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1. Introduction to model
checking

1.1 Why verification?

• Microprocessors are everywhere: the estimation is that one billion transistors are built
per person per year. CPUs in personal computers represent only 2% of all CPUs, and
all CPUs are only 2% of all semiconductors.

• Bugs are everywhere: Ariane 5 blast off in June 1996 is one of the most famous
examples [Wika], but we could also mention the Pentium II floating-point division
bug[Wikc], the loss of the Mars Climate Orbiter [Wikb], or the radiation overdoses
caused by the Therac-25 radiation therapy device [Wikd]. All these problems originate
in software bugs, and give prominence to the pressing need for software and hardware
verification.

As another, simple and understandable, example, consider the “Zune bug”: Zune is the
name of Microsoft’s MP3 player. On 31 December 2008, those devices refused to turn on.
This was due to the piece of code displayed at Algorithm 1, used for computing the current
year, based on the number of days elapsed since January 1st, 1980 (inclusive). While the
question looks relatively easy to solve, this algorithm has a bug (find and correct it!), which
caused the device to be unusable on December 31st, 2008. This witnesses the difficulty of
finding even the most obvious of bugs, and the need for formal verification of reactive and
embedded systems.

Algorithm 1: Zune3.0 leap-year code

year = ORIGINYEAR; /* = 1980 */

while (days > 365)

{

if (IsLeapYear(year))

{

if (days > 366)

{

days -= 366;

year += 1;

}

}

else

{

days -= 365;

year += 1;

}

}
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Deciding the termination of a Turing machine on any input is well-known to be unde-
cidable. As a consequence, there is no general technique for detecting bugs in computer
programmes, and we have to consider simpler families of models, or go for approximate
techniques (in a wide sense), whose answer might never arrive or be wrong.

In this course, we focus on the former direction: our aim is to find exact, terminating
algorithms on restricted classes of models (and possibly restricted classes of properties).
The rest of this chapter is devoted to introducing the basics of model-checking techniques
for finite-state systems. We refer to [CGP00, BBF+01, BK08] for more details on model
checking.

1.2 Simple classes of models

In the sequel, AP is a finite set of atomic propositions.

1.2.1 Transition systems

Definition 1. A transition system1 over AP is a 2-tuple A = 〈S, T 〉 where

• S is the set of states;

• T is the set of transitions, equipped with two mappings src : T → S and tgt : T → S
indicating the source and target of each transition. Unless specified otherwise, in the
sequel we may consider T as a subset of S×S, with src((s, s′)) = s and tgt((s, s′)) = s′;

Most of the transition systems we consider in the sequel will be labelled with atomic propo-
sitions. Such labelled transition systems are triples A = 〈S, T, `〉 where ` labels states of S
with subsets of AP.

A transition system is said to be

• finite-state if S is finite;

• complete if for all s ∈ S, there is a t ∈ T s.t. src(t) = s.

Fig. 1 displays an example of a transition system, and its graphical representation.

Figure 1: Graphical representation of a transition system

A = {S: {s0, s1, s2},
T : {(s0, s1), (s1, s1), (s1, s0), (s1, s2)},
`: {s0 7→ {a}, s1 7→ {b}, s2 7→ {a, b}}} a

s0
b

s1
a, b

s2

Each single execution of a labelled transition system will be formalised as a word. We be-
gin with formalising this and related notions (mostly to fix notations, as these are well-known
formalisms).

Definition 2. Let Σ be a finite non-empty alphabet. A finite word over Σ is a finite
sequence w = (wi)0≤i≤n−1 ∈ Σn, for some n ∈ N. We write Σ∗ for the set of finite words
over Σ.

Let w = (wi)0≤i≤n−1 ∈ Σ∗. The length |w| if w is n. The empty word ε is the only
word of length zero. Assuming w is not the empty word, we define first(w) = w0 and
last(w) = w|w|−1. For any 0 ≤ j ≤ k ≤ |w| − 1, we define w[j,k] = (wi)j≤i≤k. The prefixes
of ρ are the subwords w[0,k], for all 0 ≤ k ≤ n− 1.

Given two finite words w and w′, their concatenation is the word v = w · w′ of length
|w| + |w′| such that v[0,|w|−1] = w and v[|w|,|w|+|w′|−1] = w′. Given two sets L and L′ of
finite words, we write L · L′ = {w · w′ | w ∈ L and w′ ∈ L′}. We inductively define Ln as
L0 = {ε} and Li+1 = Li · L. Finally, we let L∗ =

⋃
i∈N L

i.

1Sometimes also called automaton or graph in the literature. In this course, transition systems may have
infinite (possibly uncountable) state space.
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Infinite words are defined similarly:

Definition 3. An infinite word is an infinite sequence w = (wi)i∈N. We write Σω for the
set of infinite words over Σ.

For 0 ≤ j ≤ k < ∞, the subword w[i,j] is defined as for finite words. For 0 ≤ j < ∞,
we also define w[j,∞) as the infinite word v = (vi)i∈N such that vi = wi+j for all i ∈ N.
The concatenation of a finite word v with an infinite word w is the word u s.t. u[0,|v|−1] = v
and u[|v|,∞) = w. For a set of finite words L and a set of infinite words L′, we write
L · L′ = {w · w′ | w ∈ L and w′ ∈ L′}. Given a set of finite words L, we write

Lω = {w ∈ Σω | ∀i ≥ 0. ∃j ≥ i. w[0,j] ∈ L∗}.

The set of words finite words, equiped with concatenation, is a monoid. It will sometimes
be convenient to use homomorphisms between this monoid (Σ∗, ·) and other monoid (M,+).
Such homomorphisms are uniquely defined from their values on each single letter of Σ, since
f(w · w′) = f(w) + f(w′). For example, defining |σ| = 1 (in (N,+)) for each σ ∈ Σ, we get
an homomorphism associating with each finite word its size. Given Σ′ ⊆ Σ, the projection
on Σ′ is defined using the mapping proj : (Σ, ·)→ (Σ′, ·) mapping letter of Σ′ to themselves
and letters of Σ \ Σ′ to ε. When infinite sums can be made to have a meaning in M , such
mappings can be extended to infinite words in the natural way.

We can now define what runs of a labelled transition system are.

Definition 4. Let A = 〈S, T, `〉 be a labelled transition system over AP. The set of finite
runs of A is the subset of T ∗ defined as follows:

FinRunsA = {ρ = (ti)0≤i≤n−1 | src(ti+1) = tgt(ti) for all 0 ≤ i ≤ n− 2}.

The sequence of states of ρT = (ti)0≤i≤n−1 is the finite word ρS = (sj)0≤j≤n s.t. si = src(ti)
for all 0 ≤ i ≤ n − 1, and sn = tgt(tn−1). When dealing with the labelling of the states,
we will also use `(ρS), seen as a finite word over the alphabet 2AP. This word might also be
denoted with ρ.

The set of infinite runs of A is the subset of Tω of infinite words having infinitely many
prefixes in T ∗. The sequences of states and labelling are defined as for finite words.

A run r is maximal if it is infinite or if for any t ∈ T , src(t) 6= last(r) (here seeing r as
its sequence of states).

For all s ∈ S, we write MaxRunsA(s) (or sometimes MaxRuns(s), when the underlying
automaton is clear from the context) for the set of maximal runs of A with first state s,
and FinRunsA(s) (or FinRuns(s)) for the set of finite runs of A from s. We refer to the sets
of all maximal (resp. finite) runs by omitting to mention s in the above notations.

This view of the behaviours of a transition system as individual runs is complemented
with another view of this behaviour as a tree of all the runs. We begin with formalizing the
notion of trees:

Definition 5. A Σ-labelled D-tree is a pair T = 〈T, `〉 where T ⊆ D∗ is a prefix-closed set
of words and ` : T → Σ labels each element of T with a letter in Σ.

The sequences of states of the all the runs starting from a given state form the compu-
tation tree of the labelled transition system: it is a 2AP-labelled S-tree.

1.2.2 Symbolic representations of transition systems

Most of the systems we want to work with in practice will have a very large, but somewhat
“regular”, state space. This means that they might admit succinct representations.

One way of succinctly representing transition systems is to define them as the synchro-
nised product of several subsystems. Subsystems in this setting are labelled transition sys-
tems in which transitions also carries a label from a finite set Σ, through a labelling function
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λ : T → Σ. In the synchonised product, when a transition labelled with σ ∈ Σ is performed
in one subsystem, the other subsystems also have to perform all available transitions labelled
with σ.

Definition 6. A symbolic labelled transition system over AP is a finite set of labelled
transition systems (Ai)1≤i≤n in which transitions also carry a label from a finite set Σ.
More precisely, for any 1 ≤ i ≤ n, we have Ai = 〈Si, Ti, `i, λi〉. The semantics of a
symbolic labelled transition system is defined as a labelled transition system A = 〈S, T, `〉
over AP× {1, ..., n} obtained as follows:

• S =
∏

1≤i≤n Si;

• there is a transition from (s1, ..., sn) to (s′1, ..., s
′
n) whenever there exists σ ∈ Σ such

that for all 1 ≤ i ≤ n,

– either there is a transition ti = (si, s
′
i) ∈ Ti with λ(ti) = σ,

– or there is no such transition and s′i = si.

• `(s1, ..., sn) is the union over i of `(si)× {i}.

One can notice that the size of the resulting labelled transition system is exponential in
the size of the input. This makes symbolic representations very useful in practice, but often
has a negative effect on the complexity of the problems we will consider in the sequel.

1.2.3 Multi-agent systems

Besides the mere verification of computerized systems, a promising extension of model check-
ing consists in considering (controller) synthesis: instead of just checking that a fully speci-
fied system is correct, we assume that the input system is not fully specified, and the question
is whether it can be refined into a system satisfying a given property.

This setting is particularly interesting in the framework of multi-agent systems, where
several subsystems are controlled by several agents. Such models can be conveniently dealt
with through a parallel to game theory: the agents involved are named players, the refine-
ments are their strategies, and the properties are their winning conditions.

We now define concurrent game structures (introduced in [AHK02]), which will fit our
needs for modelling multi-agent systems:

Definition 7. An concurrent game structure over AP is a 7-tuple A = 〈S, T, `,A,M,
Ch,Edg〉 where

• 〈S, T, `〉 is a complete labelled transition system. In some cases, ` will not be used and
might be omitted;

• A is a finite set of agents (equivalently called players);

• M is a finite, non-empty set of possible actions for the agents;

• Ch : S×A→ 2Mr {∅} indicates the set of allowed moves for a given agent in a given
location;

• Edg : S ×MA → T returns the transition corresponding to the selected actions of the
agents, with the requirement that src(Edg(s, 〈mA〉A∈A)) = s for any 〈mA〉A∈A.

A concurrent game structure is said to be

• turn-based if for all s ∈ S, there exists an agent owner(s) ∈ A s.t. Ch(s, a) is a
singleton if a 6= owner(s).
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Paths and related concepts in concurrent game structures are inherited through their
underlying labelled transition systems.

A move vector for C ⊆ A from s ∈ S is a mapping mC : C → M s.t. for all A ∈ C,
it holds mC(A) ∈ Ch(s,A). Given such a move vector, we define

Next(s,mC) = {Edg(s,mA) | mA is a move vector for A and ∀A ∈ C. mA(A) = mC(A)}

A strategy for A ∈ A is a mapping σA : (FinRuns → M) such that for any ρ ∈ FinRuns,
it holds σA(ρ) ∈ Ch(last(ρ), A). We write StratA(A) for the set of strategies of A in A, and
StratA for the set of all strategies of all agents (and omit the subscript when it is clear from
the context). A strategy for a coalition C ⊆ A is a mapping σC : A ∈ C 7→ σA, assigning a
strategy to each agent of C.

A strategy σ is said to be memoryless if, for all finite runs ρ and ρ′ with last(ρ) = last(ρ′),
it holds σ(ρ) = σ(ρ′).

Let σC be a strategy for some coalition C. A run ρ = s0 · t1 · s1 in A is compatible
with σC if for any i < length(ρ), it holds ti+1 = Edg(si, 〈mA〉A∈A) for some move vector
〈mA〉A∈A s.t. mB = σC(B)(s0 · t1 · s1 · · · ti · si).

Given a state s ∈ S and a strategy σC for some coalition C, we write OutA(s, σC) (or
Out(s, σC) when the underlying concurrent game structure is clear from the context) for the
set of maximal runs of A with first state s that are compatible with σC , and FinOutA(s, σC)
(or FinOut(s, σC)) for the set of finite runs of A from s compatible with σC . We refer to
the sets of all maximal (resp. finite) runs by omitting to mention s in the above notations.

Figure 2: A concurrent game structure

a
s0

b
s1

a, b
s2

〈1,1〉,〈1,2〉

〈1,1〉,〈2,2〉

〈1,2〉,〈2,1〉

〈1,1〉,〈2,1〉

〈2,1〉,〈2,2〉 〈1,2〉,〈2,2〉

Fig. 2 displays an example of a concurrent
game structure. It has two agents A and B,
and two actions 1 and 2, always allowed to both
agents. The Edg function is represented by dec-
orating transitions with the set of actions they
correspond to. For instance, Edg(s0, 〈1, 2〉) is
the transition from s0 to s1: in other terms, if
the current location is s0, and agent A selects
action 1 and agent B selects 2, then the tran-

sition from s0 to s1 will be fired. One easily sees in this example that from s0, player A has
a strategy that avoids visiting s2; but this is not the case from s1: any strategy of A has
at least one outcome visiting s2. These are the kind of questions that model checking will
address on multi-agent systems.

1.3 Properties to be checked

Model checking aims at checking properties of models. Below we list various ways of ex-
pressing properties, and sketch some results in the various areas. The rest of this course will
be mostly devoted to the study of temporal logics.

1.3.1 Reachability

The most basic property that we may want to check is the reachability of some state of the
model:

Definition 8. The reachability problem is defined as follows:

Problem: Reachability
Input: A transition system A, and two states s and s′;
Question: Does there exist a finite run in A starting in s and ending in s′?

Numerous algorithms exist for this problem, for all three kinds of models we defined. We
first recall the following classical result for transition systems, which will serve as a basis for
many of the subsequent results in this course.
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Theorem 9. The reachability problem in transition systems is decidable in deterministic
polynomial time. It is NLOGSPACE-complete.

Sketch of proof. We begin with a deterministic algorithm, running in polynomial time. It is
based on the notion of predecessors:

Definition 10. Let A = 〈S, T 〉 be a transition system, and A ⊆ S. The set of predecessors
of A is the set

Pre(A) = {s ∈ S | ∃t ∈ A. (s, t) ∈ T}.

It is easily checked that Pre is non-decreasing: if A ⊆ A′, then Pre(A) ⊆ Pre(A′).
As a consequence, for any set A, the sequence (Cn)n∈N defined by C0 = ∅ and Cn+1 =
A∪Pre(Cn) is non-decreasing and bounded (since S is finite), hence converges after finitely
many iterations. A state s is in Ck+1 iff there is a run of length at most k starting in s
and ending in a state in A. In the end, a state s is in the limit C∞ iff there is a run
from s to some state in A. Hence, computing Pre(A) provides a solution to the reachability
problem. It is easily seen that the fixpoint is reached after at most |S| iterations, so that
this (deterministic) algorithm runs in polynomial time.

The above computation can also be seen as the computation of the least fixpoint of
the non-decreasing function from 2S to 2S which maps X to A ∪ Pre(X): from Knaster-
Tarski theorem, this function must have a least fixpoint, which is easily proved to be C∞
(first, C∞ clearly is a fixpoint, and aditionally any Ci is included in the least fixpoint,
by induction). In the µ-calculus, the set of states from which A is reachable is usually
written as µT.(A ∨ EXT ) (where µ is the operator representing the least fixpoint, and
EXT means “there is a successor in T” (see Section 2.1), and precisely corresponds to the
Pre operator).

In order to obtain a non-deterministic algorithm using logarithmic space, we first notice
that if there is a run from s to some state in A, then there is one with length at most |S|.
The algorithm thus just has to non-deterministically guess a sequence of states (starting
from s) forming a run of A, and stop either when a state in A is reached, or when the length
of the sequence exceeds |S|. Only the current state has to be written on the tape, as well as
a counter that will be incremented at each step in order to count the number of steps. This
uses only logarithmic space.

Finally, NLOGSPACE-hardness of the problem by encoding a non-deterministic Turing
machine running with logarithmic space: the number of different tape contents is polyno-
mial, and so that this Turing machine can be represented as an automaton whose states
are the configurations (containing both the control state and the content of the tape), with
transitions from any configuration to its possible successor configurations. The details (in-
cluding the proof that the reduction can be achieved efficiently enough) are out of the scope
of these notes. �

When considering symbolic transition systems, a similar algorithm can be used, but the
state space to be considered is larger due to the state-space explosion. The deterministic
algorithm above will run in exponential time. As we now prove, there is little hope for
improvement:

Theorem 11. The reachability problem in symbolic transition systems is decidable in de-
terministic exponential time. It is PSPACE-complete.

Proof. The fixpoint computation can be run on the exponential state space of the input tran-
sition system, yielding a deterministic exponential-time algorithm. The non-deterministic
algorithm which consists in guessing the witnessing run step-by-step can also be used, now
requiring polynomial space (both for storing the current state and for limiting the size of
the witnessing run).

We now prove hardness in PSPACE, by encoding a Turing machine equiped with a
polynomial-size tape. We will have one transition system Ai per cell of the tape of the
machine, whose states encode the content of that cell (together with the current state of
the machine, in case the tape head is reading that cell); in other terms, the set of states
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of Ai is Σ × (Q ∪ {∅}), and does not depend on i. Then, in each Ai, for each transi-
tion t = (q, a, q′, b, d) of the Turing machine, there is a transition from (q, a) to b, labelled
with (i + d, t), and a transition from each state c to (q′, c), labelled with (i, t). This way,
any move in Ai from (q, a) to b also triggers the transition from c to (q′, c) in si+d, which
represents the left- or right neighbour of cell i.

One easily concludes the proof, by defining the initial state appropriately, and requiring
that an accepting configuration is reachable. �

Finally, let us turn to reachability in multi-agent systems: now, the question is whether
a given coalition has a strategy for reaching a given state, whatever the other agents do.
One easily sees that this can be simplified to a two-player zero-sum2 game, where the first
player plays for the former coalition and aims at reaching the target state, while the second
player controls the complement coalition and aims at avoiding the target state. This again
can be solved using a fixpoint computation, as we now prove.

Theorem 12. The reachability problem in multi-agent systems is decidable in deterministic
polynomial time, and is actually PTIME-complete.

Proof. We begin with defining the concept of controllable predecessors of a set of states A,
containing those states from which some player can select a move all of whose resulting
transitions lead to a state in A:

Definition 13. Let A = 〈S, T,A,M,Ch,Edg〉 be a concurrent game structure with A =
{1, 2}, and A ⊆ S. The set of 1-controllable predecessors of A is the set

CPre1(A) = {s ∈ S | ∃m1 ∈ Ch(s, 1). ∀m2 ∈ Ch(s, 2). tgt(Edg(s, 〈m1,m2〉)) ∈ A}.

Given a set A, computing CPre1(A) can be done in polynomial time, by browsing the
transition table Edg. The algorithm now follows the very same lines as the fixpoint algorithm
for deciding reachability in plain transition systems: it iteratively computes the set of states
from which A can be reached as the limit of the sequence defined by C0 = ∅ and Cn+1 =
A ∪ CPre1(Cn). One easily sees that this algorithm is correct and runs in deterministic
polynomial time.

Again, this can be seen as the least fixpoint of the function mapping a set C to A ∪
CPre1(C), which is non-decreasing. This can be written µT. (A∨ 〈〈1〉〉XT ) in the µ-calculus,
where 〈〈1〉〉XT means “Player 1 has a one-step strategy to reach T” (see Section 2.4).

We now prove PTIME-hardness by encoding a simplified version of the CIRCUIT-VALUE
problem [Pap94]. Consider a boolean circuit (i.e., a directed acyclic graph with nodes
labelled with ¬ (having arity 1), ∨, ∧ (both having arity at least 1), true and false (both
having arity 0)). The value of such a circuit is evaluated in the obvious way. For instance,
the circuits on Figure 3 evaluates to true.

From such a circuit, one can easily build another circuit contaning no negation (by cre-
ating a new subgraph in which disjunctions and conjunctions are exchanged, as well as true
and false), and in which conjunctive and disjunctive nodes alternate along each branch (even
if it means inserting trivial conjunctive of disjunctive nodes). Building this equivalent circuit
from the initial one can be achieved using only logarithmic space (prove it!).

By seeing such a circuit as a (turn-based) game structure where ∨-states are controlled
by Player 1 and ∧-states are controlled by Player 2, one can show (inductively) that from
any node, Player 1 has a strategy to reach true if, and only if, that node evaluates to true.

�

1.3.2 Behavioural equivalences

Another natural family of properties of interest consist in comparing the behaviours of a
system to the behaviours of another one. There can be numerous ways of comparing such
behaviours, of which we only mention a few (and refer to [vG90] for a more exhaustive
presentation).

2A game is zero-sum when it involves two players who have opposite objectives.
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Figure 3: A boolean circuit and its simplified form
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Definition 14. Let A be a labelled transition system. Let s be a state of A. The language
generated by A from s is the set LA(s) = {`(ρ) | ρ ∈ MaxRunsA(s)}, where `(ρ) is a word
on 2AP obtained by applying ` to the sequence of states of ρ.

Two states s and s′ are language-equivalent whenever LA(s) = LA(s′).

Definition 15. Let A be a labelled transition system. A binary relation R ⊆ S × S on the
set of states of A is a bisimulation relation if the following three properties are met:

• if (s1, s2) ∈ R, then `(s1) = `(s2);

• if (s, s′) ∈ R and (s, t) ∈ T , then there exists a state t′ ∈ S s.t. (s′, t′) ∈ T and
(t, t′) ∈ R;

• if (s, s′) ∈ R and (s′, t′) ∈ T , then there exists a state t ∈ S s.t. (s, t) ∈ T and
(t, t′) ∈ R.

The relation R is a simulation if only the first two requirements above hold.
Two states s1 and s2 of a labelled transition system are (bi)similar if there exists a

(bi)simulation R such that (s1, s2) ∈ R.

Basically, that s1 and s2 are bisimilar if any behaviour from s1 can be mimicked from s2

and conversely. As a classical example, consider the labelled transition system of Fig. 4: in
this labelled transition system, states s0 and u0 are not bisimilar. Indeed, assume they are;
then also s1 and u1 are. But there is no transition from u1 corresponding to the transi-
tion (s1, s3). In fact, s0 simulates u0 (i.e., there is a simulation relation containing (u0, s0)),
as witnessed by the relation {(u0, s0), (u1, s1), (u′1, s1), (u2, s2), (u3, s3)}. On the other hand,
one easily sees that s0 and u0 are language-equivalent.

Figure 4: States s0 and u0 are not bisimilar, but are language-equivalent.
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Theorem 16. Language equivalence in labelled transition systems is decidable in determin-
istic exponential time, and is PSPACE-complete.

Proof. This problem precisely corresponds to language equivalence in finite-state automata,
for which these are classical results. The deterministic algorithm is obtained by checking
emptiness of the intersection of the language of one automaton with the complement lan-
guage of the second. Classical constructions can be used to build an automaton accepting
this language, with an exponential blowup due to complementation. The PSPACE algorithm
consists in non-deterministically building a witness word on-the-fly. �

Theorem 17. Bisimilarity of two labelled transition systems is decidable in deterministic
polynomial time, and is PTIME-complete.

Proof. The proof goes by a characterization of the largest bisimulation relation in terms of
a greatest fixpoint. Let F : 2S×S → 2S×S be the mapping defined as

F (R) = {(s, s′) ∈ S × S | `(s) = `(s′) and

∀(s, t) ∈ T. ∃t′ ∈ S. (s′, t′) ∈ T and (t, t′) ∈ R
and ∀(s′, t′) ∈ T. ∃t ∈ S. (s, t) ∈ T and (t, t′) ∈ R}.

A relation R is a bisimulation iff it satisfies R ⊆ F (R). Moreover, F (R ∪ R′) ⊇ F (R) ∪
F (R′), so that F is non-decreasing, and has a (greatest) fixpoint by Knaster-Tarski theorem.
Consider the sequence S0 = S × S, and Si+1 = F (Si). Clearly, S1 ⊆ S0 and, by induction,
Si+1 ⊆ Si as F is non-decreasing. Since S×S is finite, the sequence converges to a fixpoint P
such that P = F (P ), which is a bisimulation (by the first remark above). Moreover, if R is
another bisimulation, then P ∪ R is also a bisimulation: indeed, it holds P ∪ R ⊆ F (P ) ∪
F (R) ⊆ F (P ∪ R). Now, P ∪ R ⊆ S0, and by induction, P ∪ R ⊆ Si for all i. Hence also
P ∪R ⊆ P , which means that R ⊆ P . In other terms, P is the (unique) largest bisimulation:
if two states s and s′ are bisimilar, then (s, s′) ∈ P . Checking bisimilarity hence amounts
to computing P , which is achieved by computing the sequence (Si)i defined above, and
converges in polynomial time.

An alternative proof goes through games: given a labelled transition system A, consider
the turn-based game with state space S × S × {0, 1, 2}. The meaning of these sets of states
is as follows:

• states in S × S × {0} belong to Player 1. From some state (s1, s2, 0), Player 1 will
challenge Player 2, by selecting either s1 or s2, together with a transition (s, s′) out
of that selected state (hence s = s1 or s = s2). The resulting state is (s′, s2, 2) or
(s1, s

′, 1);

• states in S × S × {1, 2} belong to Player 2: from there, the role of Player 2 is to
answer the challenge proposed by Player 1, by matching the transition he selected.
From (s′, s2, 2), Player 2 has to select a transition from s2, say (s2, t

′), and the game
moves to (s′, t′, 0); from (s1, s

′, 1), he has to select a transition from s1, say (s1, t
′),

and the game proceeds to (t′, s′, 0).

The aim of Player 2 is to avoid visiting states (s, t, 0) such that `(s) 6= `(t). Clearly enough,
the states (s, t, 0) from which Player 2 can achieve this objective are precisely the states
for which s and t are bisimilar. This provides a polynomial-time algorithm for solving
bisimilarity.

We now prove PTIME-hardness, again encoding the (simplified) CIRCUIT-VALUE prob-
lem (see page 10), as proposed in [BGS92]. Pick a Boolean circuit C, assuming that it has
the normalized form discussed in the proof of Theorem 12.

As a first step, we build an auxiliary circuit C ′ as follows: C ′ has the same height k
as C, and it has exactly two nodes at each level: we name ti and fi the two nodes at level i.
Those nodes are of the same types as the nodes of C at the same level. At level 0, t0 is the
node true and f0 is the node false. If i is an ∨-level, ti has an edge to both ti−1 and fi−1

11



and fi has only one edge to fi−1. Conversely, If i is an ∧-level, ti has an edge to ti−1 and
fi has edges to ti−1 and fi−1. This way, one easily sees that for any i, ti evaluates to true
and fi evaluates to false.

Figure 5: The boolean circuit C”
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We now consider a new circuit C ′′ obtained as the “union” of C and C ′, with the following
additional edges (dotted arrows on Fig. 5):

• from ∧-nodes at level i of C to node ti−1 of C ′;

• from ∨-nodes at level i of C to node fi−1 of C ′.

Clearly enough, this does not change the truth value of the nodes in C.

We now prove that the topmost node of C evaluates to true if, and only if, that node is
bisimilar to node tk of C ′, where k is the height of C. First, assume that the topmost node
evaluates to true, and define relation R containing a pair (p, q) if, and only if, p and q are
at the same level and have the same truth value in C ′′. We prove that R is a bisimulation,
which will conclude this direction of the proof.

Pick a pair (p, q). If they both are at level 0, there is nothing to check as true and false
have no outgoing transitions. If they both are at level 1, we consider four cases

• if nodes at level 1 are ∧-nodes:

– if nodes p and q both evaluate to true, then all their outgoing edges go to true, so
that any edge from either p or q can be matched by an edge from the other node;

– if they evaluate to false, then we prove that both p and q have edges to both
states true and false: if they belong to C ′, this is by construction; if they belong
to C, then they have at least on edge to false (as they evaluate to false), and they
have been added an edge to true in the construction of C ′′.

• if nodes at level 1 are ∨-nodes: the arguments for both cases are symmetric.

Now, pick a pair (p, q) at some level m > 1. Considering again the same four cases,
we can prove the required equivalence, hence showing that R is a bisimulation relation.

Now assume that the topmost node pk of C is bisimilar to tk of C ′. Let R be any
non-empty bisimulation relation (containing (pk, tk)). We inductively prove that for any
two states p and q which have opposite truth value in C ′′, it cannot be the case that (p, q)
belongs to R. This will prove our result.

12



First consider level 1. We assume that it contains ∨-nodes, with p evaluating to true
and q to false. Then p must have an edge to true, while q cannot. Hence (p, q) /∈ R. Now,
consider some level m > 1, first assuming that both p and q are ∧-nodes, with p evaluating
to true and q to false. Then p can only have edges to nodes evaluating to true at level m−1.
On the other hand, q has at leat an edge to a state that evaluates to false at level m − 1.
Pick that edge: then p has no matching edge, so that (p, q) /∈ R. The case of ∨-nodes is
symmetric. �

In the setting of multi-agent systems, the above relations are not really meaningful as
they do not take the various agents into account. Developing this topic is beyond the scope
of this course, and we just refer to e.g. [AHKV98] for a definition of alternating bisimulation,
which is one way of extending bisimulations to this setting.

1.3.3 Temporal logics

We now come to temporal logics, which will be the main topic developed in the rest of this
course. Temporal logics are a family of modal logics, which extend propositional logics with
modalities for expressing e.g. the possibility that something holds (alethic modalities), the
obligation that something holds (deontic modalities), or the knowledge that something holds
(epistemic modalities).

Temporal logics include modalities for expressing e.g. that “it will be the case that
something holds”. They were first studied by philosophers in the fifties [Pri57], and were
introduced in computer science by Amir Pnueli in the late seventies for expressing properties
of computer programs [Pnu77].

We do not define temporal logics in this intorduction, as they will be the main topic
discussed in this course and, as such, deserve a better place at the beginning of the next
chapter.

There are three main questions that we will address in this course:

• model checking is the main one: the principal aim of the course, and actually of
research in the area of model checking, is the development of efficient algorithms for
checking that some property, expressed in some temporal logic, holds true in a given
model;

• satisfiability is an important problem: it aims at deciding the existence of a labelled
transition system in which a given formula holds true;

• expressiveness is a bit transversal: there the question is not so much algorithmic, but
it aims at comparing the expressive power of different logics. The algorithmic variant
aims at building translations from one logic to the other one, if any.

1.4 Exercises

Exercice 1 Prove that the procedure on Fig. 1 does not always terminate. Propose
a patch for this procedure so that it always terminates (and computes the correct value).

Exercice 2 Prove that the problem of deciding whether a Turing machine halts on
any input is undecidable.

Exercice 3 Prove that bisimilarity implies language equivalence.

Exercice 4 Theorems 9, 11 and 12 characterise the exact complexity of reachability
for all three kind of models we considered. Extend these results to safety properties (where
the aim is to avoid reaching a set of states) and repeated-reachability properties (where the
aim is to visit a set of states infinitely many times).

13



2. Classical temporal logics:
CTL, LTL, and ATL

The first (and main) part of this chapter focuses on CTL and LTL, giving a unified presen-
tation of CTL and LTL by introducing the full branching-time temporal logic with past-time
modalities (PCTL∗), of which CTL and LTL are fragments. Past-time modalities in the
branching-time context will have a “linear” semantics, which means that they will only refer
to the history of the path being considered. Most of those logics were formally defined in
the early 1980’s [Pnu77, QS82, CE82, SC85, CES86, KP95], and have been much studied
since then.

In a second part, we introduce ATL and provide some results about this logic which can
express advanced properties of multi-agent systems.

2.1 Syntax and semantics of PCTL∗

Definition 18. The full branching-time temporal logic with past is denoted by PCTL∗.
Formulas of PCTL∗ over AP are formulas built on the following grammar:

PCTL∗ 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs | ¬φp | φp ∨ φp | φp Uφp | φp Sφp.

where p ranges over AP. A formula of the form φs is called a state formula, while φp is a
path formula.

Consider a maximal run ρ of a labelled transition system A, and an integer j s.t. j−1 <
length(ρ). Write sj for the j-th state of ρ. For any PCTL∗ formula φ, that φ holds at
position j along ρ in A, denoted by A, ρ |= φ, is defined inductively as follows3:

A, ρ, j |= p ⇔ p ∈ `(sj)
A, ρ, j |= ¬φs ⇔ A, ρ, j 6|= φs

A, ρ, j |= φs ∨ φ′s ⇔ A, ρ, j |= φs or A, ρ, j |= φ′s

A, ρ, j |= Eφp ⇔ ∃ρ′ ∈ MaxRuns. ρ≤j = ρ′≤j and A, ρ′, j |= φp

A, ρ, j |= Aφp ⇔ ∀ρ′ ∈ MaxRuns(sj). (ρ≤j = ρ′≤j)⇒ A, ρ′, j |= φp

A, ρ, j |= ¬φp ⇔ A, ρ, j 6|= φp

A, ρ, j |= φp ∨ φ′p ⇔ A, ρ, j |= φp or A, ρ, j |= φ′p

A, ρ, j |= φp Uφ′p ⇔ ∃k ∈ [j + 1, length(ρ)) s.t. A, ρ, k |= φ′p and

∀l ∈ [j + 1, k − 1]. A, ρ, l |= φp.

A, ρ, j |= φp Sφ′p ⇔ ∃k ∈ [0, j − 1]. A, ρ, k |= φ′p and

∀l ∈ [k + 1, j − 1]. A, ρ, l |= φp.

3Notice that the semantics of the “until” modality U is strict , meaning that it does not take the first
state into account. Other semantics can be defined, in which the present state is taken into account when
evaluating “until” formulas.
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The linear-time temporal logic with past, denoted PLTL, is the fragment of PCTL∗ defined
by the following grammar:

PLTL 3 φs ::= Eφp | Aφp

φp ::= p | ¬φp | φp ∨ φp | φp Uφp | φp Sφp.

The computation-tree logic with past, denoted PCTL is the fragment of PCTL∗ defined by
the following grammar:

PCTL 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs Uφs | φs Sφs.

Their semantics follow from the semantics of PCTL∗. The corresponding logics without past,
denoted CTL∗, CTL and LTL respectively, are obtained by dropping modality S :

LTL 3 φs ::= Eφp | Aφp

φp ::= p | ¬φp | φp ∨ φp | φp Uφp

CTL 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs Uφs

CTL∗ 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs | ¬φp | φp ∨ φp | φp Uφp.

Definition 19. We define the additional two modalities, which we will use very often:

Xφ
def
= (¬true) Uφ Fφ

def
= true Uφ Gφ

def
= ¬F¬φ

X−1 φ
def
= (¬true) Sφ F−1 φ

def
= true Sφ G−1 φ

def
= ¬F−1 ¬φ

(where true can be seen as a special atomic proposition which holds in every state, or (equiv-
alently) can be defined as p ∨ ¬p for some atomic proposition p).

2.2 Expressiveness issues in PCTL∗

In this section, we review a few expressiveness results about sublogics of PCTL∗. Before
entering the technical developments, we first define the precise questions we are interested in.

Definition 20. Two state-formulas φ and φ′ in PCTL∗ are equivalent if for any Kripke
structure A, any run ρ and any position j along ρ, it holds A, ρ, j |= φ if, and only if,
A, ρ, j |= φ′.

It is important to notice that equivalence is defined w.r.t. a class of models in which
formulas are evaluated (here, any position along paths of Kripke structures). A different
kind of equivalence, namely initial equivalence, can be defined by requiring that j = 0.
Initial equivalence is usually more relevant, unless we compare two logics having past-time
modalities.

Definition 21. A logic L is at least as expressive as a logic L′ if any formula of L′ has an
equivalent formula in L.

Two logics L and L′ are equally expressive whenever they are at least as expressive as
each other.

In the case where two logics are equally expressive, one can be easier to use as the other.
One way of measuring the handiness of a logic is in terms of their relative succinctness:

Definition 22. Consider two equally-expressive logics L and L′. Let f be an increasing
function from N to N. We say that L can be f more succinct than L′ if there is an
infinite sequence of formulas (φi)i∈N of L whose size tends to infinity and such that for any
sequence (ψi)i∈N of formulas of L′ such that φi ≡ ψi for all i, it holds |ψi| ≥ f(|φi|).
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In order to prove that some logic L is not as expressive as another logic L′, we need to
exhibit a formula φ in L′ which has no equivalent formula in L. Proving the latter property
is generally non-trivial: it requires exhibiting that for any formula ψ in L, a model A in
which φ and ψ have different truth value. There are various ways of proving such a result,
some of which are presented below. Since expressiveness is not the main topic of this course,
proofs will most of the time be sketchy. It is an interesting exercise for the reader to write
them in full details.

2.2.1 Expressiveness of fragments of CTL

Our first expressiveness results concern CTL. We begin with restricting the set of modalities
used for defining CTL. This sometimes helps simplifying the proofs, replacing the binary
modality AU with the unary EG.

Theorem 23. CTL and the following fragments of PCTL∗ are equally expressive:

C̃TL 3 φs ::= p | ¬φs | φs ∨ φs | Eφs Uφs | Aφs Uφs

ĈTL 3 φs ::= p | ¬φs | φs ∨ φs | Eφs Uφs | EGφs

Proof. One can easily check that CTL and C̃TL are syntactically equivalent. Then, using

the following equivalence, any formula in C̃TL can be translated into ĈTL:

AψUφ ≡ ¬EG¬φ ∧ ¬E(¬φ) U (¬φ ∧ ¬ψ).

It remains to prove this equivalence. Assume that AψUφ fails to holds at some position j
of a run ρ of A. This means that there is a run ρ′ from sj (the j-th state of ρ) along which
ψUφ fails to hold. There are two ways of falsifying an “until” formula:

• either φ never holds true along ρ′,

• or φ is eventually satisfied, but ψ fails to hold at some point before the first position
where φ holds.

Hence ¬( AφUψ) is equivalent to the CTL∗ formula E(G¬φ ∨ (¬φ) U (¬φ ∧ ¬ψ)) from
which our equivalence follows. �

Of course, it would be nice if we could even go further and drop one of EG or EU. But:

Theorem 24. EU cannot be expressed using only EG and boolean operators, and vice
versa.

Proof. We prove the first claim, and reinforce the result by showing that EU cannot be
expressed using EF and AU (this was shown in [Lar95], and is a negative counterpart to
the fact that any CTL formula can be expressed using EU and EG), by considering the
Kripke structure depicted on Fig. 6. We prove that no formula of size i built using EF and
AU can distinguish between states xj and yj , for any j ≥ i. On the other hand, one easily
checks that EU can distinguish between xj and yj for any j, using e.g. EaU b.

Figure 6: States xk and yk cannot be distinguished by small EG-formulas
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• the base case (i = 1) is trivial, as xj and yj carry the same atomic propositions.

• Assume the result holds for formulas of size at most i−1 ≥ 1, and consider a formula φ
of size i. If φ is a boolean combination of subformulas, those subformulas satisfy the
equivalence, hence so does φ. Otherwise:

– if φ = EFψ: the sets of states reachable from xj and from yj are equal. The
result for this case immediately follows.

– if φ = Aφ1 Uφ2: assume xj |= φ. Because of the self-loop on xj , it holds xj |= φ2,
and by induction, also yj |= φ2. Consider a path from yj which does not loop
in yj . Then this path goes to yj−1. This path can be mimicked from xj , so that
it also has to satisfy φ. This proves one direction of the equivalence.

Conversely, assume yj |= φ. Then yj |= φ2, and so does xj , which handles the
path looping on xj . By considering the path from yj going to yj−1 and looping
there, we get yj−1 |= φ2, which entails xj−1 |= φ2 by induction, which in turn
entails that xj |= φ.

We now prove the converse, namely, that EG cannot be expressed using EU. The
structure we use is adapted from that of Fig. 6 as follows:

• all states except w are labelled with a;

• there are no self-loops;

• there is a transition from any state in {z, x1, . . . , xk} to any other state (except the
source state itself);

• there is a transition from yj to yl whenever j > l;

• there is a transition from any yj to w.

We do not represent this structure as it has too many transitions. One can check that
xj |= EG a, while yj 6|= EG a as any maximal path from yj will visit w. It remains to prove
that no formula of size at most j built using only modality EU can distinguish between any
two states in {z, x1, . . . , xk, yj , . . . , yk}. Again, the proof proceeds by induction:

• when j = 1, the result is straightforward.

• assume the result holds for formulas of size j − 1 ≥ 1, and consider φ = Eφ1 Uφ2.
If any state in {z, x1, . . . , xk} satisfies φ, then they all do as the same path can be
taken from any of them. Now, if z |= φ, then several cases ay occur, depending on
which state witnesses φ2:

– if w |= φ2, then yj |= φ since there is a direct path to w from yj ;

– if some ym witnesses φ2 with m < j, then again this state is directly reachable
from yj ;

– if some ym witnesses φ2 with m ≥ j, then using the induction hypothesis, also
yj−1 |= φ2, and yl |= φ for any l ≥ j.

Finally, if yl |= φ for some l ≥ j, then all states in {z, x1, . . . , xk} can mimick the
same path, as well as the states in {zl, . . . zk}. We have to prove the result for states
in {yj , . . . , yl−1}, again considering several cases depending on the witness for φ2:

– if the witness is {z, x1, . . . , xk, yl, . . . , yk}, then the witnessing path from yl will
visit w and then follow some suffix γ from there. From any state in {y1, . . . , yk},
a path going directly to w and then following γ witnesses φ;

– if the witness is {w, y1, . . . , yj−1}, then there is a direct path to that state
from {yj , . . . , yl−1}, and the result follows. �
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We conclude this section with a note on our semantics of modality “until”: the semantics
we use in these notes is that of strict until, where the present state cannot be used as a witness
for the right-hand-side formula. A similar, non-strict modality can be defined as follows:

A, ρ, j |= φp Ûφ′p ⇔ ∃k ∈ [j, length(ρ)) s.t. A, ρ, k |= φ′p and

∀l ∈ [j, k − 1]. A, ρ, l |= φp.

One can easily check that

φUψ ≡ X (φ Ûψ) φ Ûψ ≡ ψ ∨ (φ ∧ φUψ).

In other terms, the logic

̂̂
CTL 3 φs ::= p | ¬φs | φs ∨ φs | Eφs Ûφs | EXφs | EĜφs

(where EĜ is the relaxed version of EG also requiring the formula to hold at the present
time) is equally expressive as CTL. It is not too difficult to prove that dropping EX would
change expressiveness:

Theorem 25. EX cannot be expressed using only E Û and EĜ .

Figure 7: EX cannot be expressed with E Û and EĜ
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Proof. Consider the three-state labelled transition system of Fig. 7. It is straightforward to
prove that x1 and x2 satisfy the same formulas built with E Û and EĜ , while EX b can
separate them. �

Symmetrically, E Û cannot be expressed using only EX and EĜ , since this would con-
tradict Theorem 24.

2.2.2 CTL+ and CTL

Now, let us look at extensions of CTL. One of them, CTL+, allows to have boolean combi-
nations of (simple) path formulas within a path quantifier:

CTL+ 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= ¬φp | φp ∨ φp | φs Uφs.

This way, formula E(F p ∧ F q) is a CTL+ formula, which syntactically does not belong
to CTL. But clearly

E(F p ∧ F q) ≡ EF (p ∧ q) ∨ EF (p ∧ EF q) ∨ EF (q ∧ EF p), (1)

obtained by enumerating all possible orders of occurrence of p and q. It can be proved that:

Theorem 26. CTL+ and CTL are equally expressive, but CTL+ can be exponentially more
succinct.

Proof. The translation follows the idea of Equation (1): it consists in considering all possible
interleavings of the eventualities to be satisfied, and imposing all the required subformulas
in the meantime.

Proving the succinctness gap is quite involved: the interested reader could look at [Wil99,
AI03, Lan08] for detailed proofs of the result. Here we just mention the idea behind the
proof in [Wil99]: First notice that formula E(F p1 ∧F p2 ∧ . . . ∧ Fpn), which is our witness
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Figure 8: States xk and yk cannot be distinguished by small CTL formulas
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formula for the succinctness gap, has size O(n). It can then be shown (see Section 2.3.5
where we prove this) that with any CTL formula φ of size l, we can associate an alternating
tree automaton of size l accepting precisely those trees where φ holds. To conclude, it can be
proved (this is the hard part) that any alternating tree automaton for our witness formula
has size at least 2O(n).

Similar ideas are used in the proof of Theorem 28, but in the simpler setting of automata
on words. �

2.2.3 CTL and fairness

Fairness is a family of properties which, roughly, involve infinite occurrences of some events:
for instance, “if p occurs infinitely many times, then also q occurs infinitely many times”.
That p occurs infinitely many times along an (infinite) run can be expressed as G F p. This
construct unfortunately is not allowed in CTL, and we can prove that it does not have an
equivalent formulation in CTL:

Theorem 27. Formula EG F p cannot be expressed in CTL.

It follows that CTL is not as expressive as CTL∗ and LTL.

Proof. Consider the structure depicted on Fig. 8. One easily sees that EG F p holds true
from xk and not from yk. Then, by induction on the size of the formula, it can be proved
that any CTL formula of size at most j has the same truth value on both xl and yl, for
any l ≥ j. This part is left to the reader as an exercice. �

2.2.4 LTL and PLTL

We conclude with a classical result concerning past-time modalities in linear-time temporal
logics:

Theorem 28. LTL and PLTL are equally expressive, but PLTL can be exponentially more
succinct.

Obviously, this result assumes initial equivalence, and would not hold for general equiv-
alence. It also assumes discrete time: when considering continuous time (which we will do
when considering temporal logics for timed models), formulas such as ¬(¬pS true), which
would be equivalent to false in discrete time, can be satisfied in continuous time: for in-
stance, such a formula would be true at time one along a run where p holds precisely at
dates 1− 1/n for all n > 0. We leave it to the reader to formally prove that PLTL is strictly
more expressive than LTL in this setting.

Proof. The proof relies on a translation to first-order logic (FO), which is the logic built
on unary predicates, first-order quantification and an ordering relation. Over the integers
equiped with their classical ordering relation, we can write for instance

∃x. [pb(x) ∧ ∀y. (y < x⇒ pa(y))].

This formula precisely expresses aU b.
The fact that LTL and PLTL have the same expressive power was historically proven in

two steps: first in [Kam68], PLTL is shown to be equivalent to FO. Since the semantics of
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PLTL is (or can easily be) expressed in FO, only the converse inclusion is really involved.
Then, in [GPSS80], the same is shown for LTL, which entails the expressiveness result.
We omit the details of those proofs.

We now prove the succinctness result, using the following property

Any two states that agree on atomic propositions p1 to pn also
agree on proposition p0.

(2)

This formula can easily be expressed in LTL, e.g. by enumerating the set of valuations
for p1 to pn: ∧

a0,a1,...,an∈{>,⊥}

(F (
∧

i∈[0,n]

pi = ai))⇒ (G ((
∧

i∈[1,n]

pi = ai)⇒ p0 = a0)).

The set of words satisfying this property can thus be accepted by a Büchi automaton (see
Section 2.3.2 for a proof of this result). Such an automaton cannot be too small:

Lemma 29 ([EVW02]). Any Büchi automaton that accepts exactly the set of words satis-
fying Property (2) has at least 22n

states.

Proof. Let {a0, a1, ..., a2n−1} be the set of letters built on atomic propositions {p1, ..., pn}
(note that p0 is not included here). There are 2n such letters.

For each subset K ⊆ {0, 1, ..., 2n− 1}, we define a set of letters {b0, ..., b2n−1} as follows:

bi =

{
ai if i /∈ K
ai ∪ {p0} otherwise.

Then, with each subset K, we associate a finite word wK = b0 b1 ... b2n−1. Clearly, when-
ever K 6= K ′, then wK 6= wK′ . Thus, this construction defines 22n

different finite words. It
is clear also that for any K, the word wK

ω satisfies Equation (2), while the word wK′ ·wKω
does not, as soon as K 6= K ′.

Now, let A be an automaton accepting exactly the words satisfying Equation (2). Let SK
be the set of states that can be reached from an initial state of A after reading the finite
word wK . Clearly, this set is non-empty, since wK is the prefix of an accepted word. Now, if
SK ∩SK′ 6= ∅ for two different sets K and K ′, then the word wK′ ·wKω would be accepted
by the automaton. Thus the sets SK do not intersect, which entails that A has at least 22n

states. �

In the proof of Theorem 38, we will show how any PLTL formula of size k can be
transformed into an alternating automaton having at most 22k states. As a consequence,
any PLTL formula expressing Property (2) has size at least 2n−1.

We now consider a slightly different property:

Any state that agrees with the initial state on atomic proposi-
tions p1 to pn also agree with the initial state on proposition p0.

(3)

This formula can be captured by a polynomial-size PLTL formula:

G

(
∧

i∈[1,n]

(pi ⇐⇒ F−1 G−1 pi))⇒ (p0 ⇐⇒ F−1 G−1 p0)

 .
It can thus also be expressed in LTL (again, possibly by enumerating the set of initial

valuations). Let φ be an LTL formula expressing the property of Equation (3). Since φ is
a pure-future formula, formula Gφ precisely expresses Property (2), and thus has size at
least 2n−1. Thus |φ| ≥ 2n−1 − 1.
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2.3 Model-checking and satisfiability for PCTL∗

In this section, we study the complexities of the model-checking and satisfiability problems
for (some of) the logics we defined. We begin with providing a formal definition of those
problems:

Definition 30. The model-checking problem is defined as follows:

Problem: PCTL∗ model checking
Input: An automaton A, a run ρ, a position j along ρ, and a PCTL∗

formula φ;
Question: Is it the case that A, ρ, j |= φ?

The satisfiability problem is defined as follows:

Problem: PCTL∗ satisfiability
Input: A PCTL∗ formula φ;
Question: Does there exist an automaton A, a run ρ, a position j along ρ,

such that A, ρ, j |= φ?

To begin with, the following lemma simplifies the above definitions, by showing that the
value of a state-formula only depends on the prefix of the run. As a consequence, we will
assume in the sequel that only the prefix ρ≤j is given in the input.

Lemma 31. Given two runs ρ and ρ′ of an automaton A, and a position j s.t. ρ≤j = ρ′≤j,
it holds

∀φs ∈ PCTL∗. A, ρ, j |= φs ⇔ A, ρ′, j |= φs.

Proof. By induction on the structure of φs. �

Theorem 32 ([Pnu77, CE82, QS82, ES84b, Boz08]). The model-checking and satisfiability
problems are decidable for PCTL∗ (hence for all its fragments). The complexity of those
problems is given in Table 1.

Table 1: Complexity of model checking and satisfiability for fragments of PCTL∗

model checking symbolic model checking satisfiability

CTL PTIME-c. PSPACE-c. EXPTIME-c.

LTL PSPACE-c. PSPACE-c. PSPACE-c.

PLTL PSPACE-c. PSPACE-c. PSPACE-c.

CTL∗ PSPACE-c. PSPACE-c. 2-EXPTIME-c.

PCTL PSPACE-h. PSPACE-h. EXPTIME-c.

PCTL∗ in 2-EXPTIME in 2-EXPTIME 2-EXPTIME-c.

The rest of this section is devoted to the proofs of some of these results.

2.3.1 CTL model checking

Theorem 33. The CTL model-checking problem is PTIME-complete.

Using the fact that CTL∗ has no past-time modalities, Lemma 31 can be reinforced as
follows:

Lemma 34. Given two runs ρ and ρ′ of an automaton A, and two positions j and j′ s.t.
sj = s′j′ , it holds

∀φs ∈ CTL∗. A, ρ, j |= φs ⇔ A, ρ′, j′ |= φs.
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Proposition 35. Let α, β be two subsets of the set of states of a finite-state automaton A.
We define the following two sequences:

E0 = ∅ Ei+1 = Pre(β ∪ (α ∩ Ei))
A0 = S Ai+1 = S \ Pre(S \ (β ∪ (α ∩Ai)))

Then both sequences converge in finite time, and their limits (which we write E∞ and A∞)
enjoy the following properties (where we assume that the states in α and β are labelled with
corresponding atomic propositions α and β):

A, ρ, j |= EαUβ ⇐⇒ sj ∈ E∞
A, ρ, j |= AαUβ ⇐⇒ sj ∈ A∞

Proof. We begin with proving that the limits exist. Remember that Pre (see Definition 10
on page 8) is non-decreasing; as a consequence, we inductively prove that both sequences
(Ei)i and (Ai)i are non-decreasing:

• clearly, E0 ⊆ E1, since β ⊆ β ∪ (α ∩ E0). Similarly, A0 ⊆ A1.

• Now, if Ei−1 ⊆ Ei, then α ∩ Ei−1 ⊆ α ∩ Ei, and β ∪ (α ∩ Ei−1) ⊆ β ∪ (α ∩ Ei), and
finally Ei ⊆ Ei+1. The arguments for showing Ai ⊆ Ai+1 are similar.

Since the state space is finite, those two non-decreasing sequences converge.

Pick a run ρ and a position j such that A, ρ, j |= EαUβ. Following Lemma 34, we equiv-
alently have A, ρ≥j , 0 |= EαUβ, which means that there is a maximal run ρ′ from sj for
which A, ρ′, 0 |= αUβ. This in turn means that for some position k, it holds s′k ∈ β, and for
all l ∈ [1, k− 1], s′l ∈ α. We can prove by induction that s′m ∈ Ek−1−m for all m ∈ [0, k− 1]:
first, s′k−1 has a successor in β (namely s′k); moreover, if s′m ∈ Ek−1−m for all m ∈ [1, k−1],
since also s′m ∈ α, we have that s′m−1 has a successor in α ∩ Ek−1−m (namely s′m), hence
s′m−1 ∈ Ek−m.

Conversely, if sj ∈ E∞, then sj ∈ Em for some m. By induction on m, we can prove that
there is a maximal path from sj satisfying αUβ: if m = 0, the result is trivial. Assume the
result holds for some m, and assume sj ∈ Em+1. Then sj has a successor in β ∪ (α ∩ Em).
If that successor is in β, the result follows. Otherwise, that successor is in α ∩ Em, which
gives rise to a maximal run from sj satisfying αUβ.

The proof of the second equivalence using similar arguments, and is left to the meticulous
reader. �

Proof of Theorem 33. From Proposition 35, we obtain a model-checking algorithm for CTL
(see Algorithm 2), consisting in inductively computing the sets of states satisfying the sub-
formulas of the main formula being checked. It is not difficult to observe that the algorithm
runs in time O(|S| × |φ|).

It remains to prove that the problem is PTIME-hard. This is proven by expressing
CIRCUIT-VALUE (see page 10) as a CTL model-checking problem.

The value of the circuit can be obtained by model checking the following CTL formula
from the topmost vertex of the circuit, seen as a labelled transition system:

AX ( EX ( AX ( EX ( AX ( EX true)))))

(so it turns out that even the fragment of CTL containing only EX has PTIME-complete
model checking). �

Theorem 36. The CTL symbolic-model-checking problem is PSPACE-complete.

Proof. We begin with describing a (naive) algorithm requiring exponential time: it simply
consists in explicitely building the transition system resulting from the synchronisation of
the input systems, and applying the polynomial-time algorithm to that exponential-size
system.
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Algorithm 2: CTL model-checking algorithm

function CTLmc(φ) {
// returns the set of states

// satisfying φ

switch φ {
case p:

R := {s ∈ S | p ∈ `(s)};
return R;

case ¬α:
R := S\CTLmc(α);
return R;

case α ∨ β:
R := CTLmc(α) ∪ CTLmc(β);
return R;

case EαUβ:
A := CTLmc(α);
B := CTLmc(β);
X := ∅;
Y := Pre(B);

while (X6=Y) {
X := Y;

Y := Pre(B∪(A∩X));
}
R := Y;

return R;

case AαUβ:
A := CTLmc(α);
B := CTLmc(β);
X := ∅;
Y := S\Pre(S\B);
while (X6=Y) {
X := Y;

Y := S\Pre(S\(B∪(A∩X)));
}
R := Y;

return R;

}
}

This algorithm uses exponential space because it has to write down the whole transition
system, and to keep track of which formula holds true in each of the (exponentially many)
states. We now describe a space-efficient implementation of the algorithm, where we will
not store the intermediate results, at the expense of recomputing them when we need them.
Also, we will not build the explicit transition system, but instead build a witnessing path
on-the-fly when needed. This only requires that we are able to compute the successor of a
state using polynomial space, which is the case in our situation.

Contrary to the classical CTL model-checking algorithm, the symbolic algorithm will not
compute all states satisfying each subformulas (as this would consume exponential space),
but instead compute the intermediary results as they are needed: the algorithm traverses the
formula from the root to the leaves (i.e., from the outermost modality down to atomic propo-
sitions), recursively launching computations for subformulas of the formula being checked.
The witness path is guessed non-detemrinistically: we know that the witness can be chosen
to have at most exponentially many states (i.e., be acyclic in our exponential-size model),
so a counter tells us to stop if no short witness is found. Algorithm 3 displays the algorithm.
The algorithm is non-deterministic, but according to Savitch’s theorem, it can be made
deterministic. It uses only polynomial space, since it does not have to store the path it is
building, but only the current state and the selected successor, as well as the length of the
portion of the path that has already been built. This counter, which can be written within
polynomial space, is used to stop the algorithm after exponentially many steps.

We now prove hardness in PSPACE, by encoding a Turing machine equiped with a
polynomial-size tape. We will have one labelled transition system s per cell of the tape of
the machine, whose states encode the content of that cell (together with the current state of
the machine, in cade the tape head is reading that cell). For each transition t = (q, a, q′, b, d)
of the Turing machine and each system si, there is a transition in the i-th system from (q, a)
to b, labelled with (i + d, t). Also, for each t, there is a transition (i, t) from each state c
to (q′, c). This way, any move in si from (q, a) to b also triggers the transition from c to (q′, c)
in si+d, which is represents the left- or right neighbour of cell i.

One easily concludes the proof, by defining the initial state appropriately, labelling ac-
cepting states with accept, and requiring that formula EF acccept holds true in the initial
configuration. �
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Algorithm 3: CTL symbolic-model-checking algorithm

function CTLsmc(φ, q, c, l) {
// decides if q |= φ
// c=length of current path

// l=repeated state (for EG)

switch φ {
case p:

R := (p ∈ `(q))
return R;

case ¬α:
R := not(CTLsmc(α,q,0,∅));
return R;

case α ∨ β:
R := CTLsmc(α,q,0,∅);
if (not R)

R := CTLmc(β,q,0,∅));
return R;

case EαUβ:
pick some successor q’ of q;

if CTLsmc(β,q’,0,∅) {
return true;

} else {

if (c<|S| &&

CTLsmc(α,q’,0,∅)) {
return CTLsmc(φ,q’,c+1,∅));

} else {
return false;

}
}

case EGα:
pick successor q’ of q;

if (q’==l) {
return true;

}
if (c<|S| &&

CTLsmc(α,q’,0,∅)) {
if (l==∅)
pick l in {∅,q’};

return CTLsmc(φ,q’,c+1,l’)
} else {
return false;

}
}

}

2.3.2 PLTL and LTL model checking

Lemma 37. Let φ = Eψ be an existential PLTL formula, and assume that A, ρ, j |= ψ.
Then for any automaton A′ s.t. ρ ∈ MaxRuns(A′), it holds A′, ρ, j |= ψ.

Proof. No path quantifier may occur in ψ, so that all the subformulas will be evaluated
(possibly at different positions) along the same path. The result can be formally proved by
induction. �

As a consequence of this result, we might omit to mention A and simply write ρ, j |= ψ.
In the sequel, we also omit to mention the path quantifier, always assuming existential
quantification.

Theorem 38. The PLTL and LTL model-checking problems are PSPACE-complete.

Proof. The algorithm for LTL relies on a translation into (alternating) Büchi automata:
alternation is used to encode disjunctive and conjunctive constructs in the formula (including
temporal modalities such as “until”, which requires that something is chacked locally and
something else is checked in the next state), while the Büchi condition is used to enforce
the occurrence of eventualities. Unfortunately, this algorithm cannot easily be adapted to
handle PLTL (unless we use two-way automata). The interested reader can have a look at
Section 2.3.5, where we use alternating automata (over trees) to solve CTL satisfiability.
The ideas for handling LTL with alternating automata (over words) are similar.

Here we present another algorithm, using non-deterministic Büchi automata: as we have
no “conjunctive” transitions in such automata, we will encode conjunctions within states
(which results in an exponential blowup in the number of states). The main result is stated
as follows:

Proposition 39. Given a PLTL formula Eφ, one can build a non-deterministic Büchi
automaton Bφ of size 2O(|φ|) such that Bφ accepts a word w if, and only if, w, 0 |= φ.

The construction of the automaton requires the following definitions:
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Definition 40. Let φ ∈ PLTL. The set of subformulas of φ, denoted Subf(φ), is the smallest
subset of PLTL containing φ and such that

• if a formula of the form ¬ψ is in Subf(φ), then also ψ ∈ Subf(φ);

• if a formula of the form ψ1∨ψ2, ψ1 Uψ2 or ψ1 Sψ2 is in Subf(φ), then also ψ1 and ψ2

are in Subf(φ).

The extended set of subformulas of φ, written Subf∗(φ), is obtained from Subf(φ) by adding

• formulas Xψ2, Xψ1 and X (ψ1 Uψ2) for each formula of the form ψ1 Uψ2;

• formula X−1 ψ2, X−1 ψ1 and X−1 (ψ1 Sψ2) for each formula of the form ψ1 Sψ2.

Finally, the Fischer-Ladner closure of φ is the set

FL(φ) = {ψ,¬ψ | ψ ∈ Subf∗(φ)}.

The reader will easily prove the following result:

Lemma 41. A formula φ ∈ PLTL has at most |φ| subformulas. Its Fischer-Ladner closure
has at most 4|φ| formulas.

Given a formula φ, we now build a corresponding Büchi automaton, which we then prove
accepts exactly the words corresponding to maximal paths satisfying φ.

We begin with building an automaton Bφ = 〈S, Init, δ, F 〉, reading words over the alpha-
bet Σ = 2AP, with a generalised Büchi acceptance condition. It is obtained as follows:

• the set of states S is the set of maximal consistent subsets of FL(φ). A subset of FL(φ)
is consistent if

– it does not contain a formula and its negation;

– it contains ψ1 ∨ ψ2 if, and only if, it also contains ψ1 or ψ2;

– it contains ψ1 ∧ ψ2 if, and only if, it also contains ψ1 and ψ2;

– it contains ψ1 Uψ2 if, and only if, it also contains either Xψ2, or both Xψ1 and
X (ψ1 Uψ2);

– it contains ψ1 Sψ2 if, and only if, it also contains either X−1 ψ2, or both X−1 ψ1

and X−1 (ψ1 Sψ2).

It is maximal if it cannot be consistently extended. Notice that a maximal consistent
subset of Subf(φ) contains exactly one of ψ and ¬ψ, for any ψ ∈ Subf∗(φ). As a
consequence of this and of Lemma 41, the size of S is at most 24|φ|.

The idea is that the formulas contained in a state are the formulas that hold true
(provided that we follow an accepting run from that state).

• Init ⊆ S is the set of initial states: it contains those states that contain φ and contain
no “since” subformulas.

• there is a transition from state s to state s′ labelled with σ ⊆ AP iff the following
conditions hold:

– σ = s ∩ AP; notice that if p ∈ AP is not in s, then ¬p is in s, so it must be the
case that p /∈ σ;

– for each Xψ ∈ s, it must be the case that ψ ∈ s′;
– conversely, for each X−1 ψ ∈ s′, it must be the case that ψ ∈ s.

• the acceptance condition is as follows: for each “until” subformula ψ = αUβ of φ,
we define Fψ as the set of states containing ¬(αUβ) or β. A run of automaton Bφ
is accepting if, and only if, for each “until” subformula ψ, the run visits Fψ infinitely
often.
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As we can see, the generalised acceptance condition is a conjunction of Büchi conditions.
Notice that this can be translated into a plain Büchi automaton as follows: we first number
the “until” subformulas from 1 to k, and define the set of states S′ as S ×{0, k}. If there is
a transition from s to s′ in Bφ, then

• if s′ contains ¬ψp, where ψp is the p-th “until” subformula, then there is a transition
from (s, p) to (s′, p+ 1 mod k);

• otherwise, there is a transition from (s, p) to (s′, p).

Finally, the Büchi acceptance condition is to visit S × {0} infinitely often. One easily sees
that this new automaton accepts the same language as Bφ does.

We now prove that Bφ accepts the expected language. First, pick a path ρ (which we
will equivalently see as a word over 2AP in the sequel) such that ρ, 0 |= φ. Label each letter
of this word with the set of formulas of FL(φ) that hold true at that position. Then each
state is labelled with a maximal consistent subset of FL(φ). The resulting sequence of states
is easily seen to be a run of the Büchi automaton: in particular, it begins in an initial state,
and any state labelled with ψ1 Uψ2 is also labelled with Xψ2 ∨ (Xψ1 ∧X (ψ1 Uψ2)) (and
similarly for “since” subformulas). Moreover, any “until” formula that holds true at some
position is eventually fulfilled, so that the generalized Büchi condition is satisfied and the
run is accepting.

Conversely, pick an accepting run π = (si)i of Bφ, and let w = (wi)i be the word obtained
by letting wi = si ∩ AP for all i. One easily proves, by induction on the formula, that for
any i and any ψ ∈ si, it holds w, i |= ψ. Seeing w as a path ρ in some automaton A,
it follows that w, 0 |= φ.

Example. Figure 9 displays the Büchi automaton corresponding to formula aU (b∧X−1 b).
the closure of this formula contains 12 subformulas, thus the automaton could contain up
to 26, i.e., 64 states. Still, consistency requirements lower this value to 16. For the sake of
clarity, labels are not shown on transitions, since they correspond, by construction, to the
set of atomic propositions labeling the source state.

Figure 9: The Büchi automaton corresponding to formula aU (b ∧X−1 b).
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This provides us with an algorithm for PLTL model checking: given an automaton A
and a formula Eφ ∈ PLTL, we built the automaton Bφ, and consider the product automaton
A × Bφ. This product automaton is built as follows: its states are pairs (q, s) where q is
a state of A and s is a state of Bφ. Valid states are those states for which `(q) = s ∩ AP.
Then for any path ρ in A, it holds A, ρ, 0 |= Eφ if, and only if, the product automaton has
an accepting run.

Since the automaton Bφ has exponential size, the product A×Bφ also has exponentially
many states. However, deciding whether this automaton has an accepting run does not
require that we build the automaton explicitly: it suffices to non-deterministically guess the
path step-by-step, which can be achieved using only polynomial space. This is a generic
exercice about Büchi automata, which we leave as an exercice for the reader. It must be
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noticed that, in fact, when the formula is fixed (and thus is not taken into account when
measuring the complexity of the problem), the non-deterministic algorithm only requires
logarithmic space.

It remains to prove hardness in PSPACE. Before we prove this result, we begin with
explaining how LTL can be used to count from 0 to 2n− 1, using n boolean variables. More
preceisely, we write an LTL formula over AP = {bi | 0 ≤ i ≤ n − 1} that holds true only
along the path (c0c1...c2n−1)ω, where ci ∈ 2AP is the binary representation of integer i with
bits b0 to bn−1 (for instance, c23 = {b4, b2, b1, b0}).

We now write the LTL formula enforcing such a pattern, as a conjunction of several
subformulas:

• we begin with c0 = 0:

φzero =
∧

0≤i≤n−1

¬bi

• bit b0 alternates between 0 and 1 between any two consecutive states:

G (b0 ⇐⇒ X¬b0)

• all other bits are modified from one state to the next one if, and only if, all less
significant bits have value 1:∧

1≤i≤n−1

G
[
(
∧

0≤j≤i−1

bj) ⇐⇒ (bi ⇐⇒ X¬bi)
]

The reader will check that the conjunction of these three formulas achieves the expected
result. Notice that we could do the same with one single atomic proposition b, by replacing bj
with the value of b at position j (which is tested using X jb).

Using similar ideas, we can now encode any instance of QBF into an instance of the
LTL model-checking problem: let (∀x2i. ∃x2i+1)0≤i≤n−1φ(x0, ..., x2n−1) be an instance of
QBF. We let AP = {b, s} be the set of atomic propositions, with b being used at position k
(modulo 2n) to represent the value of variable xk, and s being used as a separator between
consecutive valuations of (xk)0≤k≤2n−1. We consider the automaton depicted at Figure 10:
between any two visits to an s-state, one valuation of the variables (xk)0≤k≤2n−1 is generated.

Figure 10: Encoding QBF as an LTL model-checking problem

b∀, s

¬b∀, s

b∃

¬b∃

b∀

¬b∀

b∃

¬b∃
. . .

Using LTL, we impose that the sequence of valuations witnesses the truth value of the
QBF instance (i.e., for universal quantifications, both values of the corresponding variable
are listed), and that formula φ is true under all those valuations.

• we have to impose that each universally-quantified variable appears both positively
and negatively. Notice that it sufffices to have x0 · x2 · x4 · · ·x2n−2, seen as the binary
encoding of some integer (with x2n−2 as the least significant bit), take all values from 0
to 2n−1, which we can do as above.

• we have to make sure that as long as no universally-quantified variables have switched
from one valuation to the next one, then the preceding variables should keep the same
value:

G
[
s⇒

[
(b ⇐⇒ X 2nb) U (b∀ ⇐⇒ X 2n¬b∀)

]]
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• finally, we check that φ holds: this is easily achieved by noticing that the value of
variable xk is encodes by the value of b in the k-th cell after s:

G
[
s⇒ φ(xk ← X kb)

]
.

Write φQBF for the conjunction of the formulas above (including those enforcing that x0 ·x2 ·
x4 · · ·x2n−2 encodes a binary counter from 0 to 2n − 1). Then the QBF instance is positive
if, and only if, formula Eφ holds true in the lower left state of the automaton of Figure 10.

�

Theorem 42. The PLTL and LTL symbolic-model-checking problems are PSPACE-complete.

Proof. The above algorithm can be run when the structure is given symbolically, provided
that the successor relation in the resulting exponential-space transition system can be com-
puted in polynomial space: it suffices to build the Büchi automaton and to run it in parallel
with the global transition system. �

2.3.3 CTL∗ model checking

Theorem 43. The CTL∗ model-checking problem is PSPACE-complete.

Proof. Hardness in PSPACE is a direct corollary of the hardness result for LTL. The CTL∗

model-checking algorithm turns out to also be an easy adaptation of the algorithm for LTL:
following Lemma 34, we can make use of a labelling algorithm, by iteratively computing
the sets of states satisfying each state-subformulas of the CTL∗ formula to be checked. This
relies on substitutivity: if two CTL∗ state formulas φ and ψ are equivalent for a fixed class
of models, and if ζ[p] is a CTL∗ formula involving a special atomic proposition p, then ζ[φ]
and ζ[ψ] are equivalent for the same class of models (where ζ[φ] is obtained from ζ[p] by
replacing each occurrence of p with φ).

Now, we proceed by induction: assume φ is the formula to be checked, and that it has k
path quantifiers. If k = 0, then the formula is propositional, and the algorithm is straight-
forward. When k = 1, φ is a boolean combination of propositional formulas and of one
LTL formula ψ. For each state, deciding whether ψ holds in that state can be achieved
using polynomial space. Storing this information itself only requires polynomial space (and
thus is affordable). Labelling those states with a fresh atomic proposition p and replacing
ψ with p in φ, we get a formula which is equivalent on the class made of our single model.
We end up with a CTL∗ formula having one less path quantifier, which we know how to
handle (by induction). When k > 1, the algorithm follows the same ideas, after selecting an
LTL subformula of φ (i.e., a formula starting with one of the deepest path quantifiers). The
global algorithm then uses polynomial space, as required. �

Applying similar ideas in a space-efficient manner, we can prove:

Theorem 44. The CTL∗ symbolic-model-checking problem is PSPACE-complete.

We omit the tedious details of the proof of this result.

2.3.4 PLTL and LTL satisfiability

Theorem 45. The PLTL and LTL satisfiability problems are PSPACE-complete.

Proof. The proof uses the same ideas as for model checking. First, given a PLTL formula,
we can build the Büchi automaton Bφ for φ. Any word accepted by this automaton witnesses
the existence of a path satisfying φ, so that we obtain a polynomial-space algorithm.

PSPACE-hardness is proved by slightly adapting the hardness proof for the model-
checking problem: more precisely, we encode the behaviours of the automaton of Figure 10
as an LTL formula: these behaviours can be characterized by
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• the presence of s initially and exactly every 2n positions, which is written as[
s ∧

∧
1≤i≤2n−1

X i¬s
]
∧ G

[
s ⇐⇒ X 2ns

]
• the alternation of ∃ and ∀:

·∀ ∧G (·∀ ⇐⇒ X ·∃).

�

2.3.5 CTL satisfiability

CTL satisfiability is the most technical of the proofs in this section. It proceeds in three
parts: first we prove that satisfiability can be witnessed by an infinite tree having finite
branching. We then prove that this problem (satisfiability by an infinite tree having finite
branching) is decidable, and finally that when this is the case, then the formula is also
satisfiable in a finite Kripke structure.

Theorem 46. The CTL satisfiability problem is EXPTIME-complete.

Proof. Tree automata accept trees in pretty much the same way as word automata accept
words: when reading a tree, the automaton forks computations in each successor nodes of
the current node, with the aim of satisfying the acceptance condition along each branch.
For dealing with CTL satisfiability, the tree that we consider is the unfolding of the Kripke
structure that should satisfy the formula. We restrict to trees (seen as infinite-state Kripke
structures) thanks to the following lemma:

Lemma 47. Let φ ∈ CTL∗, A be a (possibly infinite-state) Kripke structure, and q be a
state of A. Then A, q |= φ if, and only if, the root of the execution tree of A from q also
satisfies φ.

Proof. This is easily proved by induction on the structure of φ. �

The algorithm for CTL satisfiability checking will use similar ideas as for PLTL: we build
an automaton and check the emptiness of its language. One main difference between both
approaches is that CTL is, in some sense, bi-dimensional: we also have to take care about
the width of the trees we consider. We directly prove it for CTL∗:

Proposition 48 ([ES84a]). Let φ ∈ CTL∗. Then φ is satisfiable if, and only if, it is
satisfiable in an infinite tree T with branching O(|φ|).

Proof. The proof is in two steps: we begin with transforming φ into an equisatisfiable for-
mula ψ which has a simpler form, only involving subformulas of the form Eζ, Aζ and
AG Eζ where ζ is a path formula involving no path quantifier (which we can see as an LTL
formula). The second step proves the result for those simplified formulas.

The basic idea of the first step is to replace each state subformula Eξ with an extra
atomic proposition x, which is made “equivalent” to the state subformula by imposing the
extra conjunct AG (x ⇔ Eξ). Applying this inductively, we end up with the original
formula being in the expected form, and a conjunction of formulas of the above form, with
ξ being a path formula without path quantifier. Clearly enough, the original formula is
satisfiable if, and only if, the resulting formula is.

Finally, AG (x ⇔ Eξ) is equivalent to AG (x ⇒ Eξ) ∧ AG ( Eξ ⇒ x), which in turn
is equivalent to AG E(x⇒ ξ) ∧ AG E(ξ ⇒ x). This concludes the first step.

Now, let A and q0 such that A, q0 |= ψ. Assume that ψ contains n state subformulas of
the form Eξ. We inductively build a tree T with branching degree at most n+ 1 and such
that ψ holds true at its root. The tree T = 〈T,m〉 has T = {0, ..., n}∗, and its labelling is
defined as follows:

• m(ε) = `(q0): the root corresponds to q0, so it has the same labelling. We also label ε
with q0, to keep track of the state it corresponds to;
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• pick a node z corresponding to some state q; for each subformula of the form Eξi that
holds true at q in A, consider a maximal path π = (qj)j such that A, π, 0 |= ξ, and
label z · i with `(q1) and q1, and z · i ·0k with `(qk+1) and qk+1 (as long as k < lengthπ).
For subformulas Eξi that do not hold true at q in A, we (randomly) pick a path
from q, and plug it in the tree in the same way along the branch z · i · 0∗.

This way, any branch of T corresponds to a run of calA from q. Hence any formula of the
form Aξ that holds true at q0 in A also holds true at the root of T . Also, for each node z
of T corresponding to some state q, and each subformula Eξ, if calA, q |= Eξ then also
T , z |= Eξ. It follows that any formula of the form Eξ and AG Eξ that holds true at q0

in A also holds true at the root of T , which concludes the proof. �

One we have fixed a maximal branching degree of the trees to be considered, we are
ready to build the alternating tree automaton corresponding to a given CTL formula.

Proposition 49. Given a CTL formula φ, we can build an alternating tree automaton Aφ
of size linear in |φ| such that Aφ accepts a tree T if, and only if, the root of T satisfies φ.

Proof. When running on its input tree, an (alternating) tree automaton launches one (or
several) computations in each subtree of the node being read. This will allow us to check
CTL properties in trees. Usually, the transitions of the tree automaton might depend on the
branching degree of the node being read. We will not use this in our construction, as CTL
only imposes conditions one all the successors, or on one of the successors.

Before we can build the automaton, we need the following two definitions:

Definition 50. Let φ ∈ CTL. The set of subformulas of φ, denoted with Subf(φ), is the
smallest subset of CTL containing φ and such that

• if a formula of the form ¬ψ is in Subf(φ), then also ψ ∈ Subf(φ);

• if a formula of the form ψ1 ∨ ψ2, Eψ1 Uψ2 or Aψ1 Uψ2 is in Subf(φ), then also ψ1

and ψ2 are in Subf(φ).

Definition 51. The set of positive boolean formulas built on AP is defined by the following
grammar:

PBF(AP) 3 φ ::= > | ⊥ | p | φ ∨ φ | φ ∧ φ

We now turn to the construction of the automaton. Let φ be a CTL formula. We assume
w.l.o.g. that negations only appear in front of atomic propositions of temporal modalities.
We then build the alternating tree automaton Aφ = 〈Q, q0,Σ, δ, F 〉 as follows:

• Q = Subf(φ) is the set of subformulas of φ (including true and false);

• q0 is the state φ;

• Σ = 2AP;

• δ : Q× Σ→ PBF({� ,♦ } ×Q) is defined below;

• F ⊆ Q is a Büchi acceptance condition, requiring that some state not of the form EU
or AU appears infinitely often along each branch.

Now, the transition relation is defined in a straightforward way:

δ(true, σ) = > δ(φ1 ∨ ψ2, σ) = δ(φ1, σ) ∨ δ(φ2, σ)

δ(false, σ) = ⊥ δ(φ1 ∧ ψ2, σ) = δ(φ1, σ) ∧ δ(φ2, σ)

δ(p, σ) =

{
> if p ∈ σ
⊥ if p /∈ σ

δ(¬p, σ) =

{
> if p /∈ σ
⊥ if p ∈ σ

δ( Eφ1 Uφ2, σ) = ♦φ2 ∨ (♦φ1 ∧ ♦ ( Eφ1 Uφ2))

δ( Aφ1 Uφ2, σ) = �φ2 ∨ (�φ1 ∧� ( Eφ1 Uφ2))

δ(¬( Aφ1 Uφ2), σ) = ♦φ2 ∧ (♦φ1 ∨ ♦ (¬( Eφ1 Uφ2)))

δ(¬( Eφ1 Uφ2), σ) = �φ2 ∧ (�φ1 ∨� (¬( Eφ1 Uφ2)))
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It remains to prove, inductively on ψ, that a tree is accepted by Aφ with initial state ψ
if, and only if, ψ holds true at its root. This is quite straightforward, except possibly for
temporal modalities. We handle the case of EU, and leave the other cases to the reader.

Assume ψ = Eψ1 Uψ2 holds true at the root of some tree T = 〈T, l〉. Then there is a
node n in the tree where ψ2 holds, and ψ1 holds at all intermediary nodes. The root of the
subtree rooted at n satisfies ψ2, and so is accepted by Aφ when starting from ψ2. Similarly,
all intermediary nodes satisfy ψ1, and the corresponding subtrees are thus satisfied by Aφ if
starting from ψ1. Plugging the corresponding accepting runs together, we get an accepting
run of Aφ from ψ on T .

Conversely, if there exists an accepting run, then any node visited by state ζ along that
accepting run satisfies ζ. We leave this part of the proof to the reader. �

Emptiness of alternating tree automata can then be checked in deterministic exponential
time, e.g. by seeing this problem as a game. The formal proof of this statement is far beyond
the scope of this course, and we better refer to [EJ99, Kir02] for more details.

This provides a way to decide satisfiability of a CTL formula in a possibly infinite model.
However, it can be shown (see e.g. [Kir02]) that when an alternating tree automaton accepts
some tree, then it accepts a regular one, i.e., one obtained as the unfolding of a finite-state
transition system. This proves that CTL satisfiability can be decided in EXPTIME.

EXPTIME-hardness can be proven by encoding the emptiness problem for linear-bounded
alternating Turing machines. We leave this as an exercice for the courageous reader.

2.4 ATL: a temporal logic for multi-agent systems

In this section, we define and study the alternating-time temporal logic ATL, which extends
CTL with quantification on strategies of the agents, rather than just on paths.

Definition 52. The full alternating-time temporal logic is denoted by ATL∗. Formulas
of ATL∗ over atomic propositions AP and agents A are formulas built on the following
grammar:

ATL∗ 3 φs ::= p | ¬φs | φs ∨ φs | 〈〈A〉〉φp | JAKφp
φp ::= φs | ¬φp | φp ∨ φp | φp Uφp | φp Sφp.

where p ranges over AP and A ranges over 2A. A formula of the form φs is called a state
formula, while φp is a path formula.

ATL∗ can be seen as an extension of CTL∗ (as will be explained below). The semantics
of ATL∗ operators is the same as for CTL∗, with the additional two rules:

A, ρ, j |= 〈〈A〉〉φp ⇔ ∃σA ∈ StratA(A). ∀ρ′ ∈ Out(sj , σA). A, ρ′, 0 |= φp

A, ρ, j |= JAKφp ⇔ ∀σA ∈ StratA(A). ∃ρ′ ∈ Out(sj , σA). A, ρ′, 0 |= φp

While the existential quantification over strategy is quite intuitive, the dual quantifier is
a bit less: formula JAKφ means that for any strategy of A, at least one outcome satisfies φ.

Notice also that the existential quantification over all players 〈〈A〉〉 corresponds to exis-
tential path quantification of CTL∗, while the empty quantification 〈〈∅〉〉 corresponds to the
universal one. Hence ATL∗ is at least as expressive as CTL∗.

As a natural fragment of ATL∗, ATL is the counterpart of CTL, where only simple path
formulas are allowed:

ATL 3 φs ::= p | ¬φs | φs ∨ φs | 〈〈A〉〉φp | JAKφp
φp ::= φs Uφs
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2.4.1 Expressiveness issues

Several expressiveness results can be derived from the inclusion of CTL in ATL: for instance,
if 〈〈A〉〉G F p could be expressed as a formula φ{A} in ATL, then in the one-player setting,
φA would be equivalent to EG F p, and would only involve 〈〈∅〉〉 and 〈〈A〉〉 , which correspond
to A and E.

Using such ideas, negative expressiveness results in CTL can be lifted to ATL. The
converse is not necessarily true. First notice that we have the following duality:

〈〈A〉〉Gφ ≡ ¬ JAK Fφ.

Quite naturally, one would define

ÃTL 3 φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉φUφ | 〈〈A〉〉Gφ

and claim that ÃTL and ATL are equally expressive, as is the case for CTL. This is what

was silently assumed in many papers about ATL, where the logic ÃTL is actually considered
(in particular in [AHK97, AHK02]).

However, consider the following equivalence:

E¬(aU b) ≡ E
[
G (¬b) ∨ (¬b) U (¬a ∧ ¬b)

]
≡ EG (¬b) ∨ E(¬b) U (¬a ∧ ¬b).

When lifted to ATL, we get

〈〈A〉〉 ¬(aU b) ≡ 〈〈A〉〉
[
G (¬b) ∨ (¬b) U (¬a ∧ ¬b)

] ?≡ 〈〈A〉〉G (¬b) ∨ 〈〈A〉〉 (¬b) U (¬a ∧ ¬b).

The second equivalence turns out to be wrong: only one implications holds. Indeed, if A has
a strategy for enforcing G (¬b), then this very strategy enforces ¬(aU b). Similarly if A has
a strategy to enforce (¬b) U (¬a∧¬b). But the converse does not holds: if A has a strategy
to enforce ¬(aU b), then that strategy enforces G (¬b) ∨ (¬b) U (¬a ∧ ¬b). But it might be
the case that it does not enforce only one of the disjunct along all its outcomes. This can
be formalised:

Theorem 53. ATL is strictly more expressive than ÃTL.

The details of the proof of this result are a bit tedious, and we better refer to [LMO07]
for the full proof.

To conclude on this note, let us focus on the subclass of turn-based games, where in each
state, all the moves of all but one player are equivalent. Such games have the important
property of being determined (for reasonnable objectives) [Mar75]: more precisely, if a
coalition A has no strategy to reach a given objective, then the complement coalition A \A
has a strategy to enforce the opposite objective. In other terms, turn-based games have the
following equivalence

〈〈A〉〉 ¬(aU b) ≡ 〈〈A \A〉〉 aU b

so that ATL and ÃTL are equivalent on this subclass.

2.4.2 Model checking and satisfiability

As we saw in Section 1.3, reachability in games can be handled in a way very similar to how
it is handled in transition systems. We show here how this can be generalised, entailing the
following result:

Theorem 54. ATL model checking is PTIME-complete.

Proof. As for CTL, we begin with a crucial lemma, which will allow us to use a labelling
algorithm similar to the CTL model-checking algorithm:

Lemma 55. Given two runs ρ and ρ′ of an automaton A, and two positions j and j′ s.t.
sj = s′j′ , it holds

∀φs ∈ ATL∗. A, ρ, j |= φs ⇔ A, ρ′, j′ |= φs.
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This lemma is easily proved by induction on the formula. A consequence of this result is
that we can compute, for each ATL subformula of the formula to be checked, the exact set
of states where this formula holds. Following the ideas developped for solving reachability
games, we rely on the operator CPre, and on the usual fixpoint equations. The following
result is the counterpart of Prop. 35:

Proposition 56. Let α, β be two subsets of the set of states of a finite-state concurrent
game G, and A be a player in G. We define the following two sequences:

E0 = ∅ Ei+1 = CPreA(β ∪ (α ∩ Ei))
A0 = S Ai+1 = S \ CPreA(S \ (β ∪ (α ∩Ai)))

Then both sequences converge in finite time, and their limits (which we write E∞ and A∞)
enjoy the following properties (where we assume that the states in α and β are labelled with
corresponding atomic propositions α and β):

A, ρ, j |= 〈〈A〉〉αUβ ⇐⇒ sj ∈ E∞
A, ρ, j |= JAKαUβ ⇐⇒ sj ∈ A∞

Proof. That both sequences converge can be proved in the same way as for CTL.
Pick a run ρ and a position j such that A, ρ, j |= 〈〈A〉〉αUβ. Following Lemma 55,

we equivalently have A, ρ≥j , 0 |= 〈〈A〉〉αUβ, which means that A has a strategy whose
outcomes from sj all satisfy αUβ. Write k for the maximal number of states visited before
witnessing β. This exists by König’s lemma.

We prove by induction on k that sj is in E∞. If k = 1, then β is reached in one move
from sj , whatever the other players do. In other terms, sj ∈ CPreA(β), where we abusively
write β for the set of states satisfying β. Hence sj ∈ E1 ⊆ E∞. We now prove the result
when k = k′ + 1, assuming it holds for k′. Consider the sets of states reached by one move
of the strategy played by A. In each of these states, either β holds, or α holds and A has a
strategy enforcing αUβ within at most k′ states. Hence sj is in CPreA(β ∪ (α∩E∞)), wich
precisely is E∞.

Conversely, we prove by induction that from a state in Ek, there is a strategy for A to
enforce αUβ and reach β within k steps. This is clear for E1, and is easily extended to
any Ek.

We leave the other proof to the reader as an exercice, where the aim is to show that
from any state in Ek, A has a strategy for which at least one outcome will satisfy αUβ and
reach β within k steps. �

Remark. It can be remarked that this algorithm can be made constructive, i.e., it can
effectively generate the witnessing strategies. Indeed, when a state is proven to belong to
CPreA(X), it can be associated with a corresponding action for A which enforces that X
will be reahced at the next step. It also follows that memoryless strategies are sufficient for
objectives in ATL (reacability, safety, ...)

Remark. The algorithm runs in polynomial time if we consider that the transition table Edg
is given explicitly. In that case, this table has size O(|S| × |M||A|). Such a representation is
not usable in practice.

A symbolic setting can also be defined for concurrent games: not only the state space
would be given as the product of several components, but also the transition table has to be
given symbolically, in order to avoid the above blow-up. We leave it to the reader to define
this setting and prove that ATL symbolic model-checking is EXPTIME-complete.

Theorem 57. ATL∗ model checking is 2-EXPTIME-complete.

Proof. The algorithm again consists in labelling states with the subformulas they satisfy, so
that we are left with the problem of deciding whether some player A has a strategy to satisfy
some LTL condition. We prove the more general result that given a winning condition as
a non-deterministic Büchi automaton, deciding whether player A has a winning strategy is
decidable in exponential time.
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The algorithm consists in first building a deterministic automaton equivalent to the
Büchi automaton given as input, and then play on the “product” of this automaton with
the game structure. The deterministic automaton will have a Rabin winning condition,
which is then also the winning condition in the product. While the deterministic automaton
has exponentially many states, is only has polynomially many Rabin pairs. Solving games
with n states and k Rabin pairs can be achieved in time O((nk)3k) [EJ99], which matches
the announced complexity.

Hardness in 2-EXPTIME can be proved by a direct encoding of the LTL realisability
problem [PR89]. �

2.5 Exercises

Exercice 5 Is it possible (briefly explain why) to express the following requirements
in LTL or CTL:

• there exists an infinite run;

• there exists an infinite run along which b occurs finitely many times;

• there exists a finite run having its first and last state labelled with the same set of
atomic propositions;

• there exists a run having every even position labelled with a (only), and every odd
position labelled with b (only);

• there exists a run having every even position labelled with a (only) (with no constraints
on odd positions).

Exercice 6 Prove that model-checking the fragment of CTL with only EF is PTIME-
complete.

Exercice 7 Define a symbolic representation for concurrent games, and prove that
ATL model checking is EXPTIME-complete in that framework.
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3. Weighted temporal logics

In this section we extend temporal logics with quantitative constraints. Syntactically, such
extended temporal logics could be used in any quantitative setting, be it discrete or con-
tinuous. Here we focus on a discrete semantics, in two different settings: weighted labelled
transition systems on the one hand, and discrete-time timed automata on the other hand.

3.1 Quantitative temporal logics on weighted labelled
transition systems

3.1.1 Weighted labelled transition systems

Weighted labelled transition systems simply are labelled transition systems whose transitions
are decorated with sets of integers, which can be seen as the price to pay to take the
transition.

Definition 58. Write I(N) for the set of non-empty intervals of N. A weighted labelled
transition system is a 4-tuple A = 〈S, T, `, w〉 where 〈S, T, `〉 is a labelled transition system
and w : T → I(N) associate each transition with an interval.

Semantically, it is more convenient to consider weighted labelled transition systems in
which each transition carries only one integer weight (instead of an interval). With a
weighted labelled transition system A = 〈S, T, `, w〉, we associate a tightly weighted la-
belled transition system A′ = 〈S, T ′, `, w′〉 where T ′ = {(t, n) | t ∈ T and n ∈ w(t)}, with
src((t, n)) = src(t) and tgt((t, n)) = tgt(t) and w′((t, n)) = n. This transition system might
have infinitely many transitions, but each transition carries only one integer weight.

Runs of a weighted labelled transition system are runs of the underlying tightly weighted
labelled transition system. The weight of a (finite or infinite) run is defined through the
homomorphism mapping each transition to its weight. The weight of a run is then an integer.
We (abusively) write w(ρ) for the weight of a run ρ.

Notice that weights are nonnegative, so that the accumulated weight along a run is non-
decreasing. Allowing for negative weights makes the setting richer and more complex, and
the natural questions do not only concern the final accumulated weight, but also the inter-
mediary values (it can be required that they remain nonnegative, for instance [BFL+08]).

On another note, we will not use the term weighted automata as an equivalent for
weighted labelled transition systems: weighted automata are kind of a registered trade-
mark for weighted transition systems whose weights are taken from a semi-group, for which
general results are expected, independently of the underlying semi-group). Our weighted
labelled transition systems are only a special kind of weighted automata, and not all our
results would extend to any weighted automata.

The most basic problem on duration automata concerns optimal reachability : given two
states s and s′, what is the weight of the shortest path (here “shortest” means “with least
weight”) going from s to s′? The associated decision problem is as follows:

Problem: Shortest path
Input: A finite weighted automaton A, two states s and s′, and an

integer n (given in binary notation);
Question: Is there a path π in A from s to s′ s.t. w(π) ≤ n?
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Theorem 59. The shortest-path problem is solvable in PTIME.

Proof. One of the classical algorithms for solving this problem is the Bellman-Ford algo-
rithm [Bel58] (which we prove is also valid for automata having “negative weights”, as it
detects cycles). This algorithm iteratively computes the weight of the shortest run of length i
from each state of A to s, starting with i = 0. When no such run exists, the weight is +∞.

• initially, only s can reach itself with a path of length zero. Thus d0(s) = 0 and
d0(q) = +∞ for any q 6= s.

• for each i ranging from 0 to n with n = |S|, apply the following procedure: first
set di+1(q) to di(q) for each state q. Then, for each edge (q, w, q′) ∈ δ, if di+1(q) >
di(q

′) + w, then di+1(q) is set to di(q
′) + w.

• finally, if dn(q) > dn+1(q), then d(q) is set to −∞. Then, for each state q′ that can
reach q with d(q) = −∞, set d(q′) to −∞. If some d(q) is not set after this procedure,
then d(q) = dn(q).

Obviously, this procedure runs in quadratic time (namely O(|S| · |δ|)).

Algorithm 4: Bellman-Ford single-destination shortest-path algorithm

function shortest(G, q) {
// compute shortest distance to q

// from any state in G

for all s∈S {
if (s=q)

v(s):=0

else

v(s):=+∞;

}

repeat |G| times {
v’:=v;

for all t∈T {
if (v(src(t))>v’(tgt(t))+w(t))
v(src(t)):=v’(tgt(t))+w(t);

}
}

for all s in S {
d(s):=v(s)

d’(s):=-∞
if (v(s) < v’(s)) {
d(s):=-∞

}
}
while (d’6=d) {
d’:=d;

for all t∈T {
if d(tgt(t))=-∞ {
d(src(t)):=-∞

}
}

}

return(d);

By induction, we can prove the following invariants:

Lemma 60. For each i between 0 and n+ 1 and each q ∈ S,

• if di(q) is finite, it corresponds to the weight of some path in A from q to s;

• if there is a path from q to s of length at most i, then di(q) is less than or equal to the
weight of the shortest path from q to s of length at most i.

Proof. When i = 0, the first claim is obvious since d0(q) is finite only when q = s, and
d0(s) = 0 is the length of the trivial path from s to itself. Simlarly, there is a path from q
to s of length 0 (if, and) only if, q = s; in that case, d0(s) = 0 is (less than or) equal to the
shortest path from s to itself of length 0.

Now assume that that the result holds for some i between 0 and n. We prove that it
still holds at step i+ 1. First, if di+1(q) = di(q), then the results follows from the induction
hypothesis. Otherwise, di+1(q) is set to di(q

′) + w for some edge (q, w, q′). By induction
hypothesis, there is a path from q′ to s of length di(q

′). Prepending the transition (q, w, q′)
to this path yields a path from q to s of weight di+1(q), as required.
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For the second claim, let π be one of the shortest paths from q to s of length at most i+1,
assuming that such a path exists. Let (q, w, q′) be its first transition, and consider the
suffix π>1, and its first state q′. It must be the case that π>1 is one of the shortest path
from q′ to s of length at most i, since otherwise we could find a path from q to s of length at
most i+ 1 and weight strictly less than w(π). The induction hypothesis entails that di(q

′) is
less than or equal to the weight of the shortest path from q′ to s of length at most i. Thus
di+1(q) is less than di(q

′) + w, which is in turn less than the weight of π. �

Using this intermediate result, we now prove the following statements, which entail the
correctness of the algorithm:

Proposition 61. For each state q,

• if d(q) = +∞, then s is not reachable from q;

• if d(q) = −∞, then for any M ∈ Z, there is a path from q to s with weight less than M ;

• otherwise, d(q) is the weight of the shortest path from q to s.

Proof. Assume that dn(q) > dn+1(q) for some state q. From the previous lemma, this means
that there is a path π from q to s with weight (dn+1(q)) strictly less than the shortest paths
from q to s of length less than or equal to n. Then π contains two occurrences of some
state t, and if we remove the corresponding cycle from π, we get a valid path of length less
than or equal to n, hence of weight strictly larger than the weight of π. This means that the
cycle we removed has negative global weight. Thus the weight of a path between q and s
can be made arbitrarily small, by repeating this negative cycle; similarly for any state tat
can reach such a state q.

Conversely, assume that d(q) is finite (i.e., q can reach s but d(q) has not been set
to −∞), and that q cannot reach s via a negative cycle. From the first statement of the
lemma above, there is a path from q to s with weight (at most) d(q). Among the paths
of weight at most d(q), pick a path π with as few transitions as possible. If π has a cycle,
this cycle must be nonnegative (by hypothesis), and removing this cycle would yield a path
shorter than π (in terms of its number of transitions) with weight at most d(q). This is a
contradiction. Hence π has no cycle, so that its length is at most n. Since d(q) = dn(q) is
less than the weight of the shortest path from q to s having at most n transitions, we get
that π has weight exactly d(q), and that d(q) is exactly the weight of the shortest path
from q to s.

Finally, assume that for some q, d(q) is finite but q can reach s via a negative cycle.
Let q′ be a state of this negative cycle π = ((qi, wi, q

′
i))0≤i<|π| (with q′|π|−1 = q0). Since q′

is reachable from q and d(q) is finite, we also have that d(q′) is finite. The same holds of all
the states in the negative cycle around q′. In particular, d(q0) is finite, which means that
dn(q0) ≤ dn+1(q0). This means in particular that dn(q′0) ≤ dn(q0) +w0. The same holds for
the other states of the cycle:

dn(q′0) ≤ dn(q0) + w0

dn(q′1) ≤ dn(q1) + w1

· · ·
dn(q′|π|−1) ≤ dn(q|π|−1) + w|π|−1

Summing up these inequalities, and since dn(q′i) = dn(qi−1 mod |π|), we end up with∑
0≤i<|π|

wi ≥ 0,

which contradicts the fact that π is a negative cycle, and concludes the proof. �
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3.1.2 Weighted temporal logics

Quantitative temporal logics are extensions of classical temporal logics in which temporal
modalities are decorated with constraints that the accumulated weight has to satisfy for the
formula to hold. We only consider pure-future temporal logics here, but past-time modalities
could of course be defined similarly.

Definition 62. The full weighted branching-time temporal logic is denoted by WCTL∗.
Formulas of WCTL∗ over AP are formulas built on the following grammar:

WCTL∗ 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs | ¬φp | φp ∨ φp | φp UI φp.

where p ranges over AP and I ranges over I(N).
Consider a maximal run ρ of a labelled transition system A, an integer j s.t. j − 1 <

length(ρ), and write sj for the j-th state of ρ. For any WCTL∗ formula φ, that φ holds at
position j along ρ in A, denoted by A, ρ |= φ, is defined in the same way as for PCTL∗,
except for the new “until” modality:

A, ρ, j |= φp UI φ
′
p ⇔ ∃k ∈ [j + 1, length(ρ)) s.t. A, ρ, k |= φ′p and

w(ρ[j,k]) ∈ I and

∀l ∈ [j + 1, k − 1]. A, ρ, l |= φp.

The weighted linear-time temporal logic, denoted WLTL, is the fragment of WCTL∗ defined
by the following grammar:

WLTL 3 φs ::= Eφp | Aφp

φp ::= p | ¬φp | φp ∨ φp | φp UI φp.

The weighted computation-tree logic, denoted WCTL, is the fragment of WCTL∗ defined by
the following grammar:

WCTL 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs UI φs.

Their semantics follow from the semantics of WCTL∗.
We also define the fragments WCTL∼ and WLTL∼ by restricting their syntax to only

allow decorating intervals to include zero or be unbounded. In that case, modality U[0,c]

will be written U≤c and modality U[c,+∞) will be written U≥c. Fragments WCTL≈ and
WLTL≈ extend WCTL∼ and WLTL∼ with the addition of punctual modalities U[c,c], denoted
with U=c.

Before we study expressiveness questions, let us first see what the “constrained until”
modality can express. The meaning of φUI ψ is rather clear: it holds true along any path ρ
that contains a prefix ρ′ whose weight is in I, ending in a ψ-state, and all of whose non-
extremal states satisfy φ. In particular, F≤5 p means that p will hold true at some point
with total accumulated weight at most 5. Dually, GI φ holds true if φ holds at any point
whose accumulated weight is in I.

3.1.3 Expressiveness of WCTL and WLTL

As in the classical setting, the linear-time and branching-time frameworks have uncompara-
ble expressiveness. We will not exhaustively compare all fragments in each framework, but
just list a few results. We begin with the branching-time setting.

Proposition 63. Over weighted labelled transition systems, WCTL and WCTL≈ are equally
expressive, and they are strictly more expressive than WCTL∼.
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Proof. WCTL≈ is a syntactic fragment of WCTL, so we just have to translate WCTL into
WCTL≈. The naive way—consisting in replacing UI with a conjunction of U=c for all c ∈ I—
is not correct. For instance, one can easily prove that the following two formulas are not
equivalent:

AφU[1,2] ψ 6≡ AφU=1 ψ ∨ AφU=2 ψ.

This would be correct for “exists-until” modality. Notice that it involves a blow-up in the
size of the formula, since φ and ψ are duplicated.

A more refined—but still wrong—approach consists in replacing each subformulas EφU[m,n] ψ
and AφU[m,n] ψ respectively with

EφU=m ( EφU≤n−m ψ) AφU=m ( AφU≤n−m ψ).

The problem here is that in our semantics, transitions (and their weights) are atomic: in or-
der to fulfill φU=m ζ, there must be a prefix of weight exactly m, which is not required for
satisfying φU[m,n] ψ. The translation above is correct for {0, 1}-weighted labelled transition
systems.

Finally, a correct translation can be obtained by combining both approaches. We only
present it on a simple example and leave it to the sleepless reader: consider formula
EG[3,5] φ, requiring that φ holds true at any point where the accumulated weight is be-
tween 3 and 5. We enumerate all possible values of the weight of the transition taken at the
time when the interval [3, 5] is entered: hence we have

EG[3,5] φ ≡EF=0

[
EX=3 (φ ∧ EG≤2 φ) ∨ EX=4 (φ ∧ EG≤1 φ) ∨ EX=5 (φ ∧ EG≤0 φ)

]
∨

EF=1

[
EX=2 (φ ∧ EG≤2 φ) ∨ EX=3 (φ ∧ EG≤1 φ) ∨ EX=4 (φ ∧ EG≤0 φ)

]
∨

EF=2

[
EX=1 (φ ∧ EG≤2 φ) ∨ EX=2 (φ ∧ EG≤1 φ) ∨ EX=3 (φ ∧ EG≤0 φ)

]
A dual construction can be used to express AFI φ (which will be a conjunction of AG -
formulas). With some more work, A UI can then be derived.

What is easier to show is that WCTL∼ is not as expressive as WCTL≈ and WCTL:
consider the weighted labelled transition systems depicted on Figure 11 (assuming self-loops
on p-states). Obviously, they satisfy the same WCTL∼ formulas, while only the second one
satisfies EX=2 p. �

Figure 11: WCTL∼ cannot distinguish between these weighted labelled transition systems
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The situation in the linear-time setting is easier: the above naive translation is correct
here (because path quantifiers do not interfere), so that WLTL and WLTL≈ are equally
expressive. Expressing equality constraints using only inequalities can also be achieved with
linear-time: again, the naive approach consisting in writing F=3 p ≡ F≤3 p ∧ F≥3 p fails, as
two different witnesses could be used on the right-hand side. For this idea to work, we have
to use the X modality (with X∼c q ≡ ⊥U∼c q), which univocally refers to the very next
transition. Then

F=1 p ≡ F≤0 (X≤1 F≤0 p ∧X≥1 F≤0 p).

Then
F=2 p ≡ F≤0 (X≤2 F≤0 p ∧X≥2 F≤0 p) ∨ F=1 (F=1 p).

This generalises to the “until” and “release” modalities, and to any integer or interval
constraint. In the end:

Proposition 64. Over weighted labelled transition systems, WLTL, WLTL≈ and WLTL∼
are equally expressive.
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3.1.4 Model checking WCTL and WLTL

Theorem 65. Model checking WCTL∼ is PTIME-complete.

Proof. Since WCTL∼ contains CTL, its model-checking problem is PTIME-hard. We prove
memberhip in PTIME: the algorithm is quite similar in spirit to that of CTL, in that it
consists in labelling states with the subformulas they satisfy. As a consequence, we just
define procedures to decide whether a state satisfies a simple formula, of the form E U≤c ,
E U≥c , A U≤c and A U≥c .

• EpU≤c q: we begin with keeping only those states in which EpU q holds. We have
to prove that the shortest path to reach q in the resulting graph has length at most c.
Since we are only interested in shortest path, we also restrict each transition of our
graph to only carry its minimal possible weight. Effectively computing the weight of
the shortest path to some q state can be achieved in time O(|S| · |T |), using Bellman-
Ford algorithm (see Algorithm 4).

• EpU≥c q: there are two ways to satisfy this kind of formula: either through a direct
path, or via a cycle with positive accumulated weight (in order to have the accumulated
weight go above c). The former case can be handled by computing the weight of the
longest path reaching q in at most n steps (which might include cyclic paths, but we
don’t care); this can be achieved by adapting the Bellman-Ford algorithm, running the
loop exactly n times and aiming at computing the longest path instead of the shortest
one.

The latter case is handled by first detecting strongly-connected components visit-
ing only p-states and taking at least one non-zero transition. Using Tarjan’s algo-
rithm, strongly-connected components can be computed in time O(|T | + |S|) (see
Algorithm 5). Keeping only those components that visit only p-states and contain
at least one non-zero-weight transition is then easy. After labelling with s each state

Algorithm 5: Computing SCCs

function SCC(G,v) {
// compute SCCs of graph G

// that are reachable from state v

count := 0;

nb_scc := 0;

list := ∅;
tree := {v};
scc := ∅;
visit(v);

return scc;

}

function visit(s) {
push(s, list);

number(s) := count;

low_reach(s) := count;

count++;

for all (s→r in T) {

if (r /∈ tree) {
tree := tree ∪ {r};
visit(r);

low_reach(s) := min(low_reach(s),

low_reach(r));

} else if (r ∈ list) {
low_reach(s) := min(low_reach(s),

number(r));

}
}
if (low_reach(s)=number(s)) {
nb_scc++;

q := pop(list);

while (q 6= s) {
scc[nb_scc] := scc[nb_scc] ∪ {q};
q := pop(list);

}
}

}

that belongs to such a strongly connected component, it suffices to find those states
satisfying E

[
pU (s ∧ EpU q)

]
.

• ApU≤c q: we first notice the following equivalence:

ApU≤c q ≡ AF≤c q ∧ ApU q.
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This way, it jst remains to find those states in which AF≤c q holds. Now, there are
two ways for a path to not satisfy F≤c q: either the accumulated weight never reaches
value c and never visits any q state, or it exceeds c at some points but does not visit
a q-state in the meantime. Then

¬AF≤c q ≡ E(¬q) U≥c+1> ∨ EG (¬q).

• ApU≥c q: when c = 0, this is equivalent to ApU q. Otherwise, one can check that
it holds

ApU≥c q ≡ AG≤c−1 (p ∧ ApU≥1 q).

Modality AG≤c−1 is dual to EF≤c−1 , which we know how to handle. Finally,
ApU≥1 q can be handled by checking ApU (positive weight ∧ (q ∨ p ∧ ApU q))
where positive weight labels states reached after a positive weight (which might
require duplicating some states).

All four procedures run in polynomial time. They have to be applied at most a polynomial
number of times, so that the whole algorithm is in PTIME. �

Theorem 66. Model checking WCTL≈ and WCTL are ∆P
2 -complete.

Remark. Before we proceed to the proof, let us make some remarks about ∆P
2 and the

polynomial-time hierarchy. An A-oracle Turing machine, where A is a decision problem, is
a Turing machine having an extra write-only tape, called the oracle tape and three special
states, which we denote with q?, qyes and qno. The machine runs as a classical Turing
machine, except that

• it can write on its oracle tape;

• when it enters the q?-state, it immediately goes to one of the states qyes or qno depending
on whether the content of the oracle tape is a positive instance of A or not.

For instance, a SAT-oracle Turing machine can be seen as a Turing machine having access
to a “magic” SAT-solver. Any other NP-complete problem would define an “equivalent”
Turing machine, and we generally say NP-oracle Turing machine to denote any of these
equivalent Turing machines. Complexity can then be measured in terms of time and space
of the computations, as well as in terms of the number of calls to the oracle.

For instance, an NP-oracle Turing machine running in deterministic polynomial time
defines the class PTIMENP, which is precisely the class ∆P

2 of the above Theorem. Obviously,
a problem solvable in NP is also solvable in PTIMENP: it suffices to ask the oracle. Simi-
larly, a problem solvable in coNP is also solvable in PTIMENP: just ask the oracle for the
complement problem (which is in NP), and return the opposite answer. This entails that ∆P

2

contains both NP and coNP, hence it is strongly believed to differ from NP. On the other
hand, it is easily seen to be included in PSPACE, since NP is.

Proof. We begin with proving that deciding whether a state satisfies EpU=c q is NP-
complete. Notice that because c is encoded in binary, the length of a witness path might
have size exponential. Simply guessing a witness path would not run in polynomial time.
Instead, what the algorithm guesses is the Parikh image of a witness path, i.e., the number
n(t) of times each transition t is taken. Each transition being taken at most exponentially
many times, the guessed integers have polynomial size, and can be guessed in polynomial
time. We then have to check that

• the numbers guessed indeed correspond to a path, i.e., that all states (or all states
but two) are entered and left the same number of times. In case this is not the case
for two of the states, then one of those two exceptions has to be left once more than
the number of times it is entered, and symmetrically for the other exception. The first
exception state is named s0, the second one is named sf ;
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• the subgraph induced by the transitions that are assigned a positive number is con-
nected. At this point, we have checked that the numbers we have guessed correspond
to a path;

• state sf is labelled with q, and all other states, except possibly s0, are labelled with p;

• write l(t) and u(t) for the lower- and upper bound of each transition t (possibly
with u = (t) +∞). Then we have to check that∑

t∈T
n(t) · l(t) ≤ c ≤

∑
t∈T

n(t) · u(t).

Clearly enough, this algorithm accepts if, and only if, there exists a witness path.
NP-hardness is proven by encoding the SUBSET-SUM problem, which can be expressed

as follows: given a set of positive integers (ai)1≤i≤n and a target value b, does there exists
J ⊆ [1, n] such that

∑
j∈J aj = b? One easily observes that this is equivalent to the initial

state of the weighted labelled transition system of Fig. 12 satisfying EF=b p.

Figure 12: Encoding SUBSET-SUM as a WCTL≈ model-checking problem
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We now describe a procedure to decide whether ApU=c q holds at some state. This is
achieved by first applying the following equivalence:

ApU=c q ≡ ApU≥c q ∧ ¬EG=c ¬q.

Then we are left with checking formula of the form EG=c p. The NP algorithm will work
in the same way as for EpU=c q, but will distinguish several cases:

• either it will find an infinite path along which the accumulated weight never exceeds c;

• or it will first find a prefix until the very transition that makes the accumulated weight
reach or exceed c. Then either there is a transition that makes the accumulated weight
exceed c, in which case the formula is witnessed; or the next transition makes the weight
exactly c, and then we have to check that we can find a path along which p holds for
ever or until a positive-weight transition is fired.

Finally, notice that handling more general modalities E UI and A UI for any interval I,
can be achieved using similar ideas.

Now consider a Turing machine which could apply these NP algorithms in constant time.
Then checking a WCTL ou WCTL≈ formula can be achieved in deterministic polynomial
time, since all other modalities can be solved in polynomial time. This provides us with an
algorithm in ∆P

2 .

It remains to prove ∆P
2 -hardness. To this aim, we consider the SNSAT problem [LMS02]:

an instance of SNSAT is as follows:

I =


x1 := ∃Z1. φ1(Z1)
x2 := ∃Z2. φ2(Z2, x1)
x3 := ∃Z3. φ3(Z3, x2, x1)

· · ·
xn := ∃Zn. φn(Zn, xn−1, ..., x2, x1)


In other terms, SNSAT is a sequence of SAT queries, each query depending on the results of
all previous queries. Solving an SNSAT instance can clearly be achieved in ∆P

2 , and SNSAT
can be proved ∆P

2 -complete.
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Write X = {x1, x2, ..., xn}, and Z = Z1 ∪ Z2 ∪ ... ∪ Zn. We also assume (w.l.o.g.) that
all propositional formulas φk are conjunctions of disjunctive clauses with three disjuncts. If
φk contains a clause Ck,l = αk,l,1 ∨ αk,l,2 ∨ αk,l,3, we let Ck,l be the clause ¬xk ∨ Ck,l, and
define C = {C1, ..., Cr} for the set of all resulting clauses. An instance I of SNSAT naturally
defines a unique valuation vI of X, satisfying vI(xk) = > iff φk(Zk, vI(xk−1), ..., vI(x1)) is
satisfiable.

Now, a valuation w of X ∪ Z is said

• safe if for all k, w(xk) implies φk(w(Zk), w(xk−1), ..., w(x1));

• correct if for all k, w(xk) equals φk(w(Zk), w(xk−1), ..., w(x1));

• admissible if it is correct and coincides with vI on X.

Clearly, being admissible requires being correct, which in turn requires being safe. Notice
in particular that a valuation can be correct but not admissible: it can be the case for in-
stance that φk(w(Zk), w(xk−1), ..., w(x1)) evaluates to false while φk(Zk, w(xk−1), ..., w(x1))
is satisfiable.

We show that checking whether a given valuation is admissible is ∆P
2 -complete. To this

aim, fix some K ∈ N, whose value will be made explicit later. Let

s(xi) = K s(zi) = Kn+i s(Ci) = Kn+p+i

where n = |X| and p = |Z|. Consider a mappingM : X ∪Z ∪ C → N (which can be seen as
a multiset of X ∪ Z ∪ C). Its weight is defined as s(M) =

∑
v∈X∪Z∪C s(v) · M(v). Notice

that if M(v) < K and M′(v) < K for all v, then s(M) = s(M′) iff M =M′.

Figure 13: Reducing SNSAT to WCTL model checking
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Now, consider the weighted labelled transition system of Fig. 13. In this figure, for a
literal α involving variable x, we let d(α) = s(x) +

∑
{s(C) | C ∈ C, α⇒ C}.
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A path in the first two rows of the figure defines a valuation (provided that it does not
take the vertical transitions, which we will enforce), while the other two rows contain “filling
nodes”, which will be used to reach a given accumulated weight. In the first two rows, a
path collects the weights of the the variables it visits, plus the weights of the clauses that
are entailed by each literal (thus each clause may be counted up to four times).

Write K ′ =
∑
v∈X∪Z s(v) + 4 ×

∑
c∈C s(C), and pick a path π of weight K ′ (if any).

Following our earlier remark, if K is large enough, path π must visit exactly one of xk
and ¬xk, for all k. Since s(C) might be accumulated up to eleven times along a path (three
times in the third row, four times in the first two rows, and four times in the last row),
it suffices to take K > 11. Moreover π also has to accumulate 4s(C) for all C ∈ C, so that
it must visit some literal implying C at least once. In other terms, any path of length K ′

corresponds to a valuation that satisfy all the clauses.
Now, we define the following formulas:

ζ0 = >
ζk = E [Px ⇒ EX (P¬x ∧ ¬ζk−1] U=K′ >

where Px and P¬x label all states xi and ¬xi, respectively. We prove the following:

Lemma 67. For any integers k and 1 ≤ r ≤ n,

• if k ≥ 2r − 1, then (vI(xr) = > if, and only if, state xr satisfies ζk);

• if k ≥ 2r, then (vI(xr) = ⊥ if, and only if, state ¬xr satisfies ζk).

This lemma is proved inductively on k. It is trivial when k = 0. Let k > 0, assuming
that the result holds true for k − 1. Let r satisfying the constraint of the lemma. Let w be
an admissible valuation, and πw be a path satisfying the following requirements:

• it starts in xr or ¬xr;

• it only visits literal that are true under w;

• it has total weight K ′.

Because of the second condition, the part of πw in the first two rows is uniquely defined.
Moreover, if the path visits xl for l ≤ r, then all the clauses originating from φl are satisfied,
so that their weight appears at least once in the weight of π; on the other hand, if the path
visits ¬xl, then all the clauses originating from φl also appears at least once, because they
contains ¬xl as a disjunct. By carefully selecting the path in the filling nodes, it is then
possible to find a path πw as above.

Now, we claim that πw witnesses the fact that xr |= ζk (or ¬xr |= ζk): this requires any
state of the form ¬xl visited by πw to satisfy EX (Px ∧ ¬ζk−1), which equivalently means
that if xl is false under vI , then state xl has to satisfy ¬ζk−1; this follows from the induction
hypothesis.

Conversely, assume that k ≥ 2r − 1 and state xr satisfies ζk. Pick a witness path π, of
total weight K ′. As explained above, this path corresponds to a valuation w that satisfies
all the clauses. It remains to prove that this valuation coincides with vI on {x1, ..., xr}, by
induction on i:

• if w(xi) = > (meaning that π visits xi), then since w satisfies all clauses in C, it must be
the case that all clauses of φi are true under w. It follows that φi(Zi, w(xi−1), ..., w(x1))
is satisfiable. When i = 1, this reads φ1(Z1) is satisfiable, so that vI(x1) = >.
Assuming that the result holds up to i − 1, the fact that φi(Zi, w(xi−1), ..., w(x1))
entails that φi(Zi, vI(xi−1), ..., vI(x1)) is satisfiable, so that vI(xi) = >.

• if w(xi) = ⊥ (then the path visits ¬xi; in particular, i < r), then in xi, formula ¬ζk−1

holds true. Since i < r, then k − 1 ≥ 2i − 1, and the induction hypothesis (on k)
implies vI(xi) = ⊥.
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Finally, the case where k ≥ 2r and state ¬xr satisfies ζk is handled similarly. Only the
last point changes: it can be the case that i = r. But then again k − 1 ≥ 2i − 1, and the
induction hypothesis (on k) again yields vI(xi) = ⊥. �

Remark. When weights are in {0, 1}, the situation (with equality) is easier. We explain the
algorithm for modality E U=k : assume the formula to be checked is EpU=k q, with k > 0,
and that we already know which states satisfy subformulas p and q. We define the following
|S|2-matrices Tp and Tp,q as follows:

• Tp = {(s, s′) | s |= EpU=1 (s′ ∧ p)};

• Tp,q = {(s, s′) | s |= EpU=1 (s′ ∧ q)};

Both matrices can be computed in PTIME. Now, computing the sequence T 2
p , T 4

p up to T 2m

p

for m = blog2(k − 1)c can be achieved in polynomial time as well, and so do the product
T k−1
p · Tp,q. It is easy to prove, by induction on k, that the resulting matrix contains a

positive number in a line iff the correspondig state satisfies EpUk q:

• when k = 1: this is by definition of Tp,q;

• if the result holds up to k, we pick a state for which the corresponding line in T kp · Tp,q
contains a positive number. This matrix is the result of the product of Tp and T k−1

p ·Tp,q.
Clearly enough, all the cells contain nonnegative numbers, so that a cell in the line
corresponding to s contains a positive number iff there is two states s′ and s′′ s.t.
Tp(s, s

′) and [T k−1
p · Tp,q](s′, s′′) are positive. This entails the result.

The other modalities can be handled in a similar way.

We now turn to linear time. There again, equality contraints will make a difference:

Theorem 68. Model checking WLTL∼ on weighted labelled transition systems is PSPACE-
complete.

Proof. Hardness follows from that of LTL model checking. We delay this proof until Sec-
tion 3.2, where we deal with the discrete-time semantics of timed automata. Weighted
labelled transition systems can easily be encoded as timed automata under discrete seman-
tics, for which we will develop a model-checking algorithm for WLTL. �

Theorem 69. Model checking WLTL≈ and WLTL on weighted labelled transition systems is
EXPSPACE-complete.

Proof. Again, we only prove the hardness part, and delay the algorithm to Section 3.2.
The hardness proof consists in encoding the halting problem of an exponential-space Turing
machine. Each configuration of the Turing machine is encoded through 2n consecutive
states, each state representing the content of one cell of the tape of the Turing machine (and
possibly the position of the tape head and the current state of the machine). Each transition
has weight 1. The ensuring the correct application of a transition of the machine from one
configuration to the next one can easily be achieved by using modality F=2n , which has size
O(n) because of the binary encoding of integer constants. The details are straightforward,
and left to the reader. �

3.1.5 Semi-continuous semantics of weighted labelled transition systems

Our semantics for weighted automata uses atomic steps for the transitions. In order to get
closer to the semantics of timed automata, we could define a semi-continuous semantics,
where a step of weight n would correspond to n successive steps fo weight 1: in other terms,
a weighted automaton A in the semi-continuous semantics is a representation of a (possibly
infinite) unitary weighted automaton C(A). This automaton is defined as follows: a state is
a pair containing a state of A and the “time” elapsed in the present state. We then have
two kinds of transitions:
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• action transitions: ((q, i), 0, (q′, 0)) when (q, 0, q′) ∈ δ, and ((q, i), 1, (q′, 0)) when (q, i+
1, q′) ∈ δ;

• delay transitions: ((q, i), 1, (q, i + 1)), when i is less than the maximal constant ap-
pearing in the automaton.

The labeling is preserved, i.e., `′((q, i)) = `(q). A state q satisfies a formula φ of some
temporal logic iff the corresponding state (q, 0) in the unitary weighted automaton above
satisfies the same formula.

Example. Figure 14 explains the intuition behing the semi-continuous semantics on a small
example. It is easily noticed that the semi-continuous is really different from the discrete one,
even when no quantitative constrinat is used: for instance, formula EF ( ∧EF ∧¬EF )
is true in the semi-continuous semantics on our example, while it does not hold under the
discrete semantics.

Figure 14: The continuous semantics for weighted automata
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This modified semantics comes with a blow-up in the complexity:

Theorem 70. The WCTL model-checking problem on weighted labelled transition systems
with the semi-continuous semantics is PSPACE-complete.

Proof. Membership in PSPACE is proved by adapting the CTL labelling algorithm: we in-
ductively label the states of the (original) weighted automaton with the subformulas it
satisfies. Checking that EpU[a,b] q holds in a state can be achieved by guessing a (possibly
exponential) witness step by step, whose states can be stored in polynomial space.

PSPACE-hardness is proved by encoding the QBF problem:

Problem: Quantified boolean formula
Input: A boolean formula φ(x1, ..., x2n);
Question: Is formula ∃x1.∀x2 . . . ∃x2n−1∀x2n.φ(x1, ..., x2n) true?

This problem is well-known to be PSPACE-complete. The reduction is achieved as follows:
we consider the weighted automaton depicted on Figure 15. Notice that this automaton only
depends on the number of variables in the QBF instance, and not on the boolean formula
itself: this formula will be transformed into a WCTL formula to be checked on the automaton.

Figure 15: Reduction from QBF
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In this automaton, a trajectory from q1 to q2n+1 can be seen as a valuation of the
variables appearing in the QBF formula: setting x2i−1 to true is encoded by visiting r2i−1

(and not s2i−1), and setting x2i to true is encoded by visiting r2i (and not s2i).

46



Let Si be the set of configurations reachable from q0 with weight exactly 2i−1 =
∑i−1
j=0 2j .

It is easily shown that

Si = {(qi, 0)} ∪ {(ri−1, α) | 1 ≤ α ≤ 2i−1} ∪ {(si−1, α) | 1 ≤ α ≤ 2i−1 − 1}.

Notice that |Si| = 2i. In fact, any configuraton in Si has exactly two successors in Si+1: after
reaching qi, it can go via ri or via si, and spend the remaining credit on the transition to qi+1.
As a consequence, for each s ∈ S2n+1, there exists exactly one possible trajectory reaching
configuration s in time 22n+1−1. Moreover, there exists only one path between s and q2n+1,
and the length of this path, which lies between 0 and 22n+1 − 1, uniquely characterizes s.
This allows us to associate with each s in S2n+1 a valuation of the variables (xi)i, letting
x1x2 . . . x2n be the binary notation of 22n+1 − 1 − i, where i is the distance between s
and q2n+1. It is easily observed that the valuation vs defined by a state s of S2n+1 has the
following property:

vs(xi) = > ⇔ s |= EF=22n+1−1 b
>
i .

Indeed, from s, it takes weight i to reach q2n+1. We then have to loop between b>i and b⊥i
for sepnding the remaining weight of 22n+1− 1− i. If the j-th bit of 22n+1− 1− i is 1, then
this will leave us in state b>i , and if that bit is 0, we will end up in b⊥i .

Replacing each occurrence of xi with EF=22n+1−1 b
>
i in φ, we get a formula that holds

true in s iff the valuation vs satisfies φ. It remains to encode the quantification over the
variables. This is achieved by replacing each quantification ∃x2i+1 with EF=22i and each
quantification ∀x2i with AF=22i−1 in the original QBF instance. Since each state in Si
has exactly two successors at distance 2i in Si+1, this quantification is sound and properly
encodes the original problem. �

When forbiding equality constraints, we can recover tractability:

Theorem 71. The WCTL∼ model-checking problem on weighted labelled transition systems
with the semi-continuous semantics is PTIME-complete.

Proof. Assume A = 〈Q,R, l, w〉, and let T be the (possibly infinite) weighted automaton
C(A) representing its semi-continuous semantics. We design an algorithm for computing,
for each state q ∈ Q and each subformula ψ, the values of i for which T , (q, i) |= ψ. Given a
state q and a subformula ψ of the formula φ under study, we define Sat[q, ψ] as the (possibly
infinite) sequence of integer intervals Sj = [αj , βj) such that:

• T , (q, i) |= ψ iff i ∈
⋃
j Sj ;

• for any Sj = [αj , βj), we have

– [αj , βj) ⊆ [0, δmax(q)), where δmax(q) is the maximal constant labelling transitions
exiting q;

– αj < βj , and

– βj < αj+1 if Sat[q, ψ] contains at least j + 1 items.

For any q and ψ, this clearly defines a unique set Sat[q, ψ]. Its number of intervals in
Sat[q, ψ] is the size of Sat[q, ψ] (denoted by |Sat[q, ψ]|). In the sequel, we write Sat[q, ψ] for
the union

⋃
j Sj .

We define procedures for inductively computing Sat[q, ξ] for all subformulas ξ of a given
formula φ ∈WCTL∼ and for all states q ∈ Q. Along with these procedures, we show that

• |Sat[q, ξ]| is finite and bounded by |ξ| · |R(q)|, where R(q) is the set of transitions out
of q in A, and

• Sat[q, ξ] (for all states q and a given formula ξ) can be computed in time O(|ξ|2 · |R|3).
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This will globally ensure that the whole algorithm runs in time O(|φ|3 · |R|3).

Before going further, we introduce some new notations: For a given integer interval ρ =
[l, u), we write ρ− 1 for the interval [max(0, l − 1),∞) if u = ∞, and [max(0, l − 1), u− 1)
otherwise. We also define ←−ρ as the interval ρ itself if it equals the singleton [0, 1), and as
ρ− 1 otherwise.

We now describe our procedures and prove the above statements. The cases of atomic
propositions and Boolean connectives are straightforward and clearly satisfy the require-
ments w.r.t. the size of Sat[q, ψ]. We now consider the remaining cases:

• Case ξ = EζU≤c θ: For each state (q, i) in T , we compute the duration of the shortest
path (if any) witnessing the property EζU θ, and compare it to c.

For each state q in Q, assuming Sat[q, ζ] and Sat[q, θ] have already been computed,
we first refine these intervals by computing the smallest list of intervals L(q) =⋃
j=1...l[aj , bj) s.t.:

1. For any j, aj < bj , and bj ≤ aj+1 if j + 1 ≤ l;
2. For any i, we have i ∈ L(q) ⇔ i ∈ Sat[q, ζ] ∪ Sat[q, θ], and each interval [aj , bj)

is either included in one of Sat[q, θ]’s intervals, or disjoint with Sat[q, θ].

3. Intervals in L(q) are homogeneous w.r.t. action transitions: for any transi-
tion (q, ρ, q′) ∈ R, for any j, either [aj , bj) ⊆ ←−ρ or [aj , bj) ∩←−ρ = ∅.

4. The special interval [0, 1) is handled separately: If 0 ∈ Sat[q, ζ]∪ Sat[q, θ], then it
is the first interval in L(q).

Building L(q) is easy from Sat[q, ζ] and Sat[q, θ]: Computing the special union of
condition 2 yields at most |Sat[q, ζ]| + 2|Sat[q, θ]| intervals. Then, by condition 3,
any transition (q, ρ, q′) might split one of these intervals into two or three smaller
ones, i.e., add two intervals. Last, condition 4 possibly adds another one. Thus
|L(q)| ≤ |Sat[q, ζ]|+ 2|Sat[q, θ]|+ 2|R(q)|+ 1.

Let δmin
q,i be the duration of the shortest paths satisfying ζ and leading to some θ-state.

Clearly (q, i) |= ξ iff δmin
q,i ≤ c. Let [a, b) be an interval in L(q). Since any point in [a, b)

may fire the same set of action transitions, the function i 7→ δmin
q,i is non-increasing over

[a, b): any execution starting by an action transition (leading to some (q′, 0)) enabled
from (q, i) is also enabled from (q, i + 1) if i, i + 1 ∈ [a, b). Figure 16 describes an
example of such duration function.

Figure 16: A duration function for a weighted automaton
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We have the following important properties:

– assume that δmin
q,a is known for every left-end point a of the intervals in L(q), then

it is possible to deduce easily δmin
q,i for any i ∈ L(q). Indeed, for [a, b) in L(q), we

have:

∗ either there is an interval in L(q) of the form [b, b′). Then for any position i ∈
[a, b), a shortest path leading to θ may start either by an action transition—
and then δmin

q,i = δmin
q,a —or by letting time elapse until the interval [b, b′)—and

then δmin
q,i = δmin

q,b − b− i.
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∗ or there is no interval [b, b′) in L(q). Then for any i ∈ [a, b), we have δmin
q,i =

δmin
q,a , since in that case, the shortest path necessarily begins with an action

transition.

– a shortest path from some (q, a) with [a, b) ∈ L(q) starts by an action transition
or by a delay transition of at least b− a time units: it is never pertinent to wait
before performing an enabled action transition when considering shortest paths.
Time elapsing only occurs when it is necessary to reach the next interval of L(q).

Therefore it is sufficient to compute the duration of shortest paths from the left-end
point of any interval of L(q), and we can consider a jump-semantics point of view
restricted to left-end points: The intermediary states (inside the intervals) are not
relevant for this. Consider the DTG G = (VG ,→G , `G) as follows:

– VG = {(q, [a, b)) | [a, b) ∈ L(q)};
– `G : VG → {θ, ζ ∧ ¬θ} labels each state (q, ρ) depending on whether ρ ⊆ Sat[q, θ];

– Transitions →G are computed as follows:

∗ Consider (q, ρ, q′) ∈ R s.t. [0, 1) ∈ L(q′). We have: (q, [a, b))
1−→G (q′, [0, 1))

whenever [a, b) ∈ L(q) and a + 1 ∈ ρ. Moreover we have (q, [0, 1))
0−→G

(q′, [0, 1)) whenever [0, 1) ∈ L(q) and 0 ∈ ρ.

∗ If [a, b), [b, b′) ∈ L(q), then we have (q, [a, b))
b−a−−→G (q, [b, b′)).

Then we have: |G| = |VG |+ |→G | ≤
∑
q∈Q |L(q)|+

∑
q∈Q |L(q)| · (|R|+ 1). Now we can

adapt the PTIME procedure for WCTL∼ (Theorem 65) to get the duration of shortest
paths leading to θ for any state (q, [a, b)) of G, and it corresponds precisely to δmin

q,a .
This is achieved in time O(|VG | · | →G |).
Now it remains to compute Sat[q, EζU≤c θ] from δmin

q,a and c. If δmin
q,a ≤ c, we have

[a, b) ⊆ Sat[q, ξ]. Otherwise if, for some b′, [b, b′) ∈ L(q) and δmin
q,b ≤ c, then [b −

(c− δmin
q,b ), b) ⊆ Sat[q, ξ]. Then we merge the intervals in Sat[q, ξ] in order to fulfill its

requirements.

The size of Sat[q, ξ] can be bounded by |Sat[q, θ]|+|Sat[q, ζ]|+|R(q)|. Indeed, Sat[q, EζU θ]
contains at most |Sat[q, θ]|+|Sat[q, ζ]| intervals. Now, as explained above, we may have
to split these intervals depending on the length of the shortest path. Two cases may
arise:

– the splitting occurs while the length of the shortest path is decreasing (and thus
becomes smaller than c). This case occurs when we are waiting for a transition to
be enabled, i.e., it is bound to a constraint x ≥ i. Thus one transition contains
at most one such constraint, and thus may give rise to at most one such splitting;

– the splitting occurs at a point where the shortest path is increasing, i.e., the
shortest path is longer than c after that splitting. This may only happen when
a transition becomes disabled, that is, it is bound to a constraint x ≤ i. Here
again, one transition may give rise to at most one such splitting.

Thus one transition (q, ρ, q′) may at most add one interval in Sat[q, ξ]. Finally, we get
|Sat[q, ξ]| ≤ |Sat[q, θ]|+ |Sat[q, ζ]|+ |R(q)|.

• Case ξ = EζU≥c θ: We assume c > 0—the case c = 0 corresponds to the standard
CTL modality. We use similar techniques as in the previous case. Now in L(q) we
distinguish the sub-intervals satisfying ζ∧¬θ, ζ∧θ or ¬ζ∧θ. Moreover we replace every
interval [a, b) labeled by ¬ζ ∧ θ with [a, a+ 1) because only point a may witness ξ. We
have |L(q)| ≤ 2·(|Sat[q, ζ]|+|Sat[q, θ]|+|R(q)|). We also build a DTG G = (VG ,→G , `G)
with VG = {(q, [a, b)) | [a, b) ∈ L(q)} and `G : VG → {ζ ∧ θ, ζ ∧ ¬θ,¬ζ ∧ θ}. But now
we look for maximal durations δmax

q,a to reach θ and we distinguish finite intervals and
unbounded intervals:
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– For finite intervals in L(q), we only consider the right-end points because as soon
as a long path goes through the interval [a, b) with b < ∞, it goes through the
point b− 1. And we have δmax

q,i = δmax
q,b−1 + b− 1− i for any i ∈ [a, b).

– For unbounded interval [a,∞) in L(q), we have δmax
q,i = δmax

q,j for any i, j ∈ [a,∞)—
and then (q, i) |= ξ iff (q, j) |= ξ—therefore we can restrict ourselves to look for
the truth value of ξ at a.

We then define the transitions of G in order to represent these right-end points of finite
intervals and the left-end point of unbounded intervals; the aim is to use the algorithm
defined for the jump semantics to compute the maximal durations. We define −→G as
follows:

– Consider (q, ρ, q′) ∈ R s.t. [0, 1) ∈ L(q′). We have: (q, [a, b))
1−→G (q′, [0, 1))

whenever [a, b) ∈ L(q) and [a, b) ⊆ ρ. Moreover we have (q, [0, 1))
0−→G (q′, [0, 1))

whenever [0, 1) ∈ L(q) and ρ = [0, 0].

– For any [a, b), [a′, b′) in L(q) s.t. b = a′, we have (q, [a, b))
b′−b−−−→G (q, [b, b′)) (resp.

(q, [a, b))
1−→G (q, [b,∞))) if b′ <∞ (resp. b′ =∞).

– If [a,∞) ∈ L(q), we have (q, [a,∞)
1−→G (q, [a,∞)).

A state (q, [a, b)) with b < ∞ of G stands for the state (q, b− 1) in WA while a state
(q, [a,∞)) in G stands for (q, a) in A. The third kind of transition is used to represent
time elapsing in unbounded intervals.

Note that a transition (q, [a, b))
1−→ (q, [b, b′)) in G with b′ < ∞ represents the path

(q, b − 1)
1−→ (q, b)

1−→ . . . (q, b′ − 1) in T . Then the labeling of intermediary states is
given by the target node (contrary to the case where nodes correspond to the left-
end points), but this does not matter for EζU θ modality because these intermediary
states exist iff b′ > b+ 1 and this entails (q, [b, b′)) ⊆ Sat[q, ζ].

Again, we then use the algorithm for model-checking WCTL∼ in the classical semantics
(Theorem 65): we assume that it returns maximal durations for states of G, and ∞
(resp. −∞) when paths until θ can be made arbitrary long (resp. there is no path
reaching θ). The algorithm runs in time O(|VG | · | →G |).
It remains to merge contiguous intervals in order to get Sat[q, ξ]. As in the previous
case, we end up with at most |Sat[q, θ]|+ |Sat[q, ζ]|+ |R(q)| intervals.

• Case ξ = AζU≤c θ: we reduce to the previous cases using equivalence

AζU≤c θ ≡ AF≤c θ ∧ ¬E(¬θ) U (¬ζ ∧ ¬θ)

and
AF≤c θ ≡ ¬E(¬θ) U>c> ∧ ¬EG (¬θ)

• Case ξ = AζU≥c θ: we reduce to the previous cases using equivalence

AζU≥c θ ≡ AG<c (ζ ∧ AζU>0 θ)

and AG<c ζ ≡ ¬EF<c ¬ζ and

AζU>0 θ ≡ AG≤0 (ζ ∧ AX ( AζU θ)) ∧ AF≥1>.

Here formula AF≥1> means that there is no run of null duration (we may assume
that c ≥ 1, since otherwise ξ ≡ AζU θ), and is equivalent to ¬EF≤0 P

0
>.

Now we can show that the algorithm preserves the fact that |Sat[q, ξ]| is bounded by |ξ| ·
|R(q)|. This entails that the weighted automaton G built for EζU∼c θ is such that |VG | is
in O(|ξ| · |R|) and | −→G | is in O(|ξ| · |R|2); thus the procedures run in time O(|ξ|2 · |R|3).

�
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3.1.6 Model checking WATL

In the same way as weighted labelled transition systems extend labelled transition systems
with a weight function on transitions, weighted concurrent game structures add weight on
the transitions of their underlying transition system. Notice that here the weight on each
transition is a single integer, so that each move vector selects one transition and one weight.
Formally:

Definition 72. An weighted concurrent game structure is an 8-tuple A = 〈S, T, `, w,A,
M,Ch,Edg〉 where 〈S, T, `,A,M,Ch,Edg〉 is a concurrent game structure and w : T → N∗

assigns a positive4 weight to each transition.

The definitions of strategies and outcomes are unchanged. Each run in a weighted concur-
rent game structure can now be assigned a weight, though the homomorphism extending w.

The extension of ATL∗ to the weighted setting follows the same pattern as for WCTL∗:

Definition 73. The full weighted alternating-time temporal logic is denoted by WATL∗.
Formulas of WATL∗ over AP are built on the following grammar:

WATL∗ 3 φs ::= p | ¬φs | φs ∨ φs | 〈〈A〉〉φp | JAKφp
φp ::= φs | ¬φp | φp ∨ φp | φp UI φp.

where p ranges over AP and I ranges over I(N). The weighted alternating-time logic,
denoted WATL, is the fragment of WATL∗ defined by the following grammar:

WATL 3 φs ::= p | ¬φs | φs ∨ φs | 〈〈A〉〉φp | JAKφp
φp ::= φs UI φs.

We also define the fragments WATL∼ and WATL≈, in the same way as for WCTL. The
semantics of these logics follows from the semantics of ATL and of WCTL∗.

For the usual reason (that 〈〈A〉〉 (φ ∨ ψ) is not equivalent to 〈〈A〉〉φ ∨ 〈〈A〉〉ψ), the proof
that QCTL≈ and QCTL are equally expressive does not carry over to WATL≈ and WATL.
That WATL∼ is strictly less expressive than WCTL≈ is still true.

We now turn to model checking, first proving the following result:

Theorem 74. Model checking WATL∼ is PTIME-complete.

Proof. We begin with WATL∼, proposing polynomial-time algorithm for handling each
modality. The global algorithm will label states with the subformulas they satisfy, as for
CTL.

Lemma 75. Let A be a weighted game structure, and φ = 〈〈A〉〉 qU≤c q be a WATL formula.
Then we can compute in time O(|S| · |Edg|) the set of locations of A where φ holds.

To prove this result, we define the extra modality U≤i

≤c, with the following semantics:

ρ |= pU≤i

≤c q ⇐⇒ ∃j. 0 < j ≤ i, sj |= q, w(ρ≤j) ≤ c,
and ∀k. 0 < k < j ⇒ sk |= p

This modality requires that the right-hand side formula be satisfied within at most i steps
(while still bounding the total weight). It is clear that, for any n ∈ N,

s |= 〈〈A〉〉 pU≤c q ⇐⇒ s |= 〈〈A〉〉 pU≤|S|≤c q.

The implication from right to left is easy. Conversely, if all the outcomes of a strategy satisfy
pU≤c q, it is possible to make the strategy simpler, so that each state is visited at most
once along each outcome (while still reaching a q-state within weight n). This is achieved

4The restriction to positive weights is a technical requirement for proving correctness of our algorithms.
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by considering the (finite) tree of all the outcomes of that strategy σ. Assume some state r
is visited several times along some branch ρ. Consider the shortest and longest prefixes ρ0

and ρ1 of ρ ending in r, and define σ′(ρ0) = σ(ρ1). One easily proves that the execution
tree of σ′ pruned at the first q-state is strictly smaller than that of σ, while still enforcing
pU≤c q. Applied iteratively, this proves the existence of a “simple” strategy.

We now define functions vi(q), for i ∈ N and s ∈ S, by the following recursive rules.
We fist let q(s) = 0 when q ∈ `(s) and q(s) = +∞ otherwise, and p(s) = 0 when p ∈ `(s)
and p(s) = +∞ otherwise. Then we inductively define

v1(s) = min
m∈M(s,A)

max
m̄∈M(s,A)

(
w(Edg(s,m · m̄)) + q(tgt(Edg(s,m · m̄))

)
vi+1(s) = min

m∈M(s,A)
max

m̄∈M(s,A)

(
w(Edg(s,m · m̄)) + min

s′=tgt(Edg(s,m·m̄))
[q(s′), p(s′) + vi(s

′)]
)

Our proof now amounts to showing the following result: for any i ∈ N∗, for any n ∈ N
and any s ∈ S, we have:

n ≥ vi(s) ⇐⇒ s |= 〈〈A〉〉 pU≤i

≤n q.

The proof is by induction on i:

• when i = 1: pick n ≥ v1(s) (hence assuming v0(s) is finite). Then there is a move
m ∈ M(s,A) such that, for all move m̄ ∈ M(s,A), n is larger than w(Edg(s,m · m̄)),
and moreover all states reached in one step from s when A plays m are labelled with q.
This precisely proves that s |= 〈〈A〉〉 pU≤1

≤n q.

Symmetrically, if s |= 〈〈A〉〉 pU≤1

≤n q, then there is a move for A which enforces an
immediate visit to a q-state via transitions having weight less than or equal to n. This
precisely witnesses the fact that v1(s) ≤ n.

• the inductive step is proven similarly: assume the result holds for some i: pick
n ≥ vi(s), and a move m for A such that for any m̄ for A, n is larger than w(t) +
p(tgt(t)) + vi(tgt(t)) or larger than w(t) + q(tgt(t)), where t = Edg(s,m · m̄). Then
for all move m̄, either the resulting state is labelled with q and the weight of the
corresponding transition is at most n, or the resulting state is labelled with p, and
satisfies 〈〈A〉〉 pU≤i−1

≤n−w(t) q, by induction hypothesis. In both cases, we conclude that

s |= 〈〈A〉〉 pU≤i

≤n q.

Symmetrically, if s |= 〈〈A〉〉 pU≤i

≤n q, then the first move of a witnessing strategy wit-
nesses the fact that n ≥ vi(s), following the same lines as above: depending on the
move played by A, writing t for the resulting transition, either a q-state is reached
after t, which entails n ≥ w(t), or a p-state is reached where 〈〈A〉〉 pU≤i−1

≤n−w(t) q is

reached, which by induction hypothesis means that n − w(t) ≥ vi−1(tgt(t)), and en-
tails our result.

It then suffices to compute v|S|(s), for each s ∈ S, to deduce the set of locations where
φ holds. This algorithm thus runs in time O(|S| · |Edg|).

The release modality is handled in the same way: we define modality R≤i

≤c as the dual

of U≤i

≤c: it has the following semantics:

ρ |= R≤i

≤c q ⇐⇒ ∀j. 0 < j ≤ i⇒
[
w(ρ≤j) ≤ c⇒ (sj |= q

or ∃0 < k < j. sk |= p)
]

Then we have the following equivalence:

s |= 〈〈A〉〉 pR≤c q ⇐⇒ s |= 〈〈A〉〉 pR≤|S|≤c q.

This is proven with arguments similar to the case of the “until” modality. The easy implica-
tion is from left to right. Conversely, assume that s |= 〈〈A〉〉 pR≤|S|≤c q, and consider the finite
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tree of all outcomes of this strategy, pruned after |S| transitions. Those outcomes along
which some p-state is visited already satisfy pR≤c q, and can be left unchanged. The other
outcomes only visit q-states, and there is at least one state that is visited twice along those
outcomes. They can then be made infinite, while always satisfying q-states, hence satisfying
pR≤c q.

Computing the set of states where 〈〈A〉〉 pR≤|S|≤c q holds can then be achieved in a similar

way as for U≤i

≤c. This time, we let q′(s) = +∞ when q ∈ `(s) and q′(s) = 0 otherwise, and
p′(s) = +∞ when p ∈ `(s) and p′(s) = 0 otherwise, and inductively define

v′1(s) = max
m∈M(s,A)

min
m̄∈M(s,A)

(
w(Edg(s,m · m̄)) + q′(tgt(Edg(s,m · m̄))

)
v′i+1(s) = max

m∈M(s,A)
min

m̄∈M(s,A)

(
w(Edg(s,m · m̄)) + min

s′=tgt(Edg(s,m·m̄))
[q′(s′), p′(s′) + v′i(s

′)]
)
.

then for any i ∈ N∗, for any n ∈ N and any s ∈ S, we have:

n < v′i(s) ⇐⇒ s |= 〈〈A〉〉 pR≤i

≤n q.

• when i = 1: First assume v′1(s) = +∞ (hence any n satisfies the condition on the left).
This means that for some strategy of A, all the resulting states satisfy q, which entails
that pR≤1

≤n q for any n, as required. If v′1(s) is finite, then there is a move for A for

any move of A, either a q-state is reached, or n is strictly less than the weight of the
resulting transition. This again enforces pR≤1

≤n q. Conversely, when s |= 〈〈A〉〉 pR≤1

≤n q,
then there is a strategy for A to either go to a q-state, or to take a transition with
weight strictly more than n, which entails the result.

• the inductive step is proven similarly: pick some n < v′i(s), and a move m for A such
that, for any move m̄ of A, writing t for the resulting transition, n is strictly less than
both w(t) + q′(tgt(t)) and w(t) + p′(tgt(t)) + v′i−1(tgt(t)). In case tgt(t) satisfies p∧ q,
that outcome satisfies pR≤i

≤n q. In case tgt(t) satisfies ¬p ∧ q, then n − w(tgt(t)) <

v′i−1(tgt(t)), and the induction hypothesis entails that tgt(t) |= 〈〈A〉〉 pR≤i−1

≤n−w(t) q, so

that we again have our result. Finally, in case it satisfies ¬q, then n < w(t), and the
outcome again satisfies pR≤i

≤n q. The converse direction is proven similarly.

We now handle modalities 〈〈A〉〉 pU≥c q and 〈〈A〉〉 pR≥c q, using again similar techniques.
We first define one more modality pU≥i q, requiring that the eventuality is fulfilled after

at least i steps:

ρ |= pU≥i q ⇐⇒ ∃j. j ≥ i, sj |= q, and ∀k. 0 < k < j ⇒ sk |= p.

Then we have

s |= 〈〈A〉〉 pU≥n q ⇐⇒ s |= 〈〈A〉〉
[
(pU≥n q) ∨ (pU≥|S|+1 q)

]
.

This equivalence relies on the fact that all durations are strictly positive: if some outcome
of the strategy satisfies pU≥|S|+1 q, then one location is visited twice along that outcome,
and it is possible to adapt the strategy so that it is visited n times (thus with total duration
larger than n) before visiting q.

We now define our sequence of values as follows: first, we let p′′(s) = 0 when p ∈ `(s),
and p′′(s) = −∞ otherwise. Similarly, q′′(s) = 0 when q ∈ `(s), and q′′(s) = −∞ otherwise.
We then define

v′′0 (s) = 0 if s |= 〈〈A〉〉 pU q

v′′0 (s) = −∞ otherwise

v′′i+1(s) = max
m∈M(s,A)

min
m̄∈M(s,A)

(
w(Edg(s,m · m̄)) + max

s′=tgt(Edg(s,m·m̄))
[q′′(s′), p′′(s′) + v′′i (s′)]

)
.
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The proof then relies on the following equivalence: for any i ∈ N, for any n ∈ N and
any s ∈ S, we have:

n ≤ v′i(s) ⇐⇒ s |= 〈〈A〉〉 (pU≥n q ∨ pU≥i+1 q).

We leave the reader prove this equivalence, following similar arguments as above.
Finally, pR≥c q can be handled similarly, by first defining modality R≥i. We then show

that
s |= 〈〈A〉〉 pR≥c q ⇐⇒ 〈〈A〉〉 (pR≥c q ∧ pR≥|S|+1 q).

To conclude, it suffices to compute the following sequence:

v′′′0 (s) = −∞ if s |= 〈〈A〉〉 pR q

v′′′0 (s) = 0 otherwise

v′′′i+1(s) = min
m∈M(s,A)

max
m̄∈M(s,A)

(
w(Edg(s,m · m̄)) + max

s′=tgt(Edg(s,m·m̄))
[q′′(s′), p′′(s′) + v′′i (s′)]

)
.

The reader will show that for any i ∈ N, for any n ∈ N and any s ∈ S, we have:

n > v′i(s) ⇐⇒ s |= 〈〈A〉〉 (pR≥n q ∧ pR≥i+1 q).

To conclude, we have proposed polynomial-time algorithms to handle all four modalities
of WCTL∼. The PTIME algorithm follows. PTIME-hardness already holds for plain ATL.

�

Figure 17: The algorithm for U≤n.
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〈1,1〉
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vi(q) 1 2 3

A (p, ¬q) +∞ 21 21

B (p, q) 10 10 10

C (p, ¬q) 20 20 20

D (¬p, q) 1 1 1

E (p, ¬q) +∞ +∞ +∞

Example. Consider the example depicted on Figure 17. On that weighted game, the du-
ration is the integer written in the middle of each transition. The tuples that are written
close to the source location indicates the choices of the agents for firing that transition (for
instance, 〈2, 1〉 means that player a1 chooses move 2 and player a2 chooses move 1). They
are omitted when each agent has a single choice.

The valuations of atomic propositions are given in the table on the right of the figure.
This table shows the computation of vi(s), for each location. This computation converges in
three steps. For instance, that v3(A) = 21 indicates that A |= 〈〈a1〉〉P1 U≤21 P2 holds, but
A 6|= 〈〈a1〉〉P1 U≤20 P2.

Theorem 76. Model-checking WATL≈ is EXPTIME-complete.

Proof. We explain the algorithm for 〈〈A〉〉 pU=c q: it consists in filling in a boolean table T
of size |S|×c (which is exponential-size since c is encoded in binary). The table is computed
as follows: we first consider the case where the “until” modality is fulfilled in one step:

T (s, i) = > ⇐⇒ ∃m ∈M(s,A). ∀m̄ ∈M(s,A).

w(Edg(s,m · m̄)) = i ∧ q ∈ `(tgt(Edg(s,m · m̄))).
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We then dynamically fill in the table, setting

T (s, i) = > ⇐⇒ ∃m ∈M(s,A). ∀m̄ ∈M(s,A).

T (tgt(Edg(s,m · m̄)), i− w(Edg(s,m · m̄))) = >.

This computation can be achieved because all durations are assumed to be positive, so that
there is no cyclic dependency. Its correctness is clear.

The “release” modality is handled similarly. In the end, the computation runs in expo-
nential time.

We now prove EXPTIME-hardness, by encoding the countdown-game problem: a count-
down game is played on a weighted graph; a configuration of the game is a pair (v, C) where
v is a state of the graph and C is an integer. At each round, Player A selects one weight d,
and Player B answers with a new state v′ for which (v, d, v′) is a transition of the weighted
graph (player A has to ensure that such a v′ exists). The play continues as long as C > 0.
The new configuration of the countdown game is (v′, C − d). A configuration (v, C) is
winning for Player A if C = 0. It is losing if C < 0.

Deciding the winner of a countdown game is EXPTIME-complete [JLS07]. One can
easily encode such a game as a WATL≈ model-checking problem: the structure of transition
system underlying the game under checking is the weighted graph. In each state, each weight
labelling an outgoing edge is a valid move of Player A. Player B then has as many moves
as needed to select one of the transition carrying the weight selected by A. The formula to
be checked then writes 〈〈A〉〉F=C0

>. �

3.2 Quantitative temporal logics and timed automata
under discrete-time semantics

3.2.1 Discrete-time semantics for timed automata

In this section, we begin with (re)introducing timed automata, but with a discrete-time
semantics: all clocks still evolve at the same speed and can be reset along transitions, but
they are restricted to only take integer values. Before we formally define timed automata,
we need some preliminary definitions.

Let C is a finite set, whose elements will be called clocks. In the sequel, clocks have
nonnegative real values (i.e., the time domain T is the set of nonnegative reals). We could
equivalently choose the nonnegative rationals, which would preserve our results.

Definition 77. A clock valuation on C is a mapping ν : C→ T. We write 0C for the clock
valuation assigning 0 to all clocks. We also define two operations on clock valuations:

• given a clock valuation v and a value d ∈ T, we write v + t for the clock valuation w
such that w(c) = v(c) + t for all c ∈ C.

• given a valuation v and a set R ⊆ C, we write v[R→ 0] for the clock valuation w such
that w(c) = v(c) · 1R(c).

Definition 78. A clock constraint is a formula built on the following grammar:

Constr(C) 3 g ::= > | c ∼ n | g ∧ g

where c ranges over C, ∼ ranges over {<,≤,=,≥, >}, and n over the naturals (or possibly
nonnegative rationals). That a clock valuation ν satisfies a clock constraint g is defined
inductively in the natural way: any valuation always satisfies >, and

ν |= c ∼ n ⇔ ν(c) ∼ n ν |= g1 ∧ g2 ⇔ ν |= g1 and ν |= g2.

We write JgKC for the set of valuations of C satisfying constraint g.

Definition 79. Let AP be a finite set of atomic propositions. A timed automaton [AD94]
over AP is a 5-tuple A = 〈S,C, T, `, Inv〉 where
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• S is a finite set of states (sometimes called locations);

• C is a finite set of clock variables;

• T ⊆ S × Constr(C)× 2C × S is the set of transitions;

• ` : S → 2AP labels states with atomic propositions;

• Inv : S → Constr(C) assigns invariants to states.

The discrete-time semantics of timed automata is defined as an (countably-)infinite-state
labelled transition system as follows:

Definition 80. Let A = 〈S,C, T, `, Inv〉 be a timed automaton over AP. The semantics of A,
denoted with JAK, is the (infinite-state) weighted labelled transition system JAK = 〈Q,R, l〉
where

• Q = {(s, ν) ∈ S ×NC | ν |= Inv(s)};

• R is the union of two sets of transitions:

– delay transitions: ((s, ν), d, (s′, ν′)) ∈ R iff (s, ν) and (s′, ν′) belong to Q, s = s′,
and d ∈ N>0 and ν′ = ν + d;

– action transitions: ((s, ν), 0, (s′, ν′)) ∈ R iff (s, ν) and (s′, ν′) belong to Q and
there exists t = (s, g, r, s′) ∈ T s.t. ν |= g, ν′ = ν[r → 0];

• l((s, ν)) = `(s) for all (s, ν) ∈ Q.

A run of A is a run of the underlying semantics.

Remark. Notice that our semantics is a kind of mix between atomic and “semi-continuous”
delays: transitions are taken in an atomic way, but when there is a transition from (s, ν) to
(s, ν′) of duration d, then it is also possible to take a sequence of d transitions of duration 1
from (s, ν) to (s, ν′).

One way of forcing atomic delays is by only considering one type of transitions: these
transitions are obtained by merging a delay transition with an action transition (hence re-
quiring that there is only one delay transition between any two action transitions—notice
that we have to allow delays of duration zero here). We will not consider this semantics
here.

We could also go in the other direction, and consider only unitary delays from some clock
valuation ν to ν + 1. Again, we leave the interested reader develop this semantics.

3.2.2 Timed temporal logics

We now define TCTL∗ on these models. This will very closely resemble WCTL∗:

Definition 81. The full timed branching-time temporal logic is denoted by TCTL∗. For-
mulas of TCTL∗ over AP are formulas built on the following grammar:

TCTL∗ 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs | ¬φp | φp ∨ φp | φp UI φp.

where p ranges over AP and I ranges over I(N).
Semantically, given a state s ∈ S and a clock valuation ν, that (s, ν) satisfies a TCTL∗

state formula φ is equivalent to having state (s, ν) satisfy φ, seen as a WCTL∗ formula, in
the weighted automata JAK.

The fragments TCTL and TLTL (often named MTL, for Metric Temporal Logic, in the
context of timed automata), correspond to WCTL and WLTL, respectively. Their semantics
follow from that of TCTL∗.
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In the real-time setting, another extension of temporal logics with quantitative con-
straints has been considered: it consists in having “formula clocks”, in the same way as
there are clocks in the automata. Formula clocks can be reset during the evaluation of the
formula, and they can be compared to integer values. Formally:

Definition 82. The logic TCTL∗c is defined by the following grammar:

TCTL∗c 3 φs ::= p | c ∼ n | c.φs | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs | c.φp | ¬φp | φp ∨ φp | φp Uφp

where c ranges over a finite set of variables, n ranges over N, and ∼ ∈ {<,≤,=,≥, >}. The
fragments TCTLc and TLTLc (most often called TPTL, for Timed Propositional Temporal
Logic, in the timed setting) are defined as follows:

TCTLc 3 φs ::= p | c ∼ n | c.φs | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs Uφs

TPTL 3 φs ::= Eφp | Aφp

φp ::= p | c.φp | ¬φp | φp ∨ φp | φp Uφp

Finally, we also define the following other fragment, which we name TBTLc:

TBTLc 3 φs ::= p | c ∼ n | c.φs | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φs | ¬φp | φp ∨ φp | φp Uφp

Notice that, compared to TCTL∗c , it only forbids clock resets within path formulas. In other
terms, clock resets are bound to path quantifiers, and path formulas are in LTL (extended
with clock constraints).

The evaluation of a TCTL∗c formula involves a valuation of the clock formulas, which is
updated during the evaluation. We redefine the semantics of all the operators, as this clock
valuation changes the formalism. Let A be a weighted labelled transition system, ρ be a
maximal path in A (writing (si)i≥0 for the sequence of states, and wi for the duration of the
transition from si to si+1), φ be a formula in TCTL∗c and ζ be an (integer-valued) valuation
of the formula clocks of φ. That ρ (at position zero) in A satisfies φ under valuation ζ,
denoted with A, ρ |=ζ φ, is defined inductively on φ as follows:

A, ρ |=ζ p ⇔ p ∈ `(s0)

A, ρ |=ζ c ∼ n ⇔ ζ(c) ∼ n
A, ρ |=ζ c.φs ⇔ A, ρ |=ζ[c←0] φs

A, ρ |=ζ ¬φs ⇔ A, ρ 6|=ζ φs

A, ρ |=ζ φs ∨ φ′s ⇔ A, ρ |=ζ φs or A, ρ |=ζ φ
′
s

A, ρ |=ζ Eφp ⇔ ∃ρ′ ∈ MaxRuns(s0). A, ρ′ |=ζ φp

A, ρ |=ζ Aφp ⇔ ∀ρ′ ∈ MaxRuns(s0). A, ρ′ |=ζ φp

A, ρ |=ζ c.φp ⇔ A, ρ |=ζ[c←0] φp

A, ρ |=ζ ¬φp ⇔ A, ρ 6|=ζ φp

A, ρ |=ζ φp ∨ φ′p ⇔ A, ρ |=ζ φp or A, ρ |=ζ φ
′
p

A, ρ |=ζ φp Uφ′p ⇔ ∃k > 0 s.t. A, ρ≥k |=ζk φ
′
p and

∀l ∈ [1, k − 1]. A, ρ≥l |=ζl φp,

where ζ0 = ζ and ζi+1 = ζi + wi

3.2.3 Expressiveness of TCTL∗ and TCTL∗c

It should be clear that formula clocks can encode constraints that decorate modalities:

φUI ψ ≡ c.(φU (ψ ∧ c ∈ I)).
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It follows that TCTL∗c embeds TCTL∗, TCTLc embeds TCTL, and TPTL embeds MTL.
The converse is also true, thanks to the discrete nature of time: in the same way as for

WLTL∼ and WLTL, we can enumerate all possible combinations of delays that amount to
the required value in order to express any TCTLc formula in TCTL [AH93].

3.2.4 Model checking of TCTL∗ and TCTL∗c

We now turn to model checking, proving decidability results for all logics we defined.

Theorem 83. Model checking TCTL and TCTLc on discrete-time timed automata is PSPACE-
complete.

Proof. For TCTL, this can be proved in the same lines as for Theorem 70. An algorithm for
TCTLc can be obtained by adapting the algorithm, handling formula clocks together with
the clocks of the automaton. �

Theorem 84. Model checking MTL and TPTL on discrete-time timed automata is EXPSPACE-
complete.

Proof. We describe the algorithm for TPTL: it extends the so called tableaux construction
(which we presented as resulting in a Büchi automaton, see page 24) for LTL and PLTL.
Given a formula φ ∈ TPTL, we build a corresponding Büchi automaton Bφ characterising
the timed words satisfying φ (for the discrete-time semantics).

As for LTL, the states of the automaton will be subsets of subformulas (more precisely,
formulas from the closure) of the formula φ being checked. But the closure here has to also
take delays into account: to this aim, we add new atomic propositions δk, for k ≥ 0 (hence
infinitely many for the moment; we will reduce to a finite number later). Proposition δk will
label any state that is reached after a delay of k time units.

We assume that our input formula (and all subformulas we will consider) are of the form
x.φ. This can be achieved by adding a reset of a fresh clock, if not already present. We also
assume x.φ to be closed. This again can be obtained by initially resetting all clocks. Finally,
we assume that any clock is reset at most once in φ, even if it means renaming some of the
clocks. Now, given a formula x.ψ s.t. x is free in φ, and an integer k, we define the shift of
x.ψ by k inductively as follows:

• when k = 0, x.ψ0 equals x.ψ;

• when k + 1 > 0, x.ψk+1 is obtained from x.ψk by replacing x with x + 1 in ψ.
Then formulas of the form x ≥ −c and x ≤ −c − 1 are replaced with true and false,
respectively (for nonnegative c).

Thanks to the last step, the set of shihfted formulas remain finite: any constraint will
eventually be changed to true or false.

Example. If φ is F (a ∧ F (b ∧ x ≥ 4)), then x.φ1 is F (a ∧ F (b ∧ x ≥ 3)), and x.φ4 is
F (a ∧ F b).

This construction enjoys the following property:

Lemma 85. Let ρ = be a path. Let x.ψ be a closed TPTL formula, and ζ be a valuation of
the clocks of ψ. Then ρ |=ζ x.ψ

k iff ρ |=ζ[x←k] ψ.

The proof is by induction on the structure of the formula, and by induction on k.
As for LTL, we now define the closure of a formula φ. Roughly, it contains all the

subformulas of φ, as well as all intermediary properties to be checked. Formally, the closure
of x.φ (remember that all our formulas are assumed to begin with a clock reset) is the
smallest set of formulas containing x.φ and such that

• x.¬φ1 is in the closure if, and only if, x.φ1 is;

• if x.(φ1 ∨ φ2) is in the closure, then so are x.φ1 and x.φ2;
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• if x.(φ1 ∧ φ2) is in the closure, then so are x.φ1 and x.φ2;

• if x.z.φ1 is in the closure, then so is x.φ1[z ← x], which is obtained by replacing all
free occurrences of z with x in φ1;

• if x.Xφ1 is in the closure, then so are all formulas x.φk1 for k;

• if x.φ1 Uφ2 is in the closure, then so are x.Xφ2, x.Xφ2 and x.X (φ1 Uφ2).

Notice that, as we assumed x.φ to be closed, any formula in the closure is also closed.
One can easily check the following result:

Lemma 86. Writing M for the maximal constant appearing in φ, then the closure of x.φ
has at most 4M · |φ| formulas.

We now define the set of states of our automaton: as for LTL, a state will be a maximal
set of consistent formulas in the closure, with the following definition of consistency.

Definition 87. A set of formulas is consistent if the following constraints are met:

• it contains exactly one atomic proposition of the form δk;

• it contains all formulas x.(x ∼ c) for which 0 ∼ c is true;

• it contains x.true and does not contain x.false;

• it does not contain a formula and its negation;

• it contains x.(φ1 ∨ φ2) if, and only if, it contains at least one of x.φ1 and x.φ2;

• it contains x.(φ1 ∧ φ2) if, and only if, it contains both x.φ1 and x.φ2;

• it contains x.(φ1 Uφ2) if, and only if, it contains x.Xφ2, or x.Xφ1 and x.X (φ1 Uφ2);

• it contains x.z.φ1 if, and only if, it contains x.φ1[z ← x].

A consistent set is maximal if it cannot be consistently extended. Maximal consistent
sets contain either a subformula or its negation, so that there are at most 24M ·|φ| such sets.
This will be the state space of our automaton.

We now define the transitions of the automaton: there is a transition from state S to
state S′ if, and only if, for any formula of he form x.Xψ in the closure of φ, it holds

x.Xψ ∈ S ⇐⇒ x.ψk ∈ S′

where k is the integer such that δk ∈ S′. Such a transition is labelled with the set of atomic
propositions appearing in S, together with the integer k such that δk ∈ S′. This achieves
what we have in mind: the transition from S to S′ will have duration k, and all conditions
that S imposes to S′ (those of the form z.Xψ) have to holds true in S′, taking into account
the fact that some delay has elapsed during the transition.

Notice that we do not require here that a delay transition stays in the same state:
our construction allows “merged” transitions (representing the merge of a delay and an
action transition) as well as separate delay and action transitions. The exact semantics will
be enforced when we do the product of our automaton with the semantics of the timed
automaton to be checked (which we only do symbolically).

It remains to define the acceptance condition. As for LTL, it is defined as a generalized
Büchi condition imposing that, for any subformula of the form αUβ, some state containing
either x.¬(αUβ) or x.β has to be visited infinitely many times.

The correctness of our construction is expressed as follows:

Lemma 88. Let ρ be a run of a timed automaton under discrete time (writing (si)i≥0 for
the sequence of states, and wi for the duration of the transition from si to si+1). Then the
word (si, wi)i≥0 is accepted by Aφ from some state containing x.φ if, and only if, ρ |= x.φ
(with initial clock valuation mapping all clocks to zero).
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The proof is similar as for LTL: first assume that there is a path in the automaton. Write
(Si) for the sequence of states visited along that accepting run. We prove that any formula
appearing in Si holds true at position i along ρ. Given the choice of the initial state, this
will prove one direction of our result.

As the base case, it holds si = Si ∩ AP, so that the above result holds for atomic
propositions. The cases of formulas z.z ∼ c and of boolean combinations are straightforward.
Until formulas are handled in the same way as for LTL. We now focus on subformulas
involving clocks.

Consider a formula of the form z.Xφ1, assumed to be in Si. Then z.φk1 is in Si+1,
where k is the integer such that δk ∈ Si+1. From the induction hypothesis, ρ, i + 1 |= z.φk1
(the formula being closed, this holds for any clock valuation ζ). From Lemma 85, it holds
ρ, i+ 1 |=ζ[z←k] φ1, for any valuation ζ. It follows that ρ, i |=ζ z.Xφ1 for any ζ, as required.

Finally, assume that z.x.φ1 ∈ Si. Then z.φ1[x ← z] is in Si, so that ρ, i |= z.φ1[x ← z],
which is equivalent to ρ, i |= z.x.φ1.

We now prove the converse implication. We write Si for the set of formulas in the closure
of φ that hold true at position i along ρ. These sets are maximally consistent. One can
easily check that there is a transition between Si and si+1, thanks to Lemma 85, and that
the acceptance condition is fulfilled, which concludes our proof. �

3.3 Exercises

Exercice 8 In weighted games, prove that winning strategies for pU≤i

≤n q might
need memory (in other terms, there might be winning strategies but no memoryless winning
strategies).

Exercice 9 Prove that any weighted labelled transition system can be represented
as a timed automaton with discrete-time semantics. Does it apply to any weighted labelled
transition system? Is the translation possible for all the semantics we defined?
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4. Timed temporal logics

4.1 Discrete vs dense time

We illustrate the usefulness of dense time with an example of digital circuits [BS91]. Consider
the circuit described on Fig. 18, where the intervals decorating each gate indicate the delay

Figure 18: Example of a circuit

i

NOT

AND

1

NAND

o2

o1

o3

[1,3]

[1,3]

[1,2]

needed for this gate to output the correct output value, after the stabilization of its input
values. We start with i = 0 in a stable configuration, hence the output values are [o1 =
1, o2 = 0, o3 = 1] (in the sequel, we omit the name of the output variables, and write this
output as the triple [101]).

When i turns to 1, one possible sequence of values (before stabilization) is

[101]
o2−−−−−→
1.2

[111]
o3−−−−−→
2.5

[110]
o1−−−−−→
2.8

[010]
o3−−−−−→
4.5

[011]

the last set of values corresponding to the stable configuration.
Now, consider the (more complex) circuit depicted on Fig. 19 (where the gate before

output o7 computes ¬o4 ∧ o5 ∧ ¬o6). We will prove that considering this circuit under

Figure 19: A circuit that is not 1-discretizable

i

o1
NOT

[1,2]

o2
NOT

[1,2]

o3
NOT

[1,2]

o4
XOR

[1]

o5
XOR

[1]

o6
XOR

[1]

o7

[1]

OR

[1]

o8

discrete-time does not exhibit all possible behaviours. Again, we start with the input set
to 0, with output values [11100000] (notice that the last bit could also be 1). Now the input
is turned to 1. One possible behaviour in dense time is the following:

[11100000]
o1−→
1

[01100000]
o2−−→
1.5

[00100000]
o3,o5−−−→

2
[00001000]

o5,o7−−−→
3

[00000010]
o7,o8−−−→

4
[00000001]
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It can be checked that this is a stable configuration.
On the other hand, we can easily list all possible behaviours in discrete time:

• if all three NOT-gates change at the same time, we end up with [00000000], which is
stable;

• if o1 alone changes at date 1, we reach [01100000], then [00011000] and [00000000],
which is stable. Similarly if o3 alone changes at date 1;

• if o1 and o3 both change at date 1, we reach [01000000], then [00010100] and [00000000];

• if o2 alone changes at date 1, we reach [10100000], then [00010100] and [00000000];

• finally, if o1 and o2 both change at date 1, we reach [00100000], then [00001100] and
[00000000].

As a result, all discrete-time behaviours of the circuit of Fig. 19 reach configuration [00000000],
with final output 0, while there are dense-time behaviours which eventually set the value
of o7 and o8 to 1.

4.2 Timed automata

We reuse the definitions of Section 3.2, but with R≥0 as the timeline (hence clock valuations
take values in R≥0). We recall the syntax of timed automata:

Definition 89. Let AP be a finite set of atomic propositions. A timed automaton [AD94]
over AP is a 5-tuple A = 〈S,C, T, `, Inv〉 where

• S is a finite set of states (sometimes called locations);

• C is a finite set of clock variables;

• T ⊆ S × Constr(C)× 2C × S is the set of transitions;

• ` : S → 2AP labels states with atomic propositions;

• Inv : S → Constr(C) assigns invariants to states.

Figure 20: Clicks and double-clicks of a mouse

idleleft
x≤3

right
x≤3

left button?

x := 0

right button?

x := 0

x = 3

left click!

x ≤ 3 left button?

left double click!

x ≤ 1 right button?

middle click!

x = 3

right click!

x ≤ 3 right button?

right double click!

x ≤ 1 left button?

middle click!

Example. Fig. 20 depicts a timed automaton representing the behaviour of a computer
mouse when a user hits te left- or right buttons: depending on the delays between the actions,
the mouse interprets them as either simple clicks, or as double-clicks. We also encode middle-
button clicks, when the two buttons are pressed at almost the same time.

As for the models we defined in the previous sections, the semantics of timed automata
can be defined in terms of labelled transition systems:
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Definition 90. Let A = 〈S,C, T, `, Inv〉 be a timed automaton over AP and alphabet Σ. The
semantics of A, denoted with JAK, is the (infinite-state) weighted labelled transition system
JAK = 〈Q,R, l〉 where

• Q = {(s, ν) ∈ S ×TC | ν |= Inv(s)};

• R is the union of two sets of transitions:

– delay transitions: ((s, ν), d, (s′, ν′)) ∈ R iff (s, ν) and (s′, ν′) belong to Q, s = s′,
and d ∈ R>0 is s.t. ν′ = ν + d;

– action transitions: ((s, ν), 0, (s′, ν′)) ∈ R iff (s, ν) and (s′, ν′) belong to Q and
there exists t = (s, g, σ, r, s′) ∈ T s.t. ν |= g, ν′ = ν[r → 0];

• l((s, ν)) = `(s) for all (s, ν) ∈ Q.

Following this definition, the notion of a run in a (continuous-time) timed automaton
follows.

4.3 Deciding reachability

As usual, we begin with solving the most basic problem, namely reachability. This is well-
known to be decidable, using the region abstraction of [AD94].

Definition 91. Let C be a set of clocks, and G be a set of clock constraints on C. Let R be
a partition of the set of clock valuation TC. This set R is said to be compatible with G if
the following three conditions are met:

• for every R,R′ ∈ R, if there exists v ∈ R and t ∈ T s.t. v+ t ∈ R′, then for all w ∈ R,
there exists u ∈ T s.t. w + u ∈ R′;

• for every g ∈ G and any R ∈ R, either R ∩ JgKC = ∅, or R ⊆ JgKC;

• for every R,R′ ∈ R and every Y ⊆ C, letting R[Y → 0] = {v[Y → 0] | v ∈ R}, it holds
either R[Y → 0] ∩R′ = ∅ or R[Y → 0] ⊆ R′.

We write ν ≡R ν′ when two valuations are equivalent for R, meaning that they belong to
the same set R of R.

Proposition 92. Let A = 〈S,C, T, `, Inv〉 be a timed automaton, JAK = 〈Q,R, l〉 be its
semantics, and G be the set of clock constraints appearing either as guards on transitions or
as invariants of states. Let R be a partition of TC compatible with G. The relation on Q
induced by R, defined as

(s, ν) 'R (s′, ν′) ⇔ s = s′ and ν ≡R ν′

is a bisimulation relation on JAK.

Proof. In this proof, R is fixed, and given a valuation ν, we write JνK for the set R ∈ R s.t.
ν ∈ R.

Let (s, ν) and (s′, ν′) be two states of JAK. To prove that 'R is a bisimulation relation,
we have to prove that:

• if (s, ν) 'R (s′, ν′), then l((s, ν)) = l((s′, ν′));

• if (s, ν) 'R (s′, ν′) and ((s, ν), (t, µ)) ∈ R, then there exists a state (t′, µ′) ∈ Q s.t.
((s′, ν′), (t′, µ′)) ∈ R and (t, µ) 'R (t′, µ′);

• if (s, ν) 'R (s′, ν′) and ((s′, ν′), (t′, µ′)) ∈ R, then there exists a state (t, µ) ∈ Q s.t.
((s, ν), (t, µ)) ∈ R and (t, µ) 'R (t′, µ′).

The first point is easy, by definition of the labelling function of JAK. The other two are
symmetric, so we only prove one of them. Assume that (s, ν) 'R (s′, ν′) and ((s, ν), (t, µ)) ∈
R. We consider two cases:
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• if ((s, ν), (t, µ)) corresponds to a delay transition, then s = t and µ = ν + d for
some d ∈ T. Also, µ |= Inv(s). By definition of R being compatible with G, this
entails that

– for any ρ ∈ JνK, there exists d′ ∈ T s.t. ρ+ d′ ∈ JµK,
– JµK ⊆ JInv(s)K.

Since (s, ν) 'R (s′, ν′), we also have s′ = s and ν′ ∈ JνK. Hence for some d′ ∈ T,
it holds ν′ + d′ ∈ JµK. Letting t′ = s and µ′ = ν′ + d′, we have ((s′, ν′), (t′, µ′)) ∈ R
(because µ′ |= Inv(s)) and (t, µ) 'R (t′, µ′).

• if ((s, ν), (t, µ)) corresponds to an action transition, then there exists a transition
(s, g, σ,R, t) ∈ T such that ν |= g and µ = ν[R→ 0] |= Inv(t). Since (s, ν) 'R (s′, ν′),
we have s′ = s and ν′ ∈ JνK. Since R is compatible with G and ν |= g, it holds JνK ⊆
JgK, hence ν′ |= g. Let t′ = t, and µ′ = ν′[R → 0]. We have µ = ν[R → 0], meaning
that JνK[R → 0] ∩ JµK 6= ∅. by definition of R being compatible with G, this entails
that JνK[R → 0] ⊆ JµK. Since ν′ ∈ JνK, we deduce that µ′ = ν′[R → 0] ∈ JµK. Hence
µ′ |= Inv(t), so that there exists a transition ((s′, ν′), (t′, µ′)) ∈ R and (t, µ) 'R (t′, µ′).

�

Remark. Notice that the bisimulation is time-abstract, meaning that it does not preserve
the duration of delay transitions. This will be sufficient for most purposes.

Proposition 93. Let A = 〈S,C, T, `, Inv〉 be a timed automaton, with set of constraints G.
There exists a finite partition of TC compatible with G.

Proof. We define the partition by an equivalence relation on clock valuations: we assume
that the clock constraints in A only involve natural numbers, even if it means multiplying all
constants with a positive integer. It is easy to prove that this preserves untimed properties
(such as reachability) in the automaton.

For each c ∈ C, we let Mc be the maximal integer constant with which clock c is compared
in A. We write M for (Mc)c∈C.

Definition 94. Two valuations ν and ν′ are said to be M-equivalent, written ν ≈M ν′, if
the following three conditions are fulfilled:

• for all c ∈ C, ν(c) > Mc iff ν′(c) > Mc;

• for all c ∈ C s.t. ν(c) ≤ Mc (hence also ν′(c) ≤ Mc), it holds bν(c)c = bν′(c)c, and
(〈ν(c)〉 = 0 iff 〈ν′(c)〉 = 0);

• for all c, c′ ∈ C with ν(c) ≤ Mc and ν(c′) ≤ Mc (hence also ν′(c) ≤ Mc and ν′(c′) ≤
Mc′), it holds 〈ν(c)〉 ≤ 〈ν(c′)〉 iff 〈ν′(c)〉 ≤ 〈ν′(c′)〉.

This is obviously an equivalence relation. We prove that it defines a partition of the
set of clock valuations that is compatible with the set GMC = {c ∼ nc | c ∈ C,∼ ∈
{<,≤,=,≥, >}, 0 ≤ nc ≤ Mc}. As a consequence, it will also be compatible with the
set of constraints that occur in A.

We begin with the last two conditions:

• let g = c ∼ n in GMC , and ν be a valuation. Assume that JνK ∩ JgK 6= ∅: there is a
valuation µ ∈ JνK s.t. µ(c) ∼ n. Pick any other valuation µ′ ∈ JνK: if µ′(c) > Mc, then
also µ(c) > Mc. Since n ≤Mc, it must be the case that ∼ ∈ {>,≥}, hence µ′(c) ∼ n.

Otherwise, we have µ′(c) ≤Mc, and µ(c) ≤Mc. Then bµ(c)c = bµ′(c)c, and 〈ν(c)〉 = 0
iff 〈ν′(c)〉 = 0. Thus either µ′(c) and µ(c) are the same integer, or both belong to the
interval (bµ(c)c, bµ(c)c+ 1). The result follows.

• take two valuations ν and ν′, and a set R ⊆ C, and assume that JνK[R→ 0]∩Jν′K 6= ∅.
Pick a valuation µ ∈ JνK[R→ 0].

First if R = ∅, the result is trivial. Otherwise, by hypothesis, JνK contains a valuation ρ
s.t. ρ[R→ 0] is equivalent to ν′. We prove that µ[R→ 0] is also equivalent to ν′:
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– for r ∈ R, it must be the case that ν′(r) = 0, and also µ[R → 0](r) = 0, so that
none of them is strictly more than Mr. For a clock c /∈ R, µ[R → 0](c) > Mc iff
µ(c) > Mc iff ρ(c) > Mc iff ρ[R→ 0](c) > Mc iff ν′(c) > Mc.

– the second property for clocks in R is obvious. For clocks not in R, bµ[R →
0](c)c = bµ(c)c = bρ(c)c = bρ[R → 0](c)c = bν′(c)c, and 〈µ[R → 0](c)〉 = 0 iff
〈µ(c)〉 = 0 iff 〈ρ(c)〉 = 0 iff 〈ρ[R→ 0](c)〉 = 0 iff 〈ν′(c)〉 = 0.

– finally, for two clocks c and c′ s.t. µ[R → 0](c) ≤ Mc and µ[R → 0](c′) ≤ Mc′

and 〈µ[R→ 0](c)〉 ≤ 〈µ[R→ 0](c′)〉, we again have several cases:

∗ if c and c′ are in R, then 〈ρ[R→ 0](c)〉 ≤ 〈ρ[R→ 0](c′)〉, and similarly for ν′.

∗ if c ∈ R and c′ /∈ R, then 〈ρ[R→ 0](c)〉 = 0, hence 〈ν(c)〉 = 0, and the result
follows. Similarly if c′ ∈ R and c /∈ R.

∗ if c /∈ R and c′ /∈ R, then 〈µ(c)〉 ≤ 〈µ(c′)〉, so that 〈ρ(c)〉 ≤ 〈ρ(c′)〉, and
〈ρ[R→ 0](c)〉 ≤ 〈ρ[R→ 0](c′)〉, and 〈ν′(c)〉 ≤ 〈ν′(c′)〉.

We now prove the first condition, on time elapsing. Take two valuations ν and ν′, and
write JνK and Jν′K for the corresponding equivalence classes. Assume that for some µ ∈ JνK,
there is a t ∈ T s.t. µ + t ∈ Jν′K. Pick µ′ ∈ JνK: we exhibit a t′ ∈ T s.t. µ′ + t′ ∈ Jν′K by
distinguishing between several cases:

• if ν(c) > Mc for all c ∈ C, then also µ(c) > Mc and µ′(c) > Mc for all c ∈ C. Moreover,
for any t ∈ T, it is also the case that (µ+ t)(c) > Mc for all c ∈ C, so that JνK = Jν′K.
Then for any t′ ∈ T, (µ′ + t′)(c) > Mc for all c ∈ C, which entails µ′ + t′ ∈ Jν′K.

• if for some c ∈ C, we have that (µ+ t)(c) is an integer less than or equal to Mc, then
we let t′ = (µ+ t)(c)− µ′(c). First notice that t′ ∈ T: indeed, for all integer α ≤Mc,
µ(c) ≤ α iff µ′(c) ≤ α; in particular for α = (µ + t)(c), which implies that µ′(c) ≤
(µ+ t)(c), so that t′ ≥ 0.

It remains to prove that µ′ + t′ ∈ Jν′K, which we leave to the reader.

• finally, if for some c ∈ C, we have that (µ + t)(c) ≤ Mc, but no such clock is mapped
to an integer value by µ+ t, then we distinguish two cases:

– either for all 0 ≤ u ≤ t, no valuation µ+u contains a clock c that is mapped to an
integer less than or equal to Mc. This means that Jµ+ tK = JµK, and taking t′ = 0
is fine;

– or for some 0 ≤ u ≤ t, µ + u maps some clock c to an integer value less than or
equal to Mc. Pick the largest such u. Then from the previous case, there exists u′

such that Jµ + uK = Jµ′ + u′K. We are now left with the case where we depart
from a region JµK with µ(c) is an integer less than or equal to Mc and never visit
such a region after a time elapse. This means that t < min{1 − µ(c) | c ∈ C}.
From µ′, it suffices to apply a delay t′ < min{1−µ′(c) | c ∈ C} to get to the same
region. �

Figure 21: M-equivalence for two clocks x
and y, and maximal constants 3 and 2, resp.

y

x

The figure on the right is a schematic
representation of M-equivalence, for two
clocks (for n clocks, it would be n-
dimensional). It contains all the equivalence
classes, namely:

• punctual regions;

• 1-dimensional bounded regions, con-
taining vertical or horizontal lines on
the one hand, and diagonal lines on
the other hand;

• 2-dimensional bounded regions, which
are triangular;
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• unbounded regions, which can be 1-
dimensional or 2-dimensional.

Proposition 95. Let M ∈ NC. The number of equivalence classes of ≈M is bounded by

|C|! ·
∏
c∈C

4 · (Mc + 1).

Proof. We provide another characterization of ≈M: with a valuation ν, we associate the
following items:

• for each clock c ∈ C, the integral part bν(c)c (or Mc if bν(c)c > Mc;

• for each clock c ∈ C, a bit telling whether ν(c) is an integer;

• the ordering of clocks according to their fractional parts;

• for each pair of consecutive clocks in that ordering, a bit telling whether their fractional
parts are equal or not.

It is easily checked that any two valuations having the same characteristics on these four
items are M-equivalent. Moreover, the first item has

∏
c∈C(Mc + 1) different values, the

second and fourth have 2|C|, and the third one has |C|!. Hence the result. �

Definition 96. Let A = 〈S,C, T, `, Inv〉 be a timed automaton, with maximal constants M.
Let R be a partition of the set of clock valuations that is compatible with the constraints
in A. The region automaton associated with A and R is the automaton B = 〈Q,R, l〉 where

• Q = S ×R,

• R ⊆ Q ×Q is such that ((s, r), (s′, r′)) ∈ R iff ((s, ν), (s′, ν′)) in JAK, with ν ∈ r and
ν′ ∈ r′;

• l(s, r) = `(s) for all s ∈ S and r ∈ R.

Proposition 97. Let A = 〈S,C, T, `, Inv〉 be a timed automaton, and B be its region au-
tomaton. Let (s, ν) be a state of JAK, and (s, JνK) be the corresponding state in B. Then
there exists a bisimulation (over the union of JAK and B) containing ((s, ν), (s, JνK)).

Proof. Consider the set
R = {((t, µ), (t, JµK)) | µ |= Inv(t)}.

It is easily proved that this is a (time-abstract) bisimulation. �

Theorem 98. Reachability and repeated reachability in timed automata are PSPACE-complete,
and can be solved in deterministic exponential time.

Proof. The deterministic algorithm consists in building the region automaton, and check for
(repeated) reachability in that automaton.

This algorithm can be adapted to run in PSPACE by working on-the-fly : the path for
reaching the target state can be guessed step-by-step, without computing the whole region
automaton. It requires polynomial space to store the current state, and to increment a
counter for stopping the procedure in case the target state is not reached.

We now prove hardness in PSPACE for reachability (which will entail hardness for re-
peated reachability). Consider a non-deterministic linear-bounded Turing machine M, and
an input word w. Deciding whetherM accepts w is known to be PSPACE-complete. We re-
duce this problem to a reachability problem in a timed automaton.

We first fix our notations: we assume w.l.o.g. thatM works on a 2-letter alphabet {a, b},
with an extra blank symbol #, and that its set of states is Q, and its set of transitions is R.
We assume that it has one initial state qi and one final qf . Being linear-bounded for M
means that there is a linear function S : N → N s.t., on input w, M uses at most S(|w|)
cells of the tape.
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In our encoding, the content of each cell Ci of the tape is encoded by the value of a clock xi
when the extra clock t equals 0 and the timed automaton is in a special configuration (to
be defined below): xi = 0 will encode #, xi ∈ (0, 2] will encode a, and xi > 2 will encode b.

We now consider the timed automaton A = 〈S,C, T, `, Inv〉 s.t.

• S = Q×{1, ..., S(|w|)}×{0, ..., 2×S(|w|)}, where the last bit is 0 when the automaton
is really in a state encoding a configuration of M, and will have another value when
it will have to “update” the values of the clocks (this will be necessary because our
encoding is not invariant by time elapsing);

• C = {xi | i ∈ {1, ..., S(|w|)} ∪ {t}. Clock t is used as a tick: it will be reset when it
reaches value 2;

• T is the set of transitions, to be defined below;

• ` is always empty (we will only use reachability properties of A);

• Inv is always true.

We now explain how we build the set of transitions: consider for instance a transition (q, b, q′, a,−1)
(meaning that if in state q and reading an b, M will write an a (over the b), move to the
left (if possible), and go to state q′), and a position i ∈ {2, ..., S(|w|)}. Then A will have the
following transitions:

• ((q, i, 0), (t = 1 ∧ xi > 3), {xi}, (q′, i − 1, 1)): the guard t = 1 ∧ xi > 3 ensures that
clock xi encodes a b (because one time-unit earlier, when t = 0, it held xi > 2); the
fact that we reset xi will enforce that next time we reset t (and go to a state really
encoding a configuration of M), we have xi ∈ (0, 2], thus encoding an a in cell Ci.

• then for each j 6= i, we have to take care of the values of xj . We do this once
when t = 1 (for a), and once when t = 2 (for #). When t = 1, a’s are characterized by
clock values 0 (in case the a has just be written on the tape) or in (1, 3]. In any case,
resetting the corresponding clock will enforce that it is in (0, 2] next time t is reset.
Similarly, when t = 2, # are characterized by clock value 2. We reset clocks having this
value, thus preserving our encoding. These sequences of updates are achieved using
the sequences of states (q′, i, j) where j ranges from 1 to 2 × S(|w|) (but we don’t
modify clock xi). When the last clock has been updated a second time, we reset t and
go to state (q′, i, 0).

We leave it to the reader to prove that there is a weak bisimulation5 between the Turing
machine and the automaton representing the semantics of timed automaton, and that reach-
ability of a state (qf , i, 0) from (qi, 0, 0) in the timed automaton is equivalent to reachability
of the final state from the initial state of the Turing machine. �

Notice that this proof could be adapted to work with timed automata under a discrete-
time semantics (but not for weighted labelled transition systems, since we heavily use clocks
here—reachability in (weighted) labelled transition systems is NLOGSPACE-complete).

4.4 Timed temporal logics

Syntactically, our logics will precisely correspond to the logics we defined for the discrete-
time semantics of timed automata, namely TCTL, TCTLc, MTL and TPTL. We will also
define MITL in the sequel, which is a syntactic fragment of MTL. Because we have two
different semantics for runs of a timed automaton, we define two semantics for our temporal
logics.

5Weak meaning that we may have silent transitions, corresponding here to the sequence of transitions
updating the values of the clocks.
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4.4.1 Timed-word semantics

Based on the semantics defined at Definition 90, we would naturally define the set of runs
of the timed automaton as the set of runs of its semantics. This however is not adequate for
our purposes: indeed, from any state where a positive delay can elapse, there is an infinite
run visiting only that state: it suffices to take only delay transitions whose durations sum
up to some total value compatible with the invariant in that state. Such behaviours are
called Zeno runs. We’d better try to avoid them as much as possible, as they correspond to
runs along which time converges, which has no real practical meaning.

Instead, a run in a timed automaton is a run in its underlying weighted labelled transition
system in which no two consecutive delay transitions are allowed. In the sequel, we consider
a slight variant, consisting in merging delay- and action transitions (even if it means allowing
delays of duration zero). This avoids observing each location twice, as is the case when
individual delay transitions are allowed.

The timed-word semantics of TCTL, TCTLc, MTL and TPTL are defined for continuous-
time timed automata in the very same way as we defined them for discrete-time timed
automata, using the weighted labelled transition systems defining their semantics. The only
difference lies in the fact that timestamps are non-negative reals instead of integers.

4.4.2 Timed-signal semantics

A run in the above semantics can then be seen as a sequence of “timed states”: we go
form one timed state to the next one by applying a delay transition followed with an action
transition. Such a timed-state sequence can equivalently be seen as a timed word. It might
look surprising that, even though we have moved to continuous time, we are still left with
discrete behaviours. This is due to our moving to transition systems, whose semantics is
discrete. While the above semantics does make sense, we also consider a different, really
continuous one.

Definition 99. Let A = 〈S,C, T, `, Inv〉 be a timed automaton over AP and alphabet Σ.
The set of continuous runs (or signals) of A is the set of functions f mapping R≥0 to S
such that there exists a run in the semantics of A, seen as a timed-state sequence (si, ti)i∈N,
such that f(t) = sk whenever tk ≤ t < tk+1.

Of course, for our temporal-logic purposes, we will most often see such signals as maps
from R≥0 to 2AP, in the obvious way.

With this definition, runs of a timed automaton still have countably many transitions,
but they have a continuous nature. We will see later how this affects expressiveness of
timed temporal logics, which we now define. Notice that we could have gone one step
further and allowed arbitrarily many transitions along a signal (instead of countably many).
We could also have allowed to visit several states at the same time, hence modelling zero-
delay transitions. We leave these technical details to the interested reader.

As signals become our notion of “words” in the continuous setting, we have to define
preifxes and suffixes of signals, in the obvious way: in particular, given t ∈ R≥0 and a
signal ρ, the suffix of ρ after t is the signal σ≥t defined by σ≥t(t

′) = σ(t+ t′).
We now define the semantics of TPTL (that of MTL will follow thanks to the natural

translation into TPTL) over timed signals. We will not extend this definition to branching-
time temporal logics, as it would require defining trees over the reals.

Let ρ be a timed signal. The timed-signal semantics of TPTL is defined as follows:

ρ |=ζ p ⇔ p ∈ `(s0)

ρ |=ζ c ∼ n ⇔ ζ(c) ∼ n
ρ |=ζ c.φ ⇔ ρ |=ζ[c←0] φ

ρ |=ζ ¬φ ⇔ ρ 6|=ζ φ

ρ |=ζ φ ∨ φ′ ⇔ ρ |=ζ φ or ρ |=ζ φ
′

ρ |=ζ φUφ′ ⇔ ∃t > 0 s.t. ρ≥t |=ζt φ
′ and ∀u ∈ (0, t). ρ≥u |=ζu φ,

where ζt = ζ + t.
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4.5 Expressiveness questions

One natural question one may ask is whether, in the continuous-time case, formula clock do
bring more expressiveness to temporal logics. The answer has been open for a long time,
with the following formula as a possible witness that TPTL is strictly more expressive than
MTL:

x.F (a ∧ F (b ∧ x ≤ 2)).

This formula states that we will have an a followed with a b, with the latter occurring less
than two time units from the initial time. Naive attempts to express this property in MTL
include F≤1 (a ∧ F≤1 b) and F (a ∧ F≤2 b), which obviously is not equivalent to the original
formula.

It turns out that the above formula can be expressed in MTL only in the timed-signal
semantics, using the following equivalent formula:

F≤1 (a ∧ F≤1 b) ∨ F<1 a ∧ F=1 F≤1 b ∨ F≤1 (F<1 a ∧ F=1 b)

Why would this disjunction be equivalent to the original formula? It distinguishes three
cases: either both events a and b occurs within the first time unit (which is over-approximated
by the first disjunct), or a occurs in the first time unit and b in the second one (second dis-
junct), or both occur in the second half (in which case we consider the time point lying one
time unit before b). Because of the latter conjunct, the translation is only correct under the
signal semantics: it requires imposing a formula at a time point where no event occurs.

When considering the timed-word semantics, it can be proved that no MTL formula can
express the above property. The prove is quite involved, and out of the scope of these notes.
Under the signal semantics, a more complex formula can be used to prove that TPTL is also
more expressive than MTL.

Theorem 100. In continuous time, TPTL is strictly more expressiven than MTL.

4.6 Model checking timed temporal logics

4.6.1 TCTL model checking

As usual, the main ingredient in the model-checking algorithm for TCTL is a kind of labelling
of the states with the subformulas they satisfy. In the timed setting, however, there are in-
finitely many states, and the “states” to be considered are in fact the regions. Hence we have
to prove that two equivalent valuations satisfy the same TCTL formulas. We prove this in
the context of logics with formula clocks, which is stronger but requires more technicalities.

Lemma 101. Let A be a timed automaton, with set of clocks C. Let X be a disjoint finite
set of clocks (intended to be formula clocks), and extend the set clocks of clocks of A with X
(this is just syntactic, and we require that clocks in X are never used in guards and never
reset). Fix some maximal constants for each of these extra clocks. Now, pick two equivalent
valuations ν and ν′ of clocks in C ∪X, and two runs ρ and ρ′ starting at (s, ν) and (s, ν′)
and visiting the same sequences of regions. Then for any formula φ ∈ TBTLc involving
clocks in X that are only compared to integers less than or equal to their associated maximal
constants,

ρ |=ν φ ⇐⇒ ρ′ |=ν′ φ.

Proof. We prove this result by induction on φ. For atomic propositions, the result is straight-
forward as we start from the same state. For clock constraints, the result follows from the
fact that ν and ν′ are region equivalent. For boolean combinations of subformulas, the result
follows by induction.

Now, assume φ = Eψ. Then ρ |=ν φ implies the existence of a run π from (s, ν) s.t.
π |=ν ψ. It then suffices to pick a path π′ from (s, ν′) visiting the same regions as π, so that
by induction we get π′ |=ν′ ψ, which proves our result.

For the case where φ = x.ψ, we may assume w.l.o.g. that ψ begins with a path quantifier.
So we assume ρ |=ν x.Eψ

′. This means that there is a path π from (s, ν[x← 0]) along which
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ψ′ holds. Now, pick a path π′ from (s, ν′[x← 0]) visiting the same sequence of regions as π.
Following the induction hypothesis, π′ |=ν′[x←] ψ

′, so that ρ′ |=ν′ x.Eψ
′, as expected.

Finally, we handle the case of the “until” modality. If ρ |=ν αUβ, then for some delay t,
ρ≥t |=ν+t β and for all intermediary position u, ρ≥u |=ν+u α. Since ρ′ visits the same
sequence of regions as ρ, there is a delay t′ such that ν + t and ν′ + t′ end up in the same
region, and such that for all intermediary position u′, there is some 0 < u < t such that
ν′ + u′ is in the same region as ν + u. Applying the induction hypothesis, this proves that
ρ′ |=ν′ αUβ. �

Theorem 102 ( [ACD93]). TCTL and TBTLc model-checking on timed automata can be
achieved in exponential time, and are PSPACE-complete.

Proof. Following our previous lemma, the algorithm exponential-time algorithm consists in
labelling regions (extended with formula clocks) with the subformulas they satisfy. This
amounts to applying the CTL model-checking algorithm on the exponential-size region au-
tomaton.

In order to make the algorithm cope with the polynomial-space restriction, we make it
run on-the-fly, checking subformulas on demand and guessing paths in the region automaton
for witnessing path-quantifier formulas.

Hardness is easy since reachability in timed automata is already PSPACE-complete.
�

4.7 MTL model checking

Unfortunately, our series of nice decidability results stops here: with MTL and continuous
time, we have hit the border. As we will see later, decidability can be recovered in some
circumstances.

Theorem 103 ([AH93]). MTL model-checking on timed automata is undecidable.

Proof. We first do the proof for the continuous-trace semantics. It is achieved by encoding
the executions of a (deterministic) two-counter machines: a configuration of the two-counter
machine, containing the current state q and the values of both counters c1 and c2, is encoded
on a one-time-unit-long signal where an atomic proposition q holds continuously along that
signal, and atomic propositions a1 and a2 hold punctually, with as many different occurrences
as the values of the counters c1 and c2. We also assume a special atomic proposition t to
hold precisely at the beginning of each such signal. A sequence of such signals represents
an execution of the two-counter machine if the transitions are applied correctly, which we
will enforce by saying that all (but possibly the last) occurrences of c1 and c2 are followed,
exactly one time unit later, with an occurrence of the same letter. This will enforce that the
values of the counters are preserved, except possibly for the one that has to be updated.

We won’t write the whole set of formulas required to ensure this encoding, but only some
of them:

• t holds punctually at each integer date:

t ∧ ¬a1 ∧ ¬a2 ∧G (t ⇐⇒ (¬t) U=1 (t ∧ ¬a1 ∧ ¬a2)) (4)

• there is always exactly one state-letter at a time:

G
(∨
q∈Q

q ∧
∧
q 6=q′

(¬q ∨ ¬q′)
)

(5)

• state-letters hold continuously, and can change only at integer dates:∧
q∈Q

G (q ⇒ (q ∧ ¬t) U t) (6)
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• a1 and a2 do not overlap:
G (¬a1 ∨ ¬a2) (7)

• occurrences and absences of a1 (resp. a2), except the last ones, are repeated one time
unit later:

G
[
(a1∧¬(a1 U (¬a1∧¬a1 U t)))⇒ F=1 a1

]
∧G

[
(¬a1∧¬(¬a1 U t))⇒ F=1 ¬a1

]
(8)

The same formula can be written for a2;

• transitions are applied correctly: assume that there is a transition of the form
q: if c1>0 then c1:=c1-1; goto q’ else goto q’’

This could be encoded as follows:

G
[
(t ∧ q ∧ (¬tU a1))⇒ (F=1 q

′∧

F<1 (¬a1 ∧ (¬a1 ∧ ¬t) U [a1 ∧ (a1 ∧ ¬t) U (¬a1 ∧ (¬a1 ∧ ¬t) U t)]∧

F=1 (¬a1 ∧ ¬a1 U t)) ∧G<1 (a2 ⇔ F=1 a2))
]

(9)

and

G
[
(t ∧ q ∧ (¬a1 U t))⇒ (F=1 q

′′ ∧G<1 (a1 ⇐⇒ F=1 a1) ∧G<1 (a2 ⇐⇒ F=1 a2))
]

(10)
Other instructions can be handled similarly.

It then suffices to express that the halting state is reachable to fully encode the halting
problem of the two-counter machine. This proves that the satisfiability of an MTL formula
is undecidable. When applied to a universal timed automaton (such an automaton is easily
constructed), this proves that model-checking MTL is also undecidable.

We adapt the same construction for proving undecidability in the discrete-trace seman-
tics: instead of holding continuously, state-propositions will be required to hold at the
beginning of their one-time-unit interval. It is possible to adapt the above formulas to this
new setting, except one: we cannot enforce that the absence of a1 is propagated, because
we cannot evaluate formulas between two letters of the timed word. In other terms, we can
guarantee that an a1 is propagated, but we cannot prevent new occurrences of a1, without
a corresponding a1 one time unit earlier.

One way to cope with this problem is to have past-time modalities. The other way,
without changing the logic, is a bit more tricky, and we just give a rough idea. First notice
that it is easy to adapt the encoding above to handle three-counter machines. Now, given
a two-counter machine, we add a third counter c3 which gets incremented every other step.
If there is a halting computation, then there is one where the maximal value of c1 +c2 +c3 is
bounded by some value M . On the contrary, if there is no halting computation, then for any
bound M on c1 + c2 + c3, any computation eventually reaches that bound (there can be no
loop since c3 only increases). The idea is to simulate the computation of the three-counter
machine with different values of M , starting from 1.

More precisely, for a given value M , we initialize the simulation by labelling M positions
on the first time unit with a special letter z. Any incrementation of c1 or c2 will have to
replace one occurrence of z with a1 or a2. When c1 or c2 is decreased, we replace one letter a1

or a2 with the letter a3 encoding the value of counter c3, which gets incremented at the next
instruction. Hence, in case there are no “insertion errors”, the number of z eventually
reaches 0. In that case, we replace all occurrences of a1, a2 and a3 with z’s, except one
which is transformed into another special letter y, and restart the simulation with those z’s
as new marked positions. In case there are no z left, we replace all y’s with z’s, add one
occurrence of z, and restart the process. Notice that there can be insertions of extra z’s
and y’s all along the computation. Also notice that all these rules are “local”, and can be
encoded using MTL formulas.
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Now, assume that the three-counter machine does not halt. Then for any value M (i.e.,
for any number of z at the beginning of the simulation phase), the simulation of the machine
without insertion error eventually exhausts all z’s and reaches a configuration containing
only y’s. Hence there is an infinite computation visiting configurations with only y’s infinitely
many times (which can be expressed in MTL).

We now prove the other direction: assume that there is a computation visiting infinitely
many configurations having only y’s, and that the three-counter machine halts, with a
bound M0 on the maximal value of the sum of the three counters. Since there are infinitely
many configurations with only y’s, and the number of y’s and z’s only increases, there must
be one simulation containing initially at least M0 marked positions. Moreover, between one
simulation and the next one, the number of z’s either increase, or decreases by 1 (in case
of a simulation with no insertion errors). Since we visit infinitely many configurations with
no z, there must be a simulation starting with at least M0 marked positions, and decreasing
the number of z by 1 (hence it is an exact simulation). But such a simulation must halt,
since the (deterministic) three-counter machine halts when the sum of the three counter is
bounded by M0. This contradicts the fact that we visit configurations with only y’s infinitely
many times.

In the end, the three-counter machine does not halt if, and only if, there is a computation
visiting infinitely many configurations containing only y’s. �

Hopefully, when dropping timing constraints from the logic, we recover decidability:

Theorem 104. LTL model-checking on timed automata is decidable in exponential time,
and is PSPACE-complete.

Proof. From the LTL formula, build the corresponding (co)Büchi automaton. Depending
on the semantics, this automaton can be interpreted on timed words (synchronization on
transitions) or on signals (synchronization on states). Then check for the existence of an
accepting run in the product of this automaton with the original timed automaton, via the
region automaton. This can be achieved on-the-fly, hence requiring only polynomial space.

�

In the undecidability proof for MTL model checking, it clearly appears that punctuality
is the key ingredient: we use it for copying configurations of the two-counter machine from
one time unit to the next one. And indeed, when relaxing punctuality, we get:

Theorem 105. Write MITL for the fragment of MTL where constraining intervals are
required to be non-singular. The model-checking problem for MITL on timed automata is
EXPSPACE-complete.

Proof. The full proof of this result is very complex (see [AFH96]), but we try to convey
the main ideas here. The general idea is to associate with a formula φ of MITL, a timed
automaton Bφ accepting precisely the timed state sequences satisfying φ. The construction
of this automaton roughly follows the construction of the Büchi automaton for LTL. For a
formula of the form FI p, the automaton will set a clock to zero, and store in its control
state that it has to visit a p-state when the value of this clock is in I. At first sight, this
might require infinitely many clocks: if checking G (q ⇒ FI p), we have to start a new clock
each time we see a q-state. This is where the fact that I is non-punctual will help: several
q-states will use the same p-state as a witness, hence the same clock.

As a first step, we simplify our input formula, turning it into some normal form, where
it only involves atomic propositions and their negations, conjunction and disjunction, and
the following six constructs:

• FI ψ where I = (0, b〉 for some finite b;

• GI ψ where I = (0, b〉 for some finite b;

• ψ1 UI ψ2 where I = 〈a, b〉 with 0 < a < b <∞;

• ψ1 RI ψ2 where I = 〈a, b〉 with 0 < a < b <∞;
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• ψ1 Uψ2;

• Gψ.

In order to come to such a form, we apply a series of transformations:

• unbounded intervals are only (0,∞): this is achieved by the following equivalences:

αU(a,∞) β ≡ G(0,a] (α ∧ αUβ)

αU[a,∞) β ≡ G(0,a) α ∧G(0,a] (β ∨ (α ∧ αUβ))

• bounded intervals with left end-point zero only label unary modalities: for this we do
as follows:

αU(0,b〉 β ≡ F(0,b〉 β ∧ αUβ

αR(0,b〉 β ≡ G(0,b〉 β ∨ αRβ

• eliminate unconstrained “release” modalities: we use

αRβ ≡ Gβ ∨ βU (α ∧ β).

Notice that during this transformations, the DAG-size of the formula (i.e., its number of
distinct subformulas) did not increase by more than a linear polynomial, and the maximal
constant is unchanged.

Now, the states of our automaton will be the consistent sets of subformulas of the input
formula (assumed to be in normal form). The states will also contain a number of clock
constraints for the eventualities that are about to be fulfilled.

• When the automaton enters a state containing a formula of the form ζ = FI ψ (where
I = (0, b〉 for some finite b), it will set a clock xζ of zero. Formula ζ will appear in
the state as long as the eventuality has not been fulfilled. If, at some point before
the eventuality is fulfilled, formula ζ has to be checked again, then we will not reset
clock xζ : indeed, we are already expecting a witnessing ψ-state, which will serve as a
witness for both occurrences. This way, as long as xζ is “running”, all other occurrences
of ζ will automatically be fulfilled.

• The situation of ζ = GI ψ is symmetric: clock xζ is reset to zero each time the formula
has to be enforced, and ψ has to hold true as long as clock xζ is in I. Again, on ly
one clock is sufficient for the whole automaton.

• Formulas for the form αU〈a,b〉 β, with 0 < a < b <∞, are the most difficult to handle.

Consider formula G(0,1) (p⇒ F[1,2] q). The naive approach of reseting one clock each
time a p-state is encountered does not work, as it requires unboundedly many clocks.
Instead, the idea consists in guessing, for the whole interval (0, 1), the dates t1 and t2
such that the first q-state in (1, 2) occurs at t1 + 1, and the last q-state in (2, 3) occurs
at t2 + 2 (these are assumed to exist; we also assume that q is false at time 2, as
otherwise the formula is automatically true). Then any p-state that occurs before t1
in (0, 1) will have a corresponding q-state after some delay in [1, 2], and so will any
p-state that occurs after t2 in (0, 1). When t1 ≥ t2, then the whole interval (0, 1) is
covered; otherwise, the automaton has to ensure that no p-state occurs between t1
and t2 (besides checking that the guessed values for t1 and t2 are correct, of course).

In case q holds true on an open interval (t1 + 1, t′1 + 1), the situation is a bit more
complex: there is no last point where q holds, and we would then have to guess both t1
and t′1. The other arguments are similar.

In the end, for the formula above, the automaton would like the one depicted on
Fig. 23. In this automaton, we start clocks x1 and x′1 at guessed dates t1 and t′1, and
clocks x2 and x′2 at dates t2 and t′2; we impose that p has to be false between t′1 and t2,
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Figure 22: Witnessing G(0,1) (p⇒ F[1,2] q) with only two occurrences of q

0 1 2 3q q q q q

last q in (1, 2)
first q in (2, 3)

ok ok¬p

when it is the case that t′1 < t2. We then check that the guessed dates are indeed
correct. Notice that the automaton uses an extra clock z to enforce that clocks are
reset before time 1. Notice also that there are special cases that should be handled
separately: cases where q never holds true in [1, 2] or in [2, 3], and the case where q
holds at time 2. These are easy to handle.

Figure 23: A timed automaton capturing G(0,1) (p⇒ F[1,2] q)

x1 := 0

x2 := 0

¬p
x′1 := 0

x2 := 0

x1 := 0

x′2 := 0

x2 := 0

x′1 := 0

x′2 := 0

x1 := 0

x′2 := 0

x′1 := 0

q ¬q q
x1 = 1 x′1 = 1 x2 = 2 x′2 = 2

0 < z < 1

The details for handling the general case are a bit tedious, but follow the same idea:
each “until” formula uses four clock per unit-length interval, and we can reuse clocks
one they exceed the upper bound b of the constraining interval of the formula being
checked. The automaton will then have to handle all subformaulas at the same time, in
quite the same manner as the automaton for an LTL formula propagates the obligations
to be checked from one state to the next one.

• The case of formulas of the form αRI β is handled in a very similar way, and we omit
it.

In the end, our automaton has size doubly-exponential, since states are subsets of sub-
formulas and clock constraints, and there can be as many as 4M · |φ| clock constraints.
The model-checking algorithm then checks for the existence of a run in the product of this
automaton with the input timed automaton. Notice that this does not require building the
whole automaton Bφ, but instead can be achieved on-the-fly, using only exponential space.

�

Remark. In case the constraining intervals are of the form 〈0, a〉 or 〈a,+∞), the construc-
tion above becomes much simple: we completely get rid of formulas of the form ψ1 UI ψ2

and ψ1 RI ψ2, so that we now only need one clock per subformula (instead of 4M , where M
is the maximal constant). The resulting algorithm runs in polynomial space.

Remark. Recently, it has been proved that banning punctual intervals is not the only way
to recover decidability of model checking. Using very different techniques, it has been proved
that FlatMTL (existential) model checking is also decidable: in FlatMTL, subformulas of the
form αUI β are allowed if either I is bounded, or α ∈ MITL (and symmetrically, αRI β
is allowed if I is bounded or β is in MITL). In other terms, this requires that punctual
constraints are only imposed for a bounded amount of time [BMOW07].
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5. Weighted timed automata

5.1 Timed automata with linear observers

Definition 106 ([ALP01, BFH+01]). A timed automaton with linear observers (TALO for
short, but sometimes also called priced timed automata or weighted timed automata) is a
7-tuple W = 〈S,C, T, `, Inv,Var, rate, upd〉 where

• A = 〈S,C, T, `, Inv〉 is a timed automaton (referred to as the underlying timed automa-
ton in the sequel);

• Var is a finite set of variables (called observers, prices or weights);

• rate : S → RVar indicates the derivative of the observer variables in each state.

• upd : T → RVar associates with each transition the values to be added to each observer
upon firing this transition;

Definition 107. Let W be a timed automaton with linear observers, and 〈Q,R, l〉 be the
semantics of the underlying timed automaton, as given in Definition 90. The semantics of
W is the infinite-state weighted automaton 〈V,E, λ〉 where

• V = {(s, ν, µ) ∈ S ×TC ×RVar | (s, ν) ∈ Q};

• E ⊆ V ×RVar × V is the union of two sets of transitions:

– delay transitions: ((s, ν, µ), c, (s′, ν′, µ′)) ∈ Ed iff (s, ν) and (s′, ν′) belong to Q,
s = s′, and there exists d ∈ R≥0 s.t.

∗ ν′ = ν + d;

∗ c = rate(s)× d;

∗ µ′ = µ+ c.

– action transitions: ((s, ν, µ), c, (s′, ν′, µ′)) ∈ Ea iff (s, ν) and (s′, ν′) belong to Q
and there exists t = (s, g, σ, r, s′) ∈ T s.t. ν |= g, ν′ = ν[r → 0], c = upd(t) and
µ′ = µ+ c.

• λ labels a each state (s, ν, µ) following `(s).

Remark. It must be noted that the existence of a transition never depends on µ in the
semantics above: contrary to hybrid systems, and as their name indicates, observers are just
there to observe the evolution of some quantities along the executions of the underlying timed
automaton, without modifying the behaviour of the automaton.

Example. Fig. 24 depicts a timed automaton with a single linear observer (where there is
only one observer p, and where we omitted to indicate weights when they equal zero).

An example of a run in this automaton is the following: delay for 1.3 time units in the
first state, then go to the middle state and immediately to the topmost state (where ṗ = 6).
Delay for another 1.7 time units there, and go to the final state. This run is depicted on
Fig. 24, and the increase in the value of the observer variable is 17.7.

It is easy to compute the optimal run (i.e., increasing the value of the observer by the
least possible value) for reaching the last location in this example: obviously, there is no
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Figure 24: Example of a timed automaton with linear observers
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reason for waiting in the blue and green states once x has reached 3. There remains two
parameters: the delay in the first state, and the choice in the second state. In the end, the
optimal run is characterized by

inf
0≤t≤2

5 · t+ 2 + min{6 · (3− t) + 1, 1 · (3− t) + 7}

which can be rewritten as
inf

0≤t≤2
min{21− t, 12 + 4t}.

This equals 12, which corresponds to elapsing all three time units in the state with observer
rate 1.

5.2 Optimal reachability

We restrict to timed automata with linear observers in which upd and rate have nonnegative
values (hence the values of the observers are non-decreasing).

Definition 108.

Problem: Optimal reachability in timed automata with linear ob-
servers

Input: A timed automaton W with one linear observer, two states s
and s′, and m ∈ Q;

Question: Is there a run from (s,0C, 0) to (s′, ν′, µ′) in W along which the
observer variable increases by at most m?

Theorem 109. Optimal reachability is decidable in timed automata with linear observer.
It is PSPACE-complete.

Proof. The proof is based on (a refinement of) the region graph: the path will be guessed
on-the-fly. The problem, however, is that the region abstraction is too coarse to manipulate
observers: not all points in the same region have the same properties w.r.t. optimal reach-
ability: in particular, we must have information about whether we are entering the region,
and can delay in it, or we are about to exit it. In order to have this information, we refine
the region abstraction into the so-called corner-point abstraction:

Definition 110. A corner-point is a pair (r, ν) where r is a region and ν is a corner of r,
i.e., a valuation in the topological closure of r having integer clock values.

Definition 111. The corner-point abstraction of a TALO is the weighted graph 〈Q,R, l〉
where

• Q = {(s, r, ν) | (r, ν) is a corner point};

• R : Q×RV ×Q has three kinds of transitions:
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– delay transitions within a region: they are of the form ((s, r, ν), c, (s, r, ν′)) where
ν′ = ν + 1 and c = rate(s);

– delay transition from one region to the next one: they are of the form ((s, r, ν), {0}V , (s, r′, ν))
where r′ is the immediate successor or r;

– action transitions: they are of the form ((s, r, ν), c, (s′, r′, ν′)), such that there is
a transition t = (s, g, σ, r, s′) in the TALO, with upd(t) = c, r ⊆ g and ν′ = ν[r →
0].

• the labelling function follows that of the TALO.

Lemma 112. Let f be a function defined on a compact convex set A ⊂ Rn of the form

f(x1, . . . , xn) =

n∑
i=1

ci · xi + c.

Then the minimum of f on A is reached on the border of A.
If A is a zone (defined by a conjunction of constraints xi ∼ c and xi−xj ∼ c with c ∈ N

and ∼ ∈ {<,≤,=,≥, >}) then the minimum of f is obtained in a point of Cl(A) (the
topological closure of A) with integer coordinates.

Proof. The proof is by induction on n. Both results are obvious when n = 1. Assume that
the result holds for some n; we prove that it propagates to n+ 1 variables. Let α be a value
for x1 where the minimum of f is obtained. Consider gα(x2, . . . , xn) = f(α, x2, . . . , xn),
defined on the projection A′ of A ∩ {x1 = α} on the last n − 1 coordinates. From the
induction hypothesis, gα reaches its minimum on the border of A′. It remains to prove
that if (x2, . . . , xn) is in the border of A′, then (α, x2, . . . , xn) is in the border of A. That
(x2, . . . , xn) is in the border of A′ means that for all ε > 0, there is a point (y2, . . . , yn) not
in A′ and with ‖(x2, . . . , xn)− (y2, . . . , yn)‖∞ < ε. Now, (α, y2, . . . , yn) /∈ A, since A′ is the
projection of A ∩ {x1 = α} on the last n − 1 coordinates. Moreover the distance between
(α, x2, . . . , xn) and (α, y2, . . . , yn) is less than ε. Hence (α, x2, . . . , xn) is in the border of A.

We now prove that the second result also propagates. From the previous result, the
minimum of f is reached on the border of Z, hence at a point where xi − xj = c for some
indices i and j and some integer c (or possibly a point where xi = c for some i and c).
Replacing xi with xj + c (or c) in f yields a function with n− 1 variables, whose minimum
is reached at an integer point. This minimum corresponds to the minimum of f , which is
then also reached at an integer point. �

Lemma 113. Assume that there is a run from (s,0C, 0) to (s′, ν′, µ′) in W along which the
observer variable increases by at most m. Then there is a run in the corner-point abstraction
of W from (s,0, 0) to (s′, r′, γ′), where ν′ ∈ r′, with total weight at most m.

Conversely, for all ε > 0, if there is a run from (s,0, 0) to (s′, r′, γ′) with weight m, then
there is exists ν′ ∈ r′ s.t. there is a run from (s,0C, 0) to (s′, ν′, µ′) s.t. µ′(p) ≤ m+ ε.

Proof. Consider a run from (s, ν, µ) to (s′, ν′, µ′) inW (where we assume w.l.o.g. that delay-
and action transitions alternate). This runs corresponds to a sequence of delays (d1, . . . , dn),
together with the corresponding sequence of transitions (vi)1≤i≤n−1 with vi = (s2i, gi, σi, Ri, s2i+1)
for each i. Write (si, νi, µi)1≤i≤2n for the sequence of states being visited along this run, tj =∑

1≤k≤j dk, and (ri)i for the sequence of regions s.t. νi ∈ ri. Then in a state (s2j , ν2j , µ2j)
(i.e., after a delay transition), the value of a clock x is the sum of the delays between the
latest preceding reset and the current state: ν2j(x) = tj − tk+1 where k is the largest in-
dex less than j with x ∈ Rk if any, and 0 otherwise. For this sequence of transitions, any
sequence (t′i)i satisfying the constraints that ν2j |= gj and ν2j ∈ r2j corresponds to a run
in W. This defines an n-dimensional zone Z. Moreover, the increase in the value of the
observer is

f(t′1, . . . , t
′
n) =

∑
1≤i≤n

rate(s2i−1) · t′i +
∑

1≤i≤n−1

upd(vi).
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From Lemma 112, there is a point α on the border of Z s.t. f(α) ≤ m. From α, we can build
a new sequence of valuations γ2j(x) = αj − αk+1 where k is the largest index less than j
with x ∈ Rk if any, and 0 otherwise. Since α is on the border of Z, it follows that γ2j |= gj ,
where gj is the closure of gj , obtained by replacing strict inequalities with non-strict ones,
and that γ2j ∈ Clr2j . Moreover, α has integer values, thus also γ2j has integer values.

From this, we can built a path in the corner-point abstraction, visiting the states
(s2j , r2j , γ2j). The weight of this run can be checked to be exactly f(α), hence the result.

Conversely, fix ε′ > 0, and consider a finite path of weightm, visiting the states (si, ri, γi)i
in the corner-point abstraction. Given a valuation ν, we define its distance to a corner as
follows:

d(ν) = max
{
{min(ν(x)− p | p ∈ N},min{ν(x)− ν(y)− p | p ∈ N}

∣∣∣ x, y ∈ C
}
.

Now, if there is a transition ((s, r, α), (s′, r′, α′)) in the corner-point abstraction, then from
a state (s, ν) with ν ∈ r, close to α and with d(ν) < ε, there is a transition in W to a
point (s′, ν′) with ν′ ∈ r′ close to α′ and with d(ν′) < ε′. This can easily be proved for all
three kinds of transitions in the corner-point abstraction. The difference between the cost of
the transition of the corner-point abstraction and the increase in the observer value along the
transition inW is at most 2ε′ ·M where M is the maximal value of rate onW. Finally, since
the weights are nonnegative, we can find a simple run from ((s,0, 0) to (s′, r′, γ′), whose
length is bounded by the number K of corner-point regions. From the above argument,
this run can be mimicked by a run in W visiting points that remain at distance at most
ε′ = ε/(2MK). In the end, we get a run inW along which the value of the observer variable
is increased by at most m+ ε. �

The algorithm then simply consists in building a witnessing path on-the-fly in the corner-
point abstraction. This yields a polynomial-space algorithm. Hardness in PSPACE follows
from the PSPACE-hardness of reachability in timed automata. �

5.3 Quantitative model-checking on priced-timed au-
tomata

Definition 114. WCTL extends CTL as follows:

WCTL 3 φs ::= p | ¬φs | φs ∨ φs | Eφp | Aφp

φp ::= φp Uv∈I φp.

where v is an observer variable, I is an interval with integral bounds (or +∞). Thus,
syntactically, WCTL is the same logic as TCTL. We define the semantics of the weighted
“until” modality along a run ρ = ((si, νi, µi), (di, σi), (s

′
i, ν
′
i, µ
′
i))i as follows

A, ρ |= φp Uv∈I φ
′
p ⇔ ∃j ∈ [1, length(ρ)]. A, ρ≥j |= φ′p and µ′j(v)−µ0(v) ∈ I and

∀i ∈ [1, j]. A, ρ≥i |= φp.

Notice that we allow constraints on different observer variables (hence in particular on
time), but always one at a time.

Theorem 115. WCTL model-checking on TALO is undecidable.

Proof. The proof consists in reducing the reachability problem for two-counter machines.
We begin with defining simple modules which realize intermediate operations on the

values of the observer. As a first step, we build modules for adding the value of a clock to a
cost variable: this is achieved using modules Add+(x, {z}) and Add−(x, {z}), displayed on
Fig. 25.

Those automata clearly satisfy the following Lemma:
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Figure 25: Automata Add+(x, {z}) and Add−(x, {z})
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Figure 26: Automaton Test(y = 2x, {z})
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z:=0 z=0

Lemma 116. If a run enters location `0 of Add+(x, {z}) (resp. Add−(x, {z})) with x =
α0 ∈ [0, 1], y = β0 ∈ [0, 1] and µ(p) = γ0, it then leaves location `1 with the same values
for x and y, and with µ(p) = γ0 + α0 (resp. µ(p) = γ0 + 1− α0).

Module Test(y = 2x, {z}) is the (deterministic) automaton displayed on Fig. 26. It sets
the cost to 2x + 1 − y. Let ϕ1 = S ∧ EFp≤1 T ∧ EFp≥1 T . The following Lemma clearly
holds:

Lemma 117. Formula ϕ1 holds in S along module Test(y = 2x, {z}) with x = α0 ∈ [0, 1]
and y = β0 ∈ [0, 1] if, and only if, β0 = 2α0.

This construction can easily be adapted for other tests, especially for building a mod-
ule Test(y = 3x, {z}) testing if y = 3x.

Figure 27: Automaton Power2(x, {y, z})

P2 Q2
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Test(y = 2x, {z})z:=0 y:=0

x=1, x:=0

z=1∧x≤1

z:=0

z=0

z=0, x:=y

z=1∧z=0

Module Power2(x, {y, z}) is displayed on Fig. 27. Note that it requires two auxiliary
clocks. Note also that it uses an update “x := y”, instead of classical resets. This is for the
sake of simplicity, as the module could be adapted (by duplicating the periodic part and
changing the roles of the clocks, involving no extra clock) in order to only have standard
resets.

We let ϕ2 = P2 ∧ E((Q2 → E(Q2 Uϕ1)) UR2). We have the following Lemma:

Lemma 118. Formula ϕ2 holds in P2 in module Power2(x, {y, z}) with x = α0 ∈ (0, 1] if,
and only if, there exists a non-negative integer d s.t. α0 = 1/2d.

It is easy to adapt this construction in order to build a module Power3(x, {y, z}) and a
formula ϕ3 that check if x is of the form 1/3d, for some integer d.

We now tackle the main part of the reduction. Let M be such a two-counter machine.
We build a weighted timed automaton WM (with three clocks and one stopwatch observer)
and a WCTL-formula Φ such that given q0, a well-chosen state ofWM, we have thatM halts
if, and only if, q0 |= Φ. The two counters c1 and c2 will be encoded alternately by three
clocks x, y and z. The value of c1 is encoded by x1 = 1/2c1 (with x1 ∈ {x, y, z}) whereas
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the value of c2 is encoded by x2 = 1/3c2 (with x2 ∈ {x, y, z}). To each instruction will be
associated six modules, one for each injective function {x1, x2} → {x, y, z}.

Consider the following instruction of the two-counter machine:

pi : c1 := c1 + 1; goto pj .

We assume that the initial value of c1 is stored in clock x, whereas that of c2 is stored in y.
To pi, we associate the automaton Auti1,+(x, y, z) as in Fig. 28. In that figure (and in all
the other ones), observer rates which are omitted are equal to zero. The subscript 1,+ is a
remainder that instruction pi deals with counter stored in the first clock (x here) and is an
incrementation (we might omit it when it is not necessary), the tuple (x, y, z) indicates which
clocks encode counters c1 and c2: here, c1 is initially stored in x and c2 is initially stored
in y. At the end of this module, the new values of c1 and c2 are stored in z and y, resp.;
that’s why we swap x and z when leaving the module (transition from Di

x,y,z to Ajz,y,x).

Figure 28: Incrementing a counter

Aix,y,z Bix,y,z Cix,y,z Di
x,y,z

ṗ = 1

Ajz,y,x

Test(x = 2z, {y})Power2(x, {y, z})

Power3(y, {x, z})

y=1, y:=0 y=1, y:=0

x=1, x:=0 z:=0

For that automaton to really increment the first counter, we will enforce the following
requirements:

1. the delay between arrival in Aix,y,z and arrival in Di
x,y,z is 1 t.u.,

2. when entering Di
x,y,z, z equals x/2 and

3. the delay elapsed in Di
x,y,z is 0.

The last point will be ensured through a global WCTL-formula stating that the value of the
observer is unchanged in location Di

x,y,z. The second point is obtained by a module Test(x =
2z, {y}), together with a WCTL-formula φ1. Finally, according to Lemma 119 below, the
first point is enforced by checking that the values of x and y when entering Di

x,y,z are 1/2n

and 1/3m for some integers n and m. Those conditions are ensured by modules Power2
and Power3 and the associated formulas φ2 and φ3.

Lemma 119. If a run enters location Aix,y,z with x = 1/2c1 , y = 1/3c2 and enters location

Di
x,y,z t time units later with the value of x of the form 1/2n for some n, and the value of

y of the form 1/3m for some m, then t = 1, n = c1 and m = c2.

This lemma can easily be proved using elementary arithmetical manipulations. It plays
a crucial role in our reduction: it explains how comparing clocks to powers of 1/2 and 1/3
gives a way to measure exactly 1 t.u., and thus why we encode the counters as powers of 1/2
and 1/3. Note that 2 and 3 could be replaced by any two relatively prime numbers.

Similar ideas can be used for designing an automaton Auti2,+(x, y, z) that increments the
second counter (i.e. ends up with z = y/3, while x returns to its original value), involving
module Test(x = 3z, {y}).

We now treat instruction:

pi : if (c1 > 0) then c1 := c1 − 1; goto pj else goto pk.
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Figure 29: Incrementing a counter
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We only give the construction of automaton Auti1,−(x, y, z), which is a slight variation of the
previous construction. This automaton implements the decrementation of the first counter,
initially stored in x, unless it equals zero.

In the global reduction, we will enforce the following properties:

1. the values of x and y when entering Di
x,y,z are 1/2n and 1/3m for some n and m,

2. when entering Di
x,y,z, z equals 2x and

3. the delay in Di
x,y,z is 0.

As previously, we can prove that these three conditions express correctness of the construc-
tion. Lemma 119 clearly also holds for Auti1,−(x, y, z). Automaton Auti2,−(x, y, z) is built in
the same way.

It then suffices to plug the different modules into each other following the initial two-
counter machine. In order to conclude the construction, we label each Di

x,y,z state with an
atomic proposition D, and consider the formula

Φ = E[(D ⇒ φ) U≤0 Halt] where φ =
∧

i=1,2,3

E(DU≤0 φi).

This in particular enforces that no time is spent in the D-states along the “main” run
reaching Halt.

Lemma 120. WM, q0 |= Φ iff the two-counter machine M has a halting computation.
�

Remark. Notice that this reduction only uses three clocks and one (stopwatch) observer
variable.

Theorem 121. The WCTL model-checking problem is decidable (in PSPACE) for nonneg-
ative one-clock weighted timed automata.

Proof. The idea of the proof is to refine the regions. We begin with an example showing
that this is necessary.Consider the 1-clock weighted timed automaton depicted on Fig. 30.
Then formula EF≤1 q1 only holds in the initial state if clock x is larger than or equal to 1/2.

Figure 30: A one-clock weighted timed automaton
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q1

ṗ = 1

q2

x = 1

x = 1
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Similarly, formula E(¬EF≤1 q1) U≥1 q2 only holds in the initial state for values of x less
than 1/4.

On the other hand, we have the following proposition:

Lemma 122. Let Φ be a WCTL formula and letW be a one-clock weighted timed automaton.
Then there exist finitely many constants 0 = a0 < a1 < . . . < an < an+1 = +∞ s.t. for every
location q of W, for every 0 ≤ i ≤ n, the truth of Φ is uniform over {(q, x) | ai < x < ai+1}.
Moreover,

• {a0, ..., an} contains all the constants appearing in clock constraints of W;

• the constants are integral multiples of 1/C |Φ| where |Φ| is the constrained temporal
height of Φ, i.e. the maximal number of nested constrained modalities in Φ, and C is
the lcm of all positive observer rates labeling a location of W;

• an equals the largest constant M appearing in the guards of W;

• n ≤M · C |Φ| + 1.

This provides us with a finite abstraction of the one-clock weighted automaton in which
we can check our WCTL formula. It can be shown that polynomial space is sufficient for
that. �

Definition 123. WLTL extends LTL as follows:

WLTL 3 φs ::= Eφp | Aφp

φp ::= p | ¬φp | φp ∨ φp | φp Uv∈I φp.

The semantics of the new “until” modality (along weighted timed words6) is the same as for
WCTL.

Theorem 124. WLTL model checking on TALO is undecidable.

Proof. We only sketch the reduction of the halting problem for a two-counter machine. The
unique clock of the automaton will store both values of the counters. If the first (resp.
second) counter has value c1 (resp. c2), then the value of the clock will be 2−c13−c2 .

The module depicted on Fig. 31 encodes incrementation of the first counter (i.e., it
divides the value of the clock by 2 between entrance and exit).

Figure 31: Module for incrementing c1

A
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x ≤ 1 x = 1
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+2
to Modj

module Modi

x ≤ 1x ≤ 1

The following lemma is then easy to prove:

Lemma 125. Assume that there is a run ρ entering module Modi with x = x0 ≤ 1, exiting
with x = x1, and such that no time elapses in A and D and the value of the observer
between A and D increases by 3. Then x1 = x0/2.

A similar result can be obtained for a module incrementing c2: it simply suffices to
replace the observer rate in C by 3 instead of 2.

The simulation of decrementation for counter c1 is much more involved than the previous
instruction. Indeed, we first have to check whether the value of x when entering the module
is of the form 3−c2 (i.e., whether c1 = 0). This is achieved, roughly, by multiplying the
value of x by 3 until it reaches (or exceeds) 1. Depending on the result, this module will
then branch to module Modj or decrement counter c1 and go to module Modk. The difficult
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Figure 32: Module testing/decrementing c1 (the observer rates are indicated in the loca-
tions)

1
A0

3

B0

1

C0

1

A

3

B

1
C

1 C ′

1

D

3

E1

3

E2

1

F1

1

F2

3

G1

3

G2

1

H1

1

H2

1

A2

2

B2

1

C2

1

D2

x < 1 x = 1
x := 0

x < 1

x = 1
x := 0

x
=

1

x
:=

0

x
>

1x
:=

0

x := 0

x := 0

x = 1
x := 0

+1
to Modk

to Modj
x ≤ 1

x = 1

module Modi

point is that clock x must be re-set to its original value between the first and the second
part. We consider the module Modi depicted on Figure 32.

The following two lemmas express the correctness of the construction. We leave their
proofs to the reader.

Lemma 126. Assume there exists a run ρ entering module Modi with x = x0 ≤ 1, exiting
to module Modj with x = x1, and such that

• no time elapses in A0, C0, D, A, C ′, F1 and H1;

• any visit to C0 or C ′ is eventually followed (strictly) by a visit to C ′ or F1;

• the observer variable increases by exactly 3 along each part of ρ between A or A0 and
the next visit in D, between C0 or C ′ and the next visit in C ′ or F1, and between the
last visit to D and H1.

Then x1 = x0 and there exists n ∈ N s.t. x0 = 3−n.

Lemma 127. Assume there exists a run ρ entering module Modi with x = x0 ≤ 1, exiting
to module Modk with x = x1, and such that

• no time elapses in A0, C0, D, A, C ′, F2 H2, A2 and D2;

• any visit to C0 or C ′ is eventually followed (strictly) by a visit to C ′ or F2;

• the observer variable increases by exactly 3 along each part of ρ between A or A0 and
the next visit in D, between C0 or C ′ and the next visit in C ′ or F2, between the last
visit to D and H2, and between H2 and D2.

Then x1 = 2x0 and for every n ∈ N, x0 6= 3−n.

Similar modules and lemmas can be obtained for counter c2. Moreover, the conditions
of these two lemmas can be expressed in WLTL, as well as reachability of the halting state.
This concludes the reduction, proving that WLTL model checking is undecidable. �

6We could of course also define the semantics over weighted signals.
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