalities. Initially,
we have:

W =



∞ p1,2 p1,3 p1,4 ∞ ∞
∞ ∞ p2,3 p2,4 ∞ ∞
∞ ∞ ∞ ∞ p3,5 p3,6

∞ ∞ ∞ ∞ p4,5 ∞
∞ ∞ ∞ ∞ ∞ p5,6

∞ ∞ ∞ ∞ ∞ ∞


Let us consider the first iteration of the outer loop (with k = 1). For i = 1

and j = 2, we have that V12 ≤ V11+V12. Hence, as in Example 7.6, we update S as
follows: S12 ← 2. However, we do not synthesize the inequality W12 ≤W11 +W12

because W11 is infinite. Similarly, for i = 1 and j = 3, we have that V13 ≤ V11 +
V13. Hence, we update S as follows: S13 ← 3. Again we do not synthesize any
inequality because W11 is infinite. The first iteration of the outer loop continues
in this manner. At the end of this first iteration, only S has been updated (see
Example 7.6), and matrices V and W remain unchanged.

Now consider the second iteration of the outer loop (for k = 2). For i = 1
and j = 3, we have that V13 ≤ V12 +V23. We update S as follows: S13 ← 3 (which
actually leaves the matrix unchanged). We synthesize the inequality W13 ≤W12+
W23, which gives after replacement:

p1,3 ≤ p1,2 +p2,3

Similarly, for i = 1 and j = 4, we have that V14 ≤ V12 + V24. We update S as
follows: S14 ← 4 (which actually leaves the matrix unchanged). We synthesize



7.1. Directed Weighted Graphs 183

the inequality W14 ≤W12 +W24, which gives after replacement:

p1,4 ≤ p1,2 +p2,4

Now consider the third iteration of the outer loop (for k = 3). For i = 1
and j = 5, we have that V13 + V35 ≤ V15, because V15 is infinite. Hence, we up-
date S15 ← 3, V15 ← V13 +V35 = 165, W15 ← W13 +W35, and we do not synthesize
any inequality, because W15 is infinite. Similarly, for i = 1 and j = 6, we update
S16 ← 3, V16 ← V13 +V36 = 185, W16 ← W13 +W36, and we do not synthesize any
inequality, because W16 is infinite. Similarly for i = 2 and j = 5, and for i = 2
and j = 6. We now have:

W =



∞ p1,2 p1,3 p1,4 p1,3 +p3,5 p1,3 +p3,6

∞ ∞ p2,3 p2,4 p2,3 +p3,5 p2,3 +p3,6

∞ ∞ ∞ ∞ p3,5 p3,6

∞ ∞ ∞ ∞ p4,5 ∞
∞ ∞ ∞ ∞ ∞ p5,6

∞ ∞ ∞ ∞ ∞ ∞


Now consider the fourth iteration of the outer loop (for k = 4). For i = 1

and j = 5, we have that V14 +V45 ≤ V15. Hence, we update S15 ← 4, V15 ← V14 +
V45 = 155, W15 ← W14 +W45, and we synthesize the inequality W14 +W45 ≤ W15,
which gives after replacement:

p1,4 +p1,5 ≤ p1,3 +p3,5

For i = 2 and j = 5, we have similarly that V24 + V45 ≤ V25. Hence, we update
S25 ← 4, V25 ← V24 +V45 = 80, W25 ←W24 +W45, and we synthesize the inequality
W24 +W45 ≤W25, which gives after replacement:

p2,4 +p4,5 ≤ p2,3 +p3,5

We now have:

W =



∞ p1,2 p1,3 p1,4 p1,4 +p4,5 p1,3 +p3,6

∞ ∞ p2,3 p2,4 p2,4 +p4,5 p2,3 +p3,6

∞ ∞ ∞ ∞ p3,5 p3,6

∞ ∞ ∞ ∞ p4,5 ∞
∞ ∞ ∞ ∞ ∞ p5,6

∞ ∞ ∞ ∞ ∞ ∞


We give with less details the fifth iteration of the outer loop (for k = 5), and

only mention the inequalities synthesized. For i = 1 and j = 6, we synthesize
the inequality W15 +W56 ≤W16, which gives after replacement:

p1,4 +p4,5 +p5,6 ≤ p1,3 +p3,6



184 Chapter 7. An Inverse Method for Weighted Graphs

For i = 2 and j = 6, we synthesize the inequality W25 +W56 ≤ W26, which gives
after replacement:

p2,4 +p4,5 +p5,6 ≤ p2,3 +p3,6

For i = 3 and j = 6, we synthesize the inequality W35 +W56 ≤ W36, which gives
after replacement:

p3,5 +p5,6 ≤ p3,6

For k = 6, all matrices remain unchanged, no inequality is synthesized, and
the algorithm terminates. We finally have:

W =



∞ p1,2 p1,3 p1,4 p1,4 +p4,5 p1,4 +p4,5 +p5,6

∞ ∞ p2,3 p2,4 p2,4 +p4,5 p2,4 +p4,5 +p5,6

∞ ∞ ∞ ∞ p3,5 p3,5 +p5,6

∞ ∞ ∞ ∞ p4,5 p4,5 +p5,6

∞ ∞ ∞ ∞ ∞ p5,6

∞ ∞ ∞ ∞ ∞ ∞


Also recall V and S :

V =



∞ 80 125 130 155 165
∞ ∞ 180 55 80 90
∞ ∞ ∞ ∞ 40 50
∞ ∞ ∞ ∞ 25 35
∞ ∞ ∞ ∞ ∞ 10
∞ ∞ ∞ ∞ ∞ ∞

 S =



; 2 3 4 4 5
; ; 3 4 4 5
; ; ; ; 5 5
; ; ; ; 5 5
; ; ; ; ; 6
; ; ; ; ; ;


This gives us the following final constraint K0:

p1,3 ≤ p1,2 +p2,3

∧ p1,4 ≤ p1,2 +p2,4

∧ p1,4 +p4,5 ≤ p1,3 +p3,5

∧ p2,4 +p4,5 ≤ p2,3 +p3,5

∧ p3,5 +p5,6 ≤ p3,6

∧ p2,4 +p4,5 +p5,6 ≤ p2,3 +p3,6

∧ p1,4 +p4,5 +p5,6 ≤ p1,3 +p3,6

Now, as an example of application, suppose that one wants to maximize,
say, p4,5 without changing any of the shortest paths of the system. One can
instantiate all the parameters except p4,5 in the constraint K0, which gives:

p4,5 ≤ 35

Then, for p4,5 up to 35, the shortest paths of the system all remain the same. �



7.1. Directed Weighted Graphs 185

7.1.4 Properties

It is easy to see that the algorithm PFW always terminates.

Lemma 7.12 (Termination). Let G be a PDWG, and π0 a reference valuation of
the parameters. Then the algorithm K0 = PFW (G ,π0) terminates.

Proof. From the finiteness of the number of iterations of the loops. �

Similarly to Lemma 3.2 in the framework of the inverse method for PTAs, we
now show that π0 |= K0.

Lemma 7.13. Let G be a PDWG, and π0 a reference valuation of the parameters.
Let K0 = PFW (G ,π0). Then π0 |= K0.

Proof. All inequalities in K0 are either of the form Wi j ≥ Wi k +Wk j , or Wi j ≤
Wi k +Wk j , for some i , j and k.

1. First consider the case an inequality J of the form Wi j ≥ Wi k +Wk j . Due
to the construction of this inequality in our algorithm, this inequality has
been synthesized in the if condition where Vi j ≥ Vi k +Vk j . Since we have
by construction that V =W [π0], then this inequality is satisfiable by π0.

2. Now consider the case an inequality J of the form Wi j ≤ Wi k +Wk j . Sim-
ilarly, due to the construction of this inequality in our algorithm, this in-
equality has been synthesized in the if condition where Vi j ≤ Vi k + Vk j .
Then this inequality is satisfiable by π0.

�

We can now state that our algorithm solves the shortest path guarantee
problem.

Proposition 7.14 (Correctness). Let G be a PDWG, and π0 a reference valuation
of the parameters. Let K0 = PFW (G ,π0). Then

1. π0 |= K0, and

2. for all π |= K0, given any two nodes i and j of G , a shortest path between i
and j in G [π0] is also a shortest path between i and j in G [π].

Proof. Item 1 is proved by Lemma 7.13. Let us now show by reductio ad ab-
surdum that for all π |= K0, given any two nodes i and j of G , a shortest path
between i and j in G [π0] is also a shortest path between i and j in G [π].

Let i and j be two nodes of G . Consider a shortest path between i and j
in G [π0] of the form i → k → ··· → j , which is not a shortest path between i



186 Chapter 7. An Inverse Method for Weighted Graphs

and j in G [π]. As a consequence, there exists a strictly shorter path between i
and j in G [π]. Suppose this path is of the form i → l → ··· → j . However, at
some point of the algorithm, we had that Vi k +Vk j ≤ Vi l +Vl j , because k is a bet-
ter node than l on the path from i to j in G [π0]. So, according to the algorithm,
we synthesized an inequality of the form Wi k+Wk j ≤Wi l+Wl j . Instantiated byπ,
this would give that k is a better node than l on the path from i to j in G [π],
which is not possible because i → k → ··· → j is not a shortest path between i
and j in G [π]. �

When considering the complexity for the algorithm, it is clear that the num-
ber of comparisons of our algorithm PFW is exactly the same as in the standard
Floyd–Warshall algorithm, i.e., is in O(n3), where n is the number of nodes of
the PDWG. The upper bound on the number of synthesized inequalities of Al-
gorithm PFW is n3.

Remark 7.15. In this form, the algorithm only guarantees that a shortest path
in G [π0] remains a shortest path in G [π], for any π |= PFW (G ,π0). However,
the reciprocal statement is not true: a shortest path in G [π] is not necessarily
a shortest path in G [π0]. In order to have this statement satisfied, one should
modify the algorithm as follows: depending on the strict or large inequality in
the if comparison, one should synthesize large or strict inequalities. �

7.1.5 Implementation and Case Studies

This algorithm PFW has been implemented in a prototype named INSPEQ-
TOR (for INference of Shortest Paths with EQuivalent Time-abstract behaviOR),
a program written in OCaml, containing about 3000 lines of code.

By applying this tool INSPEQTOR to the PDWG of Figure 7.3 modeling Ex-
ample 7.2, the constraint K0 given previously was synthesized in less than 0.01
second (experiment performed on an Intel Quad Core 3 GHz with 3.2 Gb mem-
ory).

Discussion. This method is of interest for the study of weighted systems, with
costs that can correspond to any kind of variable (money, temperature, dis-
tance, etc.). In particular, the method can be applied to some classes of timed
systems; in that case, the costs correspond to timing delays. In the case of hard-
ware verification, one can model components of a circuit with nodes of a DWG,
and timing delays associated with wires with edges. Other representations can
be chosen, when the delays associated with wires are negligible but the delays
associated with the traversal of components are not. It may be of interest to
know if it is possible to change a component (or wire) of the system by another



7.2. Markov Decision Processes 187

component (or wire) of different delay, without changing the overall behavior
of the system. By synthesizing a constraint using our algorithm, one can guar-
antee that the shortest paths of the system will not change.

In the case of hardware verification, note that this algorithm PFW is
adapted to the study of components where the functionality of the compo-
nents is not taken into account. Indeed, the model of DWGs may be used to
compute an approximation of the response time of the circuit. If one wants to
take into account the functionalities of the elements (AND gates, OR gates, etc.)
but there is no memory element, the time separation of events is the most ac-
curate model; recall that the inverse method was initially defined in this frame-
work [EF08]. When one wants to take into account the functionalities of the ele-
ments and in the case where there are memory elements, as well as unbounded
loops, the model of Timed Automata is the most accurate model, to which one
can then apply the inverse method as defined in Chapter 3.

7.2 Markov Decision Processes

We are interested in this section in systems modeled by Markov Decision Pro-
cesses. This extension of weighted directed graphs is made of a set of states,
with labeled probabilistic transitions. When in a given state, one can choose
nondeterministically a given action. Then, for this state and this action, it is
possible to reach several destination states with some probability. The sum of
the probabilities associated with the transitions leaving a given state through
a given action is equal to one. To each of those probabilistic transitions, we
associate a weight (or cost).

One can associate to a Markov Decision Process a policy, i.e., a function
which associates to every state a single action. This solves the nondeter-
minism in the Markov Decision Process, which then behaves like a Markov
Chain [KMST59]. A classical problem for Markov Decision Processes consists
in finding the optimal policy with respect to the weights of the system. The
weight of a path (or sequence of transitions) is the sum of the weights of its
constitutive actions. The value (or cost) of a given policy ν for a given state s
corresponds to the mean weight of the paths induced by ν, which go from s to
a final state of the graph.

We solve in this section the following inverse problem for Markov Decision
Processes: “Given a Markov Decision Process and an optimal policy, find values
for the weights seen as parameters such that, for any valuation of the parame-
ters, the optimal policy remain optimal”.



188 Chapter 7. An Inverse Method for Weighted Graphs

7.2.1 Preliminaries

Markov Decision Processes are widely used to model systems involving prob-
abilities and costs together, e.g., the power consumption of devices (see, e.g.,
[PBBDM98]).

We associate to every edge of the graph a probability such that, for a given
state and a given action, the sum of the probabilities of the edges leaving this
state through this action is equal to 1. We recall below the formal definition of
Markov Decision Processes.

Definition 7.16 (Markov Decision Process). A Markov Decision Process (MDP)
is a tuple M = (Q,Σ,Prob, w), where

• Q = {s1, . . . , sn} is a set of states;

• Σ is a set of actions;

• Prob : Q ×Σ×Q → [0,1] is a probability function such that Prob(s1, a, s2)
is the probability that action a in state s1 will lead to state s2, and ∀s ∈
Q,∀a ∈Σ :

∑
s′∈Q Prob(s, a, s′) = 1;

• w : Q ×Σ → R is a weight function such that w(s, a) (also denoted by
wa(s)) is the weight associated with the action a when leaving s.

�

As for DWGs, we make here use of the term “weight” in order to denote the
value associated with a transition. Note that the terms of “cost” or “reward” are
also used in the literature. Note also that, in order to remain consistent with the
literature, nodes of DWGs are called states in the framework of MDPs.

We follow the usual conventions for the graphical representation of MDPs:
states are represented by nodes; probabilistic edges are represented by arcs
from states, labeled by the action name and its associated weight, and which
split into multiple arcs, each of which leads to a state and is labeled by a proba-
bility. As for Probabilistic Timed Automata (see Chapter 6), probabilistic edges
which correspond to probability 1 are illustrated by a single arc from state to
state, labeled only by the action name and its associated weight.

Example 7.17. We give in Figure 7.4 an example of Markov Decision Process
with 4 states (viz., s1, s2, s3 and s4) and 4 actions (viz., a, b, c and d).

When in state s1, one can choose either action a or action b. When choosing
action a, one can go either to state s1 (with probability 0.3) or to state s2 (with
probability 0.7), both with a weight of 5. When choosing action b, one can go
either to state s2 (with probability 0.5) or to state s3 (with probability 0.5), both
with a weight of 2. The rest of this MDP can be explained similarly. Note that



7.2. Markov Decision Processes 189

s1 s2

s3 s4

a : 5

b : 2

0.3
0.7

0.5

0.5

d : 2

c : 1

0.5

0.5

a : 2

0.9
0.1

b : 0

Figure 7.4: An example of Markov Decision Process

the transition from state s2 to state s3 (labeled by action c and weight 1) has
probability 1, and similarly for the self loop in state s4 (labeled by action b and
weight 0). �

Note that, for the sake of simplicity, we consider in Definition 7.16 that the
weight function takes as input one state and one action only. This implies that
our MDPs are such that, for a given state s and a given action a, the weight cor-
responding to a transition from s to a destination state s′ through action a is the
same for any destination state s′; only the probability differs. In the case where
one would need to express different weights for different transitions starting
from the same state through the same action, it is possible to modify the model
in a straightforward manner.

Absorbing state. In the following, we consider the MDP M = (Q,Σ,Prob, w).
Given a state s ∈Q, we denote by enabled(s) the set of possible actions for s, i.e.,
{a ∈Σ | ∃s′ ∈Q : Prob(s, a, s′) > 0}.

Example 7.18. For the MDP of Example 7.17, we have:

enabled(s1) = {a,b}
enabled(s2) = {c,d}
enabled(s3) = {a}
enabled(s4) = {b}

�

We suppose that, for any state s ∈ Q, enabled(s) 6= ;. We also suppose
that M has a unique “absorbing state”, i.e., a state which is reachable (with pos-
itive probability) from any other state for any policy (see definition below), and



190 Chapter 7. An Inverse Method for Weighted Graphs

which has a self-loop outgoing transition with weight 0 and probability 1. 4 We
suppose in the following that the absorbing state is sn .

Example 7.19. In the MDP of Example 7.17, s4 is the unique absorbing state. �

Policy. In every state s of Q \ {sn}, we can choose nondeterministically an ac-
tion a in enabled(s). Then, for this action, the system will evolve to a state s′

such that Prob(s, a, s′) > 0. A way of removing nondeterminism from an MDP is
to introduce a (deterministic, state-based) policy ν, i.e., a function from states
to actions. A policy is of the form ν = {s1 → ai1 , s2 → ai2 , . . . , sn → ain }, with
ai1 , . . . , ain ∈ Σ. Note that we usually do not associate a policy to the absorbing
state sn . The following definition formally defines the notion of policy.

The literature often makes use of letterπ for a policy. However, in this thesis,
π always corresponds to a valuation of the parameters. As a consequence, we
will use in the following letter ν to denote a policy.

Definition 7.20 (Policy). Let M = (Q,Σ,Prob, w) be an MDP. A policy for M is a
total function ν : Q →Σ such that ∀s ∈Q : ν[s] ∈ enabled(s). �

By this definition, we make the assumption that, given an MDP M , a pol-
icy ν and a state s, we have that Prob(s,ν[s], s′) > 0 for some s′ ∈Q.

Given an MDP M , a policy ν and a state s, observe that we chose to denote
by ν[s] the action associated with state s. We use the notation ν[s] (and not,
e.g., ν(s)) because we will consider in our algorithms ν to be a vector (or array)
indexed by the states.

It can be shown that an MDP associated with a policy behaves as a Markov
chain [KMST59], because of the removal of nondeterminism.

Example 7.21. Consider again Example 7.17. We associate to this MDP the fol-
lowing policy: ν= {s1 → a, s2 → d , s3 → a}. Then the MDP of Figure 7.4 asso-
ciated with ν is depicted in Figure 7.5.

�

Value determination. Given a policy ν, the associated value is a function
mapping each state s to the mean sum of weights attached to the paths induced
by ν, which go from s to the absorbing state sn . (By convention, the value asso-
ciated with sn is null.)

4 Given an MDP with no absorbing state and whose graph is strongly connected, it is pos-
sible to turn it into an MDP containing an absorbing state, by adding a discount d (typically
close to 1, e.g., d = 0.99). In that case, we multiply all existing probabilities of the MDP by the
discount d , and, for each state s and for each action a ∈ enabled(s), we add a transition from s
by a to the absorbing state with probability 1−d . Thus, we consider the probabilistic behavior
of the system within (1−d)−1 units of time.



7.2. Markov Decision Processes 191

s1 s2

s3 s4

a : 5

0.3
0.7

d : 2

0.5

0.5

a : 2

0.9
0.1

b : 0

Figure 7.5: Our example of MDP associated with policy ν

This value function can be computed using the value determination algo-
rithm VD(M ,ν), that we recall in Algorithm 9. Given an MDP M and a policy ν,
this algorithm computes the value V introduced above, i.e., the mean sum of
weights attached to the paths reaching sn , for each starting state in Q \ {sn}. We
denote by v[s] the value associated with state s.

Algorithm 9: Algorithm of value determination VD(M ,ν)

input : M : Markov Decision Process (Q,Σ,Prob, w)
input : ν: Policy
output: v : value function

1 SOLVE

{v[s] = wν[s](s)+ ∑
s′∈Q

Prob(s,ν[s], s′)× v[s′]}s∈Q\sn

The value v computed by Algorithm VD is obtained by solving a system of
linear equations, and is computed using operations on matrices and vectors.
The fact that there is a single solution to this system is due to the fact that the
matrix Prob restricted with ν is invertible, which comes itself from the existence
of an absorbing state.

Example 7.22. Consider again the MDP of Example 7.17, and the policy ν =
{s1 → a, s2 → d , s3 → a}. Then the value function can be computed by solving
the following system:

v[s1] = wa(s1)+∑
s′∈Q Prob(s1, a, s′)× v[s′]

v[s2] = wd (s2)+∑
s′∈Q Prob(s2,d , s′)× v[s′]

v[s3] = wa(s3)+∑
s′∈Q Prob(s3, a, s′)× v[s′]



192 Chapter 7. An Inverse Method for Weighted Graphs

By replacing the weights and probabilities by their value, this system becomes:
v[s1] = 5+0.3∗ v[s1]+0.7∗ v[s2]
v[s2] = 2+0.5∗ v[s2]+0.5∗ v[s4]
v[s3] = 2+0.9∗ v[s3]+0.1∗ v[s4]

By solving this system, one finds out that the value function is:
v[s1] = 78

7
v[s2] = 4
v[s3] = 20

�

Optimal policy. A classical problem for MDPs is to find an optimal policy, i.e.,
a policy under which the value function is optimal, for every s ∈ Q. Note that,
under the assumption of the existence of an absorbing state, such an optimal
policy always exists, but is not necessarily unique (see, e.g., [How60]). We focus
here on finding an optimal policy for which the value function is minimal.

Definition 7.23 (Optimal policy). Let M = (Q,Σ,Prob, w) be an MDP, and ν a
policy of M . We say that ν is optimal for M if, for each state s ∈Q:

ν(s) = argmin
a

{∑
s′

Prob(s,ν[s], s′)
(
wa(s)+ v[s′]

)}

�

Various algorithms have been proposed in order to compute an optimal
policy of an MDP. These algorithms usually make use of two arrays (or vectors)
indexed by the states: the array of values v , which associates a value to each
state, and the policy itself, which associates an action to each state. We will
consider here one of the most widely used, viz., the policy iteration algorithm.

The policy iteration algorithm. Given an MDP M , the policy iteration algo-
rithm computes an optimal policy for M . We present the classical policy iter-
ation algorithm PI(M ) in Algorithm 10 [How60]. In order to compute the opti-
mal policy for an MDP, this algorithm makes use of the algorithm VD for value
determination in MDPs.

The algorithm starts with an arbitrary policy, and consists in a loop repeated
until fixpoint. One first computes the value (using Algorithm VD) associated



7.2. Markov Decision Processes 193

Algorithm 10: Algorithm of policy iteration PI(M )

input : M : Markov Decision Process (Q,Σ,Prob, w)
output: ν: Policy optimal w.r.t. w (initially arbitrary)
output: v : Value function

1 repeat
2 v ← VD(M ,ν);
3 fixpoint ← true

4 foreach s ∈Q \ sn do
5 optimum ← v[s]
6 foreach a ∈ enabled(s) do
7 if wa(s)+∑

s′∈Q Prob(s, a, s′)v[s′] < optimum then
8 optimum ← wa(s)+∑

s′∈Q Prob(s, a, s′)v[s′];
9 ν[s] ← a;

10 fixpoint ← false ;

11 until fixpoint;

with the MDP under the current policy. Then, for each state s of the MDP (ex-
cept the absorbing state), for each action a enabled for this state s, one com-
putes the sum of the weight associated with s and a with the sum of the values
of the destination states of s through a weighted by their respective probabil-
ities. If this value is strictly less than the current optimal value for s (i.e., the
value associated with the current policy for s), then it means than action a is
strictly better than the current policy ν[s], and the policy is updated in conse-
quence. If the policy is not changed for any state, then the fixpoint is reached,
and both the optimal policy and the associated value are returned.

Example 7.24. Let us apply the policy iteration algorithm to the MDP of Exam-
ple 7.17. Let us start from the arbitrary policy ν0 = {s1 → a, s2 → c, s3 → a}.
The initial value function is v0 = {s1 → 197

7 , s2 → 21, s3 → 20}.
At the first iteration of the external loop of Algorithm PI , it turns out that b

is a strictly better policy for s1 than a, and that d is a strictly better policy for s2

than c. Then, the new policy becomes ν1 = {s1 → a, s2 → c, s3 → a}. The new
value function is v1 = {s1 → 14, s2 → 4, s3 → 20}.

At the second iteration of Algorithm PI , it turns out that a is a strictly better
policy for s1 than b. Then, the new policy becomes ν2 = {s1 → a, s2 → d , s3 →
a}. The new value function is v2 = {s1 → 78

7 , s2 → 4, s3 → 20}.
At the third iteration, the policy cannot be improved. Then ν2 is the optimal

policy for this MDP. �



194 Chapter 7. An Inverse Method for Weighted Graphs

7.2.2 The Inverse Problem for MDPs

Let us consider again the MDP of Example 7.17. Suppose that some weight of
the MDP changed; for example, let us assume that the weight wd (s2) of leaving
state s2 through action d is not 2 anymore, but now 3. The question that arises
is: “does the optimal policy computed previously remain optimal?” One may
apply again the policy iteration algorithm to this modified MDP, and check that
the optimal policy remains the same (which would actually be the case). Now,
let us assume that wd (s2) = 4. One should then again apply the policy iteration
algorithm, and so on for any value. More generally, we are interested in the fol-
lowing question: “what is the maximal possible value for wd (s2) such that the
optimal policy ν remains optimal?” In other terms, we want to be able to maxi-
mize or minimize some of the weights without changing the optimal policy.

We state this problem more formally below [AF09].

The optimal policy guarantee problem
Let M be a MDP, and ν an optimal policy. Synthesize a constraint K0 on the
weights of M seen as parameters such that:

1. π0 |= K0, and

2. for all π |= K0, ν remains an optimal policy for M [π].

7.2.3 An Inverse Method for MDPs

We first adapt the notion of MDP to the parametric case [AF09]. We now con-
sider that the weights of the MDP are parameters, i.e., unknown constants. This
parametrization of MDPs is actually similar to the parametrization of TAs into
PTAs (see Chapter 2). Note also that, as in Chapter 6, we do not parameterize
the values of the probabilities, but the values of the constants involved in the
transitions (here, the weights).

Definition 7.25. A Parametric Markov Decision Process (PMDP) is a tuple M =
(Q,Σ,P,Prob,W ), where

• Q = {s1, . . . , sn} is a set of states;

• Σ is a set of actions;

• P is a set of parameters;

• Prob : Q ×Σ×Q → [0,1] is a probability function such that Prob(s1, a, s2)
is the probability that action a in state s1 will lead to state s2, and ∀s ∈
Q,∀a ∈Σ :

∑
s′∈Q Prob(s, a, s′) = 1;



7.2. Markov Decision Processes 195

• W : Q ×Σ→ P is a parametric weight function such that W (s, a) (also de-
noted by Wa(s)) is a parameter associated with the action a when leav-
ing s.

�

We consider in the following the PMDP M = (Q,Σ,P,Prob,W ). Given a val-
uation π of the parameters, we denote by W [π] the function from Q ×Σ to R
obtained by replacing each occurrence of a parameter pi in W with the value
π(pi ), for 1 ≤ i ≤ N . By extension, we denote by M [π] the (standard) MDP
(Q,Σ,Prob,W [π]).

Example 7.26. We give in Figure 7.6 an example of Parametric Markov Decision
Process M with 4 states (viz., s1, s2, s3 and s4), 4 actions (viz., a, b, c and d),
and 5 parameters (viz., p1a , p1b , p2c , p2d and p3a). Note that, for the sake of
simplicity, we do not give to our parameters names of the form pi , but of the
form psa to underline the fact that this parameter corresponds to the weight of
leaving state s through action a.

s1 s2

s3 s4

a : p1a

b : p1b

0.3
0.7

0.5

0.5

d : p2d

c : p2c

0.5

0.5

a : p3a

0.9
0.1

b : 0

Figure 7.6: An example of Parametric Markov Decision Process

When in state s1, one can choose either action a or action b. When choosing
action a, one can go either to state s1 (with probability 0.3) or to state s2 (with
probability 0.7), both with a parametric weight equal to p1a . When choosing
action b, one can go either to state s2 (with probability 0.5) or to state s3 (with
probability 0.5), both with a parametric weight equal to p1b . The rest of this
MDP can be explained similarly.

Consider the following valuation of the parameters: π0 : p1a = 5∧p1b = 2∧
p2c = 1∧p2d = 2∧p3a = 2. Then M [π0] corresponds to the (non-parametric)
MDP of Example 7.17. �

We will solve the inverse problem for MDPs by introducing a parametric
form of the algorithm PI . We first need to compute the parametric value as-
sociated with every state s of a PMDP for a given policy ν, i.e., the mean sum



196 Chapter 7. An Inverse Method for Weighted Graphs

of the parametric weights associated with the paths induced by ν going from s
to sn . We introduce the algorithm pVD, which computes, given a policy ν, the
parametric value associated with the states of the PMDP. This algorithm is a
straightforward adaptation to the parametric case of the classical algorithm VD
of value determination for MDPs (see Algorithm 9 page 191). We denote by V [s]
the parametric value associated with state s.

This algorithm pVD(M ,ν) is given in Algorithm 11 [AF09].

Algorithm 11: Parametric value determination pVD(M ,ν)

input : M : Parametric Markov Decision Process (Q,Σ,P,Prob,W )
input : ν: Policy
output: V : Parametric value function

1 SOLVE

{V [s] =Wν[s](s)+ ∑
s′∈Q

Prob(s,ν[s], s′)×V [s′]}s∈Q\{sn }

The value V computed by this algorithm pVD is obtained by solving a sys-
tem of parametric linear equations. This system can be seen as an equation on
vectors and matrices of the form V = A×V +B . As a consequence, this system
is equivalent to V = (1− A)−1 ×B , and can be implemented using the inversion
of matrix (1− A). Note that this matrix A is computed from matrix Prob and
vector ν, and is therefore a constant real-valued matrix (i.e., containing no pa-
rameters). Only B is a parametric vector. As for the algorithm VD, the fact that
there is a single solution to this system comes from the existence of an absorb-
ing state. Note also that the parametric value associated with a state is a linear
term, as defined in Definition 2.1.

Example 7.27. Consider again the PMDP of Example 7.26, and the policy ν =
{s1 → a, s2 → d , s3 → a}. Then the parametric value function can be computed
by solving the following system:

V [s1] = Wa(s1)+∑
s′∈Q Prob(s1, a, s′)×V [s′]

V [s2] = Wd (s2)+∑
s′∈Q Prob(s2,d , s′)×V [s′]

V [s3] = Wa(s3)+∑
s′∈Q Prob(s3, a, s′)×V [s′]

By replacing the parametric weights and the probabilities by their value, this
system becomes: 

V [s1] = p1a +0.3∗V [s1]+0.7∗V [s2]
V [s2] = p2d +0.5∗V [s2]+0.5∗V [s4]
V [s3] = p3a +0.9∗V [s3]+0.1∗V [s4]



7.2. Markov Decision Processes 197

By solving this system, one finds out that the parametric value function is:
V [s1] = 10

7 p1a +2p2d

V [s2] = 2p2d

V [s3] = 10p3a

�

We state in the following lemma that, given a PMDP M and a policy ν, the
instantiation with π of the parametric value associated with M w.r.t. ν is equal
to the value associated with M [π] w.r.t. ν. We use V [π] to denote the standard
(non-parametric) value function equal to V in which each parameter has been
instantiated with its value π.

Lemma 7.28. Let M be a PMDP, π a valuation of the parameters, and ν a policy
for M . Let V = pVD(M ,ν). Then V [π] = VD(M [π],ν).

Proof. Let M = (Q,Σ,P,Prob,W ) be a PMDP. The algorithm pVD(M ,ν) consists
in solving a system of the form V = A ×V +Wν, where Wν denotes the ma-
trix W restricted to policy ν. Hence, V = (1− A)−1 ×Wν. Moreover, the algo-
rithm VD(M [π],ν) consists in solving a system of the form v = A′× v +W [π]ν,
i.e., v = (1− A′)−1 ×W [π]ν. It is easy to see from the two algorithms that A = A′.
We trivially have: for all s, W [π]ν[s](s) = (Wν[s](s))[π], where (Wν[s](s))[π] de-
notes the linear term Wν[s](s) where every occurrence of a parameter pi was
replaced by its instantiation πi . Hence, V [π] = VD(M [π],ν). �

We now introduce the algorithm pPI , which solves the problem stated in
Section 7.2.2. Given a reference valuation π0 of the parameters, this algorithm
takes as input a PMDP M , and an optimal policy ν0 associated with M [π0]
(which can be computed using PI(M [π0])). Recall that, by “optimal”, we mean
here a policy under which the value of states is minimal. The algorithm outputs
a constraint K0 on the parameters such that:

1. π0 |= K0, and

2. for any π |= K0, ν0 is an optimal policy of M [π].

The algorithm pPI is given in Algorithm 12 [AF09]. We can summarize this
algorithm as follows:

1. Compute the parametric value function, which associates to any state a
parametric value w.r.t. ν0, using Algorithm pVD;



198 Chapter 7. An Inverse Method for Weighted Graphs

Algorithm 12: Inverse method algorithm for MDPs pPI(M ,π0,ν0)

input : M : Parametric Markov Decision Process (Q,Σ,P,Prob,W )
input : ν: Policy
output: K0: Constraint on the set of parameters

1 V ← pVD(M ,ν0);
2 K0 ← true;
3 foreach s ∈Q \ {sn} do
4 foreach a ∈ enabled(s) s.t. a 6= ν0[s] do
5 K0 := K0 ∧ {Wa(s)+∑

s′∈Q Prob(s, a, s′)V [s′] ≥V [s]}

2. For each state s 6= sn , for each action a different from the action ν0[s]
given by the optimal policy, synthesize the following inequality stating
that a is not a better action (i.e., an action which would lead to a better
policy) than ν0[s]:

Wa(s)+ ∑
s′∈Q

Prob(s, a, s′)V [s′] ≥V [s]

The above set of inequalities implies that, for any s and a, the policy obtained
from ν0 by changing ν0[s] with a, does not improve policy ν0 (i.e., does not lead
to any smaller value of state).

Example 7.29. Consider again the PMDP M of Example 7.26, and the policy
ν0 = {s1 → a, s2 → d , s3 → a}. Consider the following valuation π0 of the
parameters: π0 : p1a = 5∧p1b = 2∧p2c = 1∧p2d = 2∧p3a = 2.

Recall from Example 7.24 that ν0 is an optimal policy for M [π0].
The computation of pVD(M ,ν0) (see Example 7.27) gives:

V [s1] = 10
7 p1a +2p2d

V [s2] = 2p2d

V [s3] = 10p3a

Let us apply our algorithm pPI to M and ν0. First recall from Example 7.18
that the enabled function is defined as follows:

enabled(s1) = {a,b}
enabled(s2) = {c,d}
enabled(s3) = {a}
enabled(s4) = {b}

Now, we can synthesize the following inequalities by applying algorithm pPI .

p1b + 1
2V (s2)+ 1

2V (s3) ≥ V (s1)
∧ p2c +V (s3) ≥ V (s2)



7.2. Markov Decision Processes 199

The first inequality is synthesized for state s1 and action b, whereas the sec-
ond one is synthesized for state s2 and action c. After replacement of V by the
parametric value computed above, one gets:

p1b +5p3a ≥ 10
7 p1a +p2d

∧ p2c +10p3a ≥ 2p2d

�

7.2.4 Properties

We first state that Algorithm pPI terminates.

Proposition 7.30 (Termination). Let M be a PMDP, and ν0 a policy. Then algo-
rithm pPI(M ,ν0) terminates.

Proof. Since M contains exactly one absorbing state, the computation of the
parametric value in pVD is guaranteed to terminate with a single solution.
Since the number of synthesized inequalities is finite, it is easy to see that Algo-
rithm pPI terminates. �

We now show that, given a reference valuation π0 of the parameters, if ν0 is
an optimal policy for M [π0], then π0 models the constraint K0 output by our
algorithm. This proof is similar the proof of Lemma 7.13.

Lemma 7.31. Let M be a PMDP, π0 a valuation of the parameters, and ν0 an
optimal policy of M [π0]. Let K0 = pPI(M ,ν0). Then π0 |= K0.

Proof. (By reductio ad absurdum) Suppose π0 6|= K0. Then, there exists an in-
equality J in K0 such that π0 6|= J . By construction, this inequality J is of the
form Wa(s)+∑

s′∈Q Prob(s, a, s′)V [s′] ≥ V [s], for some s and some a. If this in-
equality J is not satisfied by π0, this means that a is a strictly better policy for
s than the policy ν0[s] in M [π0], which is not possible since ν0 is an optimal
policy for M [π0]. �

We now state that our algorithm pPI solves the inverse problem as described
in Section 7.2.2.

Proposition 7.32 (Correctness). Let M be a PMDP,π0 a valuation of the param-
eters, and ν0 an optimal policy of M [π0]. Let K0 = pPI(M ,ν0). Then:

1. π0 |= K0, and

2. for all π |= K0, the policy ν0 is optimal for M [π].



200 Chapter 7. An Inverse Method for Weighted Graphs

Proof. The proof of item (1) comes from Lemma 7.31. Let us prove item (2) by
reductio ad absurdum. Recall that M = (Q,Σ,P,Prob,W ). Let π |= K0. We have
M [π] = (Q,Σ,Prob,W [π]).

Suppose that ν0 is not an optimal policy for M [π]. Let ν be an optimal
policy for M [π]. Then there exists some state s such that ν[s] is a strictly better
policy than ν0[s] for M [π]. Let a = ν[s] and a0 = ν0[s]. Let v = VD(M [π],ν).
Since a is a strictly better policy than a0 for state s in M [π], then, from the last
iteration of Algorithm PI(M [π]), we have: W [π]a0 (s)+∑

s′∈Q Prob(s, a0, s′)v[s′] >
W [π]a(s)+∑

s′∈Q Prob(s, a, s′)v[s′].
Moreover, since a 6= ν0[s], Algorithm pPI(M ,ν0) synthesizes the following

inequality in K0: Wa(s)+∑
s′∈Q Prob(s, a, s′)V [s′] ≥ V [s]. Since V [s] = Wa0 (s)+∑

s′∈Q Prob(s, a0, s′)×V [s′] (from the call to Algorithm pVD(M ,ν0)), this inequal-
ity is equal to Wa(s) +∑

s′∈Q Prob(s, a, s′)V [s′] ≥ Wa0 (s) +∑
s′∈Q Prob(s, a0, s′) ×

V [s′]. Since π |= K0, the instantiation of K0, and in particular of this inequality,
with π should evaluate to true. By Lemma 7.28, we have V [π] = v . Hence, by
instantiating the inequality with π, we get: W [π]a(s)+∑

s′∈Q Prob(s, a, s′)v[s′] ≥
W [π]a0 (s)+∑

s′∈Q Prob(s, a0, s′)×v[s′], which is exactly the contrary of what was
stated before. �

When considering the complexity, first observe that the size (in term of
number of inequalities) of the constraint K0 output by our algorithm is in
O(|Q|∗ |Σ|).

Moreover, our algorithm pPI has a smaller worst case complexity than the
standard algorithm PI for policy iteration. First note that Algorithm pVD is a
straightforward adaptation of VD, and thus has the same complexity as VD.
Whereas PI may call VD up to |Q||Σ| times in the worst case (where |Q| and
|Σ| denote the number of states and actions of the MDP respectively), our al-
gorithm pPI calls pVD only once. Moreover, whereas PI may perform up to
|Q||Σ|∗|Q|∗|Σ| comparisons (line 7 of Algorithm 10), the generation of the con-
straints of our algorithm is only in O(|Q| ∗ |Σ|). As a consequence, once one
knows one optimal policy for a PMDP for a given valuation of the parameters,
it is then cheap to compute a constraint using our algorithm in order to find
more values of the parameters with the same policy.

Example 7.33. We can now answer to the question from Section 7.2.2 regarding
our example of PMDP described in Example 7.26, which was: “what is the max-
imal possible value for wd (s2) such that the optimal policy ν remains optimal?”
By instantiating all parameters except p2d within the constraint synthesized in
Example 7.29, one gets the inequality p2d ≤ 34

7 . As a consequence, 34
7 represents

the maximal possible value for wd (s2) such that the optimal policy ν remains
optimal, and solves our problem. �



7.3. Related Work 201

7.2.5 Implementation and Applications

The algorithm pPI has been implemented under the form of a program named
IMPRATOR (standing for Inverse Method for Policy with Reward AbstracT be-
haviOR). This program, containing about 4300 lines of code, is written in
OCaml, and uses matrix inversion to compute the parametric value V in Algo-
rithm pVD. Note that IMPRATOR also allows the use of MDPs with no absorbing
state, by adding a discount (see footnote page 190 for more details).

We applied our program to various examples of MDPs modeling devices.
For a system containing 11 states, 4 actions and 132 transitions, correspond-
ing to the model of a robot evolving in a bounded physical space [SB03], our
program IMPRATOR synthesizes a constraint in 0.17 s.

The program and various case studies can be downloaded on the IMPRATOR

Web page5.
Finally note that we are studying the adaptation of the method to Markov

decision processes with two weights, as used in the problem of dynamic power
management [PBBDM98] for real-time systems where one wants to minimize
the power consumption while keeping a certain level of efficiency.

7.3 Related Work

The authors of [ROC05] address the same problem as the problem we faced in
Section 7.1. Indeed, they determine the maximum and minimum weights that
each edge can have so that a given path remains optimal. They also show that
their technique is in O(m+K log K ) time, where m is the number of edges in the
graph, and K is the number of edges on the given optimal path. A difference
with our work is that they infer the minimum and maximum constant weights,
whereas by reasoning parametrically we are able to infer relations (under the
form of a constraint) between the weights of the graph.

In [CFLY10], the authors consider parametric weighted graphs as graphs
whose edges are labeled with continuous real function of a single variable. As in
our framework, the instantiation of such a parametric weighted graphs results
in a classical directed weighted graph. The authors of [CFLY10] introduce two-
phase algorithms for weighted graphs. The first phase takes as input a paramet-
ric weighted graph, and synthesizes a data structure which will be used later for
the second phase, viz., the computation of the shortest path for a particular in-
stantiation of the parameter. The main interest of this work relies in the fact
that one needs to perform only once the first phase, and the complexity of the
second phase is smaller than the usual complexity to solve the shortest path

5http://www.lsv.ens-cachan.fr/~andre/ImPrator/



202 Chapter 7. An Inverse Method for Weighted Graphs

problem on a given (instantiated) weighted graph. Our approach differs mainly
on two points. First, we use a different parameter on each edge of the graph,
whereas they use a (linear or polynomial) function on a single variable. Sec-
ond, one can see the work of [CFLY10] as a direct problem, because the authors
aim at solving the shortest path problem for a single valuation of the parameter
using a parametric structure, whereas our inverse method aims at synthesizing
a constraint on the parameters using a reference instantiation.

When considering parametrized versions of probabilistic models, recall
that Lanotte et al. [LMST07] consider parametric discrete-time Markov chains
(DTMCs), and establish minimal and maximal parameter values for the proba-
bilities associated with transitions in order to ensure reachability properties.

Finally note that we also introduced in [AF09] another inverse method
on DWGs allowing to synthesize a constraint on the weights seen as parame-
ters guaranteeing that the circuit of maximal mean of a DWG remains the same.
Recall that a circuit of maximal mean is a circuit of the graph with the highest
sum of weights divided by the number of nodes of the circuit. We proceeded in
a similar way as in Section 7.1 and Section 7.2, by extending to the parametric
case an algorithm defined in [CTCG+98], and computing the circuit of maximal
mean of a DWG.



Chapter 8

Conclusion and Perspectives

– I’ll be back before you can say
blueberry pie.
– Blueberry pie.
– Maybe not that fast, but pretty
fast, okay?

Pulp Fiction
(Quentin Tarantino)

8.1 Summary

We proposed in this thesis methods for the synthesis of delays for timed sys-
tems. In Chapter 3, we introduced the inverse method algorithm in the frame-
work of timed automata, allowing to synthesize a constraint on the delays
viewed as parameters, guaranteeing the same time-abstract behavior as for
the reference valuation. In particular, this time-abstract equivalence preserves
linear-time properties. This allows a notion of robustness: one can guarantee
that the values around a given value of the delays will not impact the time-
abstract overall behavior of the system. Moreover, it allows the optimization of
some of the timing delays, without changing the overall behavior of the system.

In Chapter 4, we presented our implementation, IMITATOR II, allowing us to
synthesize constraints guaranteeing the good behavior of various case studies,
hardware devices and communication protocols. In particular, we were able to
verify a portion of the SPSMALL memory designed by the chipset manufacturer
ST-Microelectronics, and relax timing bounds of the input signals.

By iterating this inverse method on various points of a bounded parameter
domain, we showed in Chapter 5 how to partition the parametric space into



204 Chapter 8. Conclusion and Perspectives

good zones and bad zones, with respect to a given property one wants to ver-
ify. This gives a behavioral cartography of the system. The main interest of this
technique is that this behavioral cartography does not depend on the property
one wants to verify: only the partition into good and bad tiles actually does. As a
consequence, when verifying other properties, it is sufficient to check the prop-
erty for only one point in each tile in order to get the new partition. Although
the cartography may contain holes, i.e., zones not covered by the algorithm, we
give sufficient condition for the full coverage of the real-valued bounded pa-
rameter domain.

In Chapter 6, we extended this method to probabilistic systems, in order
to synthesize constraints on the parameters guaranteeing the preservation of
probabilities for reachability properties. As for the non-probabilistic frame-
work, it gives us a measure of robustness of the system. Moreover, it allows us to
rescale the system to a valuation much smaller than the original one, thus mak-
ing the probabilistic analysis of the system easier and faster in practice. This
approach is also useful for avoiding repeated executions of probabilistic model
checking analyses for the same model with different parameter valuations.

In Chapter 7, we also presented variants of the inverse method in two other
frameworks: directed weighted graphs and Markov Decision Processes. We first
introduced an algorithm allowing us to synthesize constraints on the weights
of directed weighted graphs seen as parameters, guaranteeing that the shortest
path in a graph remains the same, for any valuation of those parameters satis-
fying this constraint. We then introduced an extension of a classical algorithm
for policy iteration, which synthesizes constraints on the weights of Markov de-
cision processes seen as parameters, guaranteeing that the optimal policy in a
Markov Decision Process remains the same, for any valuation of those param-
eters satisfying this constraint. Two prototypes, INSPEQTOR and IMPRATOR

have been implemented.
As a summary of this summary, here are the main contributions of this the-

sis:

1. design of a new method of synthesis of timing parameters for timed au-
tomata (inverse method);

2. implementation of a tool integrating this method (IMITATOR and IMITA-
TOR II), allowing the automated analysis of various case studies of the lit-
erature in the field of protocols and hardware circuits;

3. design and implementation of a behavioral cartography extension of the
method; application to various case studies, and in particular to the
memory SPSMALL designed by ST-Microelectronics;



8.2. Future Research 205

4. extension of the method to probabilistic timed models; application, in
coupling with the probabilistic model checker PRISM, to the parametric
verification of various communication protocols;

5. exploration of the application of the inverse method to other domains
than timed automata.

8.2 Future Research

Extension to Hybrid Systems. It would be interesting to extend the inverse
method to hybrid automata, where clocks evolve at different rates. This for-
malism is of interest for the verification of electronic devices modeled at the
transistor level. A first class of hybrid systems would be linear hybrid au-
tomata where, in each location, the derivatives of the variables are comprised
in bounded (constant) intervals.

Backward Reasoning. The inverse method for timed automata has been de-
signed using a forward analysis: starting from a state, one computes the set of
states reachable in a forward manner, using the Post operation in Algorithm 1.
It would be interesting to investigate the backward analysis, using the Pre oper-
ation. Instead of considering traces originating from an initial state, one would
consider traces reaching a final state. The main practical application of this ap-
proach is to study the possible behavior of the system leading to a given good
(or bad) state. Although no a priori obstacle prevents us to adapt the inverse
method to the backward case, proofs (based on the forward operation) should
be rewritten, and the implementation involves some tricky modifications (see
paragraph below concerning the improvements to IMITATOR II).

Trace-Based Inverse Method. Instead of considering a reference valuation,
one may want to consider a reference trace (or even trace set). This adapta-
tion would consist in exploring the state space, as in the current version of our
inverse method, and remove states incompatible with the reference trace, by
negating inequalities. However, this appears to be more tricky than in our case,
because the choice of the inequality to negate is not as straightforward. In the
current version of our inverse method, it is easy to choose an incompatible in-
equality, because it is π0-incompatible. In the case of a trace-based inverse
method, this question needs to be investigated more deeply.

Actually, a main advantage of such an extension of the inverse method to
reference traces is that it would allow to consider partial orders. This would be
a major improvement of our method, because a weakness is that the equality



206 Chapter 8. Conclusion and Perspectives

of trace sets is generally a too strong requirement. One is often not interested
in practice in guaranteeing the exact sequence of actions, but would like to al-
low some partial orders. An extension of the inverse method to traces allowing
partial orders for a set of actions considered to be independent would be of
high interest. Some recent work on Timed Automata with partial orders (see in
particular [SBM06]) could be a first basis for this extension.

Preservation of Temporal Logics. So far, our inverse method in the frame-
work of PTAs preserves the properties expressed in the linear time logics (LTL),
verifiable for finite traces only (i.e., reachability and safety properties). In other
words, if a reachability or safety LTL formula holds for a TA A [π0], then it holds
also for A [π], for all π |= IM(A ,π0). However, CTL formulae are not preserved.

A first step would be to be able to prove whether our inverse method pre-
serves or not formulae expressed using the full LTL logics, i.e., including for-
mulae on infinite traces. If this holds, this would allow to guarantee liveness
properties. If this does not hold, it would be interesting to investigate what we
should modify in the algorithm so that LTL properties on infinite traces are also
preserved. Recall that we give some hints on a possible proof for the preserva-
tion of the full set of LTL properties in Remark 3.16.

It would also be interesting to investigate how modifications of the inverse
method algorithm would allow to preserve CTL formulae. This is more tricky,
since our inverse method is based on sets of (single) traces. On the contrary,
the CTL formulae need to take the branching structure of the computation tree
into account. One should as a consequence synthesize constraints preserving
the branching structure, i.e., the time at which the transitions may or may not
be taken.

Finally, recall that our inverse method does not preserve properties ex-
pressed in the TCTL logic for two reasons. First, TCTL is a timed extension
of CTL, based on the branching structure of the system. Our inverse method
does not preserve CTL, and will not preserve TCTL for the same reasons. Sec-
ond, TCTL properties are not time-abstract properties, because they express
facts involving time, such as “an event must occur within a 2 seconds”. Never-
theless, it would be possible to guarantee some kind of timed properties, basi-
cally properties expressed LTL on finite traces and involving time, by doing as
follows. One should add an observer to the model, i.e., an additional PTA mod-
eling the timed property one is interested to verify. Then, one should apply
the inverse method to the global system including the observer. The constraint
output by the inverse method will then guarantee that this timed property is
verified. Although interesting in theory, this approach has not been much in-
vestigated in our framework because this leads on most examples to a dramat-



8.2. Future Research 207

ical explosion of the state space.

Variants in the Probabilistic Framework. Recall that 3 variants of the inverse
method have been designed, viz., IM⊆, IM∪ and IM⊆∪. Since these variants do
not preserve the equality of trace sets anymore, the extension to probabilistic
systems studied in Chapter 6 does not preserve anymore the minimum and
maximum probabilities of reachability properties. It would thus be of inter-
est to investigate if those variants still partially preserve some properties, for
instance, the maximal probabilities only, or under- or over-approximations of
some probabilities.

Improvement of IMITATOR II. Future work include the automatic partition
into good and bad tiles, using an external tool such as UPPAAL, which can check
the property one is interested in, for a given valuation of the parameters. Recall
that a main advantage of the cartography method is that it does not depend on
the property one wants to check. As a consequence, one should first output a
cartography (i.e., a list of tiles), and then provide another command (or another
tool) taking as input this cartography and the property one wants to check, and
outputting the partition into good and bad tiles.

Moreover, it would be interesting to implement the variant IM∪ of the in-
verse method (the variant IM⊆ has already been implemented), and consider it
also when performing the behavioral cartography. The number of tiles should
be much less than using the standard version IM .

It would also be interesting to study a “dynamic” cartography, where the
space unit between the selected points (so far, one integer) can be automati-
cally refined in order to fill the remaining holes. For example, in the Root Con-
tention Protocol case study (see Section 6.6.2), it is possible to fill the small
holes in the lower right corner by considering points multiple of 0.1 instead
of integer points. Recall that it is not necessarily possible to cover completely
the parameter space (even within a bounded parameter domain). As a conse-
quence, one may want to provide a limit, so that the tool would cover as much
space as possible, and at least, e.g., the rationals multiple of 0.1.

As said above, it would also be interesting to reason in a backward man-
ner, i.e., considering a Pre operation instead of Post in Algorithm 1. A possible
implementation is to reverse the description of the PTAs describing the model,
and apply the standard Algorithm 1 using the Post operation to this reversed
model. However, this restricts the use of discrete variables (allowed in the cur-
rent version of IMITATOR II), because one should then only allow the use of a
bijective function (on discrete variables only) when updating discrete variables.

When considering the expressiveness of the automata accepted by IMITA-



208 Chapter 8. Conclusion and Perspectives

TOR II, it would be of interest to allow the use of urgent actions (or “as soon as
possible” actions), i.e., actions that the system must take as soon as the guards
of the different transitions synchronizing on this action are all verified. This
would allow in particular to verify case studies such as the IEEE 802.11 Wireless
Local Area Network Protocol (see Section 6.5.3). Various data types could also
improve the expressiveness of the tool, such as arrays of integers like in tool
UPPAAL.

Application to Other Formalisms. Although the inverse method has been
mainly applied to the framework of timed automata, the underlying principle
may also be applied to other formalisms, as shown in Chapter 7.

It would be interesting to consider an extension to weighted (or priced)
timed automata, an extension of the class of classical timed automata al-
lowing the use of weights in both locations and transitions of the automa-
ton [ATP01, BFH+01]. A classical problem in this framework is to define sched-
ulers in order to find the optimal cost with respect to some optimization cri-
terion. When applying the inverse method to this framework, one should in-
troduce a parameterization of weighted timed automata, where the weights
would be unknown constants or parameters (as it has been done for Directed
Weighted Graphs and Markov Decision Processes in Chapter 7). Then, one
should adapt the algorithms of [ATP01, BFH+01] to the parametric case, in or-
der to synthesize constraints guaranteeing that, e.g., the optimal path between
any two nodes remains the same. A challenging issue would then be to combine
two kinds of parameters, i.e., weight parameters (as for Parametric Directed
Weighted Graphs) and timing parameters (as for Parametric Timed Automata),
and adapt the inverse method to this framework.

Due to the similarity between the formalisms of Timed Automata and Time
Petri Nets, it would also be interesting to investigate an application of our in-
verse method to (classes of) Time Petri Nets. A parametrization of Time Petri
Nets has already been investigated (see, e.g., [TLR08]), and could be used as a
basis for such an extension of the inverse method.



Bibliography

[AAB00] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for
parametric reasoning about counter and clock systems. In CAV
’00, pages 419–434. Springer-Verlag, 2000.

[AAC+09] S. Amari, É. André, T. Chatain, O. De Smet, B. Denis, E. Encre-
naz, L. Fribourg, and S. Ruel. Timed analysis of networked au-
tomation systems combining simulation and parametric model
checking. Research Report LSV-09-14, Laboratoire Spécification
et Vérification, ENS Cachan, France, 2009. SIMOP Research Re-
port. 49 pages.

[ABB+01] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David,
A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen, M. O. Möller, P. Pet-
tersson, C. Weise, and W. Yi. Uppaal - now, next, and future. In
Proc. MOVEP’00, LNCS 2067, pages 99–124. Springer, 2001.

[ABS01] A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tool for
reachability analysis of complex systems. In CAV ’01, pages 368–
372. Springer-Verlag, 2001.

[ACD91] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for
probabilistic real-time systems. In Proceedings of the 18th inter-
national colloquium on Automata, languages and programming,
pages 115–126, New York, NY, USA, 1991. Springer-Verlag New
York, Inc.

[ACD93] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, 1993.

[ACD+09] É. André, T. Chatain, O. De Smet, L. Fribourg, and S. Ruel.
Synthèse de contraintes temporisées pour une architecture
d’automatisation en réseau. In Didier Lime and Olivier H. Roux,
editors, MSR’09, volume 43 of Journal Européen des Systèmes Au-
tomatisés, pages 1049–1064. Hermès, 2009.



210 Bibliography

[ACEF09] É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse
method for parametric timed automata. International Journal of
Foundations of Computer Science, 20(5):819–836, 2009.

[ACH+92] R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-
Toi. Minimization of timed transition systems. In Proceedings of
the Third International Conference on Concurrency Theory, CON-
CUR ’92, pages 340–354, London, UK, 1992. Springer-Verlag.

[ACHH92] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid au-
tomata: An algorithmic approach to the specification and verifi-
cation of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–
235, 1994.

[AEF09] É. André, E. Encrenaz, and L. Fribourg. Synthesizing parametric
constraints on various case studies using IMITATOR. Research
Report LSV-09-13, Laboratoire Spécification et Vérification, ENS
Cachan, France, June 2009.

[AF09] É. André and L. Fribourg. An inverse method for policy-iteration
based algorithms. In Azadeh Farzan and Axel Legay, editors, Pro-
ceedings of the 11th International Workshop on Verification of Infi-
nite State Systems (INFINITY’09), volume 10 of Electronic Proceed-
ings in Theoretical Computer Science, pages 44–61, Bologna, Italy,
2009.

[AF10] É. André and L. Fribourg. Behavioral cartography of timed au-
tomata. In RP’10, volume 6227 of LNCS, pages 76–90. Springer,
2010.

[AFS09] É. André, L. Fribourg, and J. Sproston. An extension of the inverse
method to probabilistic timed automata. In AVoCS’09, volume 23
of Electronic Communications of the EASST, 2009.

[AHV93] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time rea-
soning. In STOC ’93, pages 592–601. ACM, 1993.

[AKRS08] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic
analysis for improving simulation coverage of simulink/stateflow
models. In EMSOFT ’08: Proceedings of the 8th ACM interna-
tional conference on Embedded software, pages 89–98, New York,
NY, USA, 2008. ACM.



Bibliography 211

[Alu92] Rajeev Alur. Techniques for automatic verification of real-time sys-
tems. PhD thesis, Stanford, CA, USA, 1992.

[And09a] Étienne André. IMITATOR: A tool for synthesizing constraints on
timing bounds of timed automata. In Martin Leucker and Carroll
Morgan, editors, ICTAC’09, volume 5684 of LNCS, pages 336–342.
Springer, 2009.

[And09b] Étienne André. Une méthode inverse pour les plus courts
chemins. In Actes de la 6ème École Temps-Réel (ETR’09), Paris,
France, September 2009.

[And10a] Étienne André. IMITATOR II: A tool for solving the good param-
eters problem in timed automata. In Yu-Fang Chen and Ahmed
Rezine, editors, INFINITY’10, volume 39 of Electronic Proceedings
in Theoretical Computer Science, pages 91–99, 2010.

[And10b] Étienne André. IMITATOR II user manual. Research Report LSV-10-
20, Laboratoire Spécification et Vérification, ENS Cachan, France,
November 2010.

[And10c] Étienne André. Synthesizing parametric constraints on various
case studies using IMITATOR II. Research Report LSV-10-21, Labo-
ratoire Spécification et Vérification, ENS Cachan, France, Novem-
ber 2010.

[ATP01] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted
timed automata. In HSCC ’01: Proceedings of the 4th Interna-
tional Workshop on Hybrid Systems, pages 49–62, London, UK,
2001. Springer-Verlag.

[Bar09] Abdelrezzak Bara. Vhdl2ta: A tool for automatic translation of
vhdl programs plus timings into timed automata. Research report,
LIP6, 2009. ANR-VALMEM Technical Report.

[BC05] M. Baclet and R. Chevallier. Timed verification of the SPSMALL
memory. In Proceedings of the 1st International Conference on
Memory Technology and Design (ICMTD’05), pages 89–92, Giens,
France, May 2005.

[BCG88] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing fi-
nite kripke structures in propositional temporal logic. Theor. Com-
put. Sci., 59(1-2):115–131, 1988.



212 Bibliography

[BDFP04] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed au-
tomata. Theoretical Computer Science, 321(2-3):291–345, August
2004.

[Bea03] Danièle Beauquier. On probabilistic timed automata. Theor. Com-
put. Sci., 292(1):65–84, 2003.

[Bel57] Richard E. Bellman. A Markov decision process. Journal of Math-
ematical Mechanics, 6:679–684, 1957.

[BFH+01] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. W. Vaandrager. Minimum-cost reachability for
priced timed automata. In HSCC, pages 147–161, 2001.

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Li-
brary: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Sci-
ence of Computer Programming, 72(1–2):3–21, 2008.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT
Press, 2008.

[BM83] B. Berthomieu and M. Menasche. An enumerative approach for
analyzing time petri nets. In Proceedings IFIP, pages 41–46. Else-
vier Science Publishers, 1983.

[BMR06] P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking
of linear-time properties in timed automata. In Jose R. Correa,
Alejandro Hevia, and Marcos Kiwi, editors, Proceedings of the 7th
Latin American Symposium on Theoretical Informatics (LATIN’06),
volume 3887 of LNCS, pages 238–249, Valdivia, Chile, March 2006.
Springer.

[BRV04] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – con-
struction of abstract state spaces for petri nets and time petri nets.
International Journal of Production Research, 42(14), 2004.

[BS95] J. A. Brzozowski and C. J. Seger. Asynchronous Circuits. Springer-
Verlag, 1995.

[BV06] B. Berthomieu and F. Vernadat. Time petri nets analysis with tina.
In QEST, pages 123–124, 2006.



Bibliography 213

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints. In POPL, pages 238–252, 1977.

[CC05] R. Clarisó and J. Cortadella. Verification of concurrent systems
with parametric delays using octahedra. In ACSD ’05. IEEE Com-
puter Society, 2005.

[CC07] R. Clarisó and J. Cortadella. The octahedron abstract domain. Sci.
Comput. Program., 64(1):115–139, 2007.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking. In Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), vol-
ume 2404 of LNCS, Copenhagen, Denmark, July 2002. Springer.

[CDF+08] N. Chamseddine, M. Duflot, L. Fribourg, C. Picaronny, and
J. Sproston. Computing expected absorption times for paramet-
ric determinate probabilistic timed automata. In Proc. QEST’08,
pages 254–263. IEEE, 2008.

[CDY01] S. Chakraborty, D. L. Dill, and Y. Yun. Efficient algorithms for ap-
proximate time separation of events. In Academy Proceedings in
Engineering Sciences, 2001.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic
of Programs, Workshop, pages 52–71, London, UK, 1982. Springer-
Verlag.

[CEFX06] R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Tim-
ing analysis of an embedded memory: SPSMALL. WSEAS Trans-
actions on Circuits and Systems, 5(7):973–978, July 2006.

[CEFX09] R. Chevallier, E. Encrenaz, L. Fribourg, and W. Xu. Timed ver-
ification of the generic architecture of a memory circuit using
parametric timed automata. Formal Methods in System Design,
34(1):59–81, 2009.

[CFLY10] S. Chakraborty, E. Fischer, O. Lachish, and R. Yuster. Two-phase
algorithms for the parametric shortest path problem. In Jean-Yves
Marion and Thomas Schwentick, editors, Proceedings of the 27th
Annual Symposium on the Theoretical Aspects of Computer Science



214 Bibliography

(STACS 2010), pages 167–178, Nancy France, 2010. Inria Nancy
Grand Est & Loria.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV ’00,
pages 154–169. Springer-Verlag, 2000.

[CHR02] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of con-
trol problems for timed and hybrid systems. In HSCC ’02: Proceed-
ings of the 5th International Workshop on Hybrid Systems: Compu-
tation and Control, pages 134–148, London, UK, 2002. Springer-
Verlag.

[CPR08] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of
schedulability regions using parametric timed automata. In RTSS
’08: Proceedings of the 2008 Real-Time Systems Symposium, pages
80–89, Washington, DC, USA, 2008. IEEE Computer Society.

[CR06] F. Cassez and O. H. Roux. Structural translation from Time
Petri Nets to Timed Automata – Model-Checking Time Petri Nets
via Timed Automata. The journal of Systems and Software,
79(10):1456–1468, 2006.

[CS01] A. Collomb–Annichini and M. Sighireanu. Parameterized reach-
ability analysis of the IEEE 1394 Root Contention Protocol using
TReX. In RT-TOOLS ’01, 2001.

[CSD97] S. Chakraborty, P. A. Subrahmanyam, and D. L. Dill. Approximate
time separation of events in practice. In Proc. of 5th ACM/IEEE Int.
Workshop TAU (REFERENCE A REVOIR), 1997.

[CTCG+98] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Mc Gettrick, and J-
P. Quadrat. Numerical computation of spectral elements in max-
plus algebra. In IFAC Conf. on Syst. Structure and Control, 1998.

[Daw04] Conrado Daws. Symbolic and parametric model checking of
discrete-time Markov chains. In Proc. ICTAC’04, volume 3407 of
LNCS, pages 280–294. Springer, 2004.

[DDMR04] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness
and implementability of timed automata. In Yassine Lakhnech
and Sergio Yovine, editors, Proceedings of the Joint Conferences
Formal Modelling and Analysis of Timed Systems (FORMATS’04)
and Formal Techniques in Real-Time and Fault-Tolerant Systems



Bibliography 215

(FTRTFT’04), volume 3253 of LNCS, pages 118–133, Grenoble,
France, 2004. Springer.

[DDSS07] D. D’Aprile, S. Donatelli, A. Sangnier, and J. Sproston. From time
Petri nets to timed automata: An untimed approach. In Orna
Grumberg and Michael Huth, editors, Proceedings of the 13th In-
ternational Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS’07), volume 4424 of LNCS, pages
216–230, Braga, Portugal, March 2007. Springer.

[Dil90] David L. Dill. Timing assumptions and verification of finite-state
concurrent systems. In Proceedings of the international workshop
on Automatic verification methods for finite state systems, pages
197–212, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[DKRT97] P.R. D’Argenio, J.P. Katoen, T.C. Ruys, and G.J. Tretmans. The
bounded retransmission protocol must be on time! In TACAS ’97.
Springer, 1997.

[Doy07] Laurent Doyen. Robust parametric reachability for timed au-
tomata. Information Processing Letters, 102(5):208–213, 2007.

[DRF+07] B. Denis, S. Ruel, J.-M. Faure, G. Marsal, and G. Frey. Measuring
the impact of vertical integration on response times in Ethernet
fieldbuses. In Proc. of ETFA’07, 2007.

[DWDR05] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost asap semantics:
from timed models to timed implementations. Form. Asp. Com-
put., 17(3):319–341, 2005.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate
timed automata with kronos. In IEEE Real-Time Systems Sympo-
sium, pages 66–75, 1995.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correct-
ness properties of parallel programs using fixpoints. In Proceed-
ings of the 7th Colloquium on Automata, Languages and Program-
ming, pages 169–181, London, UK, 1980. Springer-Verlag.

[EF08] E. Encrenaz and L. Fribourg. Time separation of events : An in-
verse method. In Proceedings of the LIX Colloquium ’06, volume
209 of ENTCS, Palaiseau, France, 2008. Elsevier Science Publish-
ers.



216 Bibliography

[FJK08] G. Frehse, S.K. Jha, and B.H. Krogh. A counterexample-guided
approach to parameter synthesis for linear hybrid automata. In
HSCC ’08, volume 4981 of LNCS, pages 187–200. Springer, 2008.

[FKR06] G. Frehse, B.H. Krogh, and R.A. Rutenbar. Verifying analog os-
cillator circuits using forward/backward abstraction refinement.
In DATE ’06: Proceedings of the conference on Design, automation
and test in Europe, pages 257–262. European Design and Automa-
tion Association, 2006.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6), 1962.

[Fre05a] Goran Frehse. Compositional Verification of Hybrid Systems using
Simulation Relations. Ph.d. thesis, Radboud University Nijmegen,
2005.

[Fre05b] Goran Frehse. PHAVer: Algorithmic verification of hybrid systems
past HyTech. In HSCC, pages 258–273, 2005.

[GHJ97] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed au-
tomata. In Oded Maler, editor, Proceedings of the 1997 Interna-
tional Workshop on Hybrid and Real-Time Systems (HART’97), vol-
ume 1201 of LNCS, pages 331–345. Springer-Verlag, March 1997.

[GJ95] H. Gregersen and H. E. Jensen. Formal design of reliable real time
systems. Master’s thesis, Department of Mathematics and Com-
puter Science, Aalborg University, 1995.

[GPSS80] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal
basis of fairness. In POPL, pages 163–173, 1980.

[gWp] Graphviz Web page. http://www.graphviz.org/.

[HH07] D. Harris and S. Harris. Digital Design and Computer Architecture.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[HHWT95] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. A user guide to
HYTECH. In TACAS, pages 41–71, 1995.

[HHWT97] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. Hytech: A model
checker for hybrid systems. Software Tools for Technology Trans-
fer, 1:460–463, 1997.



Bibliography 217

[HHWZ10] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A
model checker for parametric markov models. In CAV, pages 660–
664, 2010.

[HKM08] T. Han, J.-P. Katoen, and A. Mereacre. Approximate parameter
synthesis for probabilistic time-bounded reachability. In Proc.
RTSS’08, pages 173–182. IEEE, 2008.

[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM:
A tool for automatic verification of probabilistic systems. In
TACAS’06, volume 3920 of LNCS, pages 441–444. Springer, 2006.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Inf. Comput., 111(2):193–
244, 1994.

[Hol03] Gerard Holzmann. The Spin model checker: primer and reference
manual. Addison-Wesley Professional, 2003.

[How60] R. A. Howard. Dynamic Programming and Markov Processes. John
Wiley and Sons, Inc., 1960.

[HRSV02] T.S. Hune, J.M.T. Romijn, M.I.A. Stoelinga, and F.W. Vaandrager.
Linear parametric model checking of timed automata. Journal of
Logic and Algebraic Programming, 2002.

[HSLL97] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal mod-
eling and analysis of an audio/video protocol: an industrial case
study using uppaal. In RTSS ’97: Proceedings of the 18th IEEE Real-
Time Systems Symposium, page 2, Washington, DC, USA, 1997.
IEEE Computer Society.

[HWT96] T. A. Henzinger and H. Wong-Toi. Using HYTECH to synthesize
control parameters for a steam boiler. In Formal Methods for
Industrial Applications: Specifying and Programming the Steam
Boiler Control, LNCS 1165. Springer-Verlag, 1996.

[JM09] B. Jeannet and A. Miné. Apron: A library of numerical abstract do-
mains for static analysis. In CAV ’09, volume 5643 of LNCS, pages
661–667. Springer, 2009.

[KMST59] J. Kemeny, H. Mirkil, J. Snell, and G. Thompson. Finite mathemat-
ical structures. Prentice-Hall, Englewood Cliffs, N.J., 1959.



218 Bibliography

[KNP09] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for
verification of probabilistic timed automata. In J. Ouaknine and
F. Vaandrager, editors, FORMATS’09, volume 5813 of LNCS, pages
212–227. Springer, 2009.

[KNPS06] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Per-
formance analysis of probabilistic timed automata using digital
clocks. Form. Methods Syst. Des., 29:33–78, 2006.

[KNS02] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model
checking of the IEEE 802.11 wireless local area network protocol.
In Proc. PAPM/PROBMIV’02, volume 2399 of LNCS, pages 169–187.
Springer, 2002.

[KNS03] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model
checking of deadline properties in the IEEE 1394 FireWire root
contention protocol. Formal Aspects of Computing, 14(3):295–318,
2003.

[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distri-
butions. Theoretical Computer Science, 282:101–150, 2002.

[KNSW07] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic
model checking for probabilistic timed automata. Information
and Computation, 205(7):1027–1077, 2007.

[KP10] M. Knapik and W. Penczek. Bounded model checking for para-
metric time automata. In SUMo ’10, 2010.

[KSK76] J. G. Kemeny, J. L. Snell, and A. W Knapp. Denumerable Markov
Chains. Graduate Texts in Mathematics. Springer, 2nd edition,
1976.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Trans. Pro-
gram. Lang. Syst., 16(3):872–923, 1994.

[LMST07] R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Parametric prob-
abilistic transition systems for system design and analysis. Form.
Asp. Comput., 19(1):93–109, 2007.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. In-
ternational Journal on Software Tools for Technology Transfer, 1(1-
2):134–152, 1997.



Bibliography 219

[LPZ85] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In
Logic of Programs, pages 196–218, 1985.

[LRST09] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez. Romeo: A
parametric model-checker for Petri nets with stopwatches. In Ste-
fan Kowalewski and Anna Philippou, editors, 15th International
Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2009), volume 5505 of LNCS, pages 54–57,
York, United Kingdom, March 2009. Springer.

[LY93] K. G. Larsen and W. Yi. Time abstracted bisimiulation: Implicit
specifications and decidability. In MFPS, pages 160–176, 1993.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[Mer74] Philip Meir Merlin. A study of the recoverability of computing sys-
tems. PhD thesis, 1974.

[MP95] O. Maler and A. Pnueli. Timing analysis of asynchronous circuits
using timed automata. In CHARME ’95, pages 189–205. Springer-
Verlag, 1995.

[MY96] O. Maler and S. Yovine. Hardware timing verification using kro-
nos. In ICCSSE ’96: Proceedings of the 7th Israeli Conference
on Computer-Based Systems and Software Engineering, page 23,
Washington, DC, USA, 1996. IEEE Computer Society.

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[PBBDM98] G. A. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy
optimization for dynamic power management. In DAC ’98, pages
182–187, New York, NY, USA, 1998. ACM.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, In-
stitut für Instrumentelle Mathematik, 1962.

[Pnu77] Amir Pnueli. The temporal logic of programs. In SFCS ’77: Pro-
ceedings of the 18th Annual Symposium on Foundations of Com-
puter Science, pages 46–57, Washington, DC, USA, 1977. IEEE
Computer Society.



220 Bibliography

[PP06] W. Penczek and A. Pólrola. Advances in Verification of Time Petri
Nets and Timed Automata: A Temporal Logic Approach (Studies
in Computational Intelligence). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete
Event Dynamic Systems, 10(1-2):87–113, 2000.

[pWpa] gnuplot Web page. http://www.gnuplot.info/.

[pWpb] PRISM Web page. Prism web page.

[RDS08] S. Ruel and J.-M. De Smet, O. Faure. Efficient representation for
formal verification of time performances of networked automa-
tion architectures. In Proc. of 17th IFAC World Congress, pages
5119–5124, July 2008.

[ROC05] R. Ramaswamy, J. B. Orlin, and N. Chakravarti. Sensitivity analysis
for shortest path problems and maximum capacity path problems
in undirected graphs. Math. Program., Ser. A, 102:355–369, 2005.

[SB03] L. Stachniss and W. Burgard. The markov decision problem - au-
tonomous mobile systems. Course notes, University Freiburg,
Germany, 2003.

[SBM06] R. Ben Salah, M. Bozga, and O. Maler. On interleaving in timed
automata. In CONCUR ’06, volume 4137 of LNCS, pages 465–476.
Springer, 2006.

[Sch86] Alexander Schrijver. Theory of linear and integer programming.
John Wiley & Sons, Inc., New York, NY, USA, 1986.

[Seg95] Roberto Segala. Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, Massachusetts Institute
of Technology, 1995.

[Sou10a] Romain Soulat. Améliorations algorithmiques d’un moteur de
model-checking et études de cas. Rapport de Master, Master 2
Recherche Informatique Paris Sud 11, 2010.

[Sou10b] Romain Soulat. Analysis of the bounded retransmission protocol
using IMITATOR II. 2010.



Bibliography 221

[Sou10c] Romain Soulat. On properties of the inverse method: Commuta-
tion of instantiation. Research Report LSV-10-22, Laboratoire Spé-
cification et Vérification, ENS Cachan, France, November 2010.

[Spr01] Jeremy Sproston. Model Checking for Probabilistic Timed and Hy-
brid Systems. PhD thesis, School of Computer Science, University
of Birmingham, 2001.

[SRD09] P. Bazargan Sabet, P. Renault, and D. Le Dû. Prototype d’outil
d’abstraction fonctionnelle, 2009. VALMEM Project deliver-
able 2.4.

[TLR08] L.-M. Traonouez, D. Lime, and O. H. Roux. Parametric model-
checking of time petri nets with stopwatches using the state-class
graph. In FORMATS ’08: Proceedings of the 6th international con-
ference on Formal Modeling and Analysis of Timed Systems, pages
280–294, Berlin, Heidelberg, 2008. Springer-Verlag.

[TY98] S. Tripakis and S. Yovine. Verification of the fast reservation proto-
col with delayed transmission using the tool kronos. In IEEE Real
Time Technology and Applications Symposium, pages 165–, 1998.

[TY01] S. Tripakis and S. Yovine. Analysis of timed systems using time-
abstracting bisimulations. Formal Methods in System Design,
18(1):25–68, 2001.

[vWp] VHDL2TA Web page. http://www.lsv.ens-cachan.fr/

~encrenaz/valmem/vhdl2hytech/.

[Wan06] Farn Wang. REDLIB for the formal verification of embedded sys-
tems. In ISoLA, pages 341–346, 2006.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and Per Stenström.
The worst-case execution-time problem—overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):1–53,
2008.

[WY03] F. Wang and H.C. Yen. Timing parameter characterization of real-
time systems. In CIAA ’03, volume 2759 of LNCS, pages 23–34,
2003.



222 Bibliography

[YKM02] T. Yoneda, T. Kitai, and C. J. Myers. Automatic derivation of tim-
ing constraints by failure analysis. In CAV ’02, pages 195–208.
Springer-Verlag, 2002.

[YL97] M. Yannakakis and D. Lee. An efficient algorithm for minimizing
real-time transition systems. Form. Methods Syst. Des., 11:113–
136, 1997.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems.
STTT, 1(1-2):123–133, 1997.

[ZC05] D. Zhang and R. Cleaveland. Fast on-the-fly parametric real-time
model checking. In RTSS ’05: Proceedings of the 26th IEEE Inter-
national Real-Time Systems Symposium, pages 157–166, Washing-
ton, DC, USA, 2005. IEEE Computer Society.



Appendix A

Classical Notions

A.1 LTL

We recall below the syntax and semantics of the Linear Temporal Logic
(LTL) [Pnu77]. We borrow most of the following from [BK08].

Syntax. Given a set AP of atomic propositions, LTL formulae over the set AP
are formed according to the following grammar:

ϕ ::= true | a |ϕ1 ∧ϕ2 | ¬ϕ |©ϕ |ϕ1 ∪ϕ2

where a ∈ AP.
The © modality, pronounced “next”, is a unary prefix operator requiring a

single LTL formula as argument. Formula ©ϕ holds at the current moment
if ϕ holds in the next step. The ∪ modality, pronounced “until”, is a binary
infix operator requiring two LTL formula as argument. Formulaϕ1∪ϕ2 holds at
the current moment if there is some future moment for which ϕ2 holds and ϕ1

holds at all moment until this future moment.
Using the Boolean connectives∧ and¬, the full power of propositional logic

is obtained. One can derive the other booleans connectives, such as disjunc-
tion ∨, implication →, or equivalence ↔, in a classical way.

The until operator allows to derive the temporal modalities ♦ (“eventually”,
sometimes in the future) and � (“always”, from now on forever) as follows:

♦
def= true∪ϕ

�
def= ¬♦¬ϕ



224 Appendix A. Classical Notions

As a result, ♦ϕ ensures thatϕwill be true eventually in the future. Moreover,
�ϕ is satisfied if and only if it is not the case that eventually ¬ϕ holds. This is
equivalent to the fact that ϕ holds from now on forever.

By combining the temporal modalities ♦ and �, new temporal modalities
are obtained, such as �♦a (“always eventually a”) or ♦�a (“eventually for-
ever a”).

Semantics. The semantics of LTL formulaϕ is defined as a language Words(ϕ)
that contains all infinite words over the alphabet 2AP that satisfy ϕ. Let ϕ be an
LTL formula over AP. The linear time property induced by ϕ is

Words(ϕ) = {
σ ∈ (2AP)ω |σ |=ϕ}

where the satisfaction relation |= ⊆ (2AP)ω×LTL is the smallest relations with
the properties in Figure A.1.

σ |= true

σ |= a iff a ∈ A0 (i.e., A0 |= a)
σ |= ϕ1 ∧ϕ2 iff σ |=ϕ1 and σ |=ϕ2

σ |= ¬ϕ iff σ 6|=ϕ
σ |= ©ϕ iff σ[1 . . . ] = A1 A2 A3 . . . |=ϕ
σ |= ϕ1 ∪ϕ2 iff ∃ j ≥ 0.σ[ j . . . ] |=ϕ2 and σ[i . . . ] |=ϕ1,

for all 0 ≤ i ≤ j

Figure A.1: LTL semantics for infinite words over 2AP

Here, for σ = A0 A1 A2 · · · ∈ (2AP)ω, σ[ j . . . ] = A j A j+1 A j+2 . . . is the suffix of σ
starting in the ( j +1)st symbol A j .

For the derived operators ♦ and �, we have:
σ |= ♦ϕ iff ∃ j ≥ 0.σ[ j . . . ] |=ϕ
σ |= �ϕ iff ∀ j ≥ 0.σ[ j . . . ] |=ϕ.

We do not give here the semantics or the combinations of ♦ and �, which
can be defined in a straightforward way and found, e.g., in [BK08].

A.2 CTL

We recall here the syntax and semantics of CTL [CE82] (Computation Tree
Logic), which is a widely used branching temporal logic. We borrow most of
the following from [BK08].



A.2. CTL 225

Syntax. CTL has a two-stage syntax where formulae are classified into state
ant path formulae. The notion of “path” is classical in the literature, and we will
stick to it. Note nevertheless that those paths correspond to the concrete runs
of our PTAs.

In our framework, a major difference with LTL is that it is not sufficient to
consider traces (or trace sets) of PTAs; one has to consider the timed semantics
of PTAs, i.e., their full semantics as a LTS.

CTL state formulae over the set AP of atomic propositions are formed ac-
cording to the following grammar:

Φ ::= true | a |Φ1 ∧Φ2 | ¬Φ | ∃ϕ | ∀ϕ
where a ∈ AP and ϕ is a path formula.

CTL path formulae are formed according to the following grammar:

ϕ ::=©Φ |Φ1 ∪Φ2

where Φ, Φ1 and Φ2 are state formulae.
The temporal operators © and ∪ have the same meaning as in LTL and are

path operators. Path formulae can be turned into state formulae by prefixing
them with either the path quantifier ∃ (pronounced “for some path”) or the path
quantifier ∀ (pronounced “for all path”). Formula ∃ϕ holds in a state if there
exists some path satisfying ϕ that starts in that state. Dually, formula ∀ϕ holds
in a state if all paths that start in that state satisfy ϕ.

Semantics. CTL formulae are interpreted over the states and paths of an LTS.
Given an LTS, the semantics of CTL formulae is defined by two satisfaction re-
lations (both denoted by |=): one for the state formulae, and one for the path
formulae. For the state formulae, |= is a relation between the states of the LTS
and state formulae. We have that s |= Φ if and only if state formula Φ holds in
state s. For the path formulae, |= is a relation between maximal run fragments
of the LTS and path formulae. We have that R |= ϕ if and only if run R satisfies
path formula ϕ.

Let a ∈ AP be an atomic proposition, L = (S,S0,⇒) be an LTS correspond-
ing to the concrete semantics of a PTA, state s ∈ S, Φ, Φ1 and Φ2 be CTL state
formulae, and φ be a CTL path formula. Recall that we consider that the set of
the atomic propositions correspond to the locations of the PTAs. As a conse-
quence, we assume that the labeling function L assigns to a concrete state the
corresponding location, i.e.? is such that L(q, w) = q . We denote by R ∈ Runs(s)
the set of runs starting from state s in the LTS. The satisfaction relation |= is
defined for state formulae by:



226 Appendix A. Classical Notions

s |= a iff a = L(s)
s |= ¬Φ iff not s |=Φ
s |= Φ1 ∧Φ2 iff s |=Φ1 and s |=Φ2

s |= ∃ϕ iff R |=ϕ for some R ∈ Runs(s)
s |= ∀ϕ iff R |=ϕ for all R ∈ Runs(s)

For a run R, the satisfaction relation |= for path formulae is defined by
R |= ©Φ iff R[1] |=Φ
R |= Φ1 ∪Φ2 iff ∃ j ≥ 0 s.t. R[ j ] |=Φ2 ∧ (∀0 ≤ k ≤ j : R[k] |=Φ1)

where for run R = s0
a0⇒ s1

a1⇒··· and integer i ≥ 0, R[i ] denotes the (i +1)th state
of R, i.e., R[i ] = si .

A.3 Time-Abstract Bisimulation

We recall here the notion of time-abstract bisimulation, a relation which is in-
sensitive to time-quantities. This notion (defined, e.g., in [LY93]) is defined be-
low in our framework of semantics of TAs.

Let A1 and A2 be two TAs. Let L1 (resp. L2) be the LTS corresponding to the
concrete semantics of A1 (resp. A2). A binary relation R between L1 and L2 is
a strong timed simulation if (s1, s2) ∈ R implies that for all a ∈ Σ, we have that

whenever s1
a⇒ s′1 then, for some s′2, s2

a⇒ s′2 and (s′1, s′2) ∈R.
We call such a simulation R a strong timed bisimulation if it is symmetrical.



Notations

We recall below the most frequent letters used throughout (or in part of) this
thesis.

Latin Letters

C Constraint on the clock and the parameters
d constant ∈R≥0

D constraint on the clocks
e linear term
g guard
H cardinality of the set of clocks
I invariant
J inequality on the parameters
K constraint on parameters
M cardinality of the set of parameters
p parameter
P set of parameters
q location
Q set of locations
r run
s state
S set of states
w clock valuation / weight function (MDP)
W parametric weight function (MDP)
x clock
X set of clocks

Cursive Letters

A TA / PTA / probabilistic TA / PPTA
C matrix of costs (Section 7.1)



228 Notations

D parametric matrix of costs (Section 7.1)
G DWG / PDWG (Section 7.1)
KX constraint on the clocks
KP constraint on the parameters
KX∪P constraint on the clocks and the parameters
L LTS
M MDP (Section 7.2)
S successor matrix (Section 7.1)
V shortest path matrix (Section 7.1)
W parametric shortest path matrix (Section 7.1)

Greek Letters

α coefficient for variable
µ distribution (Chapter 6)
ν policy (Section 7.2)
π valuation of the parameters
ρ set of clock variables to be reset
σ scheduler (Chapter 6)
Σ set of actions
ϕ LTL / CTL formula
ω path of a TPS (Chapter 6)
Ω set of paths (Chapter 6)

Sets of Numbers

N set of non-negative integers
Q set of rational numbers
Q≥0 set of non-negative rational numbers
R set of real numbers
R≥0 set of non-negative real numbers



Glossary

CTL
Computation Tree Logic (Appendix A.2)

DWG
Directed Weighted Graph (Definition 7.1)

LTL
Linear Time Logic (Appendix A.1)

LTS
Labeled Transition System (Definition 2.7)

MDP
Markov Decision Process (Definition 7.16)

NAS
Networked Automation System (Section 4.8)

NPTA
Network of Parametric Timed Automata (Definition 2.25)

NTA
Network of Timed Automata (Definition 2.10)

PDWG
Parametric Directed Weighted Graph (Definition 7.8)

PMDP
Parametric Markov Decision Process (Definition 7.25)

PPTA
Parametric Probabilistic Timed Automaton (Definition 6.13)



230 Glossary

PTA
Probabilistic Timed Automaton (Definition 2.21)

TCTL
Timed Computation Tree Logic (Definition 2.7)

TPS
Timed Probabilistic System (Definition 6.1)



Index

Behavioral cartography, 117

Clock, 14
Convex Linear Constraint, 15

Directed Weighted Graph, 173

IMITATOR, 80
IMITATOR II, 81
Inverse method, 45

Labeled Transition System, 17
Linear Inequality, 15

Markov Decision Process, 188

Network of Parametric Timed Au-
tomata, 26

Network of Timed Automata, 19

Parameter, 15
Parametric Directed Weighted Graph,

178
Parametric Markov Decision Process,

194
Parametric Probabilistic Timed Au-

tomaton , 150
Parametric Timed Automaton, 24
Policy, 190
Probabilistic Timed Automaton, 143

Scheduler, 142
Set inclusion, 28
State inclusion, 28

Timed Automaton, 17
Timed Probabilistic System, 142



232 Index



Résumé substantiel

Introduction

Contexte. L’importance des systèmes informatiques dans la société a crû
de façon drastique depuis plusieurs décennies. Les systèmes critiques, impli-
quant des vies humaines, doivent être parfaitement stables, et ne pas mener
au moindre comportement inapproprié. Ces comportements inappropriés cor-
respondent par exemple à des erreurs ou des séquences d’actions imprévues.
Il est possible de tester la correction d’un système afin de vérifier l’absence de
comportement inapproprié pour un environnement précis, en exécutant direc-
tement le système. Néanmoins, bien que le test d’un système soit à même de
garantir l’absence de comportement inapproprié pour une exécution particu-
lière, aucune garantie n’est donnée plus généralement, pour d’autres scenarii
de l’environnement. De plus, pour peu qu’il y ait du non-déterminisme dans
l’exécution, c’est-à-dire une part de choix indépendant de l’utilisateur, la cor-
rection d’un cas de test ne donne pas même de garantie pour d’autres exécu-
tions correspondant au même environnement que celui de ce cas de test. C’est
pourquoi des techniques formelles de vérification sont nécessaires, permettant
de prouver la correction d’un système vis-à-vis d’une propriété donnée, et ce à
l’aide de modèles et de preuves mathématiques.

Lorsque l’on vérifie formellement un système temps-réel, comme un circuit
ou un protocole de communication, il est important de vérifier non seulement
l’aspect fonctionnel, mais également temporisé. La correction du système dé-
pend des valeurs de constantes temporelles internes et de l’environnement.

Les méthodes formelles de vérification garantissent la correction d’un sys-
tème temporisé pour un ensemble de constantes temporelles, mais ne donnent
pas d’information pour d’autres constantes. Vérifier la correction d’un système
pour de nombreuses constantes peut s’avérer long et difficile. Il est alors in-
téressant de raisonner paramétriquement, en considérant que ces constantes
sont inconnues, c’est-à-dire des paramètres. Le problème des bons paramètres
consiste alors à synthétiser de bonnes valeurs de ces paramètres, c’est-à-dire
des valeurs pour lesquelles le système a un bon comportement. Nous nous inté-



234 Résumé substantiel

ressons ici à la synthèse de paramètres dans le cadre des automates temporisés,
un modèle utilisé pour la vérification de systèmes temps-réel.

Contributions. Cette thèse propose une nouvelle approche pour la synthèse
de constantes temporelles dans les systèmes temporisés. Notre approche est
basée sur la méthode inverse suivante : nous considérons que les constantes
temporelles du système sont des paramètres. Partant d’une instance de réfé-
rence des paramètres, nous synthétisons une contrainte sur les paramètres, ga-
rantissant le même comportement que pour l’instance de référence, abstrac-
tion faite du temps. Il en résulte un critère de robustesse pour le système, dans
le sens où le système se comportera de la même manière pour des constantes
autour de l’instance de référence, tant que l’on reste dans la contrainte synthé-
tisée. En itérant cette méthode sur un ensemble de points dans un domaine
paramétrique borné, nous sommes alors à même de partitionner l’espace des
paramètres en bonnes et mauvaises zones par rapport à une propriété que l’on
souhaite vérifier. Ceci nous donne une cartographie comportementale du sys-
tème.

Cette méthode s’étend aisément aux systèmes probabilistes. Nous présen-
tons également des variantes de la méthode inverse dans deux autres cadres :
les graphes orientés valués, et les processus de décision markoviens. Plusieurs
prototypes ont été implémentés ; en particulier, IMITATOR II implémente la mé-
thode inverse et la cartographie dans le cadre des automates temporisés. Ce
prototype nous a permis de synthétiser des valeurs de bon fonctionnement
pour les paramètres temporels de plusieurs études de cas, notamment un
modèle abstrait d’une mémoire commercialisée par le fabricant de puces ST-
Microelectronics, ainsi que plusieurs protocoles de communication.

Préliminaires

Contraintes. On suppose donnés un ensemble de variables d’horloges, et un
ensemble de constantes inconnues, ou paramètres.

On suppose ici qu’une contrainte est une conjonction d’inégalités linéaires
sur les horloges, ou sur les paramètres, ou sur les horloges et les paramètres.
Les coefficients des variables sont supposés rationnels. On autorise, pour les
contraintes sur les horloges uniquement, l’usage de constantes dans les inéga-
lités (hors coefficients).

Automates temporisés. Nous considérons ici le modèle des automates tem-
porisés [AD94]. Les automates temporisés sont une extension au cas tempo-
risé des automates d’états finis, autorisant l’usage d’horloges, c’est-à-dire de



235

variables évoluant linéairement avec le temps. Classiquement, ces automates
sont constitués d’un ensemble d’états de contrôle, d’un alphabet d’actions,
et d’un ensemble de transitions. De plus, certaines des horloges peuvent être
remises à zéro lors des transitions entre deux états de contrôle de l’auto-
mate. On associe également aux états de contrôle un invariant, c’est-à-dire
une contrainte sur les horloges qui doit être vérifiée pour rester dans l’état de
contrôle en question. Enfin, on associe également aux transitions entre deux
états de contrôles une garde, c’est-à-dire une contrainte sur les horloges qui
doit être vérifiée pour prendre la transition. Les invariants et les gardes com-
parent donc des horloges à des constantes, dites constantes temporelles. Ces
constantes temporelles ont une grande importance, et décident généralement
du comportement du système.

La sémantique des automates temporisés s’entend en termes d’états
concrets, c’est-à-dire de couples constitués d’un état de contrôle et d’une va-
leur pour chaque horloge. Le comportement d’un automate est alors repré-
sentable par une exécution concrète, ou séquence possiblement infinie d’états
concrets et de transitions discrètes entre ces états concrets. Bien entendu, la
valeur de chaque horloge dans chaque état concret doit satisfaire l’invariant
de l’état de contrôle associé, et deux états concrets adjacents dans l’exécution
concrète doivent satisfaire la garde et les horloges remises à zéro associées à la
transition entre ces deux états concrets.

On s’intéresse ici à la notion de trace, qui est en fait une sémantique abs-
traction faite du temps : une trace correspond à une exécution concrète dont
on abstrait la valeur des horloges, autrement dit une séquence possiblement in-
finie d’états de contrôles et de transitions discrètes. L’automate temporisé est
alors caractérisé par son ensemble de traces, ou l’ensemble des traces associées
aux exécutions partant de l’état de contrôle initial de l’automate.

Parmi les avantages des automates temporisés, on retiendra que de nom-
breux problèmes sont décidables, notamment l’accessibilité d’un état concret.
De plus, plusieurs logiques peuvent exprimer des propriétés sur les automates
temporisés. Les logiques temporelles LTL [Pnu77, GPSS80, LPZ85, Lam94], à
temps linéaire, ou CTL [CE82] , à temps branchant, permettent de spécifier et
vérifier des propriétés associées aux traces. En outre, la logique temporelle tem-
porisée TCTL [ACD93] permet de spécifier des propriétés temporisées associées
aux exécutions de l’automate.

Plusieurs outils permettent de vérifier des systèmes modélisés à l’aide d’au-
tomates temporisés ou leurs extensions, notamment HYTECH [HHWT97], UP-
PAAL [LPY97], KRONOS [Yov97], TREX [ABS01] ou encore PHAVer [Fre05b].



236 Résumé substantiel

Automates temporisés paramétrés. Ajuster la valeur des constantes tem-
porelles d’un automate temporisé peut s’avérer long et difficile : il est donc
souvent intéressant de considérer que ces constantes sont des valeurs incon-
nues, ou paramètres. Nous rappelons ici l’extension paramétrée des automates
temporisés. Ces automates temporisés paramétrés [AHV93] autorisent dans
les gardes et invariants de l’automate l’utilisation de paramètres au lieu des
constantes rationnelles.

Pour une instance donnée des paramètres, c’est-à-dire l’assignation à
chaque paramètre d’une constante, on retrouve alors un automate temporisé
classique.

La sémantique s’entend alors en termes d’états symboliques, c’est-à-dire
de couples constitués d’un état de contrôle et d’une contrainte sur les hor-
loges et les paramètres. Le comportement d’un automate est alors représen-
table par une exécution symbolique, ou séquence possiblement infinie d’états
concrets et de transitions discrètes entre ces états symboliques. Bien entendu,
la contrainte associée à chaque état symbolique doit satisfaire l’invariant de
l’état de contrôle associé, et deux états symboliques adjacents dans l’exécution
symbolique doivent satisfaire la garde et les horloges remises à zéro associées à
la transition entre ces deux états symboliques.

Comme pour les automates temporisés classiques, nous définissons une
trace comme une exécution symbolique dont on abstrait la valeur des horloges
et des paramètres, autrement dit une séquence possiblement infinie d’états de
contrôles et de transitions discrètes.

Une méthode inverse pour les automates temporisés

Nous nous intéressons ici au problème inverse suivant. « Soit un automate
temporisé paramétré et une instance de référence des paramètres temporels.
Quelles sont les autres valeurs des paramètres temporels pour lesquelles le
comportement non-temporisé de l’automate est le même, c’est-à-dire telles
que les ensembles de traces sont égaux ? » Ce problème permettra plus tard de
nous aider à résoudre le problème des bons paramètres pour les automates
temporisés.

Méthode inverse. La méthode inverse que nous définissons [ACEF09] pour ré-
soudre le problème inverse peut se résumer comme suit. La méthode prend en
entrée un automate temporisé paramétré A et une instance de référence π0 de
tous les paramètres.

Partant d’une contrainte K égale à vrai, nous calculons de manière ité-
rative un ensemble d’états symboliques accessibles. Quand un état dit π0-



237

incompatible est généré, c’est-à-dire quand la projection sur les paramètres de
la contrainte sur les horloges et paramètres associée à l’état n’est pas vérifiée
par π0, on raffine alors K comme suit : on sélectionne dans K une inégalité
elle-même π0-incompatible, on la nie, et on l’ajoute à K . Cette procédure est
alors réitérée avec ce nouveau K , et ainsi de suite jusqu’à ce qu’aucun nouvel
état ne soit généré. Finalement, on retourne l’intersection K0 de la projection
sur les paramètres des contraintes associées à tous les états accessibles.

Les deux étapes majeures de cet algorithme sont les suivantes :

1. la négation des états π0-incompatibles (en niant des inégalités π0-
incompatibles) garantit l’absence de traces non présentes sous π0 ;

2. l’intersection finale de toutes les contraintes sur les paramètres associées
aux états accessibles garantit que toutes les traces sous π0 seront égale-
ment présentes pour toute autre instance des paramètres prise dans K0.

Correction et terminaison. Nous montrons tout d’abord [ACEF09] que, pour
une contrainte K0 retournée par notre méthode pour un automate A et une
instance π0, les ensembles de traces de A sous π0 et A sous π sont égaux, quel
que soit π pris dans K0. En d’autres termes, pour toute trace finie de A sous π0,
il existe une trace égale dans A sous π et réciproquement.

La méthode ne termine pas dans le cas général. Néanmoins, nous don-
nons des critères de terminaison, notamment pour des automates acycliques,
c’est-à-dire ne passant jamais deux fois par le même état de contrôle. En outre,
en pratique, la méthode inverse termine pour la très grande majorité de nos
exemples.

Propriétés. En raison de la sélection aléatoire des contraintes π0-
incompatibles et de l’inégalité π0-incompatible au sein d’une contrainte,
la méthode n’est pas confluente : pour une même entrée, la contrainte retour-
née par la méthode inverse n’est pas nécessairement toujours la même. Cette
non-confluence implique une non-maximalité : la contrainte retournée par la
méthode n’est pas nécessairement la plus large résolvant le problème inverse.
En d’autres termes, il peut exister d’autres instances de paramètres en dehors
de K0 correspondant au même ensemble de traces que sous π0.

Avantages. La méthode inverse présente les avantages suivants. Tout d’abord,
elle permet de donner un critère de robustesse au système, en garantissant la
correction du système non seulement pour une instance des paramètres, mais
pour d’autres instances autour de cette instance nominale. Ceci se révèle in-
téressant lors de l’implémentation réelle d’un modèle, puisque les constantes



238 Résumé substantiel

temporelles, souvent entières, ne sont pas toujours exactement égales à des
entiers, mais peuvent légèrement varier. En outre, notre méthode permet au
concepteur d’un système temps-réel d’optimiser certaines des constantes tem-
porelles, sans changer le comportement global du système. Enfin, la méthode
inverse est une méthode exacte, qui n’utilise donc aucune approximation.

Variantes. Nous définissons une première variante de la méthode inverse, qui
consiste à modifier le point fixe. Au lieu d’arrêter l’algorithme lorsque tous les
états générés ont déjà été rencontrés par le passé, on assouplit cette condition,
et on définit le point fixe comme suit : l’algorithme s’arrête lorsque tous les états
générés sont inclus dans d’autres états déjà été rencontrés par le passé, c’est-
à-dire que la projection de la contrainte sur les paramètres associée à ceux-
là est incluse dans la projection de la contrainte sur les paramètres associée
à ceux-ci. Cette variante permet une terminaison plus fréquente, mais égale-
ment plus rapide. En revanche, la correction de la méthode n’est plus préser-
vée : les ensembles de trace ne sont plus nécessairement égaux. Néanmoins,
nous montrons que la contrainte est plus faible (donc plus large) que pour la
méthode inverse standard, et la non-accessibilité d’un état de contrôle est pré-
servée. En d’autres termes, si un état de contrôle n’appartient à aucune trace
sous l’instance de référence, alors il n’appartiendra non plus à aucune trace
de toute instance prise dans la contrainte générée par cette première variante.
Cette propriété est tout à fait intéressante lorsque l’on s’intéresse à la sûreté
d’un système.

Nous définissons une seconde variante de la méthode inverse, qui consiste
à modifier la contrainte retournée. Au lieu de retourner l’intersection de la pro-
jection sur les paramètres des contraintes associées à tous les états accessibles,
on retourne l’union de la projection sur les paramètres des contraintes asso-
ciées à certains états accessibles, en l’occurrence le dernier état de chaque exé-
cution symbolique. Puisque le point fixe n’est pas modifié, la terminaison de la
méthode est la même que pour la méthode inverse standard. En revanche, nous
montrons que la contrainte est plus faible (donc plus large) que pour la mé-
thode inverse standard. En outre, bien que l’égalité des ensembles de traces ne
soit pas non plus préservée ici, nous garantissons l’inclusion des ensembles de
traces : toute trace sous une instance prise dans la contrainte générée par cette
seconde variante est également une trace sous l’instance de référence (mais la
réciproque n’est pas vraie). Par conséquent, la non-accessibilité d’un état de
contrôle est préservée.

Une dernière variante consiste à combiner ces deux variantes, ce qui per-
met une meilleure terminaison, une contrainte plus large, et la préservation de
la non-accessibilité d’un état de contrôle.



239

Aucune de ces variantes n’est pour autant ni confluente ni maximale.

Cartographie comportementale

Le problème des bons paramètres. La méthode inverse permet de générali-
ser une instance de référence des paramètres en garantissant le même com-
portement, abstraction faite du temps. Or, lorsque l’on cherche à synthétiser
des valeurs de constantes temporelles correspondant à un bon comportement,
on s’intéresse en général non à un bon comportement donné, mais à plusieurs
voire à tous les bons comportements. Par conséquent, nous allons chercher à
utiliser la méthode inverse afin de synthétiser des valeurs de constantes tem-
porelles correspondant à tous les bons comportements d’un système. Le pro-
blème auquel on s’intéresse ici est le suivant. « Soit un automate temporisé et
un domaine paramétrique borné. Quelles sont les valeurs des paramètres pour
lesquelles le système suit un bon comportement ? » Cette notion de bon com-
portement s’entend relativement à une propriété sur les ensembles de traces.
Par conséquent, cette propriété doit être linéaire et non temporisée, puisque
les traces sont des exécutions dont on a abstrait les informations temporelles.
C’est notamment le cas des propriétés exprimées avec la logique LTL sur les
traces finies.

La méthode de cartographie comportementale. En itérant notre méthode
inverse sur les points entiers d’un domaine paramétrique borné, nous sommes
à même de partitionner l’espace paramétrique en tuiles comportementales,
c’est-à-dire en zones paramétriques denses pour lesquelles le comportement
est uniforme. En d’autres termes, les ensembles de traces sont les mêmes pour
toutes les instances de paramètres dans chacune des tuiles, par propriété de la
méthode inverse. Ceci nous donne donc une cartographie comportementale du
système [AF10].

En pratique, ce qui est généralement couvert par l’algorithme n’est pas
seulement le sous-espace entier et borné au sein du domaine paramétrique de
départ, mais deux extensions intéressantes. D’une part, les tuiles sont denses
et couvrent donc une large zone réelle du domaine de départ. D’autre part, les
tuiles sont souvent non-bornées, et couvrent généralement une grande partie
de l’espace paramétrique au-delà du domaine borné de départ.

Une fois cette couverture de l’espace paramétrique effectuée, étant donnée
une propriété sur les traces que l’on souhaite vérifier, il est facile de partitionner
l’espace paramétrique en « bonnes » et « mauvaises » tuiles. L’union des bonnes
tuiles permet donc de synthétiser des valeurs de paramètres correspondant au
bon comportement du système.



240 Résumé substantiel

Notons enfin qu’il est tout à fait possible que la cartographie ne couvre pas
l’intégralité de l’espace paramétrique dense au sein du domaine de départ ; il
peut rester des « trous » entre deux points entiers successifs. En ce cas, il est
possible de combler les trous restants en appelant de nouveau, de façon ma-
nuelle ou semi-automatisée, la méthode inverse sur un point (nécessairement
non entier) à l’intérieur du trou. Notons néanmoins que cette heuristique peut
elle-même ne pas suffire à couvrir l’intégralité de l’espace paramétrique dense
au sein du domaine de départ. En effet, il peut y avoir une infinité de comporte-
ments différents dans un espace paramétrique borné. En ce cas, l’information
fournie par la cartographie sera certes incomplète, mais néanmoins intéres-
sante par rapport à des méthodes qui ne seraient tout simplement pas capables
de terminer sur ces exemples.

Néanmoins, pour certaines classes de systèmes, nous montrons qu’il est
possible de couvrir l’intégralité de l’espace paramétrique dense, non seule-
ment au sein du domaine paramétrique de dé départ, mais également au-
delà [AF10].

Avantages. Le principal avantage de notre méthode de cartographie est que
la cartographie est en fait indépendante de la propriété que l’on cherche à vé-
rifier. En effet, seule la partition entre bonnes et mauvaises tuiles dépend de
la propriété. Par conséquent, si l’on cherche à vérifier une autre propriété que
celle de départ, il est inutile de recalculer la cartographie. Il suffit d’effectuer
la partition de nouveau, en testant la propriété sur un point dans chacune des
tuiles.

Études de cas

IMITATOR. La méthode inverse a tout d’abord été implémentée dans le pro-
totype IMITATOR [And09a], un script de 1500 lignes environ écrit en Python, et
faisant appel à l’outil HYTECH [HHWT95].

Plusieurs expériences ont été réalisées, permettant de synthétiser des va-
leurs de paramètres garantissant un bon comportement pour un certain
nombre d’études de cas [AEF09].

Malheureusement, IMITATOR souffrait de plusieurs limitations, notamment
en raison de son interface avec HYTECH, ce qui limitait sérieusement ses per-
formances. Par conséquent, une nouvelle implémentation d’IMITATOR a été dé-
cidée.

IMITATOR II. Un nouvel outil, IMITATOR II [And10a], a été réalisé afin d’implé-
menter la méthode inverse de façon plus efficace. IMITATOR II est désormais un



241

outil d’un seul bloc d’environ 9000 lignes écrit en OCaml, et utilisant des biblio-
thèques de polyèdres. L’utilisateur a le choix entre la bibliothèque NewPolka,
disponible au sein de la bibliothèque APRON [JM09], ou la bibliothèque Parma
Polyhedra Library (PPL) [BHZ08]. Les ensembles de traces sont retournés sous
forme graphique, grâce au module DOT du logiciel de visualisation graphique
Graphviz [gWp]. La syntaxe, proche de celle de HYTECH avec quelques amélio-
rations, est disponible dans le manuel utilisateur [And10b].

Outre la méthode inverse standard, une variante est implémentée, en l’oc-
currence celle avec point fixe plus lâche. L’utilisateur a donc le choix entre les
deux algorithmes.

IMITATOR II implémente également la cartographie comportementale. Les
ensembles de traces sont fournis sous forme graphique, et la cartographie elle-
même est générée sous forme graphique pour deux dimensions de l’espace des
paramètres. La méthode inverse n’est pas appelée sur chacun des points entiers
du domaine paramétrique de départ, mais uniquement sur ceux qui ne sont
pas encore couverts par une tuile. La partition en bonnes et mauvaises tuiles est
en revanche effectuée manuellement dans la version courante de l’outil. Une
version automatisée, en faisant appel à un outil externe, par exemple UPPAAL,
est en cours de réflexion.

Plusieurs options sont disponibles, notamment des options permettant de
limiter le nombre d’itérations ou le temps d’exécution de l’algorithme, ce qui
autorise l’obtention de résultats partiels pour des exemples dont l’analyse ne
termine pas en général.

Grâce à la réécriture de l’outil, et diverses optimisations de l’algorithme, le
temps d’exécution de la méthode inverse dans IMITATOR II a drastiquement di-
minué par rapport à la première version d’IMITATOR, permettant un gain en
temps d’exécution d’un facteur 10 à 1000 selon les exemples.

Études de cas. Un certain nombre d’exemples de la littérature, et d’études de
cas réelles, ont été étudiés, en particulier des circuits asynchrones, et des pro-
tocoles de communication [And10c]. L’application de la méthode inverse ou
de la méthode de cartographie nous a permis d’optimiser des bornes tempo-
relles dans des circuits mémoires, de synthétiser des valeurs de bon fonction-
nement, ou de donner des conditions de robustesses pour un certain nombre
d’exemples.

En particulier, nous avons étudié les protocoles de communication
CSMA/CD [KNSW07], RCP [KNS03] et BRP [DKRT97]. En ce qui concerne
les circuits asynchrones, nous avons étudié le comportement de plusieurs
exemples de circuits décrits dans la littérature [CC05, CC07], mais également
une abstraction de la mémoire SPSMALL [CEFX09] commercialisée par le fa-



242 Résumé substantiel

bricant de composants électroniques ST-Microelectronics, ce qui a permis une
optimisation des temps de maintien des signaux d’entrée.

Enfin, nous avons défini des plages de bon fonctionnement pour les pa-
ramètres temporels d’une architecture d’automatisation en réseau [AAC+09],
et effectué une comparaison avec une technique dichotomique consistant à
tester un grand nombre de valeurs entières des paramètres vis-à-vis d’une pro-
priété donnée, à l’aide de l’outil UPPAAL. Si la zone générée par méthode dicho-
tomique était nettement plus large que la zone générée par IMITATOR, celle-là
était seulement en trois dimensions, alors que celle-ci était dense, et en 7 di-
mensions.

Extension aux systèmes probabilistes

Nous décrivons ici une application de la méthode inverse aux systèmes proba-
bilistes.

Automates temporisés probabilistes. Nous considérons ici le modèle des
automates temporisés probabilistes [KNSS02], où les actions discrètes des au-
tomates probabilistes sont remplacées par des distributions d’actions. En
d’autres termes, dans un état de contrôle donné, pour une action donnée, il
est désormais possible d’atteindre différents états de contrôles avec différentes
probabilités. Ce formalisme est intéressant pour vérifier des systèmes probabi-
listes, tels que des protocoles avec une part d’aléatoire, ou des systèmes tolé-
rants aux fautes.

La sémantique des automates temporisés probabilistes s’entend pour
un ordonnanceur donné, c’est-à-dire une fonction qui résout le non-
déterminisme, et associe à chaque état de contrôle une action de sortie. Pour
cette action, il existe bien entendu plusieurs transitions probabilistes. Pour
une ordonnanceur donné, la sémantique est alors proche de celle des auto-
mates temporisés, et s’entend désormais en terme d’exécutions probabilistes,
ou successions d’états concrets et de transitions probabilistes, c’est-à-dire éti-
quetées par une probabilité. Une trace probabiliste est une exécution probabi-
liste dont on abstrait la valeur des horloges, c’est-à-dire une succession d’états
de contrôles et de transitions probabilistes. Il est alors possible définir la proba-
bilité minimum ou maximum d’atteindre un état de contrôle donné : il s’agit de
la probabilité minimum ou maximum pour tous les ordonnanceurs possibles
et pour toutes les exécutions possibles.

L’outil de vérification probabiliste PRISM [HKNP06] permet notamment le
calcul de telles probabilités.



243

Automates temporisés probabilistes paramétrés. Comme pour les auto-
mates temporisés, le comportement des automates temporisés probabilistes
est sensible aux valeurs des constantes utilisées dans les gardes et invariants.
Par conséquent, il est intéressant de raisonner paramétriquement. Nous dé-
finissons donc le modèle des automates temporisés probabilistes paramé-
trés [AFS09], dans la lignée de la paramétrisation des automates temporisés
en automates temporisés paramétrés : nous autorisons dans les gardes et in-
variants l’usage de paramètres en lieu et place des constantes rationnelles.

Ce modèle reste en revanche purement syntaxique, et ne sert qu’à décrire
de façon paramétrique le système que l’on souhaite vérifier. Le calcul des pro-
babilités minimum ou maximum d’accessibilité s’effectuera systématiquement
pour des modèles instanciés de ces automates temporisés probabilistes para-
métrés, c’est-à-dire des automates temporisés probabilistes classiques.

Motivation. La vérification du comportement d’un système temporisé pro-
babiliste peut s’effectuer grâce à l’outil PRISM. Néanmoins, cet outil est extrê-
mement sensible à la taille des constantes utilisées dans le modèle. En effet,
PRISM utilise un modèle à temps discret, et le fait que le système reste n unités
de temps dans un état de contrôle est modélisé par n itérations. Or, en cas de
parallélisme, une explosion du nombre d’états survient rapidement, et l’outil
n’est plus à même de calculer les probabilités – ou alors après un très impor-
tant temps de calcul. Par conséquent, il est intéressant d’utiliser des constantes
les plus petites possibles telles que les valeurs des probabilités minimum ou
maximum d’accessibilité soient les mêmes. Nous décrivons dans ce qui suit
comment la méthode inverse permet cette réduction des constantes.

Extension de la méthode inverse. Soit un automate temporisé probabiliste
paramétré et une instance de référence des paramètres. Appliquons la méthode
inverse développée précédemment à une version non-probabiliste de l’auto-
mate temporisé probabiliste paramétré, c’est-à-dire un modèle dont on rem-
place les transitions probabilistes par un simple non-déterminisme. Alors, pour
toute instance vérifiant la contrainte synthétisée, la valeur des probabilités mi-
nimum et maximum d’accessibilité dans l’automate temporisé probabiliste pa-
ramétré sous cette instance est la même [AFS09].

Il suffit alors, pour diminuer la valeurs des constantes du système, de choi-
sir une instance « suffisamment petite » dans la contrainte, et d’appliquer PRISM

sur le modèle avec ces constantes réduites. Expérimentalement, les contraintes
synthétisées par IMITATOR II ont permis de drastiquement réduire le temps de
calcul des probabilités pour le protocole CMSA/CD [KNSW07], et ont permis de
calculer des probabilités pour le Root Contention Protocol [HRSV02] et pour le



244 Résumé substantiel

protocole IEEE 802.11 (Wireless Local Area Network Protocol) [pWpb, KNS02],
alors que la taille importante des constantes originales ne permettait tout sim-
plement pas de les calculer en utilisant PRISM.

Avantages. Outre l’avantage majeur de la réduction des constantes, la syn-
thèse de contraintes par la méthode inverse dans le cadre probabiliste permet,
comme dans le cas non-probabiliste, une garantie de robustesse. En outre, elle
permet d’éviter un grand nombre de calculs lorsque l’on cherche à vérifier des
probabilités pour de nombreuses valeurs des paramètres temporels.

Cartographie probabiliste. L’extension de la cartographie comportementale
au cas probabiliste est dès lors immédiate. Les probabilités minimum et maxi-
mum d’accessibilité sont homogènes dans chaque tuile. Là où la cartographie
comportementale permettait une partition binaire en bonnes et mauvaises
tuiles, la cartographie probabiliste permet, pour une probabilité minimum ou
maximum donnée, une partition quantitative : à chaque tuile correspond une
valeur de la probabilité. À notre connaissance, aucune autre technique ne per-
met de garantir la préservation des valeurs de probabilités dans un cadre pro-
babiliste temporisé.

Une méthode inverse pour les graphes valués

Nous proposons ici une adaptation de la méthode inverse définie dans le cadre
des automates temporisés à deux autres types de modèles : l’algorithme de
Floyd–Warshall déterminant le plus court chemin dans un graphe orienté va-
lué, et l’algorithme d’itération de politiques dans le cadre des processus de dé-
cision markoviens.

Graphes orientés valués. Nous nous intéressons dans cette section à l’algo-
rithme de Floyd–Warshall [Flo62], qui calcule le plus court chemin entre tous
les couples de sommets d’un graphe orienté valué. Un graphe orienté valué
est un ensemble de sommets, et un ensemble de transitions étiquetées par des
coûts.

Un problème classique de la littérature est de calculer le plus court che-
min, c’est-à-dire le chemin de coût minimal, entre tous couples de sommets
du graphe. Le problème auquel on s’intéresse est le suivant : pour un graphe
orienté valué, peut-on changer certains des coûts sans affecter les plus courts
chemins ?



245

Pour résoudre ce problème, on considère alors un graphe orienté valué
paramétré, c’est-à-dire un graphe orienté valué où les coûts ne sont plus des
constantes, mais des paramètres, ou constantes rationnelles inconnues.

Nous proposons une adaptation de l’algorithme de Floyd–Warshall, qui per-
met de générer des contraintes garantissant que le plus court chemin reste
le plus court chemin, pour toute instance vérifiant cette contrainte [And09b].
Cet algorithme a été implémenté sous la forme de l’outil INSPEQTOR (pour
INference of Shortest Paths with EQuivalent Time-abstract behaviOR), un pro-
gramme OCaml de 3000 lignes.

Une application immédiate de cette méthode est en fait l’étude de systèmes
temporisés tels que les circuits. Dans ce cas, les composants (et câbles) d’un
circuit sont considérés comme des éléments que l’électricité mettra un certain
temps à traverser, certes faible, mais non négligeable dans le cadre de la vé-
rification de tels systèmes. Dès lors, chaque composant du système peut être
représenté par l’arc d’un graphe orienté valué. Il est alors intéressant de savoir
si l’on peut changer un composant du système par un autre plus lent, dans un
souci économique, et ce sans remettre en cause le fonctionnement global du
système. En générant une contrainte grâce à cette adaptation de la méthode
inverse, il est alors possible de changer certains composants du système, pour
peu que leur nouvelle durée de traversée vérifie toujours la contrainte.

Processus de décision markoviens. Nous considérons ici une extension de la
méthode inverse aux processus de décision markoviens. Un processus de déci-
sion markovien [Bel57] est un graphe orienté valué auquel on ajoute des actions
sur les arcs. En outre, chaque arc porte une probabilité telle que, pour un som-
met du graphe et une action donnés, la somme des probabilités quittant ce
sommet via cette action soit égale à 1.

Un problème classique des processus de décision markoviens est de dé-
terminer une politique optimale, c’est-à-dire de résoudre le non-déterminisme
en choisissant préalablement une action de sortie pour chaque sommet, et ce
afin de minimiser le coût global du graphe. Un processus de décision marko-
vien dont le non-déterminisme a été résolu devient alors une chaîne de Mar-
kov [KMST59], modélisable par exemple grâce à l’outil PRISM [HKNP06]. Une
réponse classique à ce problème est d’utiliser un algorithme d’itération de poli-
tiques [How60]. Cet algorithme part d’une politique quelconque puis, à chaque
itération, calcule la valeur associée à chaque sommet pour cette politique grâce
à un algorithme classique dit d’itération de valeurs, et améliore la politique en
conséquence, et ce jusqu’à ce que celle-ci soit optimale.

Le problème que l’on cherche à résoudre ici est le suivant : pour un pro-
cessus de décision markovien donné, peut-on changer certains des coûts sans



246 Résumé substantiel

affecter la politique optimale ? Suivant un raisonnement similaire à celui de
la méthode inverse définie dans le cadre des automates temporisés ou des
graphes orientés valués, nous considérons des processus de décision marko-
viens paramétrés, c’est-à-dire où les coûts sont remplacés par des paramètres.

Nous définissons une adaptation de l’algorithme d’itération de politiques,
qui prend en entrée un processus de décision markovien paramétré et une
instance de référence des paramètres [AF09]. Il synthétise une contrainte sur
les paramètres telle que, pour toute instance des paramètres vérifiant cette
contrainte, la politique optimale du processus de décision markovien sous
cette instance sera identique à la politique optimale du processus de décision
markovien sous l’instance de référence.

Cet algorithme a été implémenté sous la forme de l’outil IMPRATOR (pour
Inverse Method for Policy with Reward AbstracT behaviOR), un programme
OCaml de 4300 lignes. Pour un système avec 11 états et 132 transitions, cor-
respondant à la modélisation du parcours d’un robot dans un espace physique
borné, une contrainte est générée en 0,17 seconde par IMPRATOR.

Remarques. Nous avons présenté ici une adaptation de la méthode inverse
à deux algorithmes de la littérature traitant des plus courts chemins dans un
cadre probabiliste ou non. Nous travaillons en ce moment sur une adaptation
à d’autres algorithmes.

En particulier, l’adaptation à un algorithme d’itération de politiques pour
les processus de décision markoviens à deux coûts est à l’étude. Cette présence
de deux coûts distincts permet ainsi de modéliser la gestion de puissance dy-
namique (dynamic power management [PBBDM98]) des systèmes temps réel,
où l’on souhaite par exemple minimiser l’énergie tout en gardant les pertes de
requêtes inférieures à une certaine valeur.

Conclusion et perspectives

Conclusions. Nous avons présenté dans cette thèse des techniques pour la
synthèse de constantes temporelles dans les systèmes temps réel. L’algorithme
de la méthode inverse permet la synthèse de paramètres dans le cadre des au-
tomates temporisés, en garantissant le même comportement en termes d’en-
sembles de traces que sous une instance de référence donnée. Ceci permet
la préservation de propriétés temporelles linéaires, garantit une robustesse du
système, et permet l’optimisation de certaines constantes temporelles.

L’algorithme de cartographie comportementale permet de réaliser une car-
tographie des automates temporisés, en partitionnant tout ou partie de l’es-
pace paramétrique en tuiles comportementales pour lesquelles les ensembles



247

de traces sont homogènes. Cette cartographie est indépendante de la propriété
que l’on cherche à vérifier : seule la partition en bonnes et mauvaises tuiles,
permettant de synthétiser la contrainte correspondant au bon comportement,
dépend de la propriété.

Ces deux algorithmes ont été implémentés dans IMITATOR II, un outil qui
nous a permis de synthétiser des contraintes pour un certain nombre d’études
de cas, circuits asynchrones ou protocoles de communication.

Nous avons étendu la méthode inverse et la méthode de cartographie com-
portementale aux automates temporisés probabilistes, garantissant ainsi les
mêmes valeurs de probabilités minimum et maximum d’accessibilité dans
chaque tuile. Ceci permet notamment la réduction des constantes, dont dé-
pendent fortement les performances de l’outil PRISM.

Enfin, nous avons présenté ici une adaptation de la méthode inverse à deux
algorithmes de la littérature traitant des plus courts chemins dans un cadre
probabiliste ou non. Deux prototypes, INSPEQTOR et IMPRATOR ont été im-
plémentés.

Perspectives. Il serait intéressant d’étendre la méthode inverse au formalisme
des automates hybrides, où les horloges peuvent évoluer avec des vitesses dif-
férentes.

Plutôt que de considérer une méthode basée sur une instance de référence,
il serait également intéressant d’envisager une trace de référence. Bien que cela
remette fondamentalement en cause les bases de la méthode inverse, cela pré-
senterait l’avantage majeur d’autoriser de considérer les ordres partiels entre
actions indépendantes. Des travaux proches pourraient également concerner
la synthèse de paramètres afin de garantir la correction d’une formule de lo-
gique temporelle.

Quant à l’outil IMITATOR II, de nombreuses améliorations pourraient être
effectuées à plus ou moins long terme. Parmi celles-ci, la partition automa-
tique entre bonnes et mauvaises tuiles pourrait être réalisée à l’aide d’un ou-
til externe, par exemple UPPAAL. L’implémentation de la seconde variante avec
union des contraintes serait également intéressante en pratique. La classe des
automates temporisés autorisés par l’outil pourrait être étendue, notamment
aux actions urgentes et états de contrôles urgents. Enfin, il pourrait être intéres-
sant de considérer une cartographie dynamique, où les unités entre les points à
sélectionner (pour l’heure les entiers) serait raffinée automatiquement afin de
remplir de possibles « trous ».

Finalement, nous avons montré par des variantes de la méthode inverse
définies dans deux autres formalismes, en l’occurrence les graphes orientés va-
lués et les processus de décision markoviens, que la méthode inverse n’était



248 Résumé substantiel

en rien intrinsèquement liée aux automates temporisés. Une extension aux au-
tomates à coûts [ATP01, BFH+01], ou aux réseaux de Petri temporels [Mer74]
pourrait notamment être envisagée.


