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Abstract

In the past 5 years, a series of verification algorithms has been proposed for infinite Markov
chains that have a finite attractor, i.e., a set that will be visited infinitely often almost surely
starting from any state. In this paper, we establish a sufficient criterion for the existence
of an attractor. We show that if the states of a Markov chain can be given levels (positive
integers) such that the expected next level for states at some level n > 0 is less than n−∆
for some positive ∆, then the states at level 0 constitute an attractor for the chain. As an
application, we obtain a direct proof that some probabilistic channel systems combining
message losses with duplication and insertion errors have a finite attractor.

Key words: Theory of computation; Attractors in Markov chains; Verification of
probabilistic systems; Lossy channel systems.

1 Introduction

In the past two decades, several methods for the automatic verification of systems
modeled by finite Markov chains have been proposed, see, e.g., [22,15,10,23,9],
and have been implemented in model checkers like PRISM [17]. A striking feature
of these methods is that, for checking qualitative properties, 1 they are very similar
to well-known methods used for classical model checking of nondeterministic sys-
tems modeled by finite transition systems. In particular, these methods are mainly
concerned with what connected components are reachable from where, and the ac-
tual values of the probabilities appearing in the Markov chain are not relevant.
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1 I.e., properties holding with probability 1, “almost surely”, or, dually, with probability 0.
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The situation is not so easy with infinite Markov chains. Indeed, among the numer-
ous infinite-state nondeterministic models investigated in the model checking liter-
ature, research on verification algorithms for infinite-state Markov chains is com-
paratively rare. Beside model checking algorithms for probabilistic timed automata
and related models [4,18], we are only aware of two examples where researchers
considered extending infinite-state models with probabilistic aspects: probabilis-
tic pushdown systems and probabilistic lossy channel systems. While the methods
for analyzing probabilistic pushdown systems usually abstract the set of configu-
rations into finitely many classes that behave uniformly w.r.t. probabilistic aspects
[12,11,13,14], the verification algorithms for channel systems with probabilistic
message losses are based on the existence of a finite attractor, a set of configura-
tions that will almost surely be visited infinitely often. In [5], the finite attractor
property has been used for solving the qualitative LTL\X model checking prob-
lem by a reachability analysis between the configurations of the attractor. The finite
attractor approach of [5] was streamlined in [3,6] where a variant model for proba-
bilistic message losses was introduced, and where several other kinds of unreliabil-
ity in message transfers (spurious message duplications or insertions) were consid-
ered. For the same model, [20] considered the verification of qualitative properties
and here again the positive results crucially rely on the existence of a finite attrac-
tor (see [21]). Recently Abdulla et al. presented a general framework for verifying
qualitative and quantitative aspects in infinite Markov chains with a finite attrac-
tor [1].
Proving that a given set of configurations is an attractor is a required step in all
the aforementioned works on probabilistic lossy channel systems. However only
[2] gives a real proof (for channel systems with probabilistic losses). The proof is
tedious and is not extended to other kinds of corruption, such as duplications or
insertions, for which the attractor is stated without proof.

In the aforementioned examples, the underlying reason behind the existence of a
finite attractor is the same: when enough messages are present in the channels,
the system is more likely to lose messages than to create new ones (by writing, by
spurious duplications, etc.). Hence, from “large” configurations, i.e., configurations
with many messages, the systems tend to drift towards “small” configurations, with
few messages.

Contribution of this paper. In the rest of this note we prove a general result that
validates the above informal reasoning. We consider Markov chains where the set S
of configurations is partitioned in “levels” S0, S1, S2, . . . and show that if the system
tends to go to smaller levels in the sense that, from any state in some level k 6= 0,
the expected next level is less than k, then the lowest level is an attractor. This result
can be seen as a variant of Foster’s Theorem from martingales theory [8, Ch. 5],
where we do not require strong connectivity, and for which we provide an elemen-
tary proof. As an application, we consider the channel systems with probabilistic
message losses and duplications from [3,2] and prove the existence of a finite at-
tractor under general conditions, thus providing the proofs that are omitted in all
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the aforementioned works.

2 A sufficient condition for the existence of an attractor

Markov chains. A Markov chain is a tuple M = (S,P) where S is a countable state
space and P : S× S → [0,1] is the transition probability matrix where we require
that ∑t∈S P(s, t) = 1 for any state s ∈ S. The intuitive operational behavior is that if
the current state is s then the next state is chosen according to a probabilistic choice
which selects state t with probability P(s, t). For n ∈ N, we write Pn(s, t) for the
probability to be in state t after exactly n steps when starting in state s. Formally,
Pn+1(s, t) def

= ∑u∈S Pn(s,u) ·P(u, t), starting from P0(s, t) def
= 1 if s = t, P0(s, t) def

= 0
otherwise. For T ⊆ S we let Pn(s,T )

def
= ∑t∈T Pn(s, t) and P(s,T )

def
= P1(s,T ). We

assume here the standard sigma-field and probability measure (denoted Pr(s0, ·))
on the infinite paths starting in a given starting state s0, see, e.g., [16,19]. If T ⊆ S
then ♦T denotes the set of infinite paths in M that eventually visit T . Pr(s,♦T )
denotes the probability to reach T from state s. T is called an attractor for M iff
Pr(s,♦T ) = 1 for all s∈ S. It then follows that, for any starting state s, almost surely
the attractor T is visited infinitely often. Observe that S itself is a (trivial) attractor.

Left-oriented Markov chains. We deal here with a special type of markov chains
where the state space S is partitioned into infinitely many levels labeled with non-
negative integers. Formally, we assume a partition S =

�
i∈N Si with pairwise dis-

joint (possibly empty) subsets Si of S. We refer to Si as the i-th level in M and think
of Si as standing on the right of level Si−1 and on the left of level Si+1. (However,
there is no topological requirement that justifies the notions “left” or “right”: tran-
sitions may go from any level Si to any level S j.) If s ∈ S then level(s) denotes the
unique index i ∈ N such that s ∈ Si. Then, E(s) def

= ∑∞
j=0 P(s,S j) · j denotes the ex-

pected next level for state s. 2 Assuming a given partition, M is called left-oriented
iff there exists a positive constant ∆ > 0 such that E(s) ≤ level(s)−∆ for all states
s ∈ S\S0, i.e., all s with level(s) ≥ 1.

Theorem 2.1 For any left-oriented Markov chain M , the leftmost level S0 is an
attractor.

PROOF. We must show that Pr(s,♦S0) = 1 for all states s. To simplify the follow-
ing calculations, we assume that S0 is a sink, i.e., once S0 has been entered, it can
never be left. Formally, P(s,S0) = 1 for all states s∈ S0. This is no loss of generality
since, given an arbitrary M , changing the outgoing transitions of the states in S0
does not affect the probabilities to reach S0 and hence does not influence whether

2 This infinite series needs not converge. Hence, E(s) = +∞ is possible. However, we will
only consider Markov chains where E(s) is finite for all s ∈ S.
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S0 is an attractor or not.
This assumption yields that Pn(s,S0) is the probability to reach S0 from s within
n or less steps. Hence, Pr(s,♦S0) = limn→∞ Pn(s,S0). We now show by induction
on n that for the expected level after n steps from state s ∈ S \ S0 the following
inequality holds:

∞

∑
j=0

Pn(s,S j) · j ≤ level(s) − n∆ + ∆
n−1

∑̀
=1

P`(s,S0) (*)

Here, ∆ is the positive constant such that E(s) ≤ n−∆ for all states s ∈ S\S0.
For n = 1, (*) coincides with the statement that M is left-oriented. We now assume
that n ≥ 2 and that the induction hypothesis holds for n− 1. Then, for all states
s ∈ S\S0:

∞
∑
j=0

Pn(s,S j) · j =
∞
∑
j=1

Pn(s,S j) · j =
∞
∑
j=1

∞
∑

k=0
∑

t∈Sk

Pn−1(s, t) ·P(t,S j) · j

=
∞
∑
j=1

∞
∑

k=1
∑

t∈Sk

Pn−1(s, t) ·P(t,S j) · j (since P(t,S j) = 0 if t ∈ S0 and j ≥ 1)

=
∞
∑

k=1
∑

t∈Sk

Pn−1(s, t) ·
∞

∑
j=1

P(t,S j) · j

︸ ︷︷ ︸

≤ level(t)−∆=k−∆

≤
∞
∑

k=1
∑

t∈Sk

Pn−1(s, t) · (k−∆)

=
∞
∑

k=1
∑

t∈Sk

Pn−1(s, t) · k − ∆ ·
∞

∑
k=1

∑
t∈Sk

Pn−1(s, t)

︸ ︷︷ ︸

=1−Pn−1(s,S0)
ind. hypo.

≤ level(s) − (n−1)∆ + ∆
n−2
∑

`=1
P`(s,S0) − ∆ · (1−Pn−1(s,S0))

= level(s) − n∆ + ∆
n−1
∑

`=1
P`(s,S0).

Let us now assume that Pr(s,♦S0) < 1 for some state s. Then, s /∈ S0. Let n be a
natural number with n > level(s)/∆(1−Pr(s,♦S0)). As P`(s,S0) ≤ Pr(s,♦S0) we
get:

−n∆+∆∑n−1
`=1 P`(s,S0) ≤ −n∆+(n−1)∆Pr(s,♦S0)

= −n∆
(
1−Pr(s,♦S0)

)

︸ ︷︷ ︸

> level(s)

−∆Pr(s,♦S0)
︸ ︷︷ ︸

≥0

< − level(s)

Thus, inequality (*) for the expected level after n steps from s yields:

0 ≤
∞

∑
j=0

Pn(s,S j) · j ≤ level(s)−n∆ + ∆
n−1

∑̀
=1

P`(s,S0) < level(s)− level(s) = 0

This is a contradiction! Hence, Pr(s,♦S0) = 1 for all s ∈ S. �
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Almost left-oriented chains. In some situations the requirement that E(s)≤ level(s)−
∆ for all states s such that level(s)>0, is too restrictive. In fact, the requirement can
be relaxed as follows. We say M is almost left-oriented if there is some positive
constant ∆ and some n0 ∈ N such that E(s) ≤ level(s)−∆ for all states s where
level(s)>n0.

Theorem 2.2 If M is almost left-oriented (for a given n0), the levels Si, i ≤ n0, are
finite and S0 is reachable from all states in S1 ∪·· ·∪Sn0 , then S0 is an attractor.

PROOF. We consider the partitioning S′0 =
�

i≤n0
Si, S′i = /0 for 1 ≤ i ≤ n0 and

S′i = Si for all i > n0. For this new partitioning, M is left-oriented. Thus, we may
apply Theorem 2.1 to obtain that S′0 is an attractor. Hence, independent on the
starting state, S′0 is visited infinitely often with probability 1. Now, since S′

0 is finite
and S0 is reachable from each state in S′0, visiting S′0 infinitely often entails visiting
S0 almost surely. �

Chains with no orientation. The requirement that ∆ is strictly positive may seem
too restrictive. However, if we consider partitions such that E(s) ≤ level(s) for all
s 6∈ S0, no general statement can be made. For example, the classic 1-dimensional
random walk with a barrier at 0 3 has E(i) = i for all i > 0 and it admits {0} as an
attractor. On the other hand, the Markov chain M = (N,P) with P(i, i) = 1 for all
i ∈ N has E(i) = i but it has no nontrivial attractors.

Right-oriented chains. One might expect that if the Markov chain tends to the
right, in the sense that E(s)> level(s) for all states s, then no nontrivial attractors
exist. However, no such general statement is possible. There is even no function f :
N→N such that E(s)> f (level(s)) for all states s can ensure that the given Markov
chain has no nontrivial attractors. To see why, consider a Markov chain with state
space S = N and the partition Si = {i}, i = 0,1, . . . For the transition probabilities
we assume that P(i,0) = 1

2 and P(i,4 f (i)) ≥ 1
4 . The remaining probabilities for the

successors of i are arbitrary. E.g., we may assume that i has an edge to all states
j ∈ S, or we simply may deal with P(i,4 f (i)) = 1

2 . We then have E(i)≥ f (i) for all
states i, but S0 = {0} is an attractor for M as S0 is reachable from any state with
probability 1

2 by a single transition.

3 Formally, we consider the chain (N,P) where P(i, i + 1) = P(i, i− 1) = 1
2 for i ≥ 1 and

P(0,1) = 1. For this, it is known that the probability to visit eventually state 0 is 1 for any
starting state i.
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3 Probabilistic lossy channel systems

Channel systems [7] are a natural model for asynchronous systems that commu-
nicate by messages sent along FIFO links. In this section, we will only give an
informal description of them and refer to the survey paper [21] (and the references
therein) for motivations and formal definitions.

A channel system is made up of some number of finite-state component that com-
municate through some number of channels. Fig. 1 displays a schematic exam-
ple with n = 2 components and m = 2 channels. The operational semantics of a

2

1

3

c2?msg
√

c2?req

c1!ack 1

2

3

c2!msg

c2!stop

c1?ack

c1?hup

channel c1
ack ack hup

channel c2
msg stop

Fig. 1. A channel system

channel system is given by a transition system where a configuration is a tuple
s = 〈q1, . . . ,qn,w1, . . . ,wm〉 of n local control states and m channel contents. Here
wi is a word over the alphabet of messages, describing what messages are currently
in transit in the i-th channel. For example, the current configuration in Fig. 1 is
〈2, 1, hup ·ack ·ack, msg ·stop〉.
We often use vector notation s = 〈q,w〉 for configurations. The size |〈q,w〉| of a
configuration is the number of messages currently in w, i.e., ∑m

i=1 |wi|. We write
S for the set of all configurations (of some system), and Sk, where k ∈ N, for the
subset of configurations having size k. Transitions s −→ s′ are defined in the obvious
way: components asynchronously change their local states by following the edges
of their control graph and performing the action labeling the edge. Send actions
c!m enqueue message m in channel c, read actions c?m consume m from the head
of c (this is only allowed if indeed m is the first message in c, hence send actions
also act as guards), and null actions

√
do not test or modify the channels. For sim-

plicity, we only consider deadlock-free channel systems, i.e., systems where every
configuration has at least one possible step allowed.

Probabilistic lossy channels systems. The model we consider here is a probabilistic
extension where the choice of the next step (and of the performing component) is
made probabilistically. Additionally, transmission errors can occur: messages can
be lost from the channels, they can be duplicated spuriously, all this according to
some probabilistic laws. More formally, a probabilistic lossy channel system (a
PLCS) is a channel system equipped with a probability distribution θ for the choice
of the next step, with a message loss probability τ ∈ [0,1], and with a message du-
plication probability λ ∈ [0,1]. Usually θ is given by assigning positive weights to
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the rules of the components (the edges in their control graph): such weights trans-
late into a mapping θ : S → Dist(S) in the standard way (recall that Dist(S) is the
set of probability distributions over S). After a next step is chosen probabilistically,
message losses and message duplications may occur spuriously. More precisely,
each message in w is lost with probability τ, and each remaining message is dupli-
cated with probability λ.
The operational semantics of a PLCS L is given by a Markov chain ML = (S,P)
where the states are the configurations of L. Defining the probabilities P(s,s′) is
tedious because one has to combine steps of the components, losses, and dupli-
cations, and because there usually exist several different way of reaching a same
s′ by one step with losses and duplications. We do not recall the definition here
(see [3,2]). However, some properties of P can be explained without a full defini-
tion: given some s with |s|= n, the probability Q(s,S`) that one round of losses and
duplications transforms s into some s′ with |s′| = `, written Q(n, `), is given by

Q(n, `) =
bn− `

2 c

∑
i=n−`

τi · (1− τ)n−i ·
(

n
i

)

·λ`−(n−i) · (1−λ)2(n−i)−` ·
(

n− i
`− (n− i)

)

(+)

The summation in (+) is nonempty if ` ≤ 2n and we have Q(n, `) = 0 if `>2n. (+)
can be explained as follows: it considers that first exactly i messages are lost, and
then exactly `− (n− i) of the remaining n− i messages are duplicated, which gives
a total amount of

2(`− (n− i))
︸ ︷︷ ︸

duplicated

+((n− i)− (`− (n− i)))
︸ ︷︷ ︸

not duplicated

= 2`−2(n− i)+2(n− i)− ` = `

messages. Here, i has to fulfill the constraint n− i ≤ ` ≤ 2(n− i). One derives the
expected size of the channels contents after losses and duplications:

∞

∑
j=0

Q(n, j) · j = n−nτ+n(1− τ)λ = n(1− τ)(1+λ). (3.1)

For a configuration s of L, let us write p!(s), p?(s) and p√(s) for the probabilities
that the next step will be, respectively, a send action, a read action, or an internal
action. These probabilities only depend on θ and, for all s, p!(s)+ p?(s)+ p√(s) =
1. Furthermore p?(s) = 0 when |s| = 0. Now, the transition probability matrix P in
ML satisfies for |s| = n:

P(s,S`) = p!(s)Q(n+1, `)+ p?(s)Q(n−1, `)+ p√(s)Q(n, `) (3.2)

Theorem 3.1 For any PLCS L with (1−τ)(1+λ)<1, S0, the set of configurations
where all channels are empty, is an attractor of ML.

PROOF. We apply Theorem 2.2 for the partition (Si)i∈N induced by channels con-
tents size, and we show that it makes ML almost left-oriented. Consider a configu-
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ration s with n = |s| ≥ 1. Combining (3.1) and (3.2) yields

E(s) =
∞

∑
j=0

P(s,S j) · j = (n+ p!(s)− p?(s))(1− τ)(1+λ) ≤ (n+1)(1− τ)(1+λ).

If (1−τ)(1+λ)<1 then there exists n0 ∈N such that (n+1)(1−τ)(1+λ) ≤ n− 1
2

for all n ≥ n0. Hence E(s) ≤ level(s)− 1
2 for all s with level(s) ≥ n0, ML is almost

left-oriented, and S0 is an attractor. �

Theorem 3.1 proves that S0 is an attractor in ML when λ = 0 and τ > 0, i.e., for
PLCS’s without duplication errors as used in [6]. One also sees that if τ > 0 and
λ ≤ τ, i.e., if duplication errors are not more likely than message losses, then again
S0 is an attractor in ML. This result was given in [3, lemma 10] without an explicit
proof. But Theorem 3.1 shows that S0 is an attractor under even weaker conditions:
it is enough that λ< τ

1−τ .

PLCS with insertion errors. As in [2], we may also consider PLCS where insertion
errors may occur in any step after losing and duplicating certain messages. In the
approach of [2], there is a fixed distribution that specifies the probabilities for an
insertion of k messages at any configuration (and hence independently of said con-
figuration). Let K be the expected number of inserted messages. Then, the expected
next level for any state s at level n is E(s) ≤ (n + 1)(1− τ)(1 + λ)+ K. Again, if
(1− τ)(1 + λ) < 1 then E(s) ≤ level(s)− 1

2 for all configurations of level higher
than some n0 large enough. Thus, ML is almost left-oriented and S0 is an attractor.
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