
Automatic Complexity Analysis for Programs

Extracted from Coq Proof

Jean-Pierre Jouannaud1 Weiwen Xu2

LIX, École Polytechnique
91400 Palaiseau, France

Abstract

We describe an automatic complexity analysis mechanism for programs extracted from proofs
carried out with the proof assistant Coq. By extraction, we mean the automatic generation of
MiniML code [3]. By complexity analysis, we mean the automatic generation of a description of
the time-complexity of a MiniML program in terms of the number of steps needed for its execution.
This description can be a natural number for closed program, that is, programs coming along with
their actual inputs. For programs per se, the description is given in terms of a set of recurrence
relations which relate the number of steps of a computation in terms of the size of the inputs.
Going from these recurrence relation to actual complexity functions is a hard task that requires
the use of sophisticated tools for symbolic computations. This part is not implemented for the
moment although we have manually used the MAPLE computer algebra system in some cases.

Keywords: theorem proving, program extraction, complexity analysis

1 Introduction

1.1 Background

A market is slowly building up in the area of proof development systems.
Security applications in the banking business now require high level of con-
fidence in computer applications, that can only be achieved by proving code
correct with proof checkers. One of the most successful companies adressing
this market is Trusted Logics, whose technology is based on Coq. For security

1 This work was partly supported by the RNTL project AVERROES and by France-
Telecom.
2 Email: xu@lix.polytechnique.fr

Electronic Notes in Theoretical Computer Science 153 (2006) 35–53

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.08.005

http://www.elsevier.com/locate/entcs

applications, proving some code correct with respect to its specification or
extracting it from a proof of that specification is not enough. It must also be
taken care of the environment. For smart cards applications in particular, this
means a limited amount of ressources. Therefore, a correstness proof should
be coupled with an analysis of the ammount of ressources needed for running
a program.

Here, we consider programs extracted from Coq proofs. There are two
reasons for our choice of extracted programs rather than proved programs).
For the first, we know that the code is a well-defined subset the functional
language MiniML. For the second, our intuition was that the proof carries more
information than the program itself, since its properties are also described.
Some of these properties could help in a complexity analysis. We have not
exploited this intuition yet, but will elaborate on this in conclusion.

One may think of delegating the job of making the complexity analysis to
the user, who would do a proof of the complexity properties of a program at
the same time as proving the program correct with respect to its specification.
We do not believe in this approach. Doing proofs is difficult, and the trend
is to make the user’s life easier, not harder. We therefore think that the
complexity analysis should be automatic.

We could also fix a bound on the time spent in a given computation, and
compute beforehand with a test set of inputs in order to estimate which ones
yield computations which are safe with respect to the bound. This approach
is very similar to testing, and it is well known that constructing complete test
sets is very difficult, presumably as difficult as doing a proof, however resulting
in a lower level of security.

On the other hand, a lot of work has been done already for the automatic
analysis of imperative programs, especially for the average case analysis. The
method is now well established. The behaviour of recursive programs is char-
acterized by recurrence equations whose mathematical analysis, in case no
closed form can be found that describes the expected complexity function,
allows to study the assymptotic behaviour of the program.

It turns out that the statistical analysis of the computational behaviour
of imperative programs has been investigated in much more depth than the
worst case complexity of functional programs. One of the reasons is that
functional programs do not have a widely recognized operational model. There
is still some dispute in the community wether the evaluation strategy should
be by value, by name, lazy, strict, etc. Besides, counting the number of
steps in a program execution may be seen as a very rough approximation of
the time spent at runtime, since different steps may take very different time.
However, several authors have considered the problem. The most successful

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5336

one is by Benzinger, who derives recurrence relations relating the number
of steps needed in the execution of a functional program to the size of its
inputs [2]. His implementation which was carried out in the NuPRL project,
is however very limited. Only programs with nutural numbers or lists as inputs
were considered.

1.2 Problem

Our program is to build general tools for analysing the complexity of functional
programs written in MiniML. We are not only interested in time complexity,
but also in space complexity. We know that the latter analysis should be
more difficult than the former, since the space used by a program is extremely
dependent from the compiler technology. Finally, we are not interested in
programs whose behaviour is exponential (or more), but in programs whose
actual complexity is bound by a polynomial of low degree.

1.3 Contribution

Our contribution is a formal framework and an implementation that allow
us to compute a description of the complexity of a given MiniML program.
As the operational semantics of a program, its complexity sould be composi-
tional. This leads to decorate the rules describing the operational semantics
of MiniML by some complexity information that will then allow to compute
the complexity of a closed program by evaluating these rules. For terms with
variables (or parameters), the complexity depends of course on the value of
these variables. In case these variables are higher-order, it also depends from
the complexity of the actual functions that will instantiate these variables. For
such programs, our method generates a symbolic description of this complex-
ity, which can then be transformed into a more convenient format: recurrence
relations. This method is partly implemented in OCaml. The analysis of the
recurrence relations by a computer algebra system is not done yet in general,
but can be done in particular cases which are simple enough.

2 Annotated Semantics

The computational complexity refers to an asymptotic relation between the
size of the input to a function and the time it takes to compute the output.
Most formal definitions of computational complexity are based on the Tur-
ing machine or random access machine model and assign certain costs to a
designated set of machine operations.

Following Benzinger, we introduce in this section a general framework for

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 37

reasoning about the computational complexity of a functional program relative
to an operational semantics O by annotating each rule t1 ↓ t2 in O with some
complexity information n, written as

t1 ↓
A t2 (in n),

This yields an annotated semantics A. The term t2 need not be canonical
(in case of a small step semantics is used), and n may be an arbitrary mathe-
matical expression. In this paper, however, we will use a big step semantics,
and therefore, t2 will always be canonical.

Depending on the computational resource of interest and our assumptions
about the underlying machine model, the annotations might model upper
bounds,lower bounds, or exact quantities. As an example, consider the fol-
lowing constructor rule for succ:

(succ) u↓k
succ(u)↓succ(k)

We can measure time complexity by defining

(time) u↓k(in n)
succ(u)↓k+1(in n+1)

or space complexity by defining

(space) u↓k(in n)
succ(u)↓k+1(in n)

2.1 Annotated semantics of Miniml

Miniml is functional language used for extracting programs from Coq proofs [3].
Its concrete syntax ressembles that of Ml, as shown by the following simple
exemple:

let rec length = function

| nil -> 0

| Cons (a,m) -> S (length m)

while its abstract syntax uses a more compact form, closer to the syntax in
Coq:

t ::=x | λx.t | [x : t]t | apply (t; t)

| Cases t of u1 ⇒ v1, · · · , un ⇒ vnend

| ind(t; v1; λz.v2) := case t of b ⇒ v1, s(t
′) ⇒ v2[ind(t′; v1; λz.v2)/z]

where x is taken from a denumerable set of variables, [x : u]v stands for the
usual let construct let x = u in v, and b and s stand for the constructors
of the inductive type to which the variable t belongs (we assume here for
simplicity of notation that there are two constructors).

The semantics of Miniml is now given by the following set of annoted rules.
Assuming A assigns a unit cost to each reduction step, we get the following

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5338

rules:

(canon) w ↓ w (in 0)

(abs) u↓v (in n)
λx.u↓λx.v (in n+1)

(apply) f↓λx.b (in n1),u↓w0 (in n2),b[w0/x]↓w (in n3)
apply(f ;u)↓w (in n1+n2+n3+1)

(let-in) a↓w0 (in n1),b[w0/x]↓w2 (in n2)
[x:a]b↓w2(in n1+n2+1)

(cases) t↓w (in n1),Match (w,u1,··· ,up)↓(i,η) (in n2),viη↓u (in n3)

(Case t of u1⇒v1,··· ,up⇒vp end)↓u (in n1+n2+n3+1)

(induction) t↓w0 (in n1),Match(w0,b,s)↓(i,η) (in n2),viη↓w (in n3)
ind(t;v1;λz.v2)↓w (in n1+n2+n3+1)

where the rules for Match are as follows, assuming that u1, · · · , up are expres-
sions of depth one and that Match(w0,b, s) also returns (by convention) the
appropriate value of z for the recursive call:

(start)
Match0(w, 0, u1, · · · , un) ↓ (i, η) (in n)

Match(w, u1, · · · , up) ↓ (i, η) (in n)

(failure)
Match0(f(w̄), k + 1, u1, · · · , up) ↓ (i, η) (in n)

Match0(f(w̄), k, g(v̄), u1, · · · , up) ↓ (i, η) (in n + 1)

(success)
Match0(f(w̄), k, f(x̄), u1, · · · , up) ↓ (k, {x̄ �→ w̄})

The above rules allow to compute the number of steps taken by any ex-
pression of base type without free variable. Of course the computation of the
number of steps for such an expression e forces its evaluation into its actual
value. Unlike the usage, we have a rule for abstractions, making our life easier
later.

3 Complexity of open expressions

We now move on to programs with variables. Programs are closed expressions
fo the form λx.e, where the body e is an expression of arbitrary type, like the
identity function λX : α.X, where α can be any type. The definition of a
program will be made more precise later.

There is a big difference between the annotated semantics of a closed ex-
pression of base type and that of a program. In the first case, we can simply

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 39

run the operational semantics and compute accordingly the output value and
the number of steps it takes to reach the output value. In the second case,
the program has input variables which will later be instantiated by arbitrary
expressions. The number of steps needed for calculating the result of applying
a program to particular input expressions will depend both on the complexity
of calculating the values of these expressions and on the values themselves.

On the other hand, we can still run the annotated semantics until a variable
is reached, or until an abstraction, a let-in, a case, or a recursion, or an
application is blocked by a variable. Remember that applications (and let-
expressions) commute with all other constructs (except with abstractions),
after possibly renaming bound variables. Therefore,

Definition 3.1 An expression e is blocked if it is of the following form:

• x ∈ X ;

• λx.u, where u is a blocked expression;

• (u v), where u is a variable or a blocked application;;

• [y : u]v, where u is a variable or a blocked application;

• case t of u1 ⇒ v1, . . . , un ⇒ vn end , where t is a blocked expression;

• ind (t; v1; λz.v2), where t is a blocked expression.

To an arbitrary expression e of type α and free variables x1, . . . , xn, we
associate a pair made of its value e∗ and the number of steps e needed to
reduce e to its value e∗. These notations should be thought of as relative to
a valuation γ replacing the variables in x1, . . . , xn by appropriate expressions:
relatively to this valuation γ, the notations e, e∗ and e stand respectively for
the expression γ(e), the value of γ(e) and the number of steps needed to reduce
γ(e) to its value. Intuitively:

e ↓ e∗ (in e)

The complexity of the expression e will then be a function λx1 . . . xn.Cpx(e)
abstracting the number of steps from a particular valuation, that is satisfying
Cpx(e)(γ) = e, where e is relative here to this precise valuation γ.

To make this intuition precise, we need to define what is a valuation, this
is related to the substitutivity property of complexity functions. Assume an
expression depends on a free variable x of basic type. Then, its complexity
will depend both on the value x∗ and the number of steps x of x. In this
case, a valuation should replace a variable x by the pair (x∗, x). The case of
a functionnal type will need a more complex valuation which will reflect the
functional structure of the type.

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5340

3.1 Compositionality

For a structured expression, value, number of steps and complexity must be
calculated from the corresponding values, number of steps and complexities
for their subsexpressions, a principle called compositionality. For the case
of complexity functions, our main principle is therefore that the complexity
should be a transformation acting as a morphism from programs into com-
plexity functions. For example, the complexity of an abstraction should be
an abstraction over the complexity of its body. Besides, in the particular case
where an expression e has no blocked subsexpression (hence no free variable),
then both its value and number of steps should agree with the result obtained
by applying the annotated semantics, and the complexity should be the num-
ber of steps itself. The difficulty of putting this principle into practice comes
from expressions of higher type. In order to reduce the complexity of such
an expression to the complexity of another simpler expression because it is of
basic type, we will assume that programs are in η-expanded form.

Definition 3.2 A program is a well-typed, blocked, closed expression in which
every subexpression of functional type is an abstraction or the left-argument
of an application.

For example, to be considered as a program in our sense, the identity
function λX : (α → α) → (α → α).X, where α is a base type, should be
written as

λX : (α → α) → (α → α) λy : α λf : α → α.((X(λx : α.(fx)))y)

There is of course no real difference between the above identity function
and the expression ((X(λx : α.(fx)))y) typable in the environment {X : (α →
α) → (α → α) f : α → α y : α}, or the expression λy : α λf : α → α.((X(λx :
α.(fx)))y) typable in the environment {X : (α → α) → (α → α)}. In other
words, the type of the complexity function of an expression e typable in an
environment Γ depends both on its type, and on the type of its free variables
as given in Γ. This remark will be put into pratice by removing outside
abstractions and defining the complexity of open expressions as a function of
their free variables seen as formal parameters.

Definition 3.3 We define the arity of a type α, written ar(α), to be the
number n such that α = α1 → . . . → αn → β with β a basic type. The arity
of an expression is the arity of its type.

In the previous example of the identity function of higher type, ar(X) =
2, ar(f) = 1 and ar(x, y) = 0. The arity of a type α will indeed be the arity

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 41

of the complexity function of any program of type α. In particular, a program
of arity zero is a ground expression of base type, hence can be evaluated into
a value in a given number of steps. For programs of non-zero arity, we now
define the type of the complexity function and the related notion of valuation:

Definition 3.4 Given a type α, we define the type α as:

if α is a base type: α = (α × IN)

otherwise: α → β = (α × α) → β

Definition 3.5 Given a program e of type α = α1 → . . . , αn → β, we say
that Cpx(e) : α is a complexity function for e if

Cpx(e)(Cpx(u1), . . . , Cpx(un)) = m iff (e u1 . . . un) ↓ r (in m)

for arbitrary closed expressions in η-expanded form u1 : α1, . . . , un : αn.
The mapping {x1 �→ Cpx(u1), . . . , xn �→ Cpx(un)} is called a valuation of
x1, . . . , xn.

3.2 Computing complexity expressions

We now show how the complexity of a program is recursively defined according
to the principle of compositionality. The reader is invited to check that types
match. We will end up with the case of applications, which is the difficult
one. We will use Cpx(t).1 for t∗ and Cpx(t).2 for t. We concentrate on the
definition of Cpx(t).2.

3.2.1 Abstractions

Let e = λx1 : α1 . . . xn : αn.u be a closed expression in which u is not an
abstraction, hence is of basic type by assumption that programs are in η-
expanded form.

Cpx(λx1 : α1 . . . λxn : αn.u) = λx1 : α1, . . . , xn : xn.Cpx(u)

When computing Cpx(u), we will assume that the variable xi free in u
has value x∗

i and evaluates to its value in a number of steps equal to xi. This
amounts to consider that Cpx(u) is a function of the variables x1 : α1, . . . , xn :
xn. This is why we say that the complexity of an expression depends on its
free variables. Formally, this is not he case: the complexity of an expression
depends on its type computed in an environment assigning types to its free
variables.

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5342

3.2.2 Case expressions

Cpx(case t of u1 ⇒ v1, . . . , un ⇒ vn end).2 =

1 + Cpx(t).2 + case Cpx(t).1 of u1 ⇒ 1 + Cpx(v1).2, . . . , un ⇒

n + Cpx(vn).2 end

Note that the property that u1, . . . , un have the same type implies that Cpx(u1),
. . ., Cpx(un) are all waiting for inputs of the types, hence the case expression
is well typed.

3.2.3 Let expressions

Cpx([y : u]v).2 = 1 + [y : Cpx(u)](Cpx(v).2)

3.2.4 Recursion

Cpx(ind (u; v; λz : α.w)).2 =

Cpx(u).2 + ind (Cpx(u).1; 1 + Cpx(v).2; 2 + Cpx(λz : α.w).2)

3.3 Applications

We now come to the heart of the definition of complexities: the case of an
application, and more precisely of a basic type expression u which is the
η-expanded form of a program, that is, an expression (e a1 . . . an), where
e : α1 → . . . → αn → α has arity n, and a1, . . . , an are the η-expanded forms
of distinct variables x1 : α1, . . . , xn : αn. The coming discussion covers the
case where e is a base type variable, by letting αn+1 = α. It also covers the
case where ai is the η-expansion of any argument expression, not necessarily
a variable.

Assume n = 0. Then e is of basic type α, hence Cpx(e : α).2 = e.

Assume n > 0. The call by-value evaluation of the expression (e a1 . . . an)
proceeds as follows:

(e a1 . . . an)∗ = (. . . ((e∗a∗
1)

∗a∗
2)

∗ . . . a∗
n)∗

The structure of this computation is described by naming the subexpressions
successively occuring in this computation:

Definition 3.6 To an expression (e e1 . . . en) in η-expanded form, we asso-
ciate its decomposition, which is a sequence of named expressions {ei : αi+1 →

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 43

. . . → αn → α | i ∈ [0..n]} defined as:

e0 = e {ei = (e∗i−1 a∗
i) | i ∈ [1..n]} hence (e a1 . . . an)∗ = e∗n

Decompositions play a fundamental role in the next section. In terms of
evaluation steps, we get:

e ↓ e∗ (in e) ai ↓ a∗
i (in ai) {ei ↓ e∗i−1 (in ei−1) | i ∈ [1..n]}

(e a1 . . . an) ↓ e∗n (in e + Σi=n
i=1 (ai + ei + 1))

(1)

In case ai is of basic type, its number of steps ai is a primitive quantity.
Otherwise, it can be recursively decomposed into a sum of more primitive
quantities by applying the same technique. We will see such an example in
the next paragraph.

Our goal now is to express these numbers of steps in terms of complexities.
To this end, we consider the expression (e x1 . . . xn), where x1, . . . , xn are
distinct fresh variables of respective types α1, . . . , αn. Let

γi−1 be the valuation {xi �→ (a∗
i , ai), . . . , xn �→ (a∗

n, an)}

By our interpretation, ei = Cpx(ei).2(γi), and ai = Cpx(ai).2 since ai is
ground. Substituting back complexity functions into (1) yields We omit the
.2 everywhere):

e ↓ e∗ (in Cpx(e)(γn)) {ei−1 ↓ e∗
i−1

(in Cpx(ei−1)(γi−1)), ai ↓ a∗

i
(in Cpx(ai)) | i ∈ [1..n]}

(e a1 . . . an) ↓ e∗
n

(in Cpx(e)(γ0) + Σi=n

i=1
(Cpx(ai) + Cpx(ei)(γi) + 1))

3.4 Variables

We now apply the previous discussion to the case of variables. The complex-
ity of the variable X will be the number of steps needed for evaluating the
expression X a1 . . . an, assuming that a1, . . . , an are the η-expanded forms of
distinct variables of the appropriate type. We will stick to number of steps
here, although we could replace them by complexities as well.

Example 3.7 Consider a variable x of type α, where α is a base type. Then
x is η-expanded, x∗ : α, and Cpx(x) = x0 : IN is defined as satisfying

x ↓ x∗
0 (in x0)

Example 3.8 Consider now a variable f of type α → α, where α is a base
type. By our assumption, f occurs as left-argument of an application (f a)

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5344

where a : α. Using our previous indexed notation f0 = f , and f1 = f ∗a∗, we
have:

f ↓ f ∗ (in f0), a ↓ a∗ (in a), f ∗a∗ ↓ (fa)∗ (in f1)

fa ↓ (fa)∗ (in f0 + a + f1 + 1)

Therefore,
(f a) ↓ (f a)∗ (in Cpx(f)(a∗, a))

with
Cpx(f)(a∗, a) = f0 + f1 + a + 1

Example 3.9 Consider finally a variable F of type (α → α) → α, where α is
a base types. By our assumption, F occurs as left-argument of the application
(F λx : α.(f x)) where f : α → α. Using again our previous indexed notation,
we have:

F ↓ F ∗(in F0)

f ↓ f ∗(in f0) x ↓ x∗(in x) (f ∗ x∗) ↓ (f x)∗(in f1)

(F ∗ λx.(f x)∗) ↓ (F.λx.(f x))∗(in F1)

(F λx.(f x)) ↓ (F.λx.(f x))∗(in (F0 + (f0 + x + f1 + 1) + F1 + 1))

3.5 Main property

Lemma 3.10 Given a program P with free variables x1, . . . , xn, and a ground

substitution σ : x1 �→ v1, . . . , xn �→ vn, then

Cpx(Pσ) = Cpx(P)(x1 �→ Cpx(v1), . . . , xn �→ Cpx(vn)) = Pσ

That is, Cpx(t) satisfies our definition of a complexity function for t.

Proof. The proof should be by induction on the structure of P (not done).
� �

3.6 Distance to the target

So far, we have not progressed very much. The complexity of a program is now
expressed as a program whose parameters satisfy sets of equations. Of course,
if we could solve these equations, we would get the complexity of the entire
program. For example, if we know in advance the complexity of the program
arguments, then the complexity of the program for these particular arguments
would be described as a stand-alone program. We will not elaborate on this
idea that we have not explored yet, and concentrate instead on trying to guess

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 45

the complexity of a program and verify that the guess makes sense. For that,
we will follow Benzinger’s idea and consider the program itsef as a higher-
order variable applied to its formal arguments, and try to apply the previous
analysis described for applicative terms.

4 Expressing complexities as recurrence equations

Our language for calculating complexities does not really give us much insight
about the possible polynomial growth (of a certain degree) of a given program.
To achieve such a goal, we need to approximate these complexity functions.
Approximations work themselves as morphisms. The approximation of a case
expression is the maximum of the approximations of all branches. The ap-
proximation of a composition is the composition of the approximations. So is
the case of a let expression. The difficulty comes with the inductive construct,
since approximating the complexities involved in the recursive call does not
suffice to obtain an approximation for the fixpoint itself. To handle this case,
we introduce an intermediate step using recurrence relations. Going from re-
currence relations to mathematical functions has been studied in depth and
implemented in various computer algebra systems such as, for example, Math-
ematica or Mapple.

Besides the formal arguments of the program, the inductive term has pos-
sibly several inductive arguments.

Notation and Assumptions 1. We denote by r(m) the recursive term

ind(m; v; λz.w[z]) := case m of b ⇒ v, s(t) ⇒ w[ind(t, v, λz.w[z])]

of type β in the environment {m : α} typing its inductive argument m. We
assume that there is exactly one inductive argument for each recursive term
(embedded recursions are ruled out). We also assume that m is in normal form,
that is, m = m∗ since the complexity m of evaluating m is simpoly added to
the resulting complexity r(m∗) as seen from the discussion in paragraphp:app.
For simplicity of notations, we will use e′ for the complexity (number of steps)
of the expression e.

Since r(m), v and w[z] have the same type in their respective environ-
ments, their call-by-value evaluations have the same structure described in
Paragraph 3.3, hence their decompositions are similar. Assume r(m) has type
α → β in the environment {m : α}. We then use r0(m) for r(m), r1(m) for
r(m)∗ x∗, where x : α, v0 for v, v1 for v∗ x∗, w0[z] for w[z] and w1[z] for

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5346

w[z]∗ x∗. We have the following equations:

r(m) = case m of b ⇒ v, s(k) ⇒ w[r(k)]

((r(m))∗ x∗) = case m∗ of b ⇒ (v∗ x∗), s(k) ⇒ (w[r(k)]∗ x∗)

Since r(m)∗ = r∗(m∗) = r∗(m), the last equation becomes:

(r∗(m) x∗) = case m of b ⇒ (v∗ x∗), s(k) ⇒ (w[r(k)]∗ x∗)

Applying our rules for computing complexities and lemma 3.10, we get:

r′0(m) = case m of b ⇒ 1 + v′
0, s(k) ⇒ 2 + w′

0[r
′(k)]

r′1(m) = case m of b ⇒ 1 + v′
1, s(k) ⇒ 2 + w′

1[r
′(k)]

which can be written as recurrence equations as follows:

r′
0
(m) =

{
1 + v′

0
if m = b

2 + w′

0
[r′

0
(k)] if m = s(k)

r′
1
(m) =

{
1 + v′

1
if m = b

2 + w′

1
[r′1(k)] if m = s(k)

Of course, when m is a natural number, then k = m − 1. Similarly, when m
is a flat list cons(a, k) of size n, then k is a flat list of size n − 1. The case
of trees leads to clear difficulties, since we do not have any clue about the
size and complexity of the left and right subtrees in terms of the whole tree.
A worst case approximation is needed in this case. This leads to our second
assumption:

Assumption 2. We assume that the inductive type α considered does
not have a constructor whose type contains more than two occurrences of α.
Natural numbers and lists satisfy this restriction. These are the only two
inductive types accepted so far by our implementation.

Finally, we can easily derive the total complexity of the inductive defini-
tion by summing up the obtained complexities as explained in Paragraph 3.3.
Examples are carried out in the next section.

5 Guessing complexities

For solving recurrence relations, computer algebra systems provide tools for
solving systems of recurrence relations in one variable, wich explains our re-
striction that recursive programs depend up a single inductive variable. Un-
fortunately, even with this restriction, our method generates systems of recur-
rence relations depending upon several variables (or parameters). We therefore
need to transform these systems of equations to cope with the possibilities of
these systems.

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 47

5.1 Handling parameterized linear recurrences

The general form of our parameterized recurrence equations is

R(m, p1, · · · , pn) =

⎧⎨
⎩F (p1, . . . , pn) if m = 0

G(p1, . . . , pn, m, R) if m > 0
(2)

where m is called the argument and p̄ are the parameters of R. We say the
equation is a linear equation if all parameters are scalars. We try to solve
such recurrence equations by means of conventional methods. The main idea
(at the same time, the main limitation) of our method is that we presuppose
a particular form for the closed solution to the recurrence equations. More
precisely, we assume that the closed solution is a linear combination of the
parameters p̄, and that the coefficients c̄ of this combination are functions of
m.

R∗(m, p0, · · · , pn) := c0(m) + c1(m)p0 + · · ·+ cn+1(m)pn (3)

Substituting R∗ with R yields two polynomial over p̄ with coefficients c∗i (0)
and c∗i (m), respectively, which form a system of linear recurrence equations
depending upon the single variable m.

ci(m) =

⎧⎨
⎩ c∗i (0) if m = 0

c∗i (m) if m > 0
(4)

Such a system can now be easily solved. Substituting the closed solutions
for ci back into R∗ yields a closed solution for R.

As an example,

R(m, p0, p1, p2, p3) =

⎧⎨
⎩ 1 if m = 0

p1 + a + b + R(m − 1, p0, p1, p2, p3) + p3 if m > 0

(5)
We assume the form of closed solution is

R∗(m, p0, p1, p2, p3) = c0(m) + c1(m)p0 + c2(m)p1 + c3(m)p2 + c4(m)p3 (6)

Matching coefficient ci on both sides of the equaiton, we obtain the system

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5348

of recurrence equations.

c0(m) = a + b + 1 + c0(m − 1);c0(0) = 1

c1(m) = c1(m − 1) ;c1(0) = 0

c2(m) = 2 + c2(m − 1) ;c2(0) = 0

c3(m) = c3(m − 1) ;c3(0) = 0

c4(m) = 1 + c4(m − 1) ;c4(0) = 0

(7)

Solve these recurrence equations with Maple V9, we get the solution:

c0(m) := −a − b + (a + b + 1)(m + 1)

c1(m) := 0

c2(m) := 2m

c3(m) := 0

c4(m) := m

(8)

therefore

R(0, p0, p1, p2, p3) =

⎧⎨
⎩ 1 if m = 0

−a − b + (1 + a + b)(m + 1) + 2mp1 + mp3 if m > 0

(9)

5.2 Implementation

Our system automatically generates recurrence relations in a format which is
convenient for the computer algebraic system Maple V9. So far, the commu-
nication between both systems goes through a script file which can be read
by Mapple. Once the output script is ready, it is feeded back to the system
which uses the result to generate the closed form of the complexity expression
of the program to be analysed.

5.3 Examples

We present now two examples illustrating the method. These examples have
been obtained with a complexity model which departs slightly from the one
described here. In particular, matching in case of a Case expression takes
constant time 0, meaning that the selection of the appropriate branch is done
by using an appropriate data structure based on indexing.

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 49

5.3.1 Higher Order Term

Require Import Sorting.
Extraction sort_rec.

(** val sort_rec: ‘a2 -> (‘a1 -> ‘a1 list -> __ -> ‘a2 -> __ -> ‘a2)
-> ‘a1 list -> ‘a2 **)

let rec sort_rec y h h0 = match y with
| Nil -> h
| Cons (a,l) -> h0 a l __ (sort_rec h h0 l) __

where, y is argument and h h0 are parameters.

Our symbolic evaluation get the complexity description

y_c+ f1(y H H_c H0 H0_c)

In order to solve y_c+ f1(y H H_c H0 H0_c), our system generate the re-
currection relations,

0 : f0(y) =1

1 : f0(y) =1

0 : f1(y H0 H0_c H H_c) =1

1 : f1(y H0 H0_c H H_c) =H0_c+aL_c+l_c+1 +f1(y-1 H H_c H0 H0_c)

+H0_c+H_c

As we discussed before, this kind of recurrence equations is parameterized
REs. In order to solve it, we first assume the closed solution of it is as follows,

Transformation of recurrence equations :

f1(y H0 H0_c H H_c) =C0(0)+C1(0)H0+C2(0)H0_c+C3(0)H+C4(0)H_c

f1(y H0 H0_c H H_c) =C0(n)+C1(n)H0+C2(n)H0_c+C3(n)H+C4(n)H_c

Substitute this solution back into the previous equations,

C0(n)+C1(n)H0+C2(n)H0_c+C3(n)H+C4(n)H_c = H0_c+aL_c+l_c+1

+C0(n-1)+C1(n-1)H0+C2(n-1)H0_c+C3(n-1)H+C4(n-1)H_c+ +H0_c+H_c

Matching the both sides of the equations, we obtain the appendix equa-
tions.

#Appendix recurrence euqations

init4:=C4(0)=0 ;

init3:=C3(0)=0 ;

init2:=C2(0)=0 ;

init1:=C1(0)=0 ;

init0:=C0(0)=1 ;

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5350

#Appendix recurrence euqations

eq4:=C4(n)=C4(n-1)+1 ;

eq3:=C3(n)=C3(n-1);

eq2:=C2(n)=1 +C2(n-1)+1 ;

eq1:=C1(n)=C1(n-1);

eq0:=C0(n)=aL_c+l_c+1 +C0(n-1);

which is solved by Maple version 9, get the following solution,

s0:=rsolve({eq0,init0},C0);

s1:=rsolve({eq1,init1},C1);

s2:=rsolve({eq2,init2},C2);

s3:=rsolve({eq3,init3},C3);

s4:=rsolve({eq4,init4},C4);

We then substitute them back to the original equation, we get the final
result,

f1(y H0 H0_c H H_c) =1

f1(y H0 H0_c H H_c) = -aL_c - l_c + (1 + aL_c + l_c) (n + 1)

+ 2 nH0_c+ nH_c

So substitute it back to the original equation, we get the final complexity
descrition

Y_c -aL_c - l_c + (1 + aL_c + l_c) (n + 1)+ 2 nH0_c+ nH_c

5.4 First Order Term:plus

(** val plus : nat -> nat -> nat **)

let rec plus n m =

match n with

| O -> m

| S p -> S (plus p m)

Symbolic evaluation gets the complexity description as

n_c+ f1(n m m_c)

The corresponding recurrence equations

f1(n m m_c) = m_c

f1(n m m_c) = S_c+ 0+ f1(n-1 m m_c) + m_c

In order to solve such equation, we first generate an appendix recurrence
relations.

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 51

#Appendix recurrence euqations

init2:=C2(0)=1 ;

init1:=C1(0)=0 ;

init0:=C0(0)=0 ;

#Appendix recurrence euqations

eq2:=C2(n)=C2(n-1)+1 ;

eq1:=C1(n)=C1(n-1);

eq0:=C0(n)=S_c+0 +C0(n-1);

And the solution solved by Maple as follows,

writeto(result);

s0:=rsolve({eq0,init0},C0);

s1:=rsolve({eq1,init1},C1);

s2:=rsolve({eq2,init2},C2);

Substitute it back to the original equations get

f1(n m m_c) =1

f1(n m m_c) = -aL_c - l_c + (1 + aL_c + l_c) (n + 1)+ 2nm_c

So the final complexity description is

m_c+-aL_c - l_c + (1 + aL_c + l_c) (n + 1)+ 2 nm_c

6 Conclusion

Our system is able to compute complexities for simple recursive definitions
following our assumptions: the induction should operate on natural numbers
or lists, and there should be one recursive call only. The method is justified
with respect to a formal complexity model for functional computations using a
call by value semantics. Complexity functions are extracted from sets of linear
recurrence relations expressing their input-output behaviour by the computer
algebra system Maple. In general, the method generates sets of parameterized
recurrence relations which cannot be solved directly. In this case, we eliminate
them by guessing the form of the solution before to call Maple.

Many of our ideas have been inspired by the work of Benzinger [2,1], done
in the NuPRL project, that we have simplified and generalized. The last
example, however, could not be taken care of by Benzinger’s work.

There are a lot of problems to be solved. In particular, it appears essential
to be able to consider programs with several recursive calls, such as quicksort.
We are far from making an analysis of these. Another strong limitation of the
method is the assumption that the closed solution to the set of parameterized

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–5352

equations is a linear combination of the parameters.

Acknowledgement

The authors thank Drs Pierre Letouzey and Hugo Herbelin for their help.

References

[1] Ralph Benzinger. Automated complexity analysis. PhD thesis, 2001.

[2] Ralph Benzinger. Complexity analysis. Journal of Functionnal Programming, 11(1):3–31, 2001.

[3] Pierre Letouzey. Programmation fonctionnelle certifiée – l’extraction de programmes dans l’
asistant coq. Technical report, 2004.

J.-P. Jouannaud, W. Xu / Electronic Notes in Theoretical Computer Science 153 (2006) 35–53 53

	Introduction
	Background
	Problem
	Contribution

	Annotated Semantics
	 Annotated semantics of Miniml

	Complexity of open expressions
	Compositionality
	Computing complexity expressions
	 Applications
	 Variables
	 Main property
	 Distance to the target

	Expressing complexities as recurrence equations
	Guessing complexities
	Handling parameterized linear recurrences
	Implementation
	Examples
	First Order Term:plus

	Conclusion
	References

